51
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
52
|
Isidro RA, Dong F, Hornick JL, Wee JO, Agoston A, Patil DT, Deshpande V, Zhao L. Verrucous carcinoma of the oesophagus is a genetically distinct subtype of oesophageal squamous cell carcinoma. Histopathology 2021; 79:642-649. [PMID: 33960520 DOI: 10.1111/his.14395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023]
Abstract
AIMS Oesophageal verrucous carcinoma (VSCC) is a rare and morphologically distinct type of oesophageal squamous cell carcinoma (SCC). Diagnosing VSCC on biopsy material is challenging, given the lack of significant atypia and the presence of keratinising epithelium and exophytic growth. The molecular pathogenesis of VSCC remains unclear. The aim of this study was to characterise the genomic landscape of VSCC in comparison to conventional oesophageal SCC. METHODS AND RESULTS Three cases of VSCC from the Brigham and Women's Hospital pathology archive were identified. Formalin-fixed, paraffin-embedded (FFPE) tumour tissue was used for p16 immunohistochemistry (IHC), high-risk human papillomavirus (HPV) in-situ mRNA hybridisation (ISH) and DNA isolation. Tumour DNA was sequenced using a targeted massively parallel sequencing assay enriched for cancer-associated genes. Three additional cases of VSCC were identified by image review of The Cancer Genome Atlas (TCGA) oesophageal SCC cohort. VSCC cases were negative for p16 IHC and high-risk HPV ISH. TP53 mutations (P < 0.001) and copy number variants (CNVs) for CDKN2A (P < 0.001), CDKN2B (P < 0.01) and CCND1 (P < 0.01) were absent in VSCC and significantly less frequent in comparison to conventional SCC. Five VSCC cases featured SMARCA4 missense mutations or in-frame deletions compared to only four of 88 conventional SCC cases (P < 0.001). VSCC featured driver mutations in PIK3CA, HRAS and GNAS. Recurrent CNVs were rare in VSCC. CONCLUSIONS VSCC is not only morphologically but also genetically distinct from conventional oesophageal SCC, featuring frequent SMARCA4 mutations and infrequent TP53 mutations or CDKN2A/B CNVs. Molecular findings may aid in establishing the challenging diagnosis of VSCC.
Collapse
Affiliation(s)
- Raymond A Isidro
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Fei Dong
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jon O Wee
- Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Agoston Agoston
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Deepa T Patil
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Vikram Deshpande
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
53
|
Wanior M, Krämer A, Knapp S, Joerger AC. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene 2021; 40:3637-3654. [PMID: 33941852 PMCID: PMC8154588 DOI: 10.1038/s41388-021-01781-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Multi-subunit ATPase-dependent chromatin remodelling complexes SWI/SNF (switch/sucrose non-fermentable) are fundamental epigenetic regulators of gene transcription. Functional genomic studies revealed a remarkable mutation prevalence of SWI/SNF-encoding genes in 20-25% of all human cancers, frequently driving oncogenic programmes. Some SWI/SNF-mutant cancers are hypersensitive to perturbations in other SWI/SNF subunits, regulatory proteins and distinct biological pathways, often resulting in sustained anticancer effects and synthetic lethal interactions. Exploiting these vulnerabilities is a promising therapeutic strategy. Here, we review the importance of SWI/SNF chromatin remodellers in gene regulation as well as mechanisms leading to assembly defects and their role in cancer development. We will focus in particular on emerging strategies for the targeted therapy of SWI/SNF-deficient cancers using chemical probes, including proteolysis targeting chimeras, to induce synthetic lethality.
Collapse
Affiliation(s)
- Marek Wanior
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- German Translational Cancer Network (DKTK) site Frankfurt/Mainz, Frankfurt am Main, Germany.
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany.
- German Translational Cancer Network (DKTK) site Frankfurt/Mainz, Frankfurt am Main, Germany.
| |
Collapse
|
54
|
Terzi Cizmecioglu N, Huang J, Keskin EG, Wang X, Esen I, Chen F, Orkin SH. ARID4B is critical for mouse embryonic stem cell differentiation towards mesoderm and endoderm, linking epigenetics to pluripotency exit. J Biol Chem 2021; 295:17738-17751. [PMID: 33454011 DOI: 10.1074/jbc.ra120.015534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/13/2020] [Indexed: 11/06/2022] Open
Abstract
Distinct cell types emerge from embryonic stem cells through a precise and coordinated execution of gene expression programs during lineage commitment. This is established by the action of lineage specific transcription factors along with chromatin complexes. Numerous studies have focused on epigenetic factors that affect embryonic stem cells (ESC) self-renewal and pluripotency. However, the contribution of chromatin to lineage decisions at the exit from pluripotency has not been as extensively studied. Using a pooled epigenetic shRNA screen strategy, we identified chromatin-related factors critical for differentiation toward mesodermal and endodermal lineages. Here we reveal a critical role for the chromatin protein, ARID4B. Arid4b-deficient mESCs are similar to WT mESCs in the expression of pluripotency factors and their self-renewal. However, ARID4B loss results in defects in up-regulation of the meso/endodermal gene expression program. It was previously shown that Arid4b resides in a complex with SIN3A and HDACS 1 and 2. We identified a physical and functional interaction of ARID4B with HDAC1 rather than HDAC2, suggesting functionally distinct Sin3a subcomplexes might regulate cell fate decisions Finally, we observed that ARID4B deficiency leads to increased H3K27me3 and a reduced H3K27Ac level in key developmental gene loci, whereas a subset of genomic regions gain H3K27Ac marks. Our results demonstrate that epigenetic control through ARID4B plays a key role in the execution of lineage-specific gene expression programs at pluripotency exit.
Collapse
Affiliation(s)
- Nihal Terzi Cizmecioglu
- Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey.
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Ezgi G Keskin
- Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey
| | - Xiaofeng Wang
- Geisel School of Medicine, Dartmouth University, Hanover, New Hampshire USA
| | - Idil Esen
- Howard Hughes Medical Institute, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Dept. of Pediatrics, Harvard Medical School, Boston, Massachusetts USA
| | - Fei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Stuart H Orkin
- Howard Hughes Medical Institute, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Dept. of Pediatrics, Harvard Medical School, Boston, Massachusetts USA.
| |
Collapse
|
55
|
Abstract
Undifferentiated carcinoma of the esophagus and gastroesophageal junction is a recently recognized entity in the fifth edition of the World Health Organization Classification of Digestive Tumors and is diagnostically challenging, particularly on small biopsies. SMARCA4 and SMARCA2 are chromatin remodeling genes with key roles in oncogenesis. We retrieved 14 cases of SMARCA4/SMARCA2-deficient undifferentiated carcinoma of the gastroesophageal junction and esophagus from the authors' institutions. The tumors showed similar histologic findings: the sheet-like proliferation of tumor cells characterized by discohesion, large nuclei, and prominent macronucleoli with many tumor cells exhibiting a rhabdoid appearance. In 8 cases, adjacent specialized intestinal metaplasia was noted and 3 cases exhibited adjacent high-grade dysplasia. Immunohistochemically, tumors variably expressed keratins and disclosed loss of expression of SMARCA4 in 12 and SMARCA2 in 7 cases. In 2 cases SMARCA2 alone was lost without SMARCA4 loss. A mutant p53 immunohistochemical pattern was seen in 4 of 4 cases, 3 of which showed diffuse, strong nuclear expression, and 1 case displayed a complete loss of nuclear expression of p53, including invasive carcinoma and associated dysplasia, when present. Limited clinical follow-up was available, but 3 patients died of disease within 0.6, 2, and 7 months of diagnosis. We present the first series of undifferentiated carcinoma of the esophagus and gastroesophageal junction with this characteristic morphology associated with loss of SMARCA4 and/or SMARCA2 expression. This tumor type likely arises from dedifferentiation of a lower grade carcinoma in some cases, and Barrett esophagus and appears to be associated with an aggressive clinical course.
