51
|
Le Fevre R, Evangelisti E, Rey T, Schornack S. Modulation of host cell biology by plant pathogenic microbes. Annu Rev Cell Dev Biol 2015; 31:201-29. [PMID: 26436707 DOI: 10.1146/annurev-cellbio-102314-112502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.
Collapse
Affiliation(s)
- Ruth Le Fevre
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| |
Collapse
|
52
|
Atwell S, Corwin JA, Soltis NE, Subedy A, Denby KJ, Kliebenstein DJ. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity. Front Microbiol 2015; 6:996. [PMID: 26441923 PMCID: PMC4585241 DOI: 10.3389/fmicb.2015.00996] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/07/2015] [Indexed: 01/15/2023] Open
Abstract
How standing genetic variation within a pathogen contributes to diversity in host/pathogen interactions is poorly understood, partly because most studied pathogens are host-specific, clonally reproducing organisms which complicates genetic analysis. In contrast, Botrytis cinerea is a sexually reproducing, true haploid ascomycete that can infect a wide range of diverse plant hosts. While previous work had shown significant genomic variation between two isolates, we proceeded to assess the level and frequency of standing variation in a population of B. cinerea. To begin measuring standing genetic variation in B. cinerea, we re-sequenced the genomes of 13 different isolates and aligned them to the previously sequenced T4 reference genome. In addition one of these isolates was resequenced from four independently repeated cultures. A high level of genetic diversity was found within the 13 isolates. Within this variation, we could identify clusters of genes with major effect polymorphisms, i.e., polymorphisms that lead to a predicted functional knockout, that surrounded genes involved in controlling vegetative incompatibility. The genotype at these loci was able to partially predict the interaction of these isolates in vegetative fusion assays showing that these loci control vegetative incompatibility. This suggests that the vegetative incompatibility loci within B. cinerea are associated with regions of increased genetic diversity. The genome re-sequencing of four clones from the one isolate (Grape) that had been independently propagated over 10 years showed no detectable spontaneous mutation. This suggests that B. cinerea does not display an elevated spontaneous mutation rate. Future work will allow us to test if, and how, this diversity may be contributing to the pathogen's broad host range.
Collapse
Affiliation(s)
- Susanna Atwell
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Jason A. Corwin
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Nicole E. Soltis
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Anushryia Subedy
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Katherine J. Denby
- School of Life Sciences and Warwick Systems Biology Centre, University of WarwickCoventry, UK
| | | |
Collapse
|
53
|
Nguyen HD, Chabot D, Hirooka Y, Roberson RW, Seifert KA. Basidioascus undulatus: genome, origins, and sexuality. IMA Fungus 2015; 6:215-31. [PMID: 26203425 PMCID: PMC4500085 DOI: 10.5598/imafungus.2015.06.01.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/13/2015] [Indexed: 11/24/2022] Open
Abstract
Basidioascus undulatus is a soil basidiomycete belonging to the order Geminibasidiales. The taxonomic status of the order was unclear as originally it was only tentatively classified in the class Wallemiomycetes. The fungi in Geminibasidiales have an ambiguously defined sexual cycle. In this study, we sequenced the genome of B. undulatus to gain insights into its sexuality and evolutionary origins. The assembled genome draft was approximately 32 Mb in size, had a median nucleotide coverage of 24X, and contained 6123 predicted genes. Previous morphological descriptions of B. undulatus relied on interpretation of putative sexual structures. In this study, nuclear staining and confocal microscopy showed meiosis occurring in basidia and genome analysis confirmed the existence of genes involved in meiosis and mating. Using 35 protein-coding genes extracted from genomic information, phylogenomic and molecular dating analyses confirmed that B. undulatus indeed belongs to a lineage distantly related to Wallemia while retaining a basal position in Agaricomycotina. These results, combined with differences in septal pore morphology, led us to move the order Geminibasidiales out of the Wallemiomycetes and into the new class Geminibasidiomycetes cl. nov. Finally, the concept of Agaricomycotina is emended to include both Wallemiomycetes and Geminibasidiomycetes.
