51
|
Oshida K, Vasani N, Waxman DJ, Corton JC. Disruption of STAT5b-Regulated Sexual Dimorphism of the Liver Transcriptome by Diverse Factors Is a Common Event. PLoS One 2016; 11:e0148308. [PMID: 26959975 PMCID: PMC4784905 DOI: 10.1371/journal.pone.0148308] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023] Open
Abstract
Signal transducer and activator of transcription 5b (STAT5b) is a growth hormone (GH)-activated transcription factor and a master regulator of sexually dimorphic gene expression in the liver. Disruption of the GH hypothalamo-pituitary-liver axis controlling STAT5b activation can lead to metabolic dysregulation, steatosis, and liver cancer. Computational approaches were developed to identify factors that disrupt STAT5b function in a mouse liver gene expression compendium. A biomarker comprised of 144 STAT5b-dependent genes was derived using comparisons between wild-type male and wild-type female mice and between STAT5b-null and wild-type mice. Correlations between the STAT5b biomarker gene set and a test set comprised of expression datasets (biosets) with known effects on STAT5b function were evaluated using a rank-based test (the Running Fisher algorithm). Using a similarity p-value ≤ 10(-4), the test achieved a balanced accuracy of 99% and 97% for detection of STAT5b activation or STAT5b suppression, respectively. The STAT5b biomarker gene set was then used to identify factors that activate (masculinize) or suppress (feminize) STAT5b function in an annotated mouse liver and primary hepatocyte gene expression compendium of ~1,850 datasets. Disruption of GH-regulated STAT5b is a common phenomenon in liver in vivo, with 5% and 29% of the male datasets, and 11% and 13% of the female datasets, associated with masculinization or feminization, respectively. As expected, liver STAT5b activation/masculinization occurred at puberty and suppression/feminization occurred during aging and in mutant mice with defects in GH signaling. A total of 70 genes were identified that have effects on STAT5b activation in genetic models in which the gene was inactivated or overexpressed. Other factors that affected liver STAT5b function were shown to include fasting, caloric restriction and infections. Together, these findings identify diverse factors that perturb the hypothalamo-pituitary-liver GH axis and disrupt GH-dependent STAT5b activation in mouse liver.
Collapse
Affiliation(s)
- Keiyu Oshida
- Integrated Systems Toxicology Division, NHEERL/ORD, US-EPA, Research Triangle Park, NC 27711, United States of America
| | - Naresh Vasani
- Integrated Systems Toxicology Division, NHEERL/ORD, US-EPA, Research Triangle Park, NC 27711, United States of America
| | - David J. Waxman
- Division of Cell and Molecular Biology, Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, United States of America
| | - J. Christopher Corton
- Integrated Systems Toxicology Division, NHEERL/ORD, US-EPA, Research Triangle Park, NC 27711, United States of America
| |
Collapse
|
52
|
Abstract
Mammals have at least 210 histologically diverse cell types (Alberts, Molecular biology of the cell. Garland Science, New York, 2008) and the number would be even higher if functional differences are taken into account. The genome in each of these cell types is differentially programmed to express the specific set of genes needed to fulfill the phenotypical requirements of the cell. Furthermore, in each of these cell types, the gene program can be differentially modulated by exposure to external signals such as hormones or nutrients. The basis for the distinct gene programs relies on cell type-selective activation of transcriptional enhancers, which in turn are particularly sensitive to modulation. Until recently we had only fragmented insight into the regulation of a few of these enhancers; however, the recent advances in high-throughput sequencing technologies have enabled the development of a large number of technologies that can be used to obtain genome-wide insight into how genomes are reprogrammed during development and in response to specific external signals. By applying such technologies, we have begun to reveal the cross-talk between metabolism and the genome, i.e., how genomes are reprogrammed in response to metabolites, and how the regulation of metabolic networks is coordinated at the genomic level.
Collapse
Affiliation(s)
- Alexander Rauch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| |
Collapse
|
53
|
Hepatic Long Intergenic Noncoding RNAs: High Promoter Conservation and Dynamic, Sex-Dependent Transcriptional Regulation by Growth Hormone. Mol Cell Biol 2015; 36:50-69. [PMID: 26459762 DOI: 10.1128/mcb.00861-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/02/2015] [Indexed: 01/04/2023] Open
Abstract
Long intergenic noncoding RNAs (lincRNAs) are increasingly recognized as key chromatin regulators, yet few studies have characterized lincRNAs in a single tissue under diverse conditions. Here, we analyzed 45 mouse liver RNA sequencing (RNA-Seq) data sets collected under diverse conditions to systematically characterize 4,961 liver lincRNAs, 59% of them novel, with regard to gene structures, species conservation, chromatin accessibility, transcription factor binding, and epigenetic states. To investigate the potential for functionality, we focused on the responses of the liver lincRNAs to growth hormone stimulation, which imparts clinically relevant sex differences to hepatic metabolism and liver disease susceptibility. Sex-biased expression characterized 247 liver lincRNAs, with many being nuclear RNA enriched and regulated by growth hormone. The sex-biased lincRNA genes are enriched for nearby and correspondingly sex-biased accessible chromatin regions, as well as sex-biased binding sites for growth hormone-regulated transcriptional activators (STAT5, hepatocyte nuclear factor 6 [HNF6], FOXA1, and FOXA2) and transcriptional repressors (CUX2 and BCL6). Repression of female-specific lincRNAs in male liver, but not that of male-specific lincRNAs in female liver, was associated with enrichment of H3K27me3-associated inactive states and poised (bivalent) enhancer states. Strikingly, we found that liver-specific lincRNA gene promoters are more highly species conserved and have a significantly higher frequency of proximal binding by liver transcription factors than liver-specific protein-coding gene promoters. Orthologs for many liver lincRNAs were identified in one or more supraprimates, including two rat lincRNAs showing the same growth hormone-regulated, sex-biased expression as their mouse counterparts. This integrative analysis of liver lincRNA chromatin states, transcription factor occupancy, and growth hormone regulation provides novel insights into the expression of sex-specific lincRNAs and their potential for regulation of sex differences in liver physiology and disease.
Collapse
|
54
|
Magnani L, Patten DK, Nguyen VT, Hong SP, Steel JH, Patel N, Lombardo Y, Faronato M, Gomes AR, Woodley L, Page K, Guttery D, Primrose L, Garcia DF, Shaw J, Viola P, Green A, Nolan C, Ellis IO, Rakha EA, Shousha S, Lam EWF, Győrffy B, Lupien M, Coombes RC. The pioneer factor PBX1 is a novel driver of metastatic progression in ERα-positive breast cancer. Oncotarget 2015; 6:21878-91. [PMID: 26215677 PMCID: PMC4673133 DOI: 10.18632/oncotarget.4243] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/02/2015] [Indexed: 01/13/2023] Open
Abstract
Over 30% of ERα breast cancer patients develop relapses and progress to metastatic disease despite treatment with endocrine therapies. The pioneer factor PBX1 translates epigenetic cues and mediates estrogen induced ERα binding. Here we demonstrate that PBX1 plays a central role in regulating the ERα transcriptional response to epidermal growth factor (EGF) signaling. PBX1 regulates a subset of EGF-ERα genes highly expressed in aggressive breast tumours. Retrospective stratification of luminal patients using PBX1 protein levels in primary cancer further demonstrates that elevated PBX1 protein levels correlate with earlier metastatic progression. In agreement, PBX1 protein levels are significantly upregulated during metastatic progression in ERα-positive breast cancer patients. Finally we reveal that PBX1 upregulation in aggressive tumours is partly mediated by genomic amplification of the PBX1 locus. Correspondingly, ERα-positive breast cancer patients carrying PBX1 amplification are characterized by poor survival. Notably, we demonstrate that PBX1 amplification can be identified in tumor derived-circulating free DNA of ERα-positive metastatic patients. Metastatic patients with PBX1 amplification are also characterized by shorter relapse-free survival. Our data identifies PBX1 amplification as a functional hallmark of aggressive ERα-positive breast cancers. Mechanistically, PBX1 amplification impinges on several critical pathways associated with aggressive ERα-positive breast cancer.
Collapse
Affiliation(s)
- Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Darren K. Patten
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Van T.M. Nguyen
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sung-Pil Hong
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jennifer H. Steel
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Naina Patel
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ylenia Lombardo
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Monica Faronato
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ana R. Gomes
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Laura Woodley
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Karen Page
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - David Guttery
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Lindsay Primrose
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | | | - Jacqui Shaw
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Patrizia Viola
- Laboratory of Medicine, Histopathology Department, Royal Brompton Hospital, London, UK
| | - Andrew Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Budapest, HU
| | - Christopher Nolan
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Budapest, HU
| | - Ian O. Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Budapest, HU
| | - Emad A. Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Budapest, HU
| | - Sami Shousha
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Eric W.-F. Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, 2nd Department of Pediatrics, Semmelweis University and MTA-SE Pediatrics and Nephrology Research Group, Budapest, HU
| | - Mathieu Lupien
- The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
55
|
Conforto TL, Steinhardt GF, Waxman DJ. Cross Talk Between GH-Regulated Transcription Factors HNF6 and CUX2 in Adult Mouse Liver. Mol Endocrinol 2015. [PMID: 26218442 DOI: 10.1210/me.2015-1028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte-enriched nuclear factor (HNF)6 and CUX2 are GH and STAT5-regulated homeobox transcription factors. CUX2 shows female-specific expression and contributes to liver sex differences by repressing many male-biased genes and inducing many female-biased genes, whereas HNF6 is expressed at similar levels in male and female liver. In cell-based transfection studies, CUX2 inhibited HNF6 transcriptional regulation of the sex-specific gene promoters CYP2C11 and CYP2C12, blocking HNF6 repression of CYP2C11 and HNF6 activation of CYP2C12. These inhibitory actions of CUX2 can be explained by competition for HNF6 DNA binding, as demonstrated by in vitro EMSA analysis and validated in vivo by global analysis of the HNF6 cistrome. Approximately 40 000 HNF6-binding sites were identified in mouse liver chromatin, including several thousand sites showing significant sex differences in HNF6 binding. These sex-biased HNF6-binding sites showed strong enrichment for correspondingly sex-biased DNase hypersensitive sites and for proximity to genes showing local sex-biased chromatin marks and a corresponding sex-biased expression. Further, approximately 90% of the genome-wide binding sites for CUX2 were also bound by HNF6. These HNF6/CUX2 common binding sites were enriched for genomic regions more accessible in male than in female mouse liver chromatin and showed strongest enrichment for male-biased genes, suggesting CUX2 displacement of HNF6 as a mechanism to explain the observed CUX2 repression of male-biased genes in female liver. HNF6 binding was sex independent at a majority of its binding sites, and HNF6 peaks were frequently associated with cobinding by multiple other liver transcription factors, consistent with HNF6 playing a global regulatory role in both male and female liver.
Collapse
Affiliation(s)
- Tara L Conforto
- Division of Cell and Molecular Biology, Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| | - George F Steinhardt
- Division of Cell and Molecular Biology, Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| | - David J Waxman
- Division of Cell and Molecular Biology, Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
56
|
Reizel Y, Spiro A, Sabag O, Skversky Y, Hecht M, Keshet I, Berman BP, Cedar H. Gender-specific postnatal demethylation and establishment of epigenetic memory. Genes Dev 2015; 29:923-33. [PMID: 25934504 PMCID: PMC4421981 DOI: 10.1101/gad.259309.115] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA methylation patterns are set up in a relatively fixed programmed manner during normal embryonic development and are then stably maintained. Using genome-wide analysis, we discovered a postnatal pathway involving gender-specific demethylation that occurs exclusively in the male liver. This demodification is programmed to take place at tissue-specific enhancer sequences, and our data show that the methylation state at these loci is associated with and appears to play a role in the transcriptional regulation of nearby genes. This process is mediated by the secretion of testosterone at the time of sexual maturity, but the resulting methylation profile is stable and therefore can serve as an epigenetic memory even in the absence of this inducer. These findings add a new dimension to our understanding of the role of DNA methylation in vivo and provide the foundations for deciphering how environment can impact on the epigenetic regulation of genes in general.
Collapse
Affiliation(s)
- Yitzhak Reizel
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Adam Spiro
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Yael Skversky
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Merav Hecht
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Ilana Keshet
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Benjamin P Berman
- Bioinformatics and Computational Biology Research Center, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Jerusalem 91120, Israel;
| |
Collapse
|
57
|
Burgess RC, Burman B, Kruhlak MJ, Misteli T. Activation of DNA damage response signaling by condensed chromatin. Cell Rep 2014; 9:1703-1717. [PMID: 25464843 DOI: 10.1016/j.celrep.2014.10.060] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 09/11/2014] [Accepted: 10/25/2014] [Indexed: 12/20/2022] Open
Abstract
The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.
Collapse
Affiliation(s)
- Rebecca C Burgess
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bharat Burman
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Program in Cell, Molecular and Developmental Biology, Sackler School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Michael J Kruhlak
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
58
|
Steegenga WT, Mischke M, Lute C, Boekschoten MV, Pruis MG, Lendvai A, Verkade HJ, Boekhorst J, Timmerman HM, Plösch T, Müller M. Sexually dimorphic characteristics of the small intestine and colon of prepubescent C57BL/6 mice. Biol Sex Differ 2014; 5:11. [PMID: 25243059 PMCID: PMC4169057 DOI: 10.1186/s13293-014-0011-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/20/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND There is increasing appreciation for sexually dimorphic effects, but the molecular mechanisms underlying these effects are only partially understood. In the present study, we explored transcriptomics and epigenetic differences in the small intestine and colon of prepubescent male and female mice. In addition, the microbiota composition of the colonic luminal content has been examined. METHODS At postnatal day 14, male and female C57BL/6 mice were sacrificed and the small intestine, colon and content of luminal colon were isolated. Gene expression of both segments of the intestine was analysed by microarray analysis. DNA methylation of the promoter regions of selected sexually dimorphic genes was examined by pyrosequencing. Composition of the microbiota was explored by deep sequencing. RESULTS Sexually dimorphic genes were observed in both segments of the intestine of 2-week-old mouse pups, with a stronger effect in the small intestine. Amongst the total of 349 genes displaying a sexually dimorphic effect in the small intestine and/or colon, several candidates exhibited a previously established function in the intestine (i.e. Nts, Nucb2, Alox5ap and Retnlγ). In addition, differential expression of genes linked to intestinal bowel disease (i.e. Ccr3, Ccl11 and Tnfr) and colorectal cancer development (i.e. Wt1 and Mmp25) was observed between males and females. Amongst the genes displaying significant sexually dimorphic expression, nine genes were histone-modifying enzymes, suggesting that epigenetic mechanisms might be a potential underlying regulatory mechanism. However, our results reveal no significant changes in DNA methylation of analysed CpGs within the selected differentially expressed genes. With respect to the bacterial community composition in the colon, a dominant effect of litter origin was found but no significant sex effect was detected. However, a sex effect on the dominance of specific taxa was observed. CONCLUSIONS This study reveals molecular dissimilarities between males and females in the small intestine and colon of prepubescent mice, which might underlie differences in physiological functioning and in disease predisposition in the two sexes.
Collapse
Affiliation(s)
- Wilma T Steegenga
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mona Mischke
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Carolien Lute
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Maurien Gm Pruis
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Agnes Lendvai
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael Müller
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands ; Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
59
|
Inoue K, Imai Y. Identification of novel transcription factors in osteoclast differentiation using genome-wide analysis of open chromatin determined by DNase-seq. J Bone Miner Res 2014; 29:1823-32. [PMID: 24677342 DOI: 10.1002/jbmr.2229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 12/11/2022]
Abstract
Clarification of the mechanisms underlying osteoclast differentiation enables us to understand the physiology of bone metabolism as well as the pathophysiology of bone diseases such as osteoporosis. Recently, it has been reported that epigenetics can determine cell fate and regulate cell type-specific gene expression. However, little is known about epigenetics during osteoclastogenesis. To reveal a part of epigenetics, especially focused on chromatin dynamics, during early osteoclastogenesis and to identify novel transcription factors involved in osteoclastogenesis, we performed a genome-wide analysis of open chromatin during receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis using DNase I hypersensitive sites sequencing (DNase-seq). DNase-seq was performed using the extracted nuclei from RAW264 cells treated with or without RANKL for 24 hours, followed by several bioinformatic analyses. DNase I hypersensitive sites (DHSs) were dynamically changed during RANKL-induced osteoclastogenesis and they accumulated in promoter regions. The distributions of DHSs among cis-regulatory DNA regions were identical regardless of RANKL stimulation. Motif discovery analysis successfully identified well-known osteoclastogenic transcription factors including Jun, CREB1, FOS, ATF2, and ATF4, but also novel transcription factors for osteoclastogenesis such as Zscan10, Atf1, Nrf1, and Srebf2. siRNA knockdown of these identified novel transcription factors impaired osteoclastogenesis. Taken together, DNase-seq is a useful tool for comprehension of epigenetics, especially chromatin dynamics during osteoclastogenesis and for identification of novel transcription factors involved in osteoclastogenesis. This study may reveal underlying mechanisms that determine cell type-specific differentiation of bone cells and may lead to investigation of novel therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Kazuki Inoue
- Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Ehime, Japan; Department of Biological Resources, Integrated Center for Sciences, Ehime University, Ehime, Japan
| | | |
Collapse
|
60
|
Chia DJ. Minireview: mechanisms of growth hormone-mediated gene regulation. Mol Endocrinol 2014; 28:1012-25. [PMID: 24825400 DOI: 10.1210/me.2014-1099] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GH exerts a diverse array of physiological actions that include prominent roles in growth and metabolism, with a major contribution via stimulating IGF-1 synthesis. GH achieves its effects by influencing gene expression profiles, and Igf1 is a key transcriptional target of GH signaling in liver and other tissues. This review examines the mechanisms of GH-mediated gene regulation that begin with signal transduction pathways activated downstream of the GH receptor and continue with chromatin events at target genes and additionally encompasses the topics of negative regulation and cross talk with other cellular inputs. The transcription factor, signal transducer and activator of transcription 5b, is regarded as the major signaling pathway by which GH achieves its physiological effects, including in stimulating Igf1 gene transcription in liver. Recent studies exploring the mechanisms of how activated signal transducer and activator of transcription 5b accomplishes this are highlighted, which begin to characterize epigenetic features at regulatory domains of the Igf1 locus. Further research in this field offers promise to better understand the GH-IGF-1 axis in normal physiology and disease and to identify strategies to manipulate the axis to improve human health.
Collapse
Affiliation(s)
- Dennis J Chia
- Department of Pediatrics, Icahn School of Medicine at Mt Sinai, New York, New York 10029
| |
Collapse
|
61
|
Jansen R, Batista S, Brooks AI, Tischfield JA, Willemsen G, van Grootheest G, Hottenga JJ, Milaneschi Y, Mbarek H, Madar V, Peyrot W, Vink JM, Verweij CL, de Geus EJC, Smit JH, Wright FA, Sullivan PF, Boomsma DI, Penninx BWJH. Sex differences in the human peripheral blood transcriptome. BMC Genomics 2014; 15:33. [PMID: 24438232 PMCID: PMC3904696 DOI: 10.1186/1471-2164-15-33] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/14/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genomes of men and women differ in only a limited number of genes located on the sex chromosomes, whereas the transcriptome is far more sex-specific. Identification of sex-biased gene expression will contribute to understanding the molecular basis of sex-differences in complex traits and common diseases. RESULTS Sex differences in the human peripheral blood transcriptome were characterized using microarrays in 5,241 subjects, accounting for menopause status and hormonal contraceptive use. Sex-specific expression was observed for 582 autosomal genes, of which 57.7% was upregulated in women (female-biased genes). Female-biased genes were enriched for several immune system GO categories, genes linked to rheumatoid arthritis (16%) and genes regulated by estrogen (18%). Male-biased genes were enriched for genes linked to renal cancer (9%). Sex-differences in gene expression were smaller in postmenopausal women, larger in women using hormonal contraceptives and not caused by sex-specific eQTLs, confirming the role of estrogen in regulating sex-biased genes. CONCLUSIONS This study indicates that sex-bias in gene expression is extensive and may underlie sex-differences in the prevalence of common diseases.
Collapse
Affiliation(s)
- Rick Jansen
- Department of Psychiatry, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Menet JS, Pescatore S, Rosbash M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev 2014; 28:8-13. [PMID: 24395244 PMCID: PMC3894415 DOI: 10.1101/gad.228536.113] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 11/27/2013] [Indexed: 11/28/2022]
Abstract
The mammalian circadian clock relies on the master genes CLOCK and BMAL1 to drive rhythmic gene expression and regulate biological functions under circadian control. Here we show that rhythmic CLOCK:BMAL1 DNA binding promotes rhythmic chromatin opening. Mechanisms include CLOCK:BMAL1 binding to nucleosomes and rhythmic chromatin modification; e.g., incorporation of the histone variant H2A.Z. This rhythmic chromatin remodeling mediates the rhythmic binding of other transcription factors adjacent to CLOCK:BMAL1, suggesting that the activity of these other transcription factors contributes to the genome-wide CLOCK:BMAL1 heterogeneous transcriptional output. These data therefore indicate that the clock regulation of transcription relies on the rhythmic regulation of chromatin accessibility and suggest that the concept of pioneer function extends to acute gene regulation.
Collapse
Affiliation(s)
| | - Stefan Pescatore
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
63
|
He HH, Meyer CA, Hu SS, Chen MW, Zang C, Liu Y, Rao PK, Fei T, Xu H, Long H, Liu XS, Brown M. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nat Methods 2014; 11:73-78. [PMID: 24317252 PMCID: PMC4018771 DOI: 10.1038/nmeth.2762] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/30/2013] [Indexed: 12/26/2022]
Abstract
Sequencing of DNase I hypersensitive sites (DNase-seq) is a powerful technique for identifying cis-regulatory elements across the genome. We studied the key experimental parameters to optimize performance of DNase-seq. Sequencing short fragments of 50-100 base pairs (bp) that accumulate in long internucleosome linker regions was more efficient for identifying transcription factor binding sites compared to sequencing longer fragments. We also assessed the potential of DNase-seq to predict transcription factor occupancy via generation of nucleotide-resolution transcription factor footprints. In modeling the sequence-specific DNase I cutting bias, we found a strong effect that varied over more than two orders of magnitude. This indicates that the nucleotide-resolution cleavage patterns at many transcription factor binding sites are derived from intrinsic DNase I cleavage bias rather than from specific protein-DNA interactions. In contrast, quantitative comparison of DNase I hypersensitivity between states can predict transcription factor occupancy associated with particular biological perturbations.
Collapse
Affiliation(s)
- Housheng Hansen He
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G2M9, Canada
| | - Clifford A. Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Sheng'en Shawn Hu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Mei-Wei Chen
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Chongzhi Zang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Yin Liu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Prakash K. Rao
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Teng Fei
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Han Xu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Henry Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - X. Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
64
|
Santhanam M, Chia DJ. Hepatic-specific accessibility of Igf1 gene enhancers is independent of growth hormone signaling. Mol Endocrinol 2013; 27:2080-92. [PMID: 24109593 DOI: 10.1210/me.2013-1181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The diverse roles of IGF-1 in physiology include acting as the endocrine intermediate to elicit the anabolic actions of GH. The majority of serum IGF-1 is synthesized in liver, where GH stimulates Igf1 gene transcription via the transcription factor, signal transducer and activator of transcription (Stat)5b. We and others have identified multiple Stat5-binding domains at the Igf1 locus that function in gene regulation, but it remains unclear whether the roles of these domains are tissue specific. Survey of the chromatin landscape of regulatory domains can provide insight about mechanisms of gene regulation, with chromatin accessibility regarded as a hallmark feature of regulatory domains. We prepared chromatin from liver, kidney, and spleen of C57BL/6 mice, and used formaldehyde-associated isolation of regulatory elements to assess chromatin accessibility at the major Igf1 promoter and 7 -binding enhancers. Whereas the promoters of other prototypical tissue-specific genes are open in a tissue-specific way, the major Igf1 promoter is open in all 3 tissues, albeit moderately more so in liver. In contrast, chromatin accessibility at Igf1 Stat5-binding domains is essentially restricted to liver, indicating that the enhancers are driving extensive differences in tissue expression. Furthermore, studies with Ghrhr(lit/lit) mice reveal that prior GH exposure is not necessary to establish open chromatin at these domains. Lastly, formaldehyde-associated isolation of regulatory elements of human liver samples confirms open chromatin at IGF1 Promoter 1, but unexpectedly, homologous Stat5-binding motifs are not accessible. We conclude that robust GH-stimulated hepatic Igf1 gene transcription utilizes tissue-specific mechanisms of epigenetic regulation that are established independent of GH signaling.
Collapse
Affiliation(s)
- Mahalakshmi Santhanam
- Division of Pediatric Endocrinology & Diabetes, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1616, New York, NY 10029.
| | | |
Collapse
|
65
|
Lo KA, Labadorf A, Kennedy NJ, Han MS, Yap YS, Matthews B, Xin X, Sun L, Davis RJ, Lodish HF, Fraenkel E. Analysis of in vitro insulin-resistance models and their physiological relevance to in vivo diet-induced adipose insulin resistance. Cell Rep 2013; 5:259-70. [PMID: 24095730 DOI: 10.1016/j.celrep.2013.08.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/12/2013] [Accepted: 08/23/2013] [Indexed: 12/15/2022] Open
Abstract
Diet-induced obesity (DIO) predisposes individuals to insulin resistance, and adipose tissue has a major role in the disease. Insulin resistance can be induced in cultured adipocytes by a variety of treatments, but what aspects of the in vivo responses are captured by these models remains unknown. We use global RNA sequencing to investigate changes induced by TNF-α, hypoxia, dexamethasone, high insulin, and a combination of TNF-α and hypoxia, comparing the results to the changes in white adipose tissue from DIO mice. We found that different in vitro models capture distinct features of DIO adipose insulin resistance, and a combined treatment of TNF-α and hypoxia is most able to mimic the in vivo changes. Using genome-wide DNase I hypersensitivity followed by sequencing, we further examined the transcriptional regulation of TNF-α-induced insulin resistance, and we found that C/EPBβ is a potential key regulator of adipose insulin resistance.
Collapse
Affiliation(s)
- Kinyui Alice Lo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol Cell Biol 2013; 33:3594-610. [PMID: 23836885 DOI: 10.1128/mcb.00280-13] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromatin state maps were developed to elucidate sex differences in chromatin structure and their impact on sex-differential chromatin accessibility and sex-biased gene expression in mouse liver. Genes in active, inactive, and poised chromatin states exhibited differential responsiveness to ligand-activated nuclear receptors and distinct enrichments for functional gene categories. Sex-biased genes were clustered by chromatin environments and mapped to DNase-hypersensitive sites (DHS) classified by sex bias in chromatin accessibility and enhancer modifications. Results were integrated with genome-wide binding data for five transcription factors implicated in growth hormone-regulated, sex-biased liver gene expression, leading to the following findings. (i) Sex-biased DHS, but not sex-biased genes, are frequently characterized by sex-differential chromatin states, indicating distal regulation. (ii) Trimethylation of histone H3 at K27 (H3K27me3) is a major sex-biased repressive mark at highly female-biased but not at highly male-biased genes. (iii) FOXA factors are associated with sex-dependent chromatin opening at male-biased but not female-biased regulatory sites. (iv) Sex-biased STAT5 binding is enriched at sex-biased DHS marked as active enhancers and preferentially targets sex-biased genes with sex-differences in local chromatin marks. (v) The male-biased repressor BCL6 preferentially targets female-biased genes and regulatory sites in a sex-independent chromatin state. (vi) CUX2, a female-specific repressor of male-biased genes, also activates strongly female-biased genes, in association with loss of H3K27me3 marks. Chromatin states are thus a major determinant of sex-biased chromatin accessibility and gene expression, with FOXA pioneer factors proposed to confer sex-dependent chromatin opening and STAT5, but not BCL6, regulating sex-biased genes by binding to sites in a sex-biased chromatin state.
Collapse
|
67
|
Takasugi M, Hayakawa K, Arai D, Shiota K. Age- and sex-dependent DNA hypomethylation controlled by growth hormone in mouse liver. Mech Ageing Dev 2013; 134:331-7. [PMID: 23707638 DOI: 10.1016/j.mad.2013.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/28/2013] [Accepted: 05/04/2013] [Indexed: 11/22/2022]
Abstract
In mammals, differences in liver function and aging have been observed between sexes; however, the epigenetic mechanisms underlying such differences remain largely unexplored. In this study, we investigated sex- and age-dependent DNA methylation status in the mouse liver. We analyzed 90 known sex-differentially expressed genes, and identified sex-dependent methylation in Zfp809, Hsd3b5, Treh, Cxcl11, Cyp17a1, and Nnmt genes. After 4 weeks of age, we noted the gradual establishment of sex-dependent hypomethylation in each of these genes in either males or females. The exposure of male mice to female-like growth hormone (GH) profile repressed male-predominant hypomethylation and promoted female-predominant hypomethylation. The occurrence of age-dependent hypomethylation, including at loci for which we also observed sex-dependent changes in DNA methylation, was accompanied by the downregulation of DNMT3A/B. In addition, we found that age-dependent hypomethylation was promoted through liver regeneration induced by partial hepatectomy, suggesting that DNMT activities were not enough to retain methylation levels. In conclusion, our results demonstrate that sex-dependent GH profiles influence the age-progressive hypomethylation under decreased DNMT3A/B levels in certain regions of the genome.
Collapse
Affiliation(s)
- Masaki Takasugi
- Laboratory of Cellular Biochemistry, Department of Animal Resource Science/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
68
|
Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 2013; 4:5. [PMID: 23514128 PMCID: PMC3618244 DOI: 10.1186/2042-6410-4-5] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/04/2013] [Indexed: 12/17/2022] Open
Abstract
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Collapse
Affiliation(s)
- Anne Gabory
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, F-78352, France.
| | | | | | | | | |
Collapse
|
69
|
Linking proteomic and transcriptional data through the interactome and epigenome reveals a map of oncogene-induced signaling. PLoS Comput Biol 2013; 9:e1002887. [PMID: 23408876 PMCID: PMC3567149 DOI: 10.1371/journal.pcbi.1002887] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 11/30/2012] [Indexed: 02/06/2023] Open
Abstract
Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets. The ways in which cells respond to changes in their environment are controlled by networks of physical links among the proteins and genes. The initial signal of a change in conditions rapidly passes through these networks from the cytoplasm to the nucleus, where it can lead to long-term alterations in cellular behavior by controlling the expression of genes. These cascades of signaling events underlie many normal biological processes. As a result, being able to map out how these networks change in disease can provide critical insights for new approaches to treatment. We present a computational method for reconstructing these networks by finding links between the rapid short-term changes in proteins and the longer-term changes in gene regulation. This method brings together systematic measurements of protein signaling, genome organization and transcription in the context of protein-protein and protein-DNA interactions. When used to analyze datasets from an oncogene expressing cell line model of human glioblastoma, our approach identifies key nodes that affect cell survival and functional transcriptional regulators.
Collapse
|
70
|
Kang K, Robinson GW, Hennighausen L. Comprehensive meta-analysis of Signal Transducers and Activators of Transcription (STAT) genomic binding patterns discerns cell-specific cis-regulatory modules. BMC Genomics 2013; 14:4. [PMID: 23324445 PMCID: PMC3564941 DOI: 10.1186/1471-2164-14-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/01/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription) family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. RESULTS We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM), which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. CONCLUSIONS Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors.
Collapse
Affiliation(s)
- Keunsoo Kang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, 20892-0822, USA
| | - Gertraud W Robinson
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, 20892-0822, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, 20892-0822, USA
- National Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Cheonan, Chungnam, 330-714, Republic of Korea
| |
Collapse
|
71
|
Ling G, Waxman DJ. Isolation of nuclei for use in genome-wide DNase hypersensitivity assays to probe chromatin structure. Methods Mol Biol 2013; 977:13-9. [PMID: 23436350 PMCID: PMC3815455 DOI: 10.1007/978-1-62703-284-1_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNase hypersensitivity (DHS) analysis coupled with high-throughput DNA sequencing (DNase-seq) has emerged as a powerful tool to analyze chromatin accessibility and identify regulatory sequences in genomic DNA on a global scale. In this method, intact nuclei are isolated from fresh tissue or cultured cells and then subjected to limited digestion using DNase I. The resulting short DNA fragments released by DNase digestion, which correspond to regions of open chromatin structure, are subsequently purified and identified by high throughput next generation DNA sequencing. This chapter describes methods used to isolate intact nuclei from mouse liver suitable for DNase-seq studies. The following chapter presents a detailed protocol for DNase I digestion of liver nuclei followed by the isolation of DNase-released fragments for sequencing and genome-wide mapping of DHS sites.
Collapse
Affiliation(s)
- Guoyu Ling
- Dept. of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
72
|
Ling G, Waxman DJ. DNase I digestion of isolated nulcei for genome-wide mapping of DNase hypersensitivity sites in chromatin. Methods Mol Biol 2013; 977:21-33. [PMID: 23436351 PMCID: PMC3889470 DOI: 10.1007/978-1-62703-284-1_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNase I hypersensitivity (DHS) analysis is a powerful method to analyze chromatin structure and identify genomic regulatory elements. Integration of a high-throughput detection method into DHS analysis makes genome-wide mapping of DHS sites possible at a reasonable cost. Here we describe methods for DHS analysis carried out with mouse liver nuclei, involving DNase I digestion followed by isolation of DNase I-released DNA fragments suitable for high-throughput, next generation DNA sequencing (DNase-seq). A real-time PCR-based assay used to optimize DNase I digestion conditions is also described.
Collapse
Affiliation(s)
- Guoyu Ling
- Department of Biology, Boston University, Boston, MA, USA
| | | |
Collapse
|
73
|
Conforto TL, Zhang Y, Sherman J, Waxman DJ. Impact of CUX2 on the female mouse liver transcriptome: activation of female-biased genes and repression of male-biased genes. Mol Cell Biol 2012; 32:4611-27. [PMID: 22966202 PMCID: PMC3486175 DOI: 10.1128/mcb.00886-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/31/2012] [Indexed: 01/19/2023] Open
Abstract
The growth hormone-regulated transcription factors STAT5 and BCL6 coordinately regulate sex differences in mouse liver, primarily through effects in male liver, where male-biased genes are upregulated and many female-biased genes are actively repressed. Here we investigated whether CUX2, a highly female-specific liver transcription factor, contributes to an analogous regulatory network in female liver. Adenoviral overexpression of CUX2 in male liver induced 36% of female-biased genes and repressed 35% of male-biased genes. In female liver, CUX2 small interfering RNA (siRNA) preferentially induced genes repressed by adenovirus expressing CUX2 (adeno-CUX2) in male liver, and it preferentially repressed genes induced by adeno-CUX2 in male liver. CUX2 binding in female liver chromatin was enriched at sites of male-biased DNase hypersensitivity and at genomic regions showing male-enriched STAT5 binding. CUX2 binding was also enriched near genes repressed by adeno-CUX2 in male liver or induced by CUX2 siRNA in female liver but not at genes induced by adeno-CUX2, indicating that CUX2 binding is preferentially associated with gene repression. Nevertheless, direct CUX2 binding was seen at several highly female-specific genes that were positively regulated by CUX2, including A1bg, Cyp2b9, Cyp3a44, Tox, and Trim24. CUX2 expression and chromatin binding were high in immature male liver, where repression of adult male-biased genes and expression of adult female-biased genes are common, suggesting that the downregulation of CUX2 in male liver at puberty contributes to the developmental changes establishing adult patterns of sex-specific gene expression.
Collapse
Affiliation(s)
- Tara L Conforto
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
74
|
Kutter C, Watt S, Stefflova K, Wilson MD, Goncalves A, Ponting CP, Odom DT, Marques AC. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet 2012; 8:e1002841. [PMID: 22844254 PMCID: PMC3406015 DOI: 10.1371/journal.pgen.1002841] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/30/2012] [Indexed: 12/17/2022] Open
Abstract
A large proportion of functional sequence within mammalian genomes falls outside protein-coding exons and can be transcribed into long RNAs. However, the roles in mammalian biology of long noncoding RNA (lncRNA) are not well understood. Few lncRNAs have experimentally determined roles, with some of these being lineage-specific. Determining the extent by which transcription of lncRNA loci is retained or lost across multiple evolutionary lineages is essential if we are to understand their contribution to mammalian biology and to lineage-specific traits. Here, we experimentally investigated the conservation of lncRNA expression among closely related rodent species, allowing the evolution of DNA sequence to be uncoupled from evolution of transcript expression. We generated total RNA (RNAseq) and H3K4me3-bound (ChIPseq) DNA data, and combined both to construct catalogues of transcripts expressed in the adult liver of Mus musculus domesticus (C57BL/6J), Mus musculus castaneus, and Rattus norvegicus. We estimated the rate of transcriptional turnover of lncRNAs and investigated the effects of their lineage-specific birth or death. LncRNA transcription showed considerably greater gain and loss during rodent evolution, compared with protein-coding genes. Nucleotide substitution rates were found to mirror the in vivo transcriptional conservation of intergenic lncRNAs between rodents: only the sequences of noncoding loci with conserved transcription were constrained. Finally, we found that lineage-specific intergenic lncRNAs appear to be associated with modestly elevated expression of genomically neighbouring protein-coding genes. Our findings show that nearly half of intergenic lncRNA loci have been gained or lost since the last common ancestor of mouse and rat, and they predict that such rapid transcriptional turnover contributes to the evolution of tissue- and lineage-specific gene expression. The best-understood portion of mammalian genomes contains genes transcribed into RNAs, which are subsequently translated into proteins. These genes are generally under high selective pressure and deeply conserved between species. Recent publications have revealed novel classes of genes, which are also transcribed into RNA but are not subsequently translated into proteins. One such novel class are long noncoding RNA (lncRNA). LncRNA loci are controlled in a similar manner to protein-coding genes, yet are more often expressed tissue-specifically, and their conservation and function(s) are mostly unknown. Previous reports suggest that lncRNAs can affect the expression of nearby protein-coding genes or act at a distance to control broader biological processes. Also, lncRNA sequence is poorly conserved between mammals compared with protein-coding genes, but how rapidly their transcription evolves, particularly between closely related species, remains unknown. By comparing lncRNA expression between homologous tissues in two species of mouse and in rat, we discovered that lncRNA genes are “born” or “die” more rapidly than protein-coding genes and that this rapid evolution impacts the expression levels of nearby coding genes. This local regulation of gene expression reveals a functional role for the rapid evolution of lncRNAs, which may contribute to biological differences between species.
Collapse
Affiliation(s)
- Claudia Kutter
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
- University of Cambridge, Cambridge, United Kingdom
| | - Stephen Watt
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Klara Stefflova
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
- University of Cambridge, Cambridge, United Kingdom
| | - Michael D. Wilson
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
- University of Cambridge, Cambridge, United Kingdom
| | - Angela Goncalves
- University of Cambridge, Cambridge, United Kingdom
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, United Kingdom
| | - Chris P. Ponting
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (CPP); (DTO); (ACM)
| | - Duncan T. Odom
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
- University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- * E-mail: (CPP); (DTO); (ACM)
| | - Ana C. Marques
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (CPP); (DTO); (ACM)
| |
Collapse
|
75
|
He HH, Meyer CA, Chen MW, Jordan VC, Brown M, Liu XS. Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res 2012; 22:1015-25. [PMID: 22508765 PMCID: PMC3371710 DOI: 10.1101/gr.133280.111] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcription factor cistromes are highly cell-type specific. Chromatin accessibility, histone modifications, and nucleosome occupancy have all been found to play a role in defining these binding locations. Here, we show that hormone-induced DNase I hypersensitivity changes (ΔDHS) are highly predictive of androgen receptor (AR) and estrogen receptor 1 (ESR1) binding in prostate cancer and breast cancer cells, respectively. While chromatin structure prior to receptor binding and nucleosome occupancy after binding are strikingly different for ESR1 and AR, ΔDHS is highly predictive for both. AR binding is associated with changes in both local nucleosome occupancy and DNase I hypersensitivity. In contrast, while global ESR1 binding is unrelated to changes in nucleosome occupancy, DNase I hypersensitivity dynamics are also predictive of the ESR1 cistrome. These findings suggest that AR and ESR1 have distinct modes of interaction with chromatin and that DNase I hypersensitivity dynamics provides a general approach for predicting cell-type specific cistromes.
Collapse
Affiliation(s)
- Housheng Hansen He
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
76
|
Conforto TL, Waxman DJ. Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-pubertal period to young adulthood. Biol Sex Differ 2012; 3:9. [PMID: 22475005 PMCID: PMC3350426 DOI: 10.1186/2042-6410-3-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/04/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Early liver development and the transcriptional transitions during hepatogenesis are well characterized. However, gene expression changes during the late postnatal/pre-pubertal to young adulthood period are less well understood, especially with regards to sex-specific gene expression. METHODS Microarray analysis of male and female mouse liver was carried out at 3, 4, and 8 wk of age to elucidate developmental changes in gene expression from the late postnatal/pre-pubertal period to young adulthood. RESULTS A large number of sex-biased and sex-independent genes showed significant changes during this developmental period. Notably, sex-independent genes involved in cell cycle, chromosome condensation, and DNA replication were down regulated from 3 wk to 8 wk, while genes associated with metal ion binding, ion transport and kinase activity were up regulated. A majority of genes showing sex differential expression in adult liver did not display sex differences prior to puberty, at which time extensive changes in sex-specific gene expression were seen, primarily in males. Thus, in male liver, 76% of male-specific genes were up regulated and 47% of female-specific genes were down regulated from 3 to 8 wk of age, whereas in female liver 67% of sex-specific genes showed no significant change in expression. In both sexes, genes up regulated from 3 to 8 wk were significantly enriched (p < E-76) in the set of genes positively regulated by the liver transcription factor HNF4α, as determined in a liver-specific HNF4α knockout mouse model, while genes down regulated during this developmental period showed significant enrichment (p < E-65) for negative regulation by HNF4α. Significant enrichment of the developmentally regulated genes in the set of genes subject to positive and negative regulation by pituitary hormone was also observed. Five sex-specific transcriptional regulators showed sex-specific expression at 4 wk (male-specific Ihh; female-specific Cdx4, Cux2, Tox, and Trim24) and may contribute to the developmental changes that lead to global acquisition of liver sex-specificity by 8 wk of age. CONCLUSIONS Overall, the observed changes in gene expression during postnatal liver development reflect the deceleration of liver growth and the induction of specialized liver functions, with widespread changes in sex-specific gene expression primarily occurring in male liver.
Collapse
Affiliation(s)
- Tara L Conforto
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
77
|
Rotwein P. Mapping the growth hormone--Stat5b--IGF-I transcriptional circuit. Trends Endocrinol Metab 2012; 23:186-93. [PMID: 22361342 PMCID: PMC3313013 DOI: 10.1016/j.tem.2012.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/10/2012] [Accepted: 01/20/2012] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor-I (IGF-I) exert powerful influences on somatic growth, metabolism, and tissue repair, and have been implicated in aging and carcinogenesis. Since the formulation of the somatomedin hypothesis over 50 years ago, GH and IGF-I have been linked intimately to one another. Recent studies have established that GH potently stimulates IGF-I gene transcription, and through this mechanism controls production of IGF-I. A key mediator of the GH-IGF-I biosynthetic pathway is the latent transcription factor Stat5b. This review summarizes the potentially complex mechanistic relationship between GH action, Stat5b, and IGF-I gene activation, and suggests that Stat5b may have a broad role in mediating IGF-I gene regulation in response to diverse physiological inputs.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| |
Collapse
|
78
|
Shao Z, Zhang Y, Yuan GC, Orkin SH, Waxman DJ. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets. Genome Biol 2012; 13:R16. [PMID: 22424423 PMCID: PMC3439967 DOI: 10.1186/gb-2012-13-3-r16] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/04/2012] [Accepted: 03/16/2012] [Indexed: 12/20/2022] Open
Abstract
ChIP-Seq is widely used to characterize genome-wide binding patterns of transcription
factors and other chromatin-associated proteins. Although comparison of ChIP-Seq data
sets is critical for understanding cell type-dependent and cell state-specific
binding, and thus the study of cell-specific gene regulation, few quantitative
approaches have been developed. Here, we present a simple and effective method,
MAnorm, for quantitative comparison of ChIP-Seq data sets describing transcription
factor binding sites and epigenetic modifications. The quantitative binding
differences inferred by MAnorm showed strong correlation with both the changes in
expression of target genes and the binding of cell type-specific regulators.
Collapse
Affiliation(s)
- Zhen Shao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
79
|
|
80
|
Abstract
Recent high-throughput sequencing technologies have opened the door for genome-wide characterization of chromatin features at an unprecedented resolution. Chromatin accessibility is an important property that regulates protein binding and other nuclear processes. Here, we describe computational methods to analyze chromatin accessibility using DNaseI hypersensitivity by sequencing (DNaseI-seq). Although there are numerous bioinformatic tools to analyze ChIP-seq data, our statistical algorithm was developed specifically to identify significantly accessible genomic regions by handling features of DNaseI hypersensitivity. Without prior knowledge of relevant protein factors, one can discover genome-wide chromatin remodeling events associated with specific conditions or differentiation stages from quantitative analysis of DNaseI hypersensitivity. By performing appropriate subsequent computational analyses on a select subset of remodeled sites, it is also possible to extract information about putative factors that may bind to specific DNA elements within DNaseI hypersensitive sites. These approaches enabled by DNaseI-seq represent a powerful new methodology that reveals mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
81
|
Dynamic, sex-differential STAT5 and BCL6 binding to sex-biased, growth hormone-regulated genes in adult mouse liver. Mol Cell Biol 2011; 32:880-96. [PMID: 22158971 DOI: 10.1128/mcb.06312-11] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sex-dependent pituitary growth hormone (GH) secretory patterns determine the sex-biased expression of >1,000 genes in mouse and rat liver, affecting lipid and drug metabolism, inflammation, and disease. A fundamental biological question is how robust differential expression can be achieved for hundreds of sex-biased genes simply based on the GH input signal pattern: pulsatile GH stimulation in males versus near-continuous GH exposure in females. STAT5 is an essential transcriptional mediator of the sex-dependent effects of GH in the liver, but the mechanisms that underlie its sex-dependent actions are obscure. Here we elucidate the dynamic, sex-dependent binding of STAT5 and the GH/STAT5-regulated repressor BCL6 to mouse liver chromatin genome wide, revealing a counteractive interplay between these two regulators of sex differences in liver gene expression. Our findings establish a close correlation between sex-dependent STAT5 binding and sex-biased target gene expression. Moreover, sex-dependent STAT5 binding correlated positively with sex-biased DNase hypersensitivity and H3-K4me1 and H3-K4me3 (activating) marks, correlated negatively with sex-biased H3-K27me3 (repressive) marks, and was associated with sex-differentially enriched motifs for HNF6/CDP factors. Importantly, BCL6 binding was preferentially associated with repression of female-biased STAT5 targets in male liver. Furthermore, BCL6 and STAT5 common targets but not BCL6 unique targets showed strong enrichment for lipid and drug metabolism. These findings provide a comprehensive, genome-wide view of the mechanisms whereby these two GH-regulated transcription factors establish and maintain sex differences affecting liver physiology and disease. The approaches used here to characterize sex-dependent STAT5 and BCL6 binding can be applied to other condition-specific regulatory factors and binding sites and their interplay with cooperative chromatin binding factors.
Collapse
|
82
|
Ding J, Berryman DE, Jara A, Kopchick JJ. Age- and sex-associated plasma proteomic changes in growth hormone receptor gene-disrupted mice. J Gerontol A Biol Sci Med Sci 2011; 67:830-40. [PMID: 22156438 DOI: 10.1093/gerona/glr212] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Growth hormone receptor gene-disrupted (GHR-/-) mice are dwarf, insulin sensitive, and long lived despite being obese. In order to identify characteristics associated with their increased longevity, we studied age-related plasma proteomic changes in these mice. Male and female GHR-/- mice and their littermate controls were followed longitudinally at 8, 16, and 24 months of ages for plasma proteomic analysis. Relative to control littermates, GHR-/- mice had increased levels of apolipoprotein A-4 and retinol-binding protein-4 and decreased levels of apolipoprotein E, haptoglobin, and mannose-binding protein-C. Female GHR-/- mice showed decreased inflammatory cytokines including interleukin-1β and monocyte chemotactic protein-1. Additionally, sex differences were found in specific isoforms of apolipoprotein E, RBP-4, haptoglobin, albumin, and hemoglobin subunit beta. In conclusion, we find plasma proteomic changes in GHR-/- mice that favor a longer life span as well as sex differences indicative of an improved health span in female mice.
Collapse
Affiliation(s)
- Juan Ding
- Edison Biotechnology Institute, 1 Water Tower Drive, The Ridges, Ohio University, Athens, OH 45701, USA
| | | | | | | |
Collapse
|
83
|
Deniz O, Flores O, Battistini F, Pérez A, Soler-López M, Orozco M. Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast. BMC Genomics 2011; 12:489. [PMID: 21981773 PMCID: PMC3224377 DOI: 10.1186/1471-2164-12-489] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/07/2011] [Indexed: 01/13/2023] Open
Abstract
Background In eukaryotic organisms, DNA is packaged into chromatin structure, where most of DNA is wrapped into nucleosomes. DNA compaction and nucleosome positioning have clear functional implications, since they modulate the accessibility of genomic regions to regulatory proteins. Despite the intensive research effort focused in this area, the rules defining nucleosome positioning and the location of DNA regulatory regions still remain elusive. Results Naked (histone-free) and nucleosomal DNA from yeast were digested by microccocal nuclease (MNase) and sequenced genome-wide. MNase cutting preferences were determined for both naked and nucleosomal DNAs. Integration of their sequencing profiles with DNA conformational descriptors derived from atomistic molecular dynamic simulations enabled us to extract the physical properties of DNA on a genomic scale and to correlate them with chromatin structure and gene regulation. The local structure of DNA around regulatory regions was found to be unusually flexible and to display a unique pattern of nucleosome positioning. Ab initio physical descriptors derived from molecular dynamics were used to develop a computational method that accurately predicts nucleosome enriched and depleted regions. Conclusions Our experimental and computational analyses jointly demonstrate a clear correlation between sequence-dependent physical properties of naked DNA and regulatory signals in the chromatin structure. These results demonstrate that nucleosome positioning around TSS (Transcription Start Site) and TTS (Transcription Termination Site) (at least in yeast) is strongly dependent on DNA physical properties, which can define a basal regulatory mechanism of gene expression.
Collapse
Affiliation(s)
- Ozgen Deniz
- Institute for Research in Biomedicine and Barcelona Supercomputing Center Joint Research Program on Computational Biology, Baldiri i Reixac 10, Barcelona 08028, Spain
| | | | | | | | | | | |
Collapse
|
84
|
Nietupski JB, Hurlbut GD, Ziegler RJ, Chu Q, Hodges BL, Ashe KM, Bree M, Cheng SH, Gregory RJ, Marshall J, Scheule RK. Systemic administration of AAV8-α-galactosidase A induces humoral tolerance in nonhuman primates despite low hepatic expression. Mol Ther 2011; 19:1999-2011. [PMID: 21712814 DOI: 10.1038/mt.2011.119] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In mice, liver-restricted expression of lysosomal enzymes from adeno-associated viral serotype 8 (AAV8) vectors results in reduced antibodies to the expressed proteins. To ask whether this result might translate to patients, nonhuman primates (NHPs) were injected systemically with AAV8 encoding α-galactosidase A (α-gal). As in mice, sustained expression in monkeys attenuated antibody responses to α-gal. However, this effect was not robust, and sustained α-gal levels were 1-2 logs lower than those achieved in male mice at the same vector dose. Because our mouse studies had shown that antibody levels were directly related to expression levels, several strategies were evaluated to increase expression in monkeys. Unlike mice, expression in monkeys did not respond to androgens. Local delivery to the liver, immune suppression, a self-complementary vector and pharmacologic approaches similarly failed to increase expression. While equivalent vector copies reached mouse and primate liver and there were no apparent differences in vector form, methylation or deamination, transgene expression was limited at the mRNA level in monkeys. These results suggest that compared to mice, transcription from an AAV8 vector in monkeys can be significantly reduced. They also suggest some current limits on achieving clinically useful antibody reduction and therapeutic benefit for lysosomal storage diseases using a systemic AAV8-based approach.
Collapse
|
85
|
Shu W, Chen H, Bo X, Wang S. Genome-wide analysis of the relationships between DNaseI HS, histone modifications and gene expression reveals distinct modes of chromatin domains. Nucleic Acids Res 2011; 39:7428-43. [PMID: 21685456 PMCID: PMC3177195 DOI: 10.1093/nar/gkr443] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To understand the molecular mechanisms that underlie global transcriptional regulation, it is essential to first identify all the transcriptional regulatory elements in the human genome. The advent of next-generation sequencing has provided a powerful platform for genome-wide analysis of different species and specific cell types; when combined with traditional techniques to identify regions of open chromatin [DNaseI hypersensitivity (DHS)] or specific binding locations of transcription factors [chromatin immunoprecipitation (ChIP)], and expression data from microarrays, we become uniquely poised to uncover the mysteries of the genome and its regulation. To this end, we have performed global meta-analysis of the relationship among data from DNaseI-seq, ChIP-seq and expression arrays, and found that specific correlations exist among regulatory elements and gene expression across different cell types. These correlations revealed four distinct modes of chromatin domain structure reflecting different functions: repressive, active, primed and bivalent. Furthermore, CCCTC-binding factor (CTCF) binding sites were identified based on these integrative data. Our findings uncovered a complex regulatory process involving by DNaseI HS sites and histone modifications, and suggest that these dynamic elements may be responsible for maintaining chromatin structure and integrity of the human genome. Our integrative approach provides an example by which data from diverse technology platforms may be integrated to provide more meaningful insights into global transcriptional regulation.
Collapse
Affiliation(s)
- Wenjie Shu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | | | | | | |
Collapse
|