51
|
Sdano MA, Fulcher JM, Palani S, Chandrasekharan MB, Parnell TJ, Whitby FG, Formosa T, Hill CP. A novel SH2 recognition mechanism recruits Spt6 to the doubly phosphorylated RNA polymerase II linker at sites of transcription. eLife 2017; 6:28723. [PMID: 28826505 PMCID: PMC5599234 DOI: 10.7554/elife.28723] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023] Open
Abstract
We determined that the tandem SH2 domain of S. cerevisiae Spt6 binds the linker region of the RNA polymerase II subunit Rpb1 rather than the expected sites in its heptad repeat domain. The 4 nM binding affinity requires phosphorylation at Rpb1 S1493 and either T1471 or Y1473. Crystal structures showed that pT1471 binds the canonical SH2 pY site while pS1493 binds an unanticipated pocket 70 Å distant. Remarkably, the pT1471 phosphate occupies the phosphate-binding site of a canonical pY complex, while Y1473 occupies the position of a canonical pY side chain, with the combination of pT and Y mimicking a pY moiety. Biochemical data and modeling indicate that pY1473 can form an equivalent interaction, and we find that pT1471/pS1493 and pY1473/pS1493 combinations occur in vivo. ChIP-seq and genetic analyses demonstrate the importance of these interactions for recruitment of Spt6 to sites of transcription and for the maintenance of repressive chromatin.
Collapse
Affiliation(s)
- Matthew A Sdano
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - James M Fulcher
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Sowmiya Palani
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Timothy J Parnell
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Frank G Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
52
|
An mRNA Capping Enzyme Targets FACT to the Active Gene To Enhance the Engagement of RNA Polymerase II into Transcriptional Elongation. Mol Cell Biol 2017; 37:MCB.00029-17. [PMID: 28396559 DOI: 10.1128/mcb.00029-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/30/2017] [Indexed: 12/22/2022] Open
Abstract
We have recently demonstrated that an mRNA capping enzyme, Cet1, impairs promoter-proximal accumulation/pausing of RNA polymerase II (Pol II) independently of its capping activity in Saccharomyces cerevisiae to control transcription. However, it is still unknown how Pol II pausing is regulated by Cet1. Here, we show that Cet1's N-terminal domain (NTD) promotes the recruitment of FACT (facilitates chromatin transcription that enhances the engagement of Pol II into transcriptional elongation) to the coding sequence of an active gene, ADH1, independently of mRNA-capping activity. Absence of Cet1's NTD decreases FACT targeting to ADH1 and consequently reduces the engagement of Pol II in transcriptional elongation, leading to promoter-proximal accumulation of Pol II. Similar results were also observed at other genes. Consistently, Cet1 interacts with FACT. Collectively, our results support the notion that Cet1's NTD promotes FACT targeting to the active gene independently of mRNA-capping activity in facilitating Pol II's engagement in transcriptional elongation, thus deciphering a novel regulatory pathway of gene expression.
Collapse
|
53
|
Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 2017; 74:3317-3334. [PMID: 28386724 DOI: 10.1007/s00018-017-2517-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
Abstract
Chromatin structure is a major barrier to gene transcription that must be disrupted and re-set during each round of transcription. Central to this process is the Set2/SETD2 methyltransferase that mediates co-transcriptional methylation to histone H3 at lysine 36 (H3K36me). Studies reveal that H3K36me not only prevents inappropriate transcriptional initiation from arising within gene bodies, but that it has other conserved functions that include the repair of damaged DNA and regulation of pre-mRNA splicing. Consistent with the importance of Set2/SETD2 in chromatin biology, mutations of SETD2, or mutations at or near H3K36 in H3.3, have recently been found to underlie cancer development. This review will summarize the latest insights into the functions of Set2/SETD2 in genome regulation and cancer development.
Collapse
|
54
|
Shetty A, Kallgren SP, Demel C, Maier KC, Spatt D, Alver BH, Cramer P, Park PJ, Winston F. Spt5 Plays Vital Roles in the Control of Sense and Antisense Transcription Elongation. Mol Cell 2017; 66:77-88.e5. [PMID: 28366642 DOI: 10.1016/j.molcel.2017.02.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/12/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022]
Abstract
Spt5 is an essential and conserved factor that functions in transcription and co-transcriptional processes. However, many aspects of the requirement for Spt5 in transcription are poorly understood. We have analyzed the consequences of Spt5 depletion in Schizosaccharomyces pombe using four genome-wide approaches. Our results demonstrate that Spt5 is crucial for a normal rate of RNA synthesis and distribution of RNAPII over transcription units. In the absence of Spt5, RNAPII localization changes dramatically, with reduced levels and a relative accumulation over the first ∼500 bp, suggesting that Spt5 is required for transcription past a barrier. Spt5 depletion also results in widespread antisense transcription initiating within this barrier region. Deletions of this region alter the distribution of RNAPII on the sense strand, suggesting that the barrier observed after Spt5 depletion is normally a site at which Spt5 stimulates elongation. Our results reveal a global requirement for Spt5 in transcription elongation.