Collapse
Affiliation(s)
- Hai D.T. Nguyen
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
- Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Denise Chabot
- Microscopy Centre, Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Yuuri Hirooka
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
- Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Robert W. Roberson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-1601, USA
| | - Keith A. Seifert
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
- Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| |
Collapse
|
54
|
Kammonen JI, Smolander OP, Sipilä T, Overmyer K, Auvinen P, Paulin L. Increased transcriptome sequencing efficiency with modified Mint-2 digestion-ligation protocol. Anal Biochem 2015; 477:38-40. [PMID: 25513723 DOI: 10.1016/j.ab.2014.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/19/2022]
Abstract
The standard digestion-ligation cloning method enables synthesis of large amounts of complementary DNA (cDNA) from a model organism facilitating study of the transcriptome. Here, we used cDNA amplification of the dimorphic yeast Taphrina betulina as an example of how a library construction protocol can significantly increase sequencing throughput. Two modification steps were introduced to the Evrogen standard Mint-2 protocol to improve its suitability for next-generation sequencing projects. We performed two partial Illumina MiSeq sequencing runs with the modified protocol: one with and one without biotin-purified primers. The results demonstrated that biotinylated libraries increased both accuracy and throughput of the modified protocol. Moreover, our sequencing results indicate that a sequence-specific miscall may affect the output of Illumina's MiSeq platform.
Collapse
Affiliation(s)
- Juhana I Kammonen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | | | - Timo Sipilä
- Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kirk Overmyer
- Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
55
|
Nishida H, Matsumoto T, Kondo S, Hamamoto M, Yoshikawa H. The early diverging ascomycetous budding yeast Saitoella complicata has three histone deacetylases belonging to the Clr6, Hos2, and Rpd3 lineages. J GEN APPL MICROBIOL 2015; 60:7-12. [PMID: 24646756 DOI: 10.2323/jgam.60.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We sequenced the genomic DNA and the transcribed RNA of the ascomycetous budding yeast Saitoella complicata, which belongs to the earliest lineage (Taphrinomycotina) of ascomycetes. We found 3 protein-coding regions similar to Clr6 of Schizosaccharomyces (a member of Taphrinomycotina). Clr6 has a structure similar to that of Rpd3 and Hos2 of Saccharomyces. These proteins belong to the class 1 histone deacetylase (HDAC) family. The phylogenetic tree showed that the Clr6, Hos2, and Rpd3 lineages are separated in fungal HDACs. Basidiomycetes have 3 proteins belonging to the Clr6, Hos2, and Rpd3 lineages. On the other hand, whereas ascomycetes except for Schizosaccharomyces have the Hos2 and Rpd3 homologs, and lack the Clr6 homolog, Schizosaccharomyces has the Clr6 and Hos2 homologs, and lacks the Rpd3 homolog. Interestingly, Pneumocystis and Saitoella have 3 proteins belonging to the Clr6, Hos2, and Rpd3 lineages. Thus, these fungi are the first ascomycete found to possess all 3 types. Our findings indicated that Taphrinomycotina has conserved the Clr6 protein, suggesting that the ancestor of Dikarya (ascomycetes and basidiomycetes) had 3 proteins belonging to the Clr6, Hos2, and Rpd3 lineages. During ascomycete evolution, Pezizomycotina and Saccharomycotina appear to have lost their Clr6 homologs and Schizosaccharomyces to have lost its Rpd3 homolog.
Collapse
Affiliation(s)
- Hiromi Nishida
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University
| | | | | | | | | |
Collapse
|
56
|
Tsai IJ, Tanaka E, Masuya H, Tanaka R, Hirooka Y, Endoh R, Sahashi N, Kikuchi T. Comparative genomics of Taphrina fungi causing varying degrees of tumorous deformity in plants. Genome Biol Evol 2015; 6:861-72. [PMID: 24682155 PMCID: PMC4007546 DOI: 10.1093/gbe/evu067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Taphrina fungi are biotrophic plant pathogens that cause plant deformity diseases. We sequenced the genomes of four Taphrina species—Taphrina wiesneri, T. deformans, T. flavorubra, and T. populina—which parasitize Prunus, Cerasus, and Populus hosts with varying severity of disease symptoms. High levels of gene synteny within Taphrina species were observed, and our comparative analysis further revealed that these fungi may utilize multiple strategies in coping with the host environment that are also found in some specialized dimorphic species. These include species-specific aneuploidy and clusters of highly diverged secreted proteins located at subtelomeres. We also identified species differences in plant hormone biosynthesis pathways, which may contribute to varying degree of disease symptoms. The genomes provide a rich resource for investigation into Taphrina biology and evolutionary studies across the basal ascomycetes clade.