Collapse
|
56
|
Bi-Lin KW, Seshachalam PV, Tuoc T, Stoykova A, Ghosh S, Singh MK. Critical role of the BAF chromatin remodeling complex during murine neural crest development. PLoS Genet 2021; 17:e1009446. [PMID: 33750945 PMCID: PMC8016319 DOI: 10.1371/journal.pgen.1009446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/01/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
The BAF complex plays an important role in the development of a wide range of tissues by modulating gene expression programs at the chromatin level. However, its role in neural crest development has remained unclear. To determine the role of the BAF complex, we deleted BAF155/BAF170, the core subunits required for the assembly, stability, and functions of the BAF complex in neural crest cells (NCCs). Neural crest-specific deletion of BAF155/BAF170 leads to embryonic lethality due to a wide range of developmental defects including craniofacial, pharyngeal arch artery, and OFT defects. RNAseq and transcription factor enrichment analysis revealed that the BAF complex modulates the expression of multiple signaling pathway genes including Hippo and Notch, essential for the migration, proliferation, and differentiation of the NCCs. Furthermore, we demonstrated that the BAF complex is essential for the Brg1-Yap-Tead-dependent transcription of target genes in NCCs. Together, our results demonstrate an important role of the BAF complex in modulating the gene regulatory network essential for neural crest development. Neural crest cells (NCCs) are a multipotent and migratory cell population that is induced at the neural plate border during neurulation and contributes to the formation of a wide range of tissues. Defects in the development, differentiation, or migration of NCCs lead to various birth defects including craniofacial and heart anomalies. Here, by genetically deleting BAF155/BAF170, the core subunits required for the assembly, stability, and functions of the BAF chromatin remodeling complex, we demonstrate that the BAF complex is essential for the proliferation, survival, and differentiation of the NCCs. Neural crest-specific deletion of BAF155/BAF170 leads to embryonic lethality due to a wide range of developmental defects including craniofacial and cardiovascular defects. By performing RNAseq and transcription factor enrichment analysis we show that the BAF complex modulates the expression of multiple signaling pathway genes including Hippo and Notch, essential for the development of the NCCs. Furthermore, the BAF complex component physically interacts with the Hippo signaling components in NCCs to regulate gene expression. We demonstrated that the BAF complex is essential for the Brg1-Yap-Tead-dependent transcription of target genes in NCCs. Together, our results demonstrate a critical role of the BAF complex in modulating the gene regulatory network essential for the proper development of neural crest and neural crest-derived tissues.
Collapse
Affiliation(s)
- Kathleen Wung Bi-Lin
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | | | - Tran Tuoc
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | | | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Manvendra K. Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore
- * E-mail:
| |
Collapse
|
57
|
Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat Genet 2021; 53:269-278. [PMID: 33558760 PMCID: PMC7614082 DOI: 10.1038/s41588-021-00777-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023]
Abstract
Cancer-associated, loss-of-function mutations in genes encoding subunits of the BRG1/BRM-associated factor (BAF) chromatin-remodeling complexes1-8 often cause drastic chromatin accessibility changes, especially in important regulatory regions9-19. However, it remains unknown how these changes are established over time (for example, immediate consequences or long-term adaptations), and whether they are causative for intracomplex synthetic lethalities, abrogating the formation or activity of BAF complexes9,20-24. In the present study, we use the dTAG system to induce acute degradation of BAF subunits and show that chromatin alterations are established faster than the duration of one cell cycle. Using a pharmacological inhibitor and a chemical degrader of the BAF complex ATPase subunits25,26, we show that maintaining genome accessibility requires constant ATP-dependent remodeling. Completely abolishing BAF complex function by acute degradation of a synthetic lethal subunit in a paralog-deficient background results in an almost complete loss of chromatin accessibility at BAF-controlled sites, especially also at superenhancers, providing a mechanism for intracomplex synthetic lethalities.
Collapse
|
58
|
Chong PSY, Chooi JY, Lim JSL, Toh SHM, Tan TZ, Chng WJ. SMARCA2 Is a Novel Interactor of NSD2 and Regulates Prometastatic PTP4A3 through Chromatin Remodeling in t(4;14) Multiple Myeloma. Cancer Res 2021; 81:2332-2344. [PMID: 33602783 DOI: 10.1158/0008-5472.can-20-2946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/18/2020] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
NSD2 is the primary oncogenic driver in t(4;14) multiple myeloma. Using SILAC-based mass spectrometry, we demonstrate a novel role of NSD2 in chromatin remodeling through its interaction with the SWI/SNF ATPase subunit SMARCA2. SMARCA2 was primarily expressed in t(4;14) myeloma cells, and its interaction with NSD2 was noncanonical and independent of the SWI/SNF complex. RNA sequencing identified PTP4A3 as a downstream target of NSD2 and mapped NSD2-SMARCA2 complex on PTP4A3 promoter. This led to a focal increase in the permissive H3K36me2 mark and transcriptional activation of PTP4A3. High levels of PTP4A3 maintained MYC expression and correlated with a 54-gene MYC signature in t(4;14) multiple myeloma. Importantly, this mechanism was druggable by targeting the bromodomain of SMARCA2 using the specific BET inhibitor PFI-3, leading to the displacement of NSD2 from PTP4A3 promoter and inhibiting t(4;14) myeloma cell viability. In vivo, treatment with PFI-3 reduced the growth of t(4;14) xenograft tumors. Together, our study reveals an interplay between histone-modifying enzymes and chromatin remodelers in the regulation of myeloma-specific genes that can be clinically intervened. SIGNIFICANCE: This study uncovers a novel, SWI/SNF-independent interaction between SMARCA2 and NSD2 that facilitates chromatin remodeling and transcriptional regulation of oncogenes in t(4;14) multiple myeloma, revealing a therapeutic vulnerability targetable by BET inhibition.
Collapse
Affiliation(s)
- Phyllis S Y Chong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Jing Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Julia S L Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sabrina Hui Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wee-Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Heamatology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| |
Collapse
|
59
|
Giles KA, Gould CM, Achinger-Kawecka J, Page SG, Kafer GR, Rogers S, Luu PL, Cesare AJ, Clark SJ, Taberlay PC. BRG1 knockdown inhibits proliferation through multiple cellular pathways in prostate cancer. Clin Epigenetics 2021; 13:37. [PMID: 33596994 PMCID: PMC7888175 DOI: 10.1186/s13148-021-01023-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background BRG1 (encoded by SMARCA4) is a catalytic component of the SWI/SNF chromatin remodelling complex, with key roles in modulating DNA accessibility. Dysregulation of BRG1 is observed, but functionally uncharacterised, in a wide range of malignancies. We have probed the functions of BRG1 on a background of prostate cancer to investigate how BRG1 controls gene expression programmes and cancer cell behaviour. Results Our investigation of SMARCA4 revealed that BRG1 is over-expressed in the majority of the 486 tumours from The Cancer Genome Atlas prostate cohort, as well as in a complementary panel of 21 prostate cell lines. Next, we utilised a temporal model of BRG1 depletion to investigate the molecular effects on global transcription programmes. Depleting BRG1 had no impact on alternative splicing and conferred only modest effect on global expression. However, of the transcriptional changes that occurred, most manifested as down-regulated expression. Deeper examination found the common thread linking down-regulated genes was involvement in proliferation, including several known to increase prostate cancer proliferation (KLK2, PCAT1 and VAV3). Interestingly, the promoters of genes driving proliferation were bound by BRG1 as well as the transcription factors, AR and FOXA1. We also noted that BRG1 depletion repressed genes involved in cell cycle progression and DNA replication, but intriguingly, these pathways operated independently of AR and FOXA1. In agreement with transcriptional changes, depleting BRG1 conferred G1 arrest. Conclusions Our data have revealed that BRG1 promotes cell cycle progression and DNA replication, consistent with the increased cell proliferation associated with oncogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01023-7.
Collapse
Affiliation(s)
- Katherine A Giles
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia.,Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, TAS, Hobart, 7000, Australia
| | - Cathryn M Gould
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Joanna Achinger-Kawecka
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Scott G Page
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Georgia R Kafer
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Samuel Rogers
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Phuc-Loi Luu
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Susan J Clark
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Phillippa C Taberlay
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, TAS, Hobart, 7000, Australia.
| |
Collapse
|
60
|
Johann PD. Invited Review: Dysregulation of chromatin remodellers in paediatric brain tumours - SMARCB1 and beyond. Neuropathol Appl Neurobiol 2021; 46:57-72. [PMID: 32307752 DOI: 10.1111/nan.12616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Mutations in chromatin remodelling genes occur in approximately 25% of all human tumours (Kadoch et al. Nat Genet 45: 592-601, 2013). The spectrum of alterations is broad and comprises single nucleotide variants, insertion/deletions and more complex structural variations. The single most often affected remodelling complex is the SWI/SNF complex (SWItch/sucrose non-fermentable). In the field of paediatric neuro-oncology, the spectrum of affected genes implicated in epigenetic remodelling is narrower with SMARCB1 and SMARCA4 being the most frequent. The low mutation frequencies in many of the SWI/SNF mutant entities underline the fact that perturbed chromatin remodelling is the most salient factor in tumourigenesis and could thus be a potential therapeutic opportunity. Here, I review the genetic basis of aberrant chromatin remodelling in paediatric brain tumours and discuss their impact on the epigenome in the respective entities, mainly medulloblastomas and rhabdoid tumours.
Collapse
Affiliation(s)
- P D Johann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany.,Department of Paediatric Haematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
61
|
Tomaselli D, Mautone N, Mai A, Rotili D. Recent advances in epigenetic proteolysis targeting chimeras (Epi-PROTACs). Eur J Med Chem 2020; 207:112750. [DOI: 10.1016/j.ejmech.2020.112750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 01/03/2023]
|
62
|
Fernando TM, Piskol R, Bainer R, Sokol ES, Trabucco SE, Zhang Q, Trinh H, Maund S, Kschonsak M, Chaudhuri S, Modrusan Z, Januario T, Yauch RL. Functional characterization of SMARCA4 variants identified by targeted exome-sequencing of 131,668 cancer patients. Nat Commun 2020; 11:5551. [PMID: 33144586 PMCID: PMC7609548 DOI: 10.1038/s41467-020-19402-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic studies performed in cancer patients and tumor-derived cell lines have identified a high frequency of alterations in components of the mammalian switch/sucrose non-fermentable (mSWI/SNF or BAF) chromatin remodeling complex, including its core catalytic subunit, SMARCA4. Cells exhibiting loss of SMARCA4 rely on its paralog, SMARCA2, making SMARCA2 an attractive therapeutic target. Here we report the genomic profiling of solid tumors from 131,668 cancer patients, identifying 9434 patients with one or more SMARCA4 gene alterations. Homozygous SMARCA4 mutations were highly prevalent in certain tumor types, notably non-small cell lung cancer (NSCLC), and associated with reduced survival. The large sample size revealed previously uncharacterized hotspot missense mutations within the SMARCA4 helicase domain. Functional characterization of these mutations demonstrated markedly reduced remodeling activity. Surprisingly, a few SMARCA4 missense variants partially or fully rescued paralog dependency, underscoring that careful selection criteria must be employed to identify patients with inactivating, homozygous SMARCA4 missense mutations who may benefit from SMARCA2-targeted therapy.
Collapse
Affiliation(s)
- Tharu M Fernando
- Discovery Oncology, Genentech, South San Francisco, CA, 94080, USA
| | - Robert Piskol
- Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, 94080, USA
| | - Russell Bainer
- Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, 94080, USA
| | - Ethan S Sokol
- Cancer Genomics Research, Foundation Medicine, Cambridge, MA, 02141, USA
| | - Sally E Trabucco
- Cancer Genomics Research, Foundation Medicine, Cambridge, MA, 02141, USA
| | - Qing Zhang
- Product Development Personalized Healthcare Data Science, Genentech, South San Francisco, CA, 94080, USA
| | - Huong Trinh
- Product Development Personalized Healthcare Data Science, Genentech, South San Francisco, CA, 94080, USA
| | - Sophia Maund
- Oncology Biomarker Development, Genentech, South San Francisco, CA, 94080, USA
| | - Marc Kschonsak
- Structural Biology, Genentech, South San Francisco, CA, 94080, USA
| | - Subhra Chaudhuri
- Molecular Biology, Genentech, South San Francisco, CA, 94080, USA
| | - Zora Modrusan
- Molecular Biology, Genentech, South San Francisco, CA, 94080, USA
| | - Thomas Januario
- Discovery Oncology, Genentech, South San Francisco, CA, 94080, USA
| | - Robert L Yauch
- Discovery Oncology, Genentech, South San Francisco, CA, 94080, USA.
| |
Collapse
|
63
|
Genome-wide chromatin accessibility is restricted by ANP32E. Nat Commun 2020; 11:5063. [PMID: 33033242 PMCID: PMC7546623 DOI: 10.1038/s41467-020-18821-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Genome-wide chromatin state underlies gene expression potential and cellular function. Epigenetic features and nucleosome positioning contribute to the accessibility of DNA, but widespread regulators of chromatin state are largely unknown. Our study investigates how coordination of ANP32E and H2A.Z contributes to genome-wide chromatin state in mouse fibroblasts. We define H2A.Z as a universal chromatin accessibility factor, and demonstrate that ANP32E antagonizes H2A.Z accumulation to restrict chromatin accessibility genome-wide. In the absence of ANP32E, H2A.Z accumulates at promoters in a hierarchical manner. H2A.Z initially localizes downstream of the transcription start site, and if H2A.Z is already present downstream, additional H2A.Z accumulates upstream. This hierarchical H2A.Z accumulation coincides with improved nucleosome positioning, heightened transcription factor binding, and increased expression of neighboring genes. Thus, ANP32E dramatically influences genome-wide chromatin accessibility through subtle refinement of H2A.Z patterns, providing a means to reprogram chromatin state and to hone gene expression levels. Chromatin state underlies cellular function, and transcription factor binding patterns along with epigenetic marks define chromatin state. Here the authors show that the histone chaperone ANP32E functions through regulation of H2A.Z to restrict genome-wide chromatin accessibility and to inhibit gene transcriptional activation.
Collapse
|
64
|
Blessing C, Knobloch G, Ladurner AG. Restraining and unleashing chromatin remodelers - structural information guides chromatin plasticity. Curr Opin Struct Biol 2020; 65:130-138. [PMID: 32693313 DOI: 10.1016/j.sbi.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
Chromatin remodeling enzymes are large molecular machines that guard the genome by reorganizing chromatin structure. They can reposition, space and evict nucleosomes and thus control gene expression, DNA replication and repair. Recent cryo-electron microscopy (cryo-EM) analyses have captured snapshots of various chromatin remodelers as they interact with nucleosomes. In this review, we summarize and discuss the advances made in our understanding of the regulation of chromatin remodelers, the mode of DNA translocation, as well as the influence of associated protein domains and remodeler subunits on the specific functions of chromatin remodeling complexes. The emerging structural information will help our understanding of disease mechanisms and guide our knowledge toward innovative therapeutic interventions.
Collapse
Affiliation(s)
- Charlotte Blessing
- Department of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; International Max Planck Research School for Molecular Life Sciences, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | - Gunnar Knobloch
- Eisbach Bio GmbH, Am Klopferspitz 19, 82152, Planegg-Martinsried, Germany
| | - Andreas G Ladurner
- Department of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; International Max Planck Research School for Molecular Life Sciences, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany; Eisbach Bio GmbH, Am Klopferspitz 19, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
65
|
CARM1 inhibition reduces histone acetyltransferase activity causing synthetic lethality in CREBBP/EP300-mutated lymphomas. Leukemia 2020; 34:3269-3285. [PMID: 32576962 PMCID: PMC7688486 DOI: 10.1038/s41375-020-0908-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Somatic mutations affecting CREBBP and
EP300 are a hallmark of Diffuse Large B Cell Lymphoma
(DLBCL). These mutations are frequently monoallelic, within the histone
acetyltransferase (HAT) domain and usually mutually exclusive, suggesting that
they might affect a common pathway and their residual WT expression is required
for cell survival. Using in vitro and in vivo
models, we found that inhibition of CARM1 activity (CARM1i) slows DLBCL growth
and that the levels of sensitivity are positively correlated with the
CREBBP/EP300 mutation load. Conversely, treatment of DLBCLs
that do not have CREBBP/EP300 mutations with CARM1i and a
CBP/p300 inhibitor revealed a strong synergistic effect. Our mechanistic data
show that CARM1i further reduces the HAT activity of CBP genome wide and
downregulates CBP target genes in DLBCL cells, resulting in a synthetic
lethality that leverages the mutational status of CREBBP/EP300
as a biomarker for the use of small molecule inhibitors of CARM1 in DLBCL and
other cancers.
Collapse
|
66
|
Wang Y, Hoang L, Ji JX, Huntsman DG. SWI/SNF Complex Mutations in Gynecologic Cancers: Molecular Mechanisms and Models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:467-492. [PMID: 31977292 DOI: 10.1146/annurev-pathmechdis-012418-012917] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SWI/SNF (mating type SWItch/Sucrose NonFermentable) chromatin remodeling complexes interact with histones and transcription factors to modulate chromatin structure and control gene expression. These evolutionarily conserved multisubunit protein complexes are involved in regulating many biological functions, such as differentiation and cell proliferation. Genomic studies have revealed frequent mutations of genes encoding multiple subunits of the SWI/SNF complexes in a wide spectrum of cancer types, including gynecologic cancers. These SWI/SNF mutations occur at different stages of tumor development and are restricted to unique histologic types of gynecologic cancers. Thus, SWI/SNF mutations have to function in the appropriate tissue and cell context to promote gynecologic cancer initiation and progression. In this review, we summarize the current knowledge of SWI/SNF mutations in the development of gynecologic cancers to provide insights into both molecular pathogenesis and possible treatment implications for these diseases.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| | - Lien Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - Jennifer X Ji
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - David G Huntsman
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| |
Collapse
|
67
|
Abstract
The SMARCA subgroup of genes belong to the SWI1/SNF1 family that are responsible chromatin remodelling and repair. Inactivating mutations in the main SMARCA genes A2 and A4 lead to loss of expression of their respective proteins within the nucleus and, as such have characterised a set of malignancies that are underpinned by SMARCA-deficiency.The morphology of these tumours ranges from small to large epithelioid cells, giant cells and rhabdoid cells. The rhabdoid cells are frequently present in these tumours but are not a sine qua non for the diagnosis. Most of these tumours are undifferentiated or dedifferentiated, high-grade pleomorphic carcinomas. Focally, areas of better differentiation can be seen. The initial description of a SMARCA4-deficient malignancy was the small cell carcinoma of the ovary, hypercalcaemic type. Subsequently, tumours fitting this characteristic morphology and immunophenotype have been described in the lung, thoracic cavity, endometrium and sinonasal tract, gastrointestinal tract and kidney. Immunohistochemical loss of SMARCA2 and SMARCA4 may occur concomitantly or independently of each other.SMARCA-deficient malignant tumours represent a unique subset of tumours with typical morphological and immunohistochemical findings.
Collapse
Affiliation(s)
- Runjan Chetty
- Department of Pathology, University Health Network Laboratory Medicine Program, University of Toronto, Toronto, Ontario, Canada
| | - Stefano Serra
- Department of Pathology, University Health Network Laboratory Medicine Program, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
68
|
van der Vaart A, Godfrey M, Portegijs V, van den Heuvel S. Dose-dependent functions of SWI/SNF BAF in permitting and inhibiting cell proliferation in vivo. SCIENCE ADVANCES 2020; 6:eaay3823. [PMID: 32494730 PMCID: PMC7250657 DOI: 10.1126/sciadv.aay3823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/09/2020] [Indexed: 05/14/2023]
Abstract
SWI/SNF (switch/sucrose nonfermenting) complexes regulate transcription through chromatin remodeling and opposing gene silencing by Polycomb group (PcG) proteins. Genes encoding SWI/SNF components are critical for normal development and frequently mutated in human cancer. We characterized the in vivo contributions of SWI/SNF and PcG complexes to proliferation-differentiation decisions, making use of the reproducible development of the nematode Caenorhabditis elegans. RNA interference, lineage-specific gene knockout, and targeted degradation of SWI/SNF BAF components induced either overproliferation or acute proliferation arrest of precursor cells, depending on residual protein levels. Our data show that a high SWI/SNF BAF dosage is needed to arrest cell division during differentiation and to oppose PcG-mediated repression. In contrast, a low SWI/SNF protein level is necessary to sustain cell proliferation and hyperplasia, even when PcG repression is blocked. These observations show that incomplete inactivation of SWI/SNF components can eliminate a tumor-suppressor activity while maintaining an essential transcription regulatory function.
Collapse
Affiliation(s)
| | | | - Vincent Portegijs
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | | |
Collapse
|
69
|
Tischkowitz M, Huang S, Banerjee S, Hague J, Hendricks WPD, Huntsman DG, Lang JD, Orlando KA, Oza AM, Pautier P, Ray-Coquard I, Trent JM, Witcher M, Witkowski L, McCluggage WG, Levine DA, Foulkes WD, Weissman BE. Small-Cell Carcinoma of the Ovary, Hypercalcemic Type-Genetics, New Treatment Targets, and Current Management Guidelines. Clin Cancer Res 2020; 26:3908-3917. [PMID: 32156746 DOI: 10.1158/1078-0432.ccr-19-3797] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/04/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
Small-cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and highly aggressive ovarian malignancy. In almost all cases, it is associated with somatic and often germline pathogenic variants in SMARCA4, which encodes for the SMARCA4 protein (BRG1), a subunit of the SWI/SNF chromatin remodeling complex. Approximately 20% of human cancers possess pathogenic variants in at least one SWI/SNF subunit. Because of their role in regulating many important cellular processes including transcriptional control, DNA repair, differentiation, cell division, and DNA replication, SWI/SNF complexes with mutant subunits are thought to contribute to cancer initiation and progression. Fewer than 500 cases of SCCOHT have been reported in the literature and approximately 60% are associated with hypercalcemia. SCCOHT primarily affects females under 40 years of age who usually present with symptoms related to a pelvic mass. SCCOHT is an aggressive cancer, with long-term survival rates of 30% in early-stage cases. Although various treatment approaches have been proposed, there is no consensus on surveillance and therapeutic strategy. An international group of multidisciplinary clinicians and researchers recently formed the International SCCOHT Consortium to evaluate current knowledge and propose consensus surveillance and therapeutic recommendations, with the aim of improving outcomes. Here, we present an overview of the genetics of this cancer, provide updates on new treatment targets, and propose management guidelines for this challenging cancer.
Collapse
Affiliation(s)
- Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom. .,East Anglian Medical Genetics Unit, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Jennifer Hague
- East Anglian Medical Genetics Unit, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - William P D Hendricks
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, Arizona
| | | | - Jessica D Lang
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, Arizona
| | - Krystal A Orlando
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Amit M Oza
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Isabelle Ray-Coquard
- Centre Anti cancereux Léon Bérard, & University Claude Bernard Lyon, GINECO Group, Lyon, France
| | - Jeffrey M Trent
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, Arizona
| | - Michael Witcher
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada
| | - Leora Witkowski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Douglas A Levine
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - William D Foulkes
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
70
|
Sasaki M, Ogiwara H. Synthetic lethal therapy based on targeting the vulnerability of SWI/SNF chromatin remodeling complex-deficient cancers. Cancer Sci 2020; 111:774-782. [PMID: 31955490 PMCID: PMC7060479 DOI: 10.1111/cas.14311] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
The SWI/SNF chromatin remodeling complex is composed of approximately 15 subunits, and approximately 20% of all cancers carry mutations in the genes encoding these subunits. Most of the genetic alterations in these genes are loss‐of‐function mutations. The identification of vulnerability based on synthetic lethality in cancers with SWI/SNF chromatin remodeling complex deficiency contributes to precision medicine. The SWI/SNF chromatin remodeling complex is involved in transcription, DNA repair, DNA replication, and chromosomal segregation. Cancers with deficiency in the SWI/SNF chromatin remodeling complex show increased vulnerability derived from the loss of these functions. Synthetic lethal targets have been identified based on vulnerabilities in the functions of the SWI/SNF chromatin remodeling complex. In this review article, we propose a precision medicine strategy using chemotherapeutic methods, such as molecular targeted therapy and immunotherapy, based on harnessing synthetic lethality in cancers with deficiency in the SWI/SNF chromatin remodeling complex.
Collapse
Affiliation(s)
- Mariko Sasaki
- Division of Cancer Therapeutics, National Cancer Center Research Institute, Tokyo, Japan.,Molecular Oncology, Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Hideaki Ogiwara
- Division of Cancer Therapeutics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
71
|
Ciechomska IA, Jayaprakash C, Maleszewska M, Kaminska B. Histone Modifying Enzymes and Chromatin Modifiers in Glioma Pathobiology and Therapy Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:259-279. [PMID: 32034718 DOI: 10.1007/978-3-030-30651-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signal transduction pathways directly communicate and transform chromatin to change the epigenetic landscape and regulate gene expression. Chromatin acts as a dynamic platform of signal integration and storage. Histone modifications and alteration of chromatin structure play the main role in chromatin-based gene expression regulation. Alterations in genes coding for histone modifying enzymes and chromatin modifiers result in malfunction of proteins that regulate chromatin modification and remodeling. Such dysregulations culminate in profound changes in chromatin structure and distorted patterns of gene expression. Gliomagenesis is a multistep process, involving both genetic and epigenetic alterations. Recent applications of next generation sequencing have revealed that many chromatin regulation-related genes, including ATRX, ARID1A, SMARCA4, SMARCA2, SMARCC2, BAF155 and hSNF5 are mutated in gliomas. In this review we summarize newly identified mechanisms affecting expression or functions of selected histone modifying enzymes and chromatin modifiers in gliomas. We focus on selected examples of pathogenic mechanisms involving ATRX, histone methyltransferase G9a, histone acetylases/deacetylases and chromatin remodeling complexes SMARCA2/4. We discuss the impact of selected epigenetics alterations on glioma pathobiology, signaling and therapeutic responses. We assess the attempts of targeting defective pathways with new inhibitors.
Collapse
Affiliation(s)
- Iwona A Ciechomska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Chinchu Jayaprakash
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Maleszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
72
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
73
|
Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov 2019; 19:23-38. [DOI: 10.1038/s41573-019-0046-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
|
74
|
Chabanon RM, Morel D, Postel-Vinay S. Exploiting epigenetic vulnerabilities in solid tumors: Novel therapeutic opportunities in the treatment of SWI/SNF-defective cancers. Semin Cancer Biol 2019; 61:180-198. [PMID: 31568814 DOI: 10.1016/j.semcancer.2019.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
Mammalian switch/sucrose non-fermentable (mSWI/SNF) family complexes are pivotal elements of the chromatin remodeling machinery, which contribute to the regulation of several major cellular functions. Large-scale exome-wide sequencing studies have identified mutations in genes encoding mSWI/SNF subunits in 20% of all human cancers, establishing mSWI/SNF deficiency as a recurrent oncogenic alteration. Accumulating evidence now supports that several mSWI/SNF defects represent targetable vulnerabilities in cancer; notably, recent research advances have unveiled unexpected synthetic lethal opportunities that foster the development of novel biomarker-driven and mechanism-based therapeutic approaches for the treatment of mSWI/SNF-deficient tumors. Here, we review the latest breakthroughs and discoveries that inform our understanding of the mSWI/SNF complexes biology in carcinogenesis, and discuss the most promising therapeutic strategies to target mSWI/SNF defects in human solid malignancies.
Collapse
Affiliation(s)
- Roman M Chabanon
- Université Paris Saclay, Université Paris-Sud, Faculté de médicine, Le Kremlin Bicêtre, France; ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy, Villejuif, France; The Breast Cancer Now Toby Robins Breast Cancer Research Centre, France; CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Daphné Morel
- Université Paris Saclay, Université Paris-Sud, Faculté de médicine, Le Kremlin Bicêtre, France; ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Sophie Postel-Vinay
- Université Paris Saclay, Université Paris-Sud, Faculté de médicine, Le Kremlin Bicêtre, France; ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy, Villejuif, France; DITEP (Département d'Innovations Thérapeutiques et Essais Précoces), Gustave Roussy, Villejuif, France.
| |
Collapse
|
75
|
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| |
Collapse
|
76
|
Muthuswami R, Bailey L, Rakesh R, Imbalzano AN, Nickerson JA, Hockensmith JW. BRG1 is a prognostic indicator and a potential therapeutic target for prostate cancer. J Cell Physiol 2019; 234:15194-15205. [PMID: 30667054 PMCID: PMC6563042 DOI: 10.1002/jcp.28161] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
Brahma-related gene 1 (BRG1) is one of two mutually exclusive ATPases that function as the catalytic subunit of human SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling enzymes. BRG1 has been identified as a tumor suppressor in some cancer types but has been shown to be expressed at elevated levels, relative to normal tissue, in other cancers. Using TCGA (The Cancer Genome Atlas) prostate cancer database, we determined that BRG1 mRNA and protein expression is elevated in prostate tumors relative to normal prostate tissue. Only 3 of 491 (0.6%) sequenced tumors showed amplification of the locus or mutation in the protein coding sequence, arguing against the idea that elevated expression due to amplification or expression of a mutant BRG1 protein is associated with prostate cancer. Kaplan-Meier survival curves showed that BRG1 expression in prostate tumors inversely correlated with survival. However, BRG1 expression did not correlate with Gleason score/International Society of Urological Pathology (ISUP) Grade Group, indicating it is an independent predictor of tumor progression/patient outcome. To experimentally assess BRG1 as a possible therapeutic target, we treated prostate cancer cells with a biologic inhibitor called ADAADi (active DNA-dependent ATPase A Domain inhibitor) that targets the activity of the SNF2 family of ATPases in biochemical assays but showed specificity for BRG1 in prior tissue culture experiments. The inhibitor decreased prostate cancer cell proliferation and induced apoptosis. When directly injected into xenografts established by injection of prostate cancer cells in mouse flanks, the inhibitor decreased tumor growth and increased survival. These results indicate the efficacy of pursuing BRG1 as both an indicator of patient outcome and as a therapeutic target.
Collapse
Affiliation(s)
- Rohini Muthuswami
- Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleVirginia,School of Life Sciences, Jawaharlal Nehru UniversityNew DelhiIndia
| | - LeeAnn Bailey
- Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleVirginia
| | | | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Jeffrey A. Nickerson
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Joel W. Hockensmith
- Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleVirginia
| |
Collapse
|
77
|
Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers. Nat Genet 2019; 51:1399-1410. [PMID: 31427792 PMCID: PMC6952272 DOI: 10.1038/s41588-019-0477-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/04/2019] [Indexed: 12/26/2022]
Abstract
Aberrations in genes coding for subunits of the BAF chromatin remodeling complexes are highly abundant in human cancers. Currently, it is not understood how these loss-of-function mutations contribute to cancer development and how they can be targeted therapeutically. The cancer-type-specific occurrence patterns of certain subunit mutations suggest subunit-specific effects on BAF complex function, possibly by the formation of aberrant residual complexes. Here, we systematically characterize the effects of individual subunit loss on complex composition, chromatin accessibility and gene expression in a panel of knock-out cell lines deficient for 22 BAF subunits. We observe strong, specific and sometimes discordant alterations dependent on the targeted subunit and show that these explain intra-complex co-dependencies, including the synthetic lethal interactions SMARCA4-ARID2, SMARCA4-ACTB and SMARCC1-SMARCC2. These data provide insights into the role of different BAF subcomplexes in genome-wide chromatin organization and suggest approaches to therapeutically target BAF mutant cancers.
Collapse
|
78
|
Ehrenhöfer-Wölfer K, Puchner T, Schwarz C, Rippka J, Blaha-Ostermann S, Strobl U, Hörmann A, Bader G, Kornigg S, Zahn S, Sommergruber W, Schweifer N, Zichner T, Schlattl A, Neumüller RA, Shi J, Vakoc CR, Kögl M, Petronczki M, Kraut N, Pearson MA, Wöhrle S. SMARCA2-deficiency confers sensitivity to targeted inhibition of SMARCA4 in esophageal squamous cell carcinoma cell lines. Sci Rep 2019; 9:11661. [PMID: 31406271 PMCID: PMC6691015 DOI: 10.1038/s41598-019-48152-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
SMARCA4/BRG1 and SMARCA2/BRM, the two mutually exclusive catalytic subunits of the BAF complex, display a well-established synthetic lethal relationship in SMARCA4-deficient cancers. Using CRISPR-Cas9 screening, we identify SMARCA4 as a novel dependency in SMARCA2-deficient esophageal squamous cell carcinoma (ESCC) models, reciprocal to the known synthetic lethal interaction. Restoration of SMARCA2 expression alleviates the dependency on SMARCA4, while engineered loss of SMARCA2 renders ESCC models vulnerable to concomitant depletion of SMARCA4. Dependency on SMARCA4 is linked to its ATPase activity, but not to bromodomain function. We highlight the relevance of SMARCA4 as a drug target in esophageal cancer using an engineered ESCC cell model harboring a SMARCA4 allele amenable to targeted proteolysis and identify SMARCA4-dependent cell models with low or absent SMARCA2 expression from additional tumor types. These findings expand the concept of SMARCA2/SMARCA4 paralog dependency and suggest that pharmacological inhibition of SMARCA4 represents a novel therapeutic opportunity for SMARCA2-deficient cancers.
Collapse
Affiliation(s)
| | - Teresa Puchner
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | - Janine Rippka
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | - Ursula Strobl
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Stefan Kornigg
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Stephan Zahn
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | | | - Thomas Zichner
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | | | - Junwei Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Manfred Kögl
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Mark Petronczki
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Mark A Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Simon Wöhrle
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria.
| |
Collapse
|
79
|
Petukhova L, Patel AV, Rigo RK, Bian L, Verbitsky M, Sanna-Cherchi S, Erjavec SO, Abdelaziz AR, Cerise JE, Jabbari A, Christiano AM. Integrative analysis of rare copy number variants and gene expression data in alopecia areata implicates an aetiological role for autophagy. Exp Dermatol 2019; 29:243-253. [PMID: 31169925 DOI: 10.1111/exd.13986] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
Alopecia areata (AA) is a highly prevalent autoimmune disease that attacks the hair follicle and leads to hair loss that can range from small patches to complete loss of scalp and body hair. Our previous linkage and genome-wide association studies (GWAS) generated strong evidence for aetiological contributions from inherited genetic variants at different population frequencies, including both rare mutations and common polymorphisms. Additionally, we conducted gene expression (GE) studies on scalp biopsies of 96 patients and controls to establish signatures of active disease. In this study, we performed an integrative analysis on these two datasets to test the hypothesis that rare CNVs in patients with AA could be leveraged to identify drivers of disease in our AA GE signatures. We analysed copy number variants (CNVs) in a case-control cohort of 673 patients with AA and 16 311 controls independent of the case-control cohort of 96 research participants used in our GE study. Using an integrative computational analysis, we identified 14 genes whose expression levels were altered by CNVs in a consistent direction of effect, corresponding to gene expression changes in lesional skin of patients. Four of these genes were affected by CNVs in three or more unrelated patients with AA, including ATG4B and SMARCA2, which are involved in autophagy and chromatin remodelling, respectively. Our findings identified new classes of genes with potential contributions to AA pathogenesis.
Collapse
Affiliation(s)
- Lynn Petukhova
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Aakash V Patel
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Rachel K Rigo
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Li Bian
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Miguel Verbitsky
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Simone Sanna-Cherchi
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Stephanie O Erjavec
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York.,Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alexa R Abdelaziz
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jane E Cerise
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Ali Jabbari
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Angela M Christiano
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York.,Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
80
|
|
81
|
Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E, Trainor N, Zollman D, Steurer S, Karolyi-Oezguer J, Riedmueller C, Gmaschitz T, Wachter J, Dank C, Galant M, Sharps B, Rumpel K, Traxler E, Gerstberger T, Schnitzer R, Petermann O, Greb P, Weinstabl H, Bader G, Zoephel A, Weiss-Puxbaum A, Ehrenhöfer-Wölfer K, Wöhrle S, Boehmelt G, Rinnenthal J, Arnhof H, Wiechens N, Wu MY, Owen-Hughes T, Ettmayer P, Pearson M, McConnell DB, Ciulli A. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol 2019; 15:672-680. [PMID: 31178587 PMCID: PMC6600871 DOI: 10.1038/s41589-019-0294-6] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here we develop PROTAC degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization towards ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced antiproliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets and pave the way towards new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.
Collapse
Affiliation(s)
- William Farnaby
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Manfred Koegl
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Michael J Roy
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Claire Whitworth
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emelyne Diers
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nicole Trainor
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - David Zollman
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | | | - Peter Greb
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | - Simon Wöhrle
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | - Nicola Wiechens
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Meng-Ying Wu
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
82
|
Bishop TR, Zhang Y, Erb MA. Pharmacological Modulation of Transcriptional Coregulators in Cancer. Trends Pharmacol Sci 2019; 40:388-402. [PMID: 31078321 PMCID: PMC6746237 DOI: 10.1016/j.tips.2019.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
Upon binding of transcription factors to cis-regulatory DNA sequences, transcriptional coregulators are required for the activation or suppression of chromatin-dependent transcriptional signaling. These coregulators are frequently implicated in oncogenesis via causal roles in dysregulated, malignant transcriptional control and represent one of the fastest-growing target classes in small-molecule drug discovery. However, challenges in targeting coregulators include identifying evidence of cancer-specific genetic dependency, matching the pharmacologically addressable protein fold to a functional role in disease pathology, and achieving the necessary selectivity to exploit a given genetic dependency. We discuss here how recent trends in cancer pharmacology have confronted these challenges, positioning coregulators as tractable targets in the development of new cancer therapies.
Collapse
Affiliation(s)
- Timothy R Bishop
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yuxiang Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
83
|
Bracken AP, Brien GL, Verrijzer CP. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev 2019; 33:936-959. [PMID: 31123059 PMCID: PMC6672049 DOI: 10.1101/gad.326066.119] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, Bracken et al. discuss the functional organization and biochemical activities of remodelers and Polycomb and explore how they work together to control cell differentiation and the maintenance of cell identity. They also discuss how mutations in the genes encoding these various chromatin regulators contribute to oncogenesis by disrupting the chromatin equilibrium. Changes in chromatin structure mediated by ATP-dependent nucleosome remodelers and histone modifying enzymes are integral to the process of gene regulation. Here, we review the roles of the SWI/SNF (switch/sucrose nonfermenting) and NuRD (nucleosome remodeling and deacetylase) and the Polycomb system in chromatin regulation and cancer. First, we discuss the basic molecular mechanism of nucleosome remodeling, and how this controls gene transcription. Next, we provide an overview of the functional organization and biochemical activities of SWI/SNF, NuRD, and Polycomb complexes. We describe how, in metazoans, the balance of these activities is central to the proper regulation of gene expression and cellular identity during development. Whereas SWI/SNF counteracts Polycomb, NuRD facilitates Polycomb repression on chromatin. Finally, we discuss how disruptions of this regulatory equilibrium contribute to oncogenesis, and how new insights into the biological functions of remodelers and Polycombs are opening avenues for therapeutic interventions on a broad range of cancer types.
Collapse
Affiliation(s)
- Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| |
Collapse
|
84
|
Alfert A, Moreno N, Kerl K. The BAF complex in development and disease. Epigenetics Chromatin 2019; 12:19. [PMID: 30898143 PMCID: PMC6427853 DOI: 10.1186/s13072-019-0264-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/13/2019] [Indexed: 01/16/2023] Open
Abstract
The ATP-dependent chromatin remodelling complex BAF (= mammalian SWI/SNF complex) is crucial for the regulation of gene expression and differentiation. In the course of evolution from yeast to mammals, the BAF complex evolved an immense complexity with a high number of subunits encoded by gene families. In this way, tissue-specific BAF function and regulation of development begin with the combinatorial assembly of distinct BAF complexes such as esBAF, npBAF and nBAF. Furthermore, whole-genome sequencing reveals the tremendous role BAF complex mutations have in both neurodevelopmental disorders and human malignancies. Therefore, gaining a more elaborate insight into how BAF complex assembly influences its function and which role distinct subunits play, will hopefully give rise to a better understanding of disease pathogenesis and ultimately to new treatments for many human diseases.
Collapse
Affiliation(s)
- Amelie Alfert
- Department of Paediatric Haematology and Oncology, University Children’s Hospital Muenster, Domagkstraße 24, 48149 Muenster, Germany
| | - Natalia Moreno
- Department of Paediatric Haematology and Oncology, University Children’s Hospital Muenster, Domagkstraße 24, 48149 Muenster, Germany
| | - Kornelius Kerl
- Department of Paediatric Haematology and Oncology, University Children’s Hospital Muenster, Domagkstraße 24, 48149 Muenster, Germany
| |
Collapse
|
85
|
The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity-independent genomic targeting. Nat Genet 2019; 51:618-626. [PMID: 30858614 PMCID: PMC6755913 DOI: 10.1038/s41588-019-0363-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/29/2019] [Indexed: 12/02/2022]
Abstract
Perturbations to mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complexes have been widely implicated as driving events in cancer1. One such perturbation is the dual loss of the SMARCA4 and SMARCA2 ATPase subunits in small cell carcinoma of the ovary, hypercalcemic type (SCCOHT)2–5, SMARCA4-deficient thoracic sarcomas6 and dedifferentiated endometrial carcinomas7. However, the consequences of dual ATPase subunit loss on mSWI/SNF complex subunit composition, chromatin targeting, DNA accessibility and gene expression remain unknown. Here we identify an ATPase module of subunits that is required for functional specification of BAF and PBAF subcomplexes. Using SMARCA4/2 ATPase mutant variants, we define the catalytic activity -dependent and -independent contributions of the ATPase module to the targeting of BAF and PBAF complexes on chromatin genome-wide. Finally, by linking distinct mSWI/SNF complex target sites to tumor-suppressive gene expression programs, we clarify the transcriptional consequences of SMARCA4/2 dual loss in SCCOHT.
Collapse
|
86
|
Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med 2019; 25:403-418. [PMID: 30842676 DOI: 10.1038/s41591-019-0376-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
Abstract
Epigenetic dysregulation is a common feature of most cancers, often occurring directly through alteration of epigenetic machinery. Over the last several years, a new generation of drugs directed at epigenetic modulators have entered clinical development, and results from these trials are now being disclosed. Unlike first-generation epigenetic therapies, these new agents are selective, and many are targeted to proteins which are mutated or translocated in cancer. This review will provide a summary of the epigenetic modulatory agents currently in clinical development and discuss the opportunities and challenges in their development. As these drugs advance in the clinic, drug discovery has continued with a focus on both novel and existing epigenetic targets. We will provide an overview of these efforts and the strategies being employed.
Collapse
|
87
|
Genomic characterization of genes encoding histone acetylation modulator proteins identifies therapeutic targets for cancer treatment. Nat Commun 2019; 10:733. [PMID: 30760718 PMCID: PMC6374416 DOI: 10.1038/s41467-019-08554-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
A growing emphasis in anticancer drug discovery efforts has been on targeting histone acetylation modulators. Here we comprehensively analyze the genomic alterations of the genes encoding histone acetylation modulator proteins (HAMPs) in the Cancer Genome Atlas cohort and observe that HAMPs have a high frequency of focal copy number alterations and recurrent mutations, whereas transcript fusions of HAMPs are relatively rare genomic events in common adult cancers. Collectively, 86.3% (63/73) of HAMPs have recurrent alterations in at least 1 cancer type and 16 HAMPs, including 9 understudied HAMPs, are identified as putative therapeutic targets across multiple cancer types. For example, the recurrent focal amplification of BRD9 is observed in 9 cancer types and genetic depletion of BRD9 inhibits tumor growth. Our systematic genomic analysis of HAMPs across a large-scale cancer specimen cohort may facilitate the identification and prioritization of potential drug targets and selection of suitable patients for precision treatment. Targeting histone acetylation modulators (HAMPs) is a promising avenue of drug discovery in cancer research. Here, the authors integrate multi-dimensional genomic profiles to systematically investigate recurrent genomic alterations in HAMPs, identifying potential therapeutic targets for precision epigenetic treatment.
Collapse
|
88
|
Rago F, DiMare MT, Elliott G, Ruddy DA, Sovath S, Kerr G, Bhang HEC, Jagani Z. Degron mediated BRM/SMARCA2 depletion uncovers novel combination partners for treatment of BRG1/SMARCA4-mutant cancers. Biochem Biophys Res Commun 2018; 508:109-116. [PMID: 30527810 DOI: 10.1016/j.bbrc.2018.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/23/2018] [Accepted: 09/02/2018] [Indexed: 12/11/2022]
Abstract
Recent studies have highlighted that cancer cells with a loss of the SWI/SNF complex catalytic subunit BRG1 are dependent on the remaining ATPase, BRM, making it an attractive target for cancer therapy. However, an understanding of the extent of target inhibition required to arrest cell growth, necessary to develop an appropriate therapeutic strategy, remains unknown. Here, we utilize tunable depletion of endogenous BRM using the SMASh degron, and interestingly observe that BRG1-mutant lung cancer cells require near complete depletion of BRM to robustly inhibit growth both in vitro and in vivo. Therefore, to identify pathways that synergize with partial BRM depletion and afford a deeper response, we performed a genome-wide CRISPR screen and discovered a combinatorial effect between BRM depletion and the knockout of various genes of the oxidative phosphorylation pathway and the anti-apoptotic gene MCL1. Together these studies provide an important framework to elucidate the requirements of BRM inhibition in the BRG1-mutant state with implications on the feasibility of targeting BRM alone, as well as reveal novel insights into pathways that can be exploited in combination toward deeper anti-tumor responses.
Collapse
Affiliation(s)
- Florencia Rago
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Matthew T DiMare
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - GiNell Elliott
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - David A Ruddy
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Sosathya Sovath
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Grainne Kerr
- Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Hyo-Eun C Bhang
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Zainab Jagani
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
89
|
Aras S, Saladi SV, Basuroy T, Marathe HG, Lorès P, de la Serna IL. BAF60A mediates interactions between the microphthalmia-associated transcription factor and the BRG1-containing SWI/SNF complex during melanocyte differentiation. J Cell Physiol 2018; 234:11780-11791. [PMID: 30515787 DOI: 10.1002/jcp.27840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/07/2018] [Indexed: 01/10/2023]
Abstract
SWI/SNF chromatin remodeling enzymes are multisubunit complexes that contain one of two catalytic subunits, BRG1 or BRM and 9-11 additional subunits called BRG1 or BRM-associated factors (BAFs). BRG1 interacts with the microphthalmia-associated transcription factor (MITF) and is required for melanocyte development in vitro and in vivo. The subunits of SWI/SNF that mediate interactions between BRG1 and MITF have not been elucidated. Three mutually exclusive isoforms of a 60-kDa subunit (BAF60A, B, or C) often facilitate interactions with transcription factors during lineage specification. We tested the hypothesis that a BAF60 subunit promotes interactions between MITF and the BRG1-containing SWI/SNF complex. We found that MITF can physically interact with BAF60A, BAF60B, and BAF60C. The interaction between MITF and BAF60A required the basic helix-loop-helix domain of MITF. Recombinant BAF60A pulled down recombinant MITF, suggesting that the interaction can occur in the absence of other SWI/SNF subunits and other transcriptional regulators of the melanocyte lineage. Depletion of BAF60A in differentiating melanoblasts inhibited melanin synthesis and expression of MITF target genes. MITF promoted BAF60A recruitment to melanocyte-specific promoters, and BAF60A was required to promote BRG1 recruitment and chromatin remodeling. Thus, BAF60A promotes interactions between MITF and the SWI/SNF complex and is required for melanocyte differentiation.
Collapse
Affiliation(s)
- Shweta Aras
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Department of Cancer Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Srinivas Vinod Saladi
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Tupa Basuroy
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Himangi G Marathe
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Patrick Lorès
- INSERM U1016, Institut Cochin/CNRS UMR8104/ Universite Paris Descartes, Faculte de Medecine Cochin, Paris, France
| | - Ivana L de la Serna
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
90
|
Papillon JPN, Nakajima K, Adair CD, Hempel J, Jouk AO, Karki RG, Mathieu S, Möbitz H, Ntaganda R, Smith T, Visser M, Hill SE, Hurtado FK, Chenail G, Bhang HEC, Bric A, Xiang K, Bushold G, Gilbert T, Vattay A, Dooley J, Costa EA, Park I, Li A, Farley D, Lounkine E, Yue QK, Xie X, Zhu X, Kulathila R, King D, Hu T, Vulic K, Cantwell J, Luu C, Jagani Z. Discovery of Orally Active Inhibitors of Brahma Homolog (BRM)/SMARCA2 ATPase Activity for the Treatment of Brahma Related Gene 1 (BRG1)/SMARCA4-Mutant Cancers. J Med Chem 2018; 61:10155-10172. [PMID: 30339381 DOI: 10.1021/acs.jmedchem.8b01318] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 2 (SMARCA2), also known as Brahma homologue (BRM), is a Snf2-family DNA-dependent ATPase. BRM and its close homologue Brahma-related gene 1 (BRG1), also known as SMARCA4, are mutually exclusive ATPases of the large ATP-dependent SWI/SNF chromatin-remodeling complexes involved in transcriptional regulation of gene expression. No small molecules have been reported that modulate SWI/SNF chromatin-remodeling activity via inhibition of its ATPase activity, an important goal given the well-established dependence of BRG1-deficient cancers on BRM. Here, we describe allosteric dual BRM and BRG1 inhibitors that downregulate BRM-dependent gene expression and show antiproliferative activity in a BRG1-mutant-lung-tumor xenograft model upon oral administration. These compounds represent useful tools for understanding the functions of BRM in BRG1-loss-of-function settings and should enable probing the role of SWI/SNF functions more broadly in different cancer contexts and those of other diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Henrik Möbitz
- Global Discovery Chemistry , Novartis Institutes for Biomedical Research , Basel 4002 , Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - John Cantwell
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | - Catherine Luu
- Novartis Institutes for Biomedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States
| | | |
Collapse
|
91
|
Wu S, Fatkhutdinov N, Fukumoto T, Bitler BG, Park PH, Kossenkov AV, Trizzino M, Tang HY, Zhang L, Gardini A, Speicher DW, Zhang R. SWI/SNF catalytic subunits' switch drives resistance to EZH2 inhibitors in ARID1A-mutated cells. Nat Commun 2018; 9:4116. [PMID: 30297712 PMCID: PMC6175882 DOI: 10.1038/s41467-018-06656-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/13/2018] [Indexed: 12/30/2022] Open
Abstract
Inactivation of the subunits of SWI/SNF complex such as ARID1A is synthetically lethal with inhibition of EZH2 activity. However, mechanisms of de novo resistance to EZH2 inhibitors in cancers with inactivating SWI/SNF mutations are unknown. Here we show that the switch of the SWI/SNF catalytic subunits from SMARCA4 to SMARCA2 drives resistance to EZH2 inhibitors in ARID1A-mutated cells. SMARCA4 loss upregulates anti-apoptotic genes in the EZH2 inhibitor-resistant cells. EZH2 inhibitor-resistant ARID1A-mutated cells are hypersensitive to BCL2 inhibitors such as ABT263. ABT263 is sufficient to overcome resistance to an EZH2 inhibitor. In addition, ABT263 synergizes with an EZH2 inhibitor in vivo in ARID1A-inactivated ovarian tumor mouse models. Together, these data establish that the switch of the SWI/SNF catalytic subunits from SMARCA4 to SMARCA2 underlies the acquired resistance to EZH2 inhibitors. They suggest BCL2 inhibition alone or in combination with EZH2 inhibition represents urgently needed therapeutic strategy for ARID1A-mutated cancers. The mechanism of resistance to EZH2 inhibitors in cancers with inactivating SWI/SNF mutations is unknown. Here, the authors demonstrate that the switch of the SWI/SNF catalytic subunits from SMARCA4 to SMARCA2 drives resistance to EZH2 inhibitors in ARID1A-mutated ovarian cancer cells.
Collapse
Affiliation(s)
- Shuai Wu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Nail Fatkhutdinov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA.,Kazan Federal University, Kazan, 420008, Russia
| | - Takeshi Fukumoto
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Benjamin G Bitler
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Pyoung Hwa Park
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Marco Trizzino
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Alessandro Gardini
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - David W Speicher
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA.,Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
92
|
|
93
|
Wang Y, Chen SY, Colborne S, Lambert G, Shin CY, Santos ND, Orlando KA, Lang JD, Hendricks WPD, Bally MB, Karnezis AN, Hass R, Underhill TM, Morin GB, Trent JM, Weissman BE, Huntsman DG. Histone Deacetylase Inhibitors Synergize with Catalytic Inhibitors of EZH2 to Exhibit Antitumor Activity in Small Cell Carcinoma of the Ovary, Hypercalcemic Type. Mol Cancer Ther 2018; 17:2767-2779. [PMID: 30232145 DOI: 10.1158/1535-7163.mct-18-0348] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/13/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022]
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare but extremely lethal malignancy that mainly impacts young women. SCCOHT is characterized by a diploid genome with loss of SMARCA4 and lack of SMARCA2 expression, two mutually exclusive ATPases of the SWI/SNF chromatin-remodeling complex. We and others have identified the histone methyltransferase EZH2 as a promising therapeutic target for SCCOHT, suggesting that SCCOHT cells depend on the alternation of epigenetic pathways for survival. In this study, we found that SCCOHT cells were more sensitive to pan-HDAC inhibitors compared with other ovarian cancer lines or immortalized cell lines tested. Pan-HDAC inhibitors, such as quisinostat, reversed the expression of a group of proteins that were deregulated in SCCOHT cells due to SMARCA4 loss, leading to growth arrest, apoptosis, and differentiation in vitro and suppressed tumor growth of xenografted tumors of SCCOHT cells. Moreover, combined treatment of HDAC inhibitors and EZH2 inhibitors at sublethal doses synergistically induced histone H3K27 acetylation and target gene expression, leading to rapid induction of apoptosis and growth suppression of SCCOHT cells and xenografted tumors. Therefore, our preclinical study highlighted the therapeutic potential of combined treatment of HDAC inhibitors with EZH2 catalytic inhibitors to treat SCCOHT.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada. .,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Shary Yuting Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Shane Colborne
- Michael Smith Genome Science Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Galen Lambert
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Chae Young Shin
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Nancy Dos Santos
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Krystal A Orlando
- Department of Pathology and Laboratory Medicine and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Jessica D Lang
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - William P D Hendricks
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Marcel B Bally
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Anthony N Karnezis
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Ralf Hass
- Department of Obstetrics and Gynecology, Hannover Medical School, D-30625 Hannover, Germany
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences and Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Michael Smith Genome Science Centre, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey M Trent
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada. .,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
94
|
Lu T, Hu JC, Lu WC, Han J, Ding H, Jiang H, Zhang YY, Yue LY, Chen SJ, Jiang HL, Chen KX, Chai HF, Luo C. Identification of small molecule inhibitors targeting the SMARCA2 bromodomain from a high-throughput screening assay. Acta Pharmacol Sin 2018; 39:1544-1552. [PMID: 29795359 DOI: 10.1038/aps.2017.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 01/13/2023] Open
Abstract
SMARCA2 is a critical catalytic subunit of the switch/sucrose non-fermenting (SWI/SNF) chromatin remodeling complexes. Dysregulation of SMARCA2 is associated with several diseases, including some cancers. SMARCA2 is multi-domain protein containing a bromodomain (BRD) that specifically recognizes acetylated lysine residues in histone tails, thus playing an important role in chromatin remodeling. Many potent and specific inhibitors targeting other BRDs have recently been discovered and have been widely used for cancer treatments and biological research. However, hit discovery targeting SMARCA2-BRD is particularly lacking. To date, there is a paucity of reported high-throughput screening (HTS) assays targeting the SMARCA2-BRD interface. In this study, we developed an AlphaScreen HTS system for the discovery of SMARCA2-BRD inhibitors and