Collapse
Affiliation(s)
- Ameet Shetty
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Scott P Kallgren
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Carina Demel
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Kerstin C Maier
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dan Spatt
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Burak H Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
55
|
Lee J, Choi ES, Seo HD, Kang K, Gilmore JM, Florens L, Washburn MP, Choe J, Workman JL, Lee D. Chromatin remodeller Fun30 Fft3 induces nucleosome disassembly to facilitate RNA polymerase II elongation. Nat Commun 2017; 8:14527. [PMID: 28218250 PMCID: PMC5321744 DOI: 10.1038/ncomms14527] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/09/2017] [Indexed: 01/30/2023] Open
Abstract
Previous studies have revealed that nucleosomes impede elongation of RNA polymerase II (RNAPII). Recent observations suggest a role for ATP-dependent chromatin remodellers in modulating this process, but direct in vivo evidence for this is unknown. Here using fission yeast, we identify Fun30Fft3 as a chromatin remodeller, which localizes at transcribing regions to promote RNAPII transcription. Fun30Fft3 associates with RNAPII and collaborates with the histone chaperone, FACT, which facilitates RNAPII elongation through chromatin, to induce nucleosome disassembly at transcribing regions during RNAPII transcription. Mutants, resulting in reduced nucleosome-barrier, such as deletion mutants of histones H3/H4 themselves and the genes encoding components of histone deacetylase Clr6 complex II suppress the defects in growth and RNAPII occupancy of cells lacking Fun30Fft3. These data suggest that RNAPII utilizes the chromatin remodeller, Fun30Fft3, to overcome the nucleosome barrier to transcription elongation. Nucleosomes have been shown to impede the elongation of RNA polymerase II during transcription. Here, the authors provide evidence that in fission yeast chromatin remodeller Fun30Fft3 localizes to transcribing regions to promote transcription by nucleosome disassembly in vivo.
Collapse
Affiliation(s)
- Junwoo Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Eun Shik Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Hogyu David Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, Chungnam 31116, South Korea
| | - Joshua M Gilmore
- Stowers Institute for Medical Research, Kansas City, Kansas City, Missouri 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Kansas City, Missouri 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, Kansas City, Missouri 64110, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Kansas City, Missouri 64110, USA
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
56
|
Bowman GD, McKnight JN. Sequence-specific targeting of chromatin remodelers organizes precisely positioned nucleosomes throughout the genome. Bioessays 2016; 39:1-8. [PMID: 27862071 DOI: 10.1002/bies.201600183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eukaryotic genomes are functionally organized into chromatin, a compact packaging of nucleoproteins with the basic repeating unit known as the nucleosome. A major focus for the chromatin field has been understanding what rules govern nucleosome positioning throughout the genome, and here we review recent findings using a novel, sequence-targeted remodeling enzyme. Nucleosomes are often packed into evenly spaced arrays that are reproducibly positioned, but how such organization is established and maintained through dramatic events such as DNA replication is poorly understood. We hypothesize that a major fraction of positioned nucleosomes arises from sequence-specific targeting of chromatin remodelers to generate "founding" nucleosomes, providing reproducible, predictable, and condition-specific nucleation sites against which neighboring nucleosomes are packed into evenly spaced arrays.
Collapse
Affiliation(s)
- Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
57
|
Zhang Y, Najmi SM, Schneider DA. Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:246-255. [PMID: 27989933 DOI: 10.1016/j.bbagrm.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, nuclear RNA synthesis is accomplished by at least three unique, multisubunit RNA polymerases. The roles of these enzymes are generally partitioned into the synthesis of the three major classes of RNA: rRNA, mRNA, and tRNA for RNA polymerases I, II, and III respectively. Consistent with their unique cellular roles, each enzyme has a complement of specialized transcription factors and enzymatic properties. However, not all transcription factors have evolved to affect only one eukaryotic RNA polymerase. In fact, many factors have been shown to influence the activities of multiple nuclear RNA polymerases. This review focuses on a subset of these factors, specifically addressing the mechanisms by which these proteins influence RNA polymerases I and II.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Saman M Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
58
|
Ard R, Allshire RC. Transcription-coupled changes to chromatin underpin gene silencing by transcriptional interference. Nucleic Acids Res 2016; 44:10619-10630. [PMID: 27613421 PMCID: PMC5159543 DOI: 10.1093/nar/gkw801] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA (lncRNA) transcription into a downstream promoter frequently results in transcriptional interference. However, the mechanism of this repression is not fully understood. We recently showed that drug tolerance in fission yeast Schizosaccharomyces pombe is controlled by lncRNA transcription upstream of the tgp1+ permease gene. Here we demonstrate that transcriptional interference of tgp1+ involves several transcription-coupled chromatin changes mediated by conserved elongation factors Set2, Clr6CII, Spt6 and FACT. These factors are known to travel with RNAPII and establish repressive chromatin in order to limit aberrant transcription initiation from cryptic promoters present in gene bodies. We therefore conclude that conserved RNAPII-associated mechanisms exist to both suppress intragenic cryptic promoters during genic transcription and to repress gene promoters by transcriptional interference. Our analyses also demonstrate that key mechanistic features of transcriptional interference are shared between S. pombe and the highly divergent budding yeast Saccharomyces cerevisiae. Thus, transcriptional interference is an ancient, conserved mechanism for tightly controlling gene expression. Our mechanistic insights allowed us to predict and validate a second example of transcriptional interference involving the S. pombe pho1+ gene. Given that eukaryotic genomes are pervasively transcribed, transcriptional interference likely represents a more general feature of gene regulation than is currently appreciated.
Collapse
Affiliation(s)
- Ryan Ard
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| |
Collapse
|
59
|
MacDiarmid CW, Taggart J, Jeong J, Kerdsomboon K, Eide DJ. Activation of the Yeast UBI4 Polyubiquitin Gene by Zap1 Transcription Factor via an Intragenic Promoter Is Critical for Zinc-deficient Growth. J Biol Chem 2016; 291:18880-96. [PMID: 27432887 DOI: 10.1074/jbc.m116.743120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 01/20/2023] Open
Abstract
Stability of many proteins requires zinc. Zinc deficiency disrupts their folding, and the ubiquitin-proteasome system may help manage this stress. In Saccharomyces cerevisiae, UBI4 encodes five tandem ubiquitin monomers and is essential for growth in zinc-deficient conditions. Although UBI4 is only one of four ubiquitin-encoding genes in the genome, a dramatic decrease in ubiquitin was observed in zinc-deficient ubi4Δ cells. The three other ubiquitin genes were strongly repressed under these conditions, contributing to the decline in ubiquitin. In a screen for ubi4Δ suppressors, a hypomorphic allele of the RPT2 proteasome regulatory subunit gene (rpt2(E301K)) suppressed the ubi4Δ growth defect. The rpt2(E301K) mutation also increased ubiquitin accumulation in zinc-deficient cells, and by using a ubiquitin-independent proteasome substrate we found that proteasome activity was reduced. These results suggested that increased ubiquitin supply in suppressed ubi4Δ cells was a consequence of more efficient ubiquitin release and recycling during proteasome degradation. Degradation of a ubiquitin-dependent substrate was restored by the rpt2(E301K) mutation, indicating that ubiquitination is rate-limiting in this process. The UBI4 gene was induced ∼5-fold in low zinc and is regulated by the zinc-responsive Zap1 transcription factor. Surprisingly, Zap1 controls UBI4 by inducing transcription from an intragenic promoter, and the resulting truncated mRNA encodes only two of the five ubiquitin repeats. Expression of a short transcript alone complemented the ubi4Δ mutation, indicating that it is efficiently translated. Loss of Zap1-dependent UBI4 expression caused a growth defect in zinc-deficient conditions. Thus, the intragenic UBI4 promoter is critical to preventing ubiquitin deficiency in zinc-deficient cells.
Collapse
Affiliation(s)
- Colin W MacDiarmid
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706 and
| | - Janet Taggart
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706 and
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Kittikhun Kerdsomboon
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706 and
| | - David J Eide
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706 and
| |
Collapse
|
60
|
Noncoding Transcription Is a Driving Force for Nucleosome Instability in spt16 Mutant Cells. Mol Cell Biol 2016; 36:1856-67. [PMID: 27141053 DOI: 10.1128/mcb.00152-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/27/2016] [Indexed: 12/17/2022] Open
Abstract
FACT (facilitates chromatin transcription) consists of two essential subunits, Spt16 and Pob3, and functions as a histone chaperone. Mutation of spt16 results in a global loss of nucleosomes as well as aberrant transcription. Here, we show that the majority of nucleosome changes upon Spt16 depletion are alterations in nucleosome fuzziness and position shift. Most nucleosomal changes are suppressed by the inhibition of RNA polymerase II (Pol II) activity. Surprisingly, a small subgroup of nucleosome changes is resistant to transcriptional inhibition. Notably, Spt16 and distinct histone modifications are enriched at this subgroup of nucleosomes. We also report 1,037 Spt16-suppressed noncoding transcripts (SNTs) and found that the SNT start sites are enriched with the subgroup of nucleosomes resistant to Pol II inhibition. Finally, the nucleosomes at genes overlapping SNTs are more susceptible to changes upon Spt16 depletion than those without SNTs. Taken together, our results support a model in which Spt16 has a role in maintaining local nucleosome stability to inhibit initiation of SNT transcription, which once initiated drives additional nucleosome loss upon Spt16 depletion.
Collapse
|
61
|
Booth GT, Wang IX, Cheung VG, Lis JT. Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast. Genome Res 2016; 26:799-811. [PMID: 27197211 PMCID: PMC4889974 DOI: 10.1101/gr.204578.116] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022]
Abstract
Complex regulation of gene expression in mammals has evolved from simpler eukaryotic systems, yet the mechanistic features of this evolution remain elusive. Here, we compared the transcriptional landscapes of the distantly related budding and fission yeast. We adapted the Precision Run-On sequencing (PRO-seq) approach to map the positions of RNA polymerase active sites genome-wide in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Additionally, we mapped preferred sites of transcription initiation in each organism using PRO-cap. Unexpectedly, we identify a pause in early elongation, specific to S. pombe, that requires the conserved elongation factor subunit Spt4 and resembles promoter-proximal pausing in metazoans. PRO-seq profiles in strains lacking Spt4 reveal globally elevated levels of transcribing RNA Polymerase II (Pol II) within genes in both species. Messenger RNA abundance, however, does not reflect the increases in Pol II density, indicating a global reduction in elongation rate. Together, our results provide the first base-pair resolution map of transcription elongation in S. pombe and identify divergent roles for Spt4 in controlling elongation in budding and fission yeast.
Collapse
Affiliation(s)
- Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | - Isabel X Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vivian G Cheung
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| |
Collapse
|
62
|
Li H, Hou J, Bai L, Hu C, Tong P, Kang Y, Zhao X, Shao Z. Genome-wide analysis of core promoter structures in Schizosaccharomyces pombe with DeepCAGE. RNA Biol 2016; 12:525-37. [PMID: 25747261 DOI: 10.1080/15476286.2015.1022704] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The core promoter, which immediately flanks the transcription start site (TSS), plays a critical role in transcriptional regulation of eukaryotes. Recent studies on higher eukaryotes have revealed an unprecedented complexity of core promoter structures that underscores diverse regulatory mechanisms of gene expression. For unicellular eukaryotes, however, the structures of core promoters have not been investigated in detail. As an important model organism, Schizosaccharomyces pombe still lacks the precise annotation for TSSs, thus hampering the analysis of core promoter structures and their relationship to higher eukaryotes. Here we used a deep sequencing-based approach (DeepCAGE) to generate 16 million uniquely mapped tags, corresponding to 93,736 positions in the S. pombe genome. The high-resolution TSS landscape enabled identification of over 8,000 core promoters, characterization of 4 promoter classes and observation of widespread alternative promoters. The landscape also allowed precise determination of the representative TSSs within core promoters, thus redefining the 5' UTR for 82.8% of S. pombe genes. We further identified the consensus initiator (Inr) sequence--PyPyPuN(A/C)(C/A), the TATA-enriched region (between position -25 and -37) and an Inr immediate downstream motif--CC(T/A)(T/C)(T/C/A)(A/G)CCA(A/T/C), all of which were associated with highly expressed promoters. In conclusion, the detailed analysis of core promoters not only significantly improves the genome annotation of S. pombe, but also reveals that this unicellular eukaryote shares a highly similar organization in the core promoters with higher eukaryotes. These findings lend additional evidence for the power of this model system in delineating complex regulatory processes in multicellular organisms, despite its perceived simplicity.
Collapse
Key Words
- 5' UTR annotation
- CAGE, cap analysis of gene expression
- CDS, coding sequence
- DP, broad with a single dominant peak
- DeepCAGE, deep sequencing-based cap analysis of gene expression
- FDR, false discovery rate
- GB, generally broad distribution
- GO, Gene Ontology
- Inr, initiator
- LDP, local-distributed peak
- LUSP, local-ultra-sharp peak
- MP, broad with bi- or multi- peaks
- ORF, open reading frame
- SP, single dominant peak
- TC, tag cluster
- TSS profiling
- TSS, transcription start site
- core promoter structure
- fission yeast
- sequence motif analysis
Collapse
Affiliation(s)
- Hua Li
- a State Key Laboratory on Oncogenes and Bio-ID Center; School of Biomedical Engineering; Shanghai Jiao Tong University ; Shanghai , China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Suzuki S, Kato H, Suzuki Y, Chikashige Y, Hiraoka Y, Kimura H, Nagao K, Obuse C, Takahata S, Murakami Y. Histone H3K36 trimethylation is essential for multiple silencing mechanisms in fission yeast. Nucleic Acids Res 2016; 44:4147-62. [PMID: 26792892 PMCID: PMC4872076 DOI: 10.1093/nar/gkw008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/30/2015] [Indexed: 01/09/2023] Open
Abstract
In budding yeast, Set2 catalyzes di- and trimethylation of H3K36 (H3K36me2 and H3K36me3) via an interaction between its Set2–Rpb1 interaction (SRI) domain and C-terminal repeats of RNA polymerase II (Pol2) phosphorylated at Ser2 and Ser5 (CTD-S2,5-P). H3K36me2 is sufficient for recruitment of the Rpd3S histone deacetylase complex to repress cryptic transcription from transcribed regions. In fission yeast, Set2 is also responsible for H3K36 methylation, which represses a subset of RNAs including heterochromatic and subtelomeric RNAs, at least in part via recruitment of Clr6 complex II, a homolog of Rpd3S. Here, we show that CTD-S2P-dependent interaction of fission yeast Set2 with Pol2 via the SRI domain is required for formation of H3K36me3, but not H3K36me2. H3K36me3 silenced heterochromatic and subtelomeric transcripts mainly through post-transcriptional and transcriptional mechanisms, respectively, whereas H3K36me2 was not enough for silencing. Clr6 complex II appeared not to be responsible for heterochromatic silencing by H3K36me3. Our results demonstrate that H3K36 methylation has multiple outputs in fission yeast; these findings provide insights into the distinct roles of H3K36 methylation in metazoans, which have different enzymes for synthesis of H3K36me1/2 and H3K36me3.
Collapse
Affiliation(s)
- Shota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi 332-0012, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Koji Nagao
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Shinya Takahata
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yota Murakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
64
|
Rege M, Subramanian V, Zhu C, Hsieh THS, Weiner A, Friedman N, Clauder-Münster S, Steinmetz LM, Rando OJ, Boyer LA, Peterson CL. Chromatin Dynamics and the RNA Exosome Function in Concert to Regulate Transcriptional Homeostasis. Cell Rep 2015; 13:1610-22. [PMID: 26586442 PMCID: PMC4662874 DOI: 10.1016/j.celrep.2015.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/02/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
The histone variant H2A.Z is a hallmark of nucleosomes flanking promoters of protein-coding genes and is often found in nucleosomes that carry lysine 56-acetylated histone H3 (H3-K56Ac), a mark that promotes replication-independent nucleosome turnover. Here, we find that H3-K56Ac promotes RNA polymerase II occupancy at many protein-coding and noncoding loci, yet neither H3-K56Ac nor H2A.Z has a significant impact on steady-state mRNA levels in yeast. Instead, broad effects of H3-K56Ac or H2A.Z on RNA levels are revealed only in the absence of the nuclear RNA exosome. H2A.Z is also necessary for the expression of divergent, promoter-proximal non-coding RNAs (ncRNAs) in mouse embryonic stem cells. Finally, we show that H2A.Z functions with H3-K56Ac to facilitate formation of chromosome interaction domains (CIDs). Our study suggests that H2A.Z and H3-K56Ac work in concert with the RNA exosome to control mRNA and ncRNA expression, perhaps in part by regulating higher-order chromatin structures.
Collapse
Affiliation(s)
- Mayuri Rege
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Vidya Subramanian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chenchen Zhu
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Tsung-Han S Hsieh
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Assaf Weiner
- School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel; Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nir Friedman
- School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel; Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
65
|
The Abundant Histone Chaperones Spt6 and FACT Collaborate to Assemble, Inspect, and Maintain Chromatin Structure in Saccharomyces cerevisiae. Genetics 2015; 201:1031-45. [PMID: 26416482 DOI: 10.1534/genetics.115.180794] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/20/2015] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae Spt6 protein is a conserved chromatin factor with several distinct functional domains, including a natively unstructured 30-residue N-terminal region that binds competitively with Spn1 or nucleosomes. To uncover physiological roles of these interactions, we isolated histone mutations that suppress defects caused by weakening Spt6:Spn1 binding with the spt6-F249K mutation. The strongest suppressor was H2A-N39K, which perturbs the point of contact between the two H2A-H2B dimers in an assembled nucleosome. Substantial suppression also was observed when the H2A-H2B interface with H3-H4 was altered, and many members of this class of mutations also suppressed a defect in another essential histone chaperone, FACT. Spt6 is best known as an H3-H4 chaperone, but we found that it binds with similar affinity to H2A-H2B or H3-H4. Like FACT, Spt6 is therefore capable of binding each of the individual components of a nucleosome, but unlike FACT, Spt6 did not produce endonuclease-sensitive reorganized nucleosomes and did not displace H2A-H2B dimers from nucleosomes. Spt6 and FACT therefore have distinct activities, but defects can be suppressed by overlapping histone mutations. We also found that Spt6 and FACT together are nearly as abundant as nucleosomes, with ∼24,000 Spt6 molecules, ∼42,000 FACT molecules, and ∼75,000 nucleosomes per cell. Histone mutations that destabilize interfaces within nucleosomes therefore reveal multiple spatial regions that have both common and distinct roles in the functions of these two essential and abundant histone chaperones. We discuss these observations in terms of different potential roles for chaperones in both promoting the assembly of nucleosomes and monitoring their quality.
Collapse
|
66
|
Abstract
Nucleosome positioning is an important process required for proper genome packing and its accessibility to execute the genetic program in a cell-specific, timely manner. In the recent years hundreds of papers have been devoted to the bioinformatics, physics and biology of nucleosome positioning. The purpose of this review is to cover a practical aspect of this field, namely, to provide a guide to the multitude of nucleosome positioning resources available online. These include almost 300 experimental datasets of genome-wide nucleosome occupancy profiles determined in different cell types and more than 40 computational tools for the analysis of experimental nucleosome positioning data and prediction of intrinsic nucleosome formation probabilities from the DNA sequence. A manually curated, up to date list of these resources will be maintained at http://generegulation.info.
Collapse
|
67
|
Sen P, Dang W, Donahue G, Dai J, Dorsey J, Cao X, Liu W, Cao K, Perry R, Lee JY, Wasko BM, Carr DT, He C, Robison B, Wagner J, Gregory BD, Kaeberlein M, Kennedy BK, Boeke JD, Berger SL. H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev 2015; 29:1362-76. [PMID: 26159996 PMCID: PMC4511212 DOI: 10.1101/gad.263707.115] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sen et al. find that lack of sustained histone H3K36 methylation is commensurate with increased cryptic transcription in a subset of genes in old cells and with shorter life span. In contrast, deletion of the K36me2/3 demethylase Rph1 increases H3K36me3 within these genes, suppresses cryptic transcript initiation, and extends life span. Epigenetic mechanisms, including histone post-translational modifications, control longevity in diverse organisms. Relatedly, loss of proper transcriptional regulation on a global scale is an emerging phenomenon of shortened life span, but the specific mechanisms linking these observations remain to be uncovered. Here, we describe a life span screen in Saccharomyces cerevisiae that is designed to identify amino acid residues of histones that regulate yeast replicative aging. Our results reveal that lack of sustained histone H3K36 methylation is commensurate with increased cryptic transcription in a subset of genes in old cells and with shorter life span. In contrast, deletion of the K36me2/3 demethylase Rph1 increases H3K36me3 within these genes, suppresses cryptic transcript initiation, and extends life span. We show that this aging phenomenon is conserved, as cryptic transcription also increases in old worms. We propose that epigenetic misregulation in aging cells leads to loss of transcriptional precision that is detrimental to life span, and, importantly, this acceleration in aging can be reversed by restoring transcriptional fidelity.
Collapse
Affiliation(s)
- Payel Sen
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Weiwei Dang
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Junbiao Dai
- High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jean Dorsey
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xiaohua Cao
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wei Liu
- High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kajia Cao
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rocco Perry
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jun Yeop Lee
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brian M Wasko
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Daniel T Carr
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Chong He
- The Buck Institute of Research on Aging, Novato, California 94945, USA
| | - Brett Robison
- The Buck Institute of Research on Aging, Novato, California 94945, USA
| | - John Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Brian K Kennedy
- The Buck Institute of Research on Aging, Novato, California 94945, USA
| | - Jef D Boeke
- High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; Institute for Systems Genetics, New York University Langone Medical Center, New York, New York 10016, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
68
|
Reiter C, Heise F, Chung HR, Ehrenhofer-Murray AE. A link between Sas2-mediated H4 K16 acetylation, chromatin assembly in S-phase by CAF-I and Asf1, and nucleosome assembly by Spt6 during transcription. FEMS Yeast Res 2015; 15:fov073. [PMID: 26260510 DOI: 10.1093/femsyr/fov073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2015] [Indexed: 12/29/2022] Open
Abstract
The histone acetyltransferase Sas2 is part of the SAS-I complex and acetylates lysine 16 of histone H4 (H4 K16Ac) in the genome of Saccharomyces cerevisiae. Sas2-mediated H4 K16Ac is strongest over the coding region of genes with low expression. However, it is unclear how Sas2-mediated acetylation is incorporated into chromatin. Our previous work has shown physical interactions of SAS-I with the histone chaperones CAF-I and Asf1, suggesting a link between SAS-I-mediated acetylation and chromatin assembly. Here, we find that Sas2-dependent H4 K16Ac in bulk histones requires passage of the cells through the S-phase of the cell cycle, and the rate of increase in H4 K16Ac depends on both CAF-I and Asf1, whereas steady-state levels and genome-wide distribution of H4 K16Ac show only mild changes in their absence. Furthermore, H4 K16Ac is deposited in chromatin at genes upon repression, and this deposition requires the histone chaperone Spt6, but not CAF-I, Asf1, HIR or Rtt106. Altogether, our data indicate that Spt6 controls H4 K16Ac levels by incorporating K16-unacetylated H4 in strongly transcribed genes. Upon repression, Spt6 association is decreased, resulting in less deposition of K16-unacetylated H4 and therefore in a concomitant increase of H4 K16Ac that is recycled during transcription.
Collapse
Affiliation(s)
- Christian Reiter
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | | | - Ho-Ryun Chung
- Max-Planck-Institute for Molecular Genetics, D-14195 Berlin, Germany
| | | |
Collapse
|
69
|
Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 2015; 161:541-554. [PMID: 25910208 DOI: 10.1016/j.cell.2015.03.010] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/26/2014] [Accepted: 02/18/2015] [Indexed: 01/12/2023]
Abstract
Major features of transcription by human RNA polymerase II (Pol II) remain poorly defined due to a lack of quantitative approaches for visualizing Pol II progress at nucleotide resolution. We developed a simple and powerful approach for performing native elongating transcript sequencing (NET-seq) in human cells that globally maps strand-specific Pol II density at nucleotide resolution. NET-seq exposes a mode of antisense transcription that originates downstream and converges on transcription from the canonical promoter. Convergent transcription is associated with a distinctive chromatin configuration and is characteristic of lower-expressed genes. Integration of NET-seq with genomic footprinting data reveals stereotypic Pol II pausing coincident with transcription factor occupancy. Finally, exons retained in mature transcripts display Pol II pausing signatures that differ markedly from skipped exons, indicating an intrinsic capacity for Pol II to recognize exons with different processing fates. Together, human NET-seq exposes the topography and regulatory complexity of human gene expression.
Collapse
|
70
|
Svensson JP, Shukla M, Menendez-Benito V, Norman-Axelsson U, Audergon P, Sinha I, Tanny JC, Allshire RC, Ekwall K. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin. Genome Res 2015; 25:872-83. [PMID: 25778913 PMCID: PMC4448683 DOI: 10.1101/gr.188870.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation-exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation.
Collapse
Affiliation(s)
- J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Manu Shukla
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | | | - Ulrika Norman-Axelsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Pauline Audergon
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Indranil Sinha
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| |
Collapse
|
71
|
The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations. Mol Cell 2015; 58:1113-23. [PMID: 25959393 DOI: 10.1016/j.molcel.2015.03.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/25/2015] [Accepted: 03/25/2015] [Indexed: 12/14/2022]
Abstract
H2A.Z is a highly conserved histone variant involved in several key nuclear processes. It is incorporated into promoters by SWR-C-related chromatin remodeling complexes, but whether it is also actively excluded from non-promoter regions is not clear. Here we provide genomic and biochemical evidence that the RNA polymerase II (RNA Pol II) elongation-associated histone chaperones FACT and Spt6 both contribute to restricting H2A.Z from intragenic regions. In the absence of FACT or Spt6, the lack of efficient nucleosome reassembly coupled to pervasive incorporation of H2A.Z by mislocalized SWR-C alters chromatin composition and contributes to cryptic initiation. Therefore, chaperone-mediated H2A.Z confinement is crucial for restricting the chromatin signature of gene promoters that otherwise may license or promote cryptic transcription.
Collapse
|
72
|
Spt6 Is Essential for rRNA Synthesis by RNA Polymerase I. Mol Cell Biol 2015; 35:2321-31. [PMID: 25918242 DOI: 10.1128/mcb.01499-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/19/2015] [Indexed: 01/04/2023] Open
Abstract
Spt6 (suppressor of Ty6) has many roles in transcription initiation and elongation by RNA polymerase (Pol) II. These effects are mediated through interactions with histones, transcription factors, and the RNA polymerase. Two lines of evidence suggest that Spt6 also plays a role in rRNA synthesis. First, Spt6 physically associates with a Pol I subunit (Rpa43). Second, Spt6 interacts physically and genetically with Spt4/5, which directly affects Pol I transcription. Utilizing a temperature-sensitive allele, spt6-1004, we show that Spt6 is essential for Pol I occupancy of the ribosomal DNA (rDNA) and rRNA synthesis. Our data demonstrate that protein levels of an essential Pol I initiation factor, Rrn3, are reduced when Spt6 is inactivated, leading to low levels of Pol I-Rrn3 complex. Overexpression of RRN3 rescues Pol I-Rrn3 complex formation; however, rRNA synthesis is not restored. These data suggest that Spt6 is involved in either recruiting the Pol I-Rrn3 complex to the rDNA or stabilizing the preinitiation complex. The findings presented here identify an unexpected, essential role for Spt6 in synthesis of rRNA.
Collapse
|
73
|
Bitton DA, Atkinson SR, Rallis C, Smith GC, Ellis DA, Chen YYC, Malecki M, Codlin S, Lemay JF, Cotobal C, Bachand F, Marguerat S, Mata J, Bähler J. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast. Genome Res 2015; 25:884-96. [PMID: 25883323 PMCID: PMC4448684 DOI: 10.1101/gr.185371.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/31/2015] [Indexed: 12/31/2022]
Abstract
Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5′-3′ exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼0.24% in wild type and ∼1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance.
Collapse
Affiliation(s)
- Danny A Bitton
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Sophie R Atkinson
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Charalampos Rallis
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Graeme C Smith
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - David A Ellis
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Yuan Y C Chen
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Michal Malecki
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Sandra Codlin
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Jean-François Lemay
- Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Quebec J1H 5N4, Canada
| | - Cristina Cotobal
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - François Bachand
- Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Quebec J1H 5N4, Canada
| | - Samuel Marguerat
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jürg Bähler
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| |
Collapse
|
74
|
Abstract
Transcription elongation by RNA polymerase II (RNAP II) involves the coordinated action of numerous regulatory factors. Among these are chromatin-modifying enzymes, which generate a stereotypic and conserved pattern of histone modifications along transcribed genes. This pattern implies a precise coordination between regulators of histone modification and the RNAP II elongation complex. Here I review the pathways and molecular events that regulate co-transcriptional histone modifications. Insight into these events will illuminate the assembly of functional RNAP II elongation complexes and how the chromatin landscape influences their composition and function.
Collapse
Affiliation(s)
- Jason C Tanny
- a Department of Pharmacology and Therapeutics ; McGill University ; Montreal , Canada
| |
Collapse
|
75
|
Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 2014; 124:131-51. [PMID: 25529773 DOI: 10.1007/s00412-014-0501-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023]
Abstract
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
Collapse
|
76
|
Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly. Mol Cell Biol 2014; 34:4115-29. [PMID: 25182531 DOI: 10.1128/mcb.00695-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spt6 is a multifunctional histone chaperone involved in the maintenance of chromatin structure during elongation by RNA polymerase II (Pol II). Spt6 has a tandem SH2 (tSH2) domain within its C terminus that recognizes Pol II C-terminal domain (CTD) peptides phosphorylated on Ser2, Ser5, or Try1 in vitro. Deleting the tSH2 domain, however, only has a partial effect on Spt6 occupancy in vivo, suggesting that more complex mechanisms are involved in the Spt6 recruitment. Our results show that the Ser2 kinases Bur1 and Ctk1, but not the Ser5 kinase Kin28, cooperate in recruiting Spt6, genome-wide. Interestingly, the Ser2 kinases promote the association of Spt6 in early transcribed regions and not toward the 3' ends of genes, where phosphorylated Ser2 reaches its maximum level. In addition, our results uncover an unexpected role for histone deacetylases (Rpd3 and Hos2) in promoting Spt6 interaction with elongating Pol II. Finally, our data suggest that phosphorylation of the Pol II CTD on Tyr1 promotes the association of Spt6 with the 3' ends of transcribed genes, independently of Ser2 phosphorylation. Collectively, our results show that a complex network of interactions, involving the Spt6 tSH2 domain, CTD phosphorylation, and histone deacetylases, coordinate the recruitment of Spt6 to transcribed genes in vivo.
Collapse
|
77
|
Anver S, Roguev A, Zofall M, Krogan NJ, Grewal SIS, Harmer SL. Yeast X-chromosome-associated protein 5 (Xap5) functions with H2A.Z to suppress aberrant transcripts. EMBO Rep 2014; 15:894-902. [PMID: 24957674 DOI: 10.15252/embr.201438902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chromatin regulatory proteins affect diverse developmental and environmental response pathways via their influence on nuclear processes such as the regulation of gene expression. Through a genome-wide genetic screen, we implicate a novel protein called X-chromosome-associated protein 5 (Xap5) in chromatin regulation. We show that Xap5 is a chromatin-associated protein acting in a similar manner as the histone variant H2A.Z to suppress expression of antisense and repeat element transcripts throughout the fission yeast genome. Xap5 is highly conserved across eukaryotes, and a plant homolog rescues xap5 mutant yeast. We propose that Xap5 likely functions as a chromatin regulator in diverse organisms.
Collapse
Affiliation(s)
- Shajahan Anver
- Department of Plant Biology, College of Biological Sciences University of California, Davis, CA, USA
| | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences University of California, Davis, CA, USA
| |
Collapse
|