Collapse
Affiliation(s)
- Isheng J Tsai
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Affiliation(s)
- Gregory M. Gauthier
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
58
|
Abstract
Pneumocystis species are fungal parasites of mammal lungs showing host specificity. Pneumocystis jirovecii colonizes humans and causes severe pneumonia in immunosuppressed individuals. In the absence of in vitro cultures, the life cycle of these fungi remains poorly known. Sexual reproduction probably occurs, but the system of this process and the mating type (MAT) genes involved are not characterized. In the present study, we used comparative genomics to investigate the issue in P. jirovecii and Pneumocystis carinii, the species infecting rats, as well as in their relative Taphrina deformans. We searched sex-related genes using 103 sequences from the relative Schizosaccharomyces pombe as queries. Genes homologous to several sex-related role categories were identified in all species investigated, further supporting sexuality in these organisms. Extensive in silico searches identified only three putative MAT genes in each species investigated (matMc, matMi, and matPi). In P. jirovecii, these genes clustered on the same contig, proving their contiguity in the genome. This organization seems compatible neither with heterothallism, because two different MAT loci on separate DNA molecules would have been detected, nor with secondary homothallism, because the latter involves generally more MAT genes. Consistently, we did not detect cis-acting sequences for mating type switching in secondary homothallism, and PCR revealed identical MAT genes in P. jirovecii isolates from six patients. A strong synteny of the genomic region surrounding the putative MAT genes exists between the two Pneumocystis species. Our results suggest the hypothesis that primary homothallism is the system of reproduction of Pneumocystis species and T. deformans. Importance Sexual reproduction among fungi can involve a single partner (homothallism) or two compatible partners (heterothallism). We investigated the issue in three pathogenic fungal relatives: Pneumocystis jirovecii, which causes severe pneumonia in immunocompromised humans; Pneumocystis carinii, which infects rats; and the plant pathogen Taphrina deformans. The nature, the number, and the organization within the genome of the genes involved in sexual reproduction were determined. The three species appeared to harbor a single genomic region gathering only three genes involved in sexual differentiation, an organization which is compatible with sexual reproduction involving a single partner. These findings illuminate the strategy adopted by fungal pathogens to infect their hosts. Sexual reproduction among fungi can involve a single partner (homothallism) or two compatible partners (heterothallism). We investigated the issue in three pathogenic fungal relatives: Pneumocystis jirovecii, which causes severe pneumonia in immunocompromised humans; Pneumocystis carinii, which infects rats; and the plant pathogen Taphrina deformans. The nature, the number, and the organization within the genome of the genes involved in sexual reproduction were determined. The three species appeared to harbor a single genomic region gathering only three genes involved in sexual differentiation, an organization which is compatible with sexual reproduction involving a single partner. These findings illuminate the strategy adopted by fungal pathogens to infect their hosts.
Collapse
|
59
|
Hauser PM. Genomic insights into the fungal pathogens of the genus pneumocystis: obligate biotrophs of humans and other mammals. PLoS Pathog 2014; 10:e1004425. [PMID: 25375856 PMCID: PMC4223059 DOI: 10.1371/journal.ppat.1004425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Philippe M. Hauser
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
60
|
Cissé OH, Pagni M, Hauser PM. Comparative genomics suggests that the human pathogenic fungus Pneumocystis jirovecii acquired obligate biotrophy through gene loss. Genome Biol Evol 2014; 6:1938-48. [PMID: 25062922 PMCID: PMC4159005 DOI: 10.1093/gbe/evu155] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pneumocystis jirovecii is a fungal parasite that colonizes specifically humans and turns into an opportunistic pathogen in immunodeficient individuals. The fungus is able to reproduce extracellularly in host lungs without eliciting massive cellular death. The molecular mechanisms that govern this process are poorly understood, in part because of the lack of an in vitro culture system for Pneumocystis spp. In this study, we explored the origin and evolution of the putative biotrophy of P. jirovecii through comparative genomics and reconstruction of ancestral gene repertoires. We used the maximum parsimony method and genomes of related fungi of the Taphrinomycotina subphylum. Our results suggest that the last common ancestor of Pneumocystis spp. lost 2,324 genes in relation to the acquisition of obligate biotrophy. These losses may result from neutral drift and affect the biosyntheses of amino acids and thiamine, the assimilation of inorganic nitrogen and sulfur, and the catabolism of purines. In addition, P. jirovecii shows a reduced panel of lytic proteases and has lost the RNA interference machinery, which might contribute to its genome plasticity. Together with other characteristics, that is, a sex life cycle within the host, the absence of massive destruction of host cells, difficult culturing, and the lack of virulence factors, these gene losses constitute a unique combination of characteristics which are hallmarks of both obligate biotrophs and animal parasites. These findings suggest that Pneumocystis spp. should be considered as the first described obligate biotrophs of animals, whose evolution has been marked by gene losses.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, SwitzerlandVital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, SwitzerlandPresent address: Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, CA
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Philippe M Hauser
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| |
Collapse
|
61
|
Description of Taphrina antarctica f.a. sp. nov., a new anamorphic ascomycetous yeast species associated with Antarctic endolithic microbial communities and transfer of four Lalaria species in the genus Taphrina. Extremophiles 2014; 18:707-21. [PMID: 24893860 DOI: 10.1007/s00792-014-0651-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
Abstract
In the framework of a large-scale rock sampling in Continental Antarctica, a number of yeasts have been isolated. Two strains that are unable to grow above 20 °C and that have low ITS sequence similarities with available data in the public domain were found. The D1/D2 LSU molecular phylogeny placed them in an isolated position in the genus Taphrina, supporting their affiliation to a not yet described species. Because the new species is able to grow in its anamorphic state only, the species Taphrina antarctica f.a. (forma asexualis) sp. nov. has been proposed to accommodate both strains (type strain DBVPG 5268(T), DSM 27485(T) and CBS 13532(T)). Lalaria and Taphrina species are dimorphic ascomycetes, where the anamorphic yeast represents the saprotrophic state and the teleomorph is the parasitic counterpart on plants. This is the first record for this genus in Antarctica; since plants are absent on the continent, we hypothesize that the fungus may have focused on the saprotrophic part of its life cycle to overcome the absence of its natural host and adapt environmental constrains. Following the new International Code of Nomenclature for Algae, Fungi and Plants (Melbourne Code 2011) the reorganization of Taphrina-Lalaria species in the teleomorphic genus Taphrina is proposed. We emend the diagnosis of the genus Taphrina to accommodate asexual saprobic states of these fungi. Taphrina antarctica was registered in MycoBank under MB 808028.
Collapse
|
62
|
Toome M, Ohm RA, Riley RW, James TY, Lazarus KL, Henrissat B, Albu S, Boyd A, Chow J, Clum A, Heller G, Lipzen A, Nolan M, Sandor L, Zvenigorodsky N, Grigoriev IV, Spatafora JW, Aime MC. Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the fern pathogen Mixia osmundae. THE NEW PHYTOLOGIST 2014; 202:554-564. [PMID: 24372469 DOI: 10.1111/nph.12653] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/19/2013] [Indexed: 05/06/2023]
Abstract
Mixia osmundae (Basidiomycota, Pucciniomycotina) represents a monotypic class containing an unusual fern pathogen with incompletely understood biology. We sequenced and analyzed the genome of M. osmundae, focusing on genes that may provide some insight into its mode of pathogenicity and reproductive biology. Mixia osmundae has the smallest plant pathogenic basidiomycete genome sequenced to date, at 13.6 Mb, with very few repeats, high gene density, and relatively few significant gene family gains. The genome shows that the yeast state of M. osmundae is haploid and the lack of segregation of mating genes suggests that the spores produced on Osmunda spp. fronds are probably asexual. However, our finding of a complete complement of mating and meiosis genes suggests the capacity to undergo sexual reproduction. Analyses of carbohydrate active enzymes suggest that this fungus is a biotroph with the ability to break down several plant cell wall components. Analyses of publicly available sequence data show that other Mixia members may exist on other plant hosts and with a broader distribution than previously known.
Collapse
Affiliation(s)
- Merje Toome
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Robin A Ohm
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Robert W Riley
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katherine L Lazarus
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille University, CNRS UMR 7257, 13288, Marseille, France
| | - Sebastian Albu
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Alexander Boyd
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Julianna Chow
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Gregory Heller
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Matt Nolan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | | | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|