51
|
Knight DR, Imwattana K, Kullin B, Guerrero-Araya E, Paredes-Sabja D, Didelot X, Dingle KE, Eyre DW, Rodríguez C, Riley TV. Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy. eLife 2021; 10:64325. [PMID: 34114561 PMCID: PMC8241443 DOI: 10.7554/elife.64325] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile infection (CDI) remains an urgent global One Health threat. The genetic heterogeneity seen across C. difficile underscores its wide ecological versatility and has driven the significant changes in CDI epidemiology seen in the last 20 years. We analysed an international collection of over 12,000 C. difficile genomes spanning the eight currently defined phylogenetic clades. Through whole-genome average nucleotide identity, and pangenomic and Bayesian analyses, we identified major taxonomic incoherence with clear species boundaries for each of the recently described cryptic clades CI–III. The emergence of these three novel genomospecies predates clades C1–5 by millions of years, rewriting the global population structure of C. difficile specifically and taxonomy of the Peptostreptococcaceae in general. These genomospecies all show unique and highly divergent toxin gene architecture, advancing our understanding of the evolution of C. difficile and close relatives. Beyond the taxonomic ramifications, this work may impact the diagnosis of CDI.
Collapse
Affiliation(s)
- Daniel R Knight
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Biomedical Sciences, the University of Western Australia, Nedlands, Australia
| | - Korakrit Imwattana
- School of Biomedical Sciences, the University of Western Australia, Nedlands, Australia.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Brian Kullin
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Enzo Guerrero-Araya
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millenium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millenium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile.,Department of Biology, Texas A&M University, College Station, United States
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Kate E Dingle
- Nuffield Department of Clinical Medicine, University of Oxford, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - David W Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - César Rodríguez
- Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Thomas V Riley
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Biomedical Sciences, the University of Western Australia, Nedlands, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
52
|
Seth-Smith HMB, Biggel M, Roloff T, Hinic V, Bodmer T, Risch M, Casanova C, Widmer A, Sommerstein R, Marschall J, Tschudin-Sutter S, Egli A. Transition From PCR-Ribotyping to Whole Genome Sequencing Based Typing of Clostridioides difficile. Front Cell Infect Microbiol 2021; 11:681518. [PMID: 34141631 PMCID: PMC8204696 DOI: 10.3389/fcimb.2021.681518] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile causes nosocomial outbreaks which can lead to severe and even life-threatening colitis. Rapid molecular diagnostic tests allow the identification of toxin-producing, potentially hypervirulent strains, which is critical for patient management and infection control. PCR-ribotyping has been used for decades as the reference standard to investigate transmission in suspected outbreaks. However, the introduction of whole genome sequencing (WGS) for molecular epidemiology provides a realistic alternative to PCR-ribotyping. In this transition phase it is crucial to understand the strengths and weaknesses of the two technologies, and to assess their correlation. We aimed to investigate ribotype prediction from WGS data, and options for analysis at different levels of analytical granularity. Ribotypes cannot be directly determined from short read Illumina sequence data as the rRNA operons including the ribotype-defining ISR fragments collapse in genome assemblies, and comparison with traditional PCR-ribotyping results becomes impossible. Ribotype extraction from long read Oxford nanopore data also requires optimization. We have compared WGS-based typing with PCR-ribotyping in nearly 300 clinical and environmental isolates from Switzerland, and in addition from the Enterobase database (n=1778). Our results show that while multi-locus sequence type (MLST) often correlates with a specific ribotype, the agreement is not complete, and for some ribotypes the resolution is insufficient. Using core genome MLST (cgMLST) analysis, there is an improved resolution and ribotypes can often be predicted within clusters, using cutoffs of 30-50 allele differences. The exceptions are ribotypes within known ribotype complexes such as RT078/RT106, where the genome differences in cgMLST do not reflect the ribotype segregation. We show that different ribotype clusters display different degrees of diversity, which could be important for the definition of ribotype cluster specific cutoffs. WGS-based analysis offers the ultimate resolution to the SNP level, enabling exploration of patient-to-patient transmission. PCR-ribotyping does not sufficiently discriminate to prove nosocomial transmission with certainty. We discuss the associated challenges and opportunities in a switch to WGS from conventional ribotyping for C. difficile.
Collapse
Affiliation(s)
- Helena M B Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tim Roloff
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Vladimira Hinic
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Thomas Bodmer
- Clinical Microbiology, Labormedizinisches Zentrum Dr Risch, Liebefeld, Switzerland
| | - Martin Risch
- Clinical Microbiology, Labormedizinisches Zentrum Dr Risch, Liebefeld, Switzerland
| | - Carlo Casanova
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andreas Widmer
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Rami Sommerstein
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland.,Infectious Diseases, Hirslanden Central Switzerland, Lucerne, Switzerland
| | - Jonas Marschall
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Sarah Tschudin-Sutter
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
53
|
Frentrup M, Thiel N, Junker V, Behrens W, Münch S, Siller P, Kabelitz T, Faust M, Indra A, Baumgartner S, Schepanski K, Amon T, Roesler U, Funk R, Nübel U. Agricultural fertilization with poultry manure results in persistent environmental contamination with the pathogen Clostridioides difficile. Environ Microbiol 2021; 23:7591-7602. [PMID: 33998128 DOI: 10.1111/1462-2920.15601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022]
Abstract
During a field experiment applying broiler manure for fertilization of agricultural land, we detected viable Clostridioides (also known as Clostridium) difficile in broiler faeces, manure, dust and fertilized soil. A large diversity of toxigenic C. difficile isolates was recovered, including PCR ribotypes common from human disease. Genomic relatedness of C. difficile isolates from dust and from soil, recovered more than 2 years after fertilization, traced their origins to the specific chicken farm that had delivered the manure. We present evidence of long-term contamination of agricultural soil with manure-derived C. difficile and demonstrate the potential for airborne dispersal of C. difficile through dust emissions during manure application. Clostridioides genome sequences virtually identical to those from manure had been recovered from chicken meat and from human infections in previous studies, suggesting broiler-associated C. difficile are capable of zoonotic transmission.
Collapse
Affiliation(s)
- Martinique Frentrup
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nadine Thiel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Vera Junker
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wiebke Behrens
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Steffen Münch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Paul Siller
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany
| | - Tina Kabelitz
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Matthias Faust
- Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Alexander Indra
- AGES-Austrian Agency for Health and Food Safety, Vienna, Austria.,Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | | | | - Thomas Amon
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany.,Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany
| | - Roger Funk
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Ulrich Nübel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany.,Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| |
Collapse
|
54
|
Imwattana K, Putsathit P, Knight DR, Kiratisin P, Riley TV. Molecular Characterization of, and Antimicrobial Resistance in, Clostridioides difficile from Thailand, 2017-2018. Microb Drug Resist 2021; 27:1505-1512. [PMID: 33956520 DOI: 10.1089/mdr.2020.0603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance (AMR) plays an important role in the pathogenesis and spread of Clostridioides difficile infection (CDI). Many antimicrobials, such as fluoroquinolones, have been associated with outbreaks of CDI globally. This study characterized AMR among clinical C. difficile strains in Thailand, where antimicrobial use remains inadequately regulated. Stool samples were screened for tcdB and positives were cultured. C. difficile isolates were characterized by toxin profiling and PCR ribotyping. Antimicrobial susceptibility testing was performed by agar incorporation, and whole-genome sequencing and AMR genotyping were performed on a subset of strains. There were 321 C. difficile strains isolated from 326 stool samples. The most common toxigenic ribotype (RT) was RT 017 (18%), followed by RTs 014 (12%) and 020 (7%). Resistance to clindamycin, erythromycin, moxifloxacin, and rifaximin was common, especially among RT 017 strains. AMR genotyping revealed a strong correlation between resistance genotype and phenotype for moxifloxacin and rifaximin. The presence of erm-class genes was associated with high-level clindamycin and erythromycin resistance. Point substitutions in the penicillin-binding proteins were not sufficient to confer meropenem resistance, but a Y721S substitution in PBP3 was associated with a 4.37-fold increase in meropenem minimal inhibitory concentration. No resistance to metronidazole, vancomycin, or fidaxomicin was observed.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia.,Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Daniel R Knight
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia
| | | | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia
| |
Collapse
|
55
|
Clostridioides difficile in Calves in Central Italy: Prevalence, Molecular Typing, Antimicrobial Susceptibility and Association with Antibiotic Administration. Animals (Basel) 2021; 11:ani11020515. [PMID: 33669325 PMCID: PMC7920295 DOI: 10.3390/ani11020515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Clostridioides difficile is a leading cause of nosocomial and community-acquired diarrhoea in men. The infection most commonly occurs in people who have recently been treated with antibiotics. Indistinguishable C. difficile strains have been isolated from livestock and humans, which has shed light on a possible zoonotic origin of this infection. This study aimed to assess the prevalence and risk factors of C. difficile in calves bred in dairy and beef cattle farms of the Umbria, central Italy. We estimated a 19.8% prevalence of farms positive for C. difficile. The C. difficile isolates from calves were potentially toxigenic and resistant to antibiotics, including lincosamides, quinolones, vancomycin and linezolid. Isolates belonging to ribotype RT-126, which is also commonly reported in humans, showed the highest number of resistance to the antimicrobials tested. Furthermore, we observed an almost sixfold increased risk for C. difficile on farms where penicillins had been prescribed. This, together with the detection of toxigenic and antibiotic-resistant isolates, strongly suggests the need for a reduction of antibiotic use in cattle. Abstract The emergence of Clostridioides difficile as the main agent of antibiotic-associated diarrhoea has raised concerns about its potential zoonotic role in different animal species. The use of antimicrobials is a major risk factor for C. difficile infection. Here, we provide data on C. difficile infection in dairy and beef calves in Umbria, a region in central Italy. This cross-sectional study focuses on prevalence, risk factors, ribotypes, toxinotypes and antimicrobial resistance profiles of circulating ribotypes. A prevalence of 19.8% (CI95%, 12–27.6%) positive farms was estimated, and the prescription of penicillins on the farms was associated with C. difficile detection (OR = 5.58). Eleven different ribotypes were found, including the ST11 sublineages RT-126 and -078, which are also commonly reported in humans. Thirteen isolates out of 17 showed resistance to at least one of clindamycin, moxifloxacin, linezolid and vancomycin. Among them, multiple-drug resistance was observed in two isolates, belonging to RT-126. Furthermore, RT-126 isolates were positive for tetracycline resistance determinants, confirming that tetracycline resistance is widespread among ST11 isolates from cattle. The administration of penicillins increased the risk of C. difficile in calves: this, together with the recovery of multi-resistant strains, strongly suggests the need for minimising antibiotic misuse on cattle farms.
Collapse
|
56
|
Bjöersdorff OG, Lindberg S, Kiil K, Persson S, Guardabassi L, Damborg P. Dogs are carriers of Clostridioides difficile lineages associated with human community-acquired infections. Anaerobe 2021; 67:102317. [PMID: 33418077 DOI: 10.1016/j.anaerobe.2020.102317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
There is an increasing concern about the role of animals as reservoirs of Clostridioides difficile. In this study, we investigated prevalence, antimicrobial resistance and zoonotic potential of C. difficile in dogs. Two-hundred and twenty-five dog faecal deposits were collected from trashcans in nine public gardens. C. difficile was isolated using selective plating and enrichment culture, identified by MALDI-TOF, tested for susceptibility to seven antibiotics by E-test, and sequenced on an Illumina NextSeq platform. Genome sequences were analysed to determine multilocus sequence types and resistance and toxin gene profiles. Zoonotic potential was assessed by measuring genetic variations of core genome (cg)MLST types between canine isolates and 216 temporally and spatially related human clinical isolates from a national database. C. difficile was isolated from 11 samples (4.9%). Seven isolates were toxigenic (tcdA+, tcdB+, cdtA/B-) and belonged to the sequence types ST2, ST6, ST10 and ST42. The four non-toxigenic isolates were assigned to ST15, ST26 and one novel ST. ST2, corresponding to PCR ribotype RT014/020, was the dominating lineage (n = 4) and, together with ST26 and ST42 isolates, showed close resemblance to human isolates, i.e. 2-5 allelic differences among the 1999 genes analysed by cgMLST. Three non-toxigenic isolates displayed resistance to clindamycin, erythromycin and tetracycline mediated by erm(B) and tet(M). Resistance to metronidazole, moxifloxacine, rifampicin or vancomycin was not detected. In conclusion, a small proportion of faecal deposits contained toxigenic C. difficile such as ST2 (RT014/020), which is a major cause of community-acquired infections. Our finding suggests that pathogenic strains can be exchanged between dogs and humans.
Collapse
Affiliation(s)
- Olivia Graaf Bjöersdorff
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sanna Lindberg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristoffer Kiil
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Søren Persson
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
57
|
Lim SC, Knight DR, Moono P, Foster NF, Riley TV. Clostridium difficile in soil conditioners, mulches and garden mixes with evidence of a clonal relationship with historical food and clinical isolates. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:672-680. [PMID: 32975368 DOI: 10.1111/1758-2229.12889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
With rates of community-associated Clostridium difficile infection (CA-CDI) increasing worldwide, potential reservoirs/sources of C. difficile in the community are being sought. Since C. difficile is found in animal manure and human biosolids, which are composted for agricultural purposes, composted products could be a source. In this study, the presence of C. difficile in composted products, and their genetic relatedness to other previously isolated strains from humans, root vegetables and the environment in Western Australia, was investigated. Overall, C. difficile was found in 22.5% (16/71) of composted products [29.7% (11/37) of soil conditioners, 16.7% (2/12) of mulches and 13.6% (3/22) of garden mixes]. Fifteen C. difficile PCR ribotypes (RTs) were identified, the most common toxigenic strains being RTs 020 and 056. Clostridium difficile RT 056 is commonly associated with CDI in humans and has also been isolated from cattle, root vegetables and the environment (veterinary clinics and lawn) in Australia. High-resolution core-genome analysis of 29 C. difficile RT 056 strains revealed clonal relationships between isolates derived from humans, vegetables, composted products and the environment. These findings provide support for an intricate transmission network between human, food and the environment, further highlighting the importance of a 'One Health' approach for managing CDI.
Collapse
Affiliation(s)
- Su-Chen Lim
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Daniel R Knight
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Peter Moono
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Niki F Foster
- PathWest Laboratory Medicine, Perth, Western Australia, Australia
- OzFoodNet, Communicable Diseases Control Directorate, Department of Health, Government of Western Australia, Perth, Western Australia, Australia
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, Western Australia, Australia
- PathWest Laboratory Medicine, Perth, Western Australia, Australia
| |
Collapse
|
58
|
Imwattana K, Kiratisin P, Riley TV, Knight DR. Genomic basis of antimicrobial resistance in non-toxigenic Clostridium difficile in Southeast Asia. Anaerobe 2020; 66:102290. [PMID: 33137436 DOI: 10.1016/j.anaerobe.2020.102290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023]
Abstract
Despite being incapable of causing Clostridium difficile infection, non-toxigenic C. difficile (NTCD) may still be relevant. This study explored the role of NTCD as a reservoir of accessory antimicrobial resistance (AMR) genes in NTCD from Southeast Asia. This region has high rates of antimicrobial use, a high prevalence of NTCD and phenotypic AMR in such strains. More than half of the 28 NTCD strains investigated had at least one accessory AMR gene on mobile genetic elements (MGEs) which were similar to the elements found in other bacteria, including Erysipelothrix rhusiopathiae and Streptococcus suis, both of which are found in the pig gut. Thus, C. difficile may facilitate the movement of AMR genes between different hosts within a wide range of pathogenic bacteria. C. difficile β-lactamases were not located on MGEs and were unlikely to be transferred. Concordance between the MLSB resistance genotype and phenotype was low, suggesting multiple resistance mechanisms, many of which remain unknown. On the contrary, there was a high concordance between resistance genotype and phenotype for both fluoroquinolones and rifaximin. From an epidemiological perspective, NTCD populations in Southeast Asia comprised members of evolutionary clades 1 and 4, which are thought to have originated from Europe and Asia, respectively. This population structure reflects the close relationship between the people of the two regions.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Western Australia, Australia; Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Western Australia, Australia; Medical, Molecular and Forensic Sciences, Murdoch University, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Western Australia, Australia
| | - Daniel R Knight
- School of Biomedical Sciences, The University of Western Australia, Western Australia, Australia; Medical, Molecular and Forensic Sciences, Murdoch University, Western Australia, Australia.
| |
Collapse
|
59
|
Doll M, Marra AR, Apisarnthanarak A, Al-Maani AS, Abbas S, Rosenthal VD. Prevention of Clostridioides difficile in hospitals: A position paper of the International Society for Infectious Diseases. Int J Infect Dis 2020; 102:188-195. [PMID: 33122100 DOI: 10.1016/j.ijid.2020.10.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Clostridioides difficile infection is an increasing presence worldwide. Prevention is multipronged, reflecting a complex and evolving epidemiology. Multiple guidelines exist regarding the prevention of C. difficile infection in healthcare settings; however, existing guidelines do not address C. difficile in low- and middle-income countries (LMIC). Nevertheless, the prevalence of C. difficile in LMIC likely parallels, if not exceeds, that of high-income countries, and LMIC may experience additional challenges in C. difficile diagnosis and control. A panel of experts was convened by the International Society for Infectious Diseases (ISID) to review the current state of C. difficile infections globally and make evidence-based recommendations for infection prevention that are broadly applicable.
Collapse
Affiliation(s)
- Michelle Doll
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Alexandre R Marra
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Division of Medical Practice, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Anucha Apisarnthanarak
- Division of Infectious Diseases, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Amal Saif Al-Maani
- Department of Infection Control and Prevention, Ministry of Health, Muscat, Oman
| | - Salma Abbas
- Department of Internal Medicine, Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan
| | - Victor D Rosenthal
- International Nosocomial Infection Control Consortium (INICC), Buenos Aires, Argentina
| |
Collapse
|
60
|
Laboratory-Based Surveillance of Clostridium difficile Infection in Australian Health Care and Community Settings, 2013 to 2018. J Clin Microbiol 2020; 58:JCM.01552-20. [PMID: 32848038 DOI: 10.1128/jcm.01552-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/22/2020] [Indexed: 11/20/2022] Open
Abstract
In the early 2000s, a binary toxin (CDT)-producing strain of Clostridium difficile, ribotype 027 (RT027), caused extensive outbreaks of diarrheal disease in North America and Europe. This strain has not become established in Australia, and there is a markedly different repertoire of circulating strains there compared to other regions of the world. The C. difficile Antimicrobial Resistance Surveillance (CDARS) study is a nationwide longitudinal surveillance study of C. difficile infection (CDI) in Australia. Here, we describe the molecular epidemiology of CDI in Australian health care and community settings over the first 5 years of the study, 2013 to 2018. Between 2013 and 2018, 10 diagnostic microbiology laboratories from five states in Australia participated in the CDARS study. From each of five states, one private (representing community) and one public (representing hospitals) laboratory submitted isolates of C. difficile or PCR-positive stool samples during two collection periods per year, February-March (summer/autumn) and August-September (winter/spring). C. difficile was characterized by toxin gene profiling and ribotyping. A total of 1,523 isolates of C. difficile were studied. PCR ribotyping yielded 203 different RTs, the most prevalent being RT014/020 (n = 449; 29.5%). The epidemic CDT+ RT027 (n = 2) and RT078 (n = 6), and the recently described RT251 (n = 10) and RT244 (n = 6) were not common, while RT126 (n = 17) was the most prevalent CDT+ type. A heterogeneous C. difficile population was identified. C. difficile RT014/020 was the most prevalent type found in humans with CDI. Continued surveillance of CDI in Australia remains critical for the detection of emerging strain lineages.
Collapse
|
61
|
Djuikoue IC, Tambo E, Tazemda G, Njajou O, Makoudjou D, Sokeng V, Wandji M, Tomi C, Nanfack A, Dayomo A, Lacmago S, Tassadjo F, Sipowo RT, Kakam C, Djoko AB, Assob CN, Andremont A, Barbut F. Evaluation of inpatients Clostridium difficile prevalence and risk factors in Cameroon. Infect Dis Poverty 2020; 9:122. [PMID: 32867842 PMCID: PMC7457802 DOI: 10.1186/s40249-020-00738-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clostridium difficile, rarely found in hospitals, is a bacterium responsible for post-antibiotic diarrhea and Pseudomembranous Colitis (CPM). C. difficile selective pressure represents potential public health problem due to the production of toxins A and B serious pathologies effects/consequences. A transversal and analytic study was to assess the risk factors of C. difficile infection and to determine the prevalence of C. difficile in patients received in randomly selected five hospitals in Yaoundé, Cameroon. METHODS A total of 300 stool samples were collected from consented patients using a transversal and analytic study conducted from 10th July to 10th November 2018 in five hospitals in Cameroon. The detection or diagnostic kit was CerTest C. difficile Glutamate Dehydrogenase + Toxin A + Toxin B based on immuno-chromatographic assay. A univariate and multivariate analysis allowed us to highlight the associated factors. RESULTS The results showed a prevalence of C. difficile of 27.33% (82/300 stool patients'samples taken). Of these 27.33%, the production of Toxin A and Toxin B were 37.80 and 7.31% respectively. In univariate analysis, hospitalization was a significant (P = 0.01) risk factor favoring C. difficile infection. In multivariate analysis, corticosteroids and quinolones use/administration were significantly (adjusted Odd Ratio, aOR = 14.09, 95% CI: 1.62-122.54, P = 0.02 and aOR = 3.39, 95% CI: 1.00-11.34, P = 0.05 respectively) risk factor for this infection. CONCLUSION The prevalence of C. difficile infections (CDI) remain high in these settings and may be related not only to permanent steroids and antibiotics. Promoting education to both medical staff and patients on the prevalence and public health impact of C. difficile can be core inimproving rationale prescription of steroids and antibiotics to patients and promote human health and exponential growth in Cameroon.
Collapse
Affiliation(s)
- Ingrid Cécile Djuikoue
- Département de Microbiologie de la Faculté des Sciences de la Santé de l’Université des Montagnes, Bangangte, Cameroon
- Prevention and Control Foundation, Bangangte, Cameroon
| | - Ernest Tambo
- Département de Microbiologie de la Faculté des Sciences de la Santé de l’Université des Montagnes, Bangangte, Cameroon
- Prevention and Control Foundation, Bangangte, Cameroon
| | - Gildas Tazemda
- Département de Microbiologie de la Faculté des Sciences de la Santé de l’Université des Montagnes, Bangangte, Cameroon
| | - Omer Njajou
- Prevention and Control Foundation, Bangangte, Cameroon
| | - Denise Makoudjou
- Département de Microbiologie de la Faculté des Sciences de la Santé de l’Université des Montagnes, Bangangte, Cameroon
| | - Vanessa Sokeng
- Département de Microbiologie de la Faculté des Sciences de la Santé de l’Université des Montagnes, Bangangte, Cameroon
| | - Morelle Wandji
- Département de Microbiologie de la Faculté des Sciences de la Santé de l’Université des Montagnes, Bangangte, Cameroon
| | - Charlène Tomi
- Département de Microbiologie de la Faculté des Sciences de la Santé de l’Université des Montagnes, Bangangte, Cameroon
| | | | - Audrey Dayomo
- Département de Microbiologie de la Faculté des Sciences de la Santé de l’Université des Montagnes, Bangangte, Cameroon
| | - Suzie Lacmago
- Département de Microbiologie de la Faculté des Sciences de la Santé de l’Université des Montagnes, Bangangte, Cameroon
| | - Falubert Tassadjo
- Laboratoire de Bactériologie du Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Raissa Talla Sipowo
- Département de Microbiologie de la Faculté des Sciences de la Santé de l’Université des Montagnes, Bangangte, Cameroon
| | | | - Aicha Bibiane Djoko
- Département de Microbiologie de la Faculté des Sciences de la Santé de l’Université des Montagnes, Bangangte, Cameroon
| | | | - Antoine Andremont
- Faculty of Medicine, Xavier-Bichat Campus, University of Paris VII – Denis Diderot, Paris, France
| | - Frédéric Barbut
- Faculty of Pharmacy, Paris – University of Paris Descartes, Paris, France
| |
Collapse
|
62
|
Frentrup M, Zhou Z, Steglich M, Meier-Kolthoff JP, Göker M, Riedel T, Bunk B, Spröer C, Overmann J, Blaschitz M, Indra A, von Müller L, Kohl TA, Niemann S, Seyboldt C, Klawonn F, Kumar N, Lawley TD, García-Fernández S, Cantón R, del Campo R, Zimmermann O, Groß U, Achtman M, Nübel U. A publicly accessible database for Clostridioides difficile genome sequences supports tracing of transmission chains and epidemics. Microb Genom 2020; 6:mgen000410. [PMID: 32726198 PMCID: PMC7641423 DOI: 10.1099/mgen.0.000410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Clostridioides difficile is the primary infectious cause of antibiotic-associated diarrhea. Local transmissions and international outbreaks of this pathogen have been previously elucidated by bacterial whole-genome sequencing, but comparative genomic analyses at the global scale were hampered by the lack of specific bioinformatic tools. Here we introduce a publicly accessible database within EnteroBase (http://enterobase.warwick.ac.uk) that automatically retrieves and assembles C. difficile short-reads from the public domain, and calls alleles for core-genome multilocus sequence typing (cgMLST). We demonstrate that comparable levels of resolution and precision are attained by EnteroBase cgMLST and single-nucleotide polymorphism analysis. EnteroBase currently contains 18 254 quality-controlled C. difficile genomes, which have been assigned to hierarchical sets of single-linkage clusters by cgMLST distances. This hierarchical clustering is used to identify and name populations of C. difficile at all epidemiological levels, from recent transmission chains through to epidemic and endemic strains. Moreover, it puts newly collected isolates into phylogenetic and epidemiological context by identifying related strains among all previously published genome data. For example, HC2 clusters (i.e. chains of genomes with pairwise distances of up to two cgMLST alleles) were statistically associated with specific hospitals (P<10-4) or single wards (P=0.01) within hospitals, indicating they represented local transmission clusters. We also detected several HC2 clusters spanning more than one hospital that by retrospective epidemiological analysis were confirmed to be associated with inter-hospital patient transfers. In contrast, clustering at level HC150 correlated with k-mer-based classification and was largely compatible with PCR ribotyping, thus enabling comparisons to earlier surveillance data. EnteroBase enables contextual interpretation of a growing collection of assembled, quality-controlled C. difficile genome sequences and their associated metadata. Hierarchical clustering rapidly identifies database entries that are related at multiple levels of genetic distance, facilitating communication among researchers, clinicians and public-health officials who are combatting disease caused by C. difficile.
Collapse
Affiliation(s)
| | - Zhemin Zhou
- Warwick Medical School, University of Warwick, UK
| | - Matthias Steglich
- Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
| | | | | | - Thomas Riedel
- Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Jörg Overmann
- Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
- Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| | - Marion Blaschitz
- AGES-Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Alexander Indra
- AGES-Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | - Thomas A. Kohl
- Research Center Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Germany
| | - Stefan Niemann
- Research Center Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Germany
| | | | - Frank Klawonn
- Biostatistics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Information Engineering, Ostfalia University, Wolfenbüttel, Germany
| | | | | | - Sergio García-Fernández
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | | | - Uwe Groß
- University Medical Center Göttingen, Germany
| | - Mark Achtman
- Warwick Medical School, University of Warwick, UK
| | - Ulrich Nübel
- Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
- Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| |
Collapse
|
63
|
Clostridium difficile and One Health. Clin Microbiol Infect 2020; 26:857-863. [DOI: 10.1016/j.cmi.2019.10.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
|
64
|
Masarikova M, Simkova I, Plesko M, Eretova V, Krutova M, Cizek A. The Colonisation of Calves in Czech Large-Scale Dairy Farms by Clonally-Related Clostridioides difficile of the Sequence Type 11 Represented by Ribotypes 033 and 126. Microorganisms 2020; 8:microorganisms8060901. [PMID: 32549307 PMCID: PMC7356540 DOI: 10.3390/microorganisms8060901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/04/2022] Open
Abstract
To investigate a possible Clostridioides difficile reservoir in the Czech Republic, we performed a study in 297 calves from 29 large-scale dairy farms. After enrichment, faecal samples were inoculated onto selective agar for C. difficile. From the 297 samples, 44 C. difficile isolates were cultured (prevalence of 14.8%, 10 farms). The Holstein breed and use of digestate were associated with C. difficile colonisation (p ˂ 0.05). C. difficile isolates belonged to the ribotype/sequence type: RT033/ST11 (n = 37), RT126/ST11 (n = 6) and RT046/ST35 (n = 1). A multiple-locus variable-number tandem-repeat analysis revealed four clonal complexes of RT033 isolates and one clonal complex of RT126 isolates. All isolates were sensitive to amoxicillin, metronidazole and vancomycin. Forty isolates were resistant to ciprofloxacin, twenty-one to clindamycin, seven to erythromycin, seven to tetracycline and six to moxifloxacin. Moxifloxacin resistant isolates revealed an amino-acid substitution Thr82Ile in the GyrA. In conclusion, the calves of Holstein breed from farms using digestate as a product of bio-gas plants are more likely to be colonised by clonally-related C. difficile of ST 11 represented by ribotypes 033 and 126. The identified resistance to moxifloxacin with a Thr82Ile substitution in the GyrA highlights the need for further monitoring by the "One health approach".
Collapse
Affiliation(s)
- Martina Masarikova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| | - Ivana Simkova
- Ruminant and Swine Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| | - Martin Plesko
- Ruminant and Swine Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| | - Veronika Eretova
- Department of Medical Microbiology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, 150 06 Prague, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, 150 06 Prague, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| |
Collapse
|
65
|
Le Maréchal C, Gateau C, Poezevara T, Couturier J, Rouxel S, Syed Zaidi R, Houard E, Pourcher AM, Denis M, Barbut F. Characterization of Clostridioides difficile strains isolated from manure and digestate in five agricultural biogas plants. Anaerobe 2020; 62:102180. [DOI: 10.1016/j.anaerobe.2020.102180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
|
66
|
Pan M, Hidalgo-Cantabrana C, Barrangou R. Host and body site-specific adaptation of Lactobacillus crispatus genomes. NAR Genom Bioinform 2020; 2:lqaa001. [PMID: 33575551 PMCID: PMC7671364 DOI: 10.1093/nargab/lqaa001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus crispatus is a common inhabitant of both healthy poultry gut and human vaginal tract, and the absence of this species has been associated with a higher risk of developing infectious diseases. In this study, we analyzed 105 L. crispatus genomes isolated from a variety of ecological niches, including the human vaginal tract, human gut, chicken gut and turkey gut, to shed light on the genetic and functional features that drive evolution and adaptation of this important species. We performed in silico analyses to identify the pan and core genomes of L. crispatus, and to reveal the genomic differences and similarities associated with their origins of isolation. Our results demonstrated that, although a significant portion of the genomic content is conserved, human and poultry L. crispatus isolates evolved to encompass different genomic features (e.g. carbohydrate usage, CRISPR-Cas immune systems, prophage occurrence) in order to thrive in different environmental niches. We also observed that chicken and turkey L. crispatus isolates can be differentiated based on their genomic information, suggesting significant differences may exist between these two poultry gut niches. These results provide insights into host and niche-specific adaptation patterns in species of human and animal importance.
Collapse
Affiliation(s)
- Meichen Pan
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Claudio Hidalgo-Cantabrana
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
67
|
Redding LE, Kelly BJ, Stefanovski D, Lautenbach JK, Tolomeo P, Cressman L, Gruber E, Meily P, Lautenbach E. Pet Ownership Protects Against Recurrence of Clostridioides difficile Infection. Open Forum Infect Dis 2020; 7:ofz541. [PMID: 31976354 PMCID: PMC6969483 DOI: 10.1093/ofid/ofz541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated and health care–associated diarrhea in humans. Recurrent CDI (R-CDI) occurs in ~20%–30% of patients with CDI and results in increased morbidity, mortality, and hospital costs. Genomic analyses have shown overlap of C. difficile isolates from animals and people, suggesting that a zoonotic reservoir may contribute to recurrence. The objective of this study was to determine whether pet ownership is a risk factor for recurrence of CDI. Methods We conducted a case–control study among patients with recurrent CDI (cases; n = 86) and patients with nonrecurrent CDI (controls; n = 146). Multivariable logistic regression modeling was used to determine the association between recurrence of CDI and pet ownership while accounting for patient-level risk factors. Results Pet ownership was not significantly associated with recurrence of CDI (odds ratio [OR], 1.02; 95% confidence interval [CI], 0.38–2.72; P = 0.965) among all patients (n = 232). However, among the subset of patients with community-associated or community-onset health care facility–acquired CDI (n = 127), increasing contact with pets was increasingly protective against recurrence: for every point increase in a pet contact score (out of 7 possible points), the odds of recurrence decreased by 14% (OR, 0.86; 95% CI, 0.74–1.00; P = 0.051). Conclusions Close interactions with pets appear protective against the recurrence of community-acquired CDI. A potential mechanism may involve beneficial contributions to the microbiota of pet owners afflicted with CDI, as has been observed for other conditions such as atopy, obesity, and food allergies. However, more research is needed to understand the interactions between pets, owners, and their microbiota.
Collapse
Affiliation(s)
- Laurel E Redding
- Department of Clinical Sciences, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, USA
| | - Brendan J Kelly
- Divisions of Infectious Diseases and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Darko Stefanovski
- Department of Clinical Sciences, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, USA
| | | | - Pam Tolomeo
- Divisions of Infectious Diseases and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leigh Cressman
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eli Gruber
- University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania, USA
| | - Paige Meily
- University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania, USA
| | - Ebbing Lautenbach
- Divisions of Infectious Diseases and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
68
|
Abstract
Clostridium (Clostridioides) difficile is a gram-positive, spore-forming bacterium that is an important cause of disease in people, a variably important cause of disease in some animal species, and an apparently harmless commensal in others. Regardless of whether it is a known pathogen in a particular species, it can also be found in healthy individuals, sometimes at high prevalences and typically with higher rates of carriage in young individuals. As it is investigated in more animal species, it is apparent that this bacterium is widely disseminated in a diverse range of domestic and wild animal species. Although it can be found in most species in which investigations have been performed, there are pronounced intra- and inter-species differences in prevalence and clinical relevance. A wide range of strains can be identified, some that appear to be animal associated and others that are found in humans and animals. A large percentage of strains that cause disease in people can at least sporadically be found in animals. It is a potentially important zoonotic pathogen, but there is limited direct evidence of animal-human transmission. Although C. difficile has been studied extensively over the past few decades, it remains an enigmatic organism in many ways.
Collapse
Affiliation(s)
- J Scott Weese
- Department of Pathobiology and Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada (Weese)
| |
Collapse
|
69
|
Lim SC, Riley TV, Knight DR. One Health: the global challenge of Clostridium difficile infection. MICROBIOLOGY AUSTRALIA 2020. [DOI: 10.1071/ma20007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The One Health concept recognises that the health of humans is interconnected to the health of animals and the environment. It encourages multidisciplinary communication and collaboration with the aim of enhancing surveillance and research and developing integrative policy frameworks. Clostridium difficile (also known as Clostridioides difficile) infection (CDI) has long been viewed as a hospital-associated (HA) enteric disease mainly linked to the use of broad-spectrum antimicrobials that cause dysbiosis in the gut and loss of ‘colonisation resistance'. However, since the early 2000s, the rate of community-associated CDI (CA-CDI) has increased to ~15% in Europe, ~30% in Australia and ~40% in the USA in populations often without obvious risk factors. Since the 1990s, it has become apparent that food animals are now a major reservoir and amplification host for C.difficile, including lineages of clinical importance. Cephalosporin antimicrobials, to which C. difficile is intrinsically resistant, were licensed for animal use in North America in 1990. By the second decade of the 21st century, there were reports of C. difficile contamination of food and the environment in general. Using whole-genome sequencing (WGS) and high-resolution typing, C. difficile isolates from humans, animals, food and the environment were proven to be genetically closely related and, in some cases, indistinguishable. This suggests possible zoonoses and/or anthroponoses, with contaminated food and the environment acting as the conduit for transmission between animals and humans. This paper summarises the key evidence that demonstrates the One Health importance of C. difficile.
Collapse
|
70
|
Barbanti F, Spigaglia P. Microbiological characteristics of human and animal isolates of Clostridioides difficile in Italy: Results of the Istituto Superiore di Sanità in the years 2006-2016. Anaerobe 2019; 61:102136. [PMID: 31857201 DOI: 10.1016/j.anaerobe.2019.102136] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
The increased incidence of Clostridioides difficile infection (CDI) and the emergence of highly virulent types highlight the need of microbiological characterization to gain insight CDI epidemiological changes. This paper, reporting data obtained by the Istituto Superiore di Sanità Central Laboratory Service for C. difficile (ISS-CLSCD) in 2006-2016, provides a first long-term microbiological analysis of human and animal C. difficile strains circulating in Italy. The number of human isolates analyzed by ISS-CLSCD significantly increased over the time (170 in 2006-2011 vs 661 in 2012-2016). Independently from the year of isolation, 42% of the clinical isolates belonged to the PCR-ribotype (RT) 018-lineage (RT 018, RT 607, RT 541, PR07661 and PR14328), with RT 018 and RT 607 grouping the majority of isolates. This lineage was significantly associated to CDIs occurred in the General Medicine Units, Clinic Units or Long-Term Care Facilities, while it was rarely found in pediatric patients. Although the percentage of isolates positive for the binary toxin (CDT) was stable during the study (20%), several CDT-positive RTs emerged in 2012-2016, including RT 027. In total, 32 RTs overlapped between animals and humans and six of these RTs were non-toxigenic. The two lineages prevalent in animals, the RT 078-lineage and the RT 569-lineage (RT 569, RT 049, RT 056 and RT 727), were also found in humans, while the RT 018-lineage was rarely detected in animals, suggesting that it is prevalently associated to human infections. Sixty-two percent of clinical isolates showed a multidrug-resistance (MDR) phenotype, with resistance to rifampicin characterizing successful RTs. A MDR phenotype was also observed in 18% of animal isolates, in particular from dogs, supporting animals as potential reservoirs of resistant C. difficile strains. Interestingly, multiple resistances were observed in both human and animal non-toxigenic isolates suggesting their contribution to antibiotic resistance spread among C. difficile population. All these data indicate that CDI is an issue of growing concern in Italy, highlighting the need for a standardized surveillance in our Country and an interdisciplinary approach to deal successfully with this infection.
Collapse
Affiliation(s)
- Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
71
|
Putsathit P, Neela VK, Joseph NMS, Ooi PT, Ngamwongsatit B, Knight DR, Riley TV. Molecular epidemiology of Clostridium difficile isolated from piglets. Vet Microbiol 2019; 237:108408. [PMID: 31585650 DOI: 10.1016/j.vetmic.2019.108408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
Information on the epidemiology of C. difficile infection (CDI) in South-East Asian countries is limited, as is data on possible animal reservoirs of C. difficile in the region. We investigated the prevalence and molecular epidemiology of C. difficile in piglets and the piggery environment in Thailand and Malaysia. Piglet rectal swabs (n = 224) and piggery environmental specimens (n = 23) were collected between 2015 and 2016 from 11 farms located in Thailand and Malaysia. All specimens were tested for the presence of C. difficile with toxigenic culture. PCR assays were performed on isolates to determine the ribotype (RT), and the presence of toxin genes. Whole genome sequencing was used on a subset of isolates to determine the evolutionary relatedness of RT038 (the most prevalent RT identified) common to pigs and humans from Thailand and Indonesia. C. difficile was recovered from 35% (58/165) and 92% (54/59) of the piglets, and 89% (8/9) and 93% (13/14) of the environmental specimens from Thailand and Malaysia, respectively. All strains from Thailand, and 30 strains from Malaysia (23 piglet and 7 environmental isolates) were non-toxigenic. To our knowledge, this is the first and only report with a complete lack of toxigenic C. difficile among piglets, a feature which could have a protective effect on the host. The most common strain belonged to RT038 (ST48), accounting for 88% (51/58) of piglet and 78% (7/9) of environmental isolates from Thailand, and all 30 isolates tested from Malaysia. Piglet RT038 isolates from Thailand and Malaysia differed by only 18 core-genome single nucleotide variants (cgSNVs) and both were, on average, 30 cgSNVs different from the human strains from Thailand and Indonesia, indicating a common ancestor in the last two decades.
Collapse
Affiliation(s)
- Papanin Putsathit
- Edith Cowan University, School of Medical and Health Sciences, Joondalup, Western Australia, Australia
| | - Vasantha K Neela
- Universiti Putra Malaysia, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Serdang, Malaysia
| | - Narcisse M S Joseph
- Universiti Putra Malaysia, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Serdang, Malaysia
| | - Peck Toung Ooi
- Universiti Putra Malaysia, Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Serdang, Malaysia
| | | | - Daniel R Knight
- Murdoch University, Medical, Molecular and Forensic Sciences, Murdoch, Western Australia, Australia
| | - Thomas V Riley
- Edith Cowan University, School of Medical and Health Sciences, Joondalup, Western Australia, Australia; Murdoch University, Medical, Molecular and Forensic Sciences, Murdoch, Western Australia, Australia; PathWest Laboratory Medicine, Nedlands, Western Australia, Australia.
| |
Collapse
|
72
|
In silico, in vitro and in vivo analysis of putative virulence factors identified in large clostridial toxin-negative, binary toxin- producing C. difficile strains. Anaerobe 2019; 60:102083. [PMID: 31377188 DOI: 10.1016/j.anaerobe.2019.102083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 01/05/2023]
Abstract
The relevance of large clostridial toxin-negative, binary toxin-producing (A-B-CDT+) Clostridium difficile strains in human infection is still controversial. In this study, we investigated putative virulence traits that may contribute to the role of A-B-CDT+C. difficile strains in idiopathic diarrhea. Phenotypic assays were conducted on 148 strains of C. difficile comprising 10 different A-B-CDT+C. difficile ribotypes (RTs): 033, 238, 239, 288, 585, 586, QX143, QX444, QX521 and QX629. A subset of these isolates (n = 53) was whole-genome sequenced to identify genetic loci associated with virulence and survival. Motility studies showed that with the exception of RT 239 all RTs tested were non-motile. C. difficile RTs 033 and 288 had deletions in the F2 and F3 regions of their flagella operon while the F2 region was absent from strains of RTs 238, 585, 586, QX143, QX444, QX521 and QX629. The flagellin and flagella cap genes, fliC and fliD, respectively, involved in adherence and host colonization, were conserved in all strains, including reference strains. All A-B-CDT+C. difficile strains produced at least three extracellular enzymes (deoxyribonuclease, esterase and mucinase) indicating that these are important extracellular proteins. The toxicity of A-B-CDT+C. difficile strains in Vero cells was confirmed, however, pathogenicity was not demonstrated in a mouse model of disease. Despite successful colonization by most strains, there was no evidence of disease in mice. This study provides the first in-depth analysis of A-B-CDT+C. difficile strains and contributes to the current limited knowledge of these strains as a cause of C. difficile infection.
Collapse
|
73
|
Knight DR, Riley TV. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front Public Health 2019; 7:164. [PMID: 31281807 PMCID: PMC6595230 DOI: 10.3389/fpubh.2019.00164] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/03/2019] [Indexed: 01/27/2023] Open
Abstract
Clostridium difficile is toxin-producing antimicrobial resistant (AMR) enteropathogen historically associated with diarrhea and pseudomembranous colitis in hospitalized patients. In recent years, there have been dramatic increases in the incidence and severity of C. difficile infection (CDI), and associated morbidity and mortality, in both healthcare and community settings. C. difficile is an ancient and diverse species that displays a sympatric lifestyle, establishing itself in a range of ecological niches external to the healthcare system. These sources/reservoirs include food, water, soil, and over a dozen animal species, in particular, livestock such as pigs and cattle. In a manner analogous to human infection, excessive antimicrobial exposure, particularly to cephalosporins, is driving the expansion of C. difficile in livestock populations worldwide. Subsequent spore contamination of meat, vegetables grown in soil containing animal feces, agricultural by-products such as compost and manure, and the environment in general (households, lawns, and public spaces) is contributing to a persistent community source/reservoir of C. difficile and the insidious rise of CDI in the community. The whole-genome sequencing era continues to redefine our view of this complex pathogen. The application of high-resolution microbial genomics in a One Health framework (encompassing clinical, veterinary, and environment derived datasets) is the optimal paradigm for advancing our understanding of CDI in humans and animals. This approach has begun to yield critical insights into the genetic diversity, evolution, AMR, and zoonotic potential of C. difficile. In Europe, North America, and Australia, microevolutionary analysis of the C. difficile core genome shows strains common to humans and animals (livestock or companion animals) do not form distinct populations but share a recent evolutionary history. Moreover, for C. difficile sequence type 11 and PCR ribotypes 078 and 014, major lineages of One Health importance, this approach has substantiated inter-species clonal transmission between animals and humans. These findings indicate either a zoonosis or anthroponosis. Moreover, they challenge the existing paradigm and the long-held misconception that CDI is primarily a healthcare-associated infection. In this article, evolutionary, and zoonotic aspects of CDI are discussed, including the anthropomorphic factors that contribute to the spread of C. difficile from the farm to the community.
Collapse
Affiliation(s)
- Daniel R Knight
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Thomas V Riley
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.,PathWest Laboratory Medicine, Department of Microbiology, Nedlands, WA, Australia
| |
Collapse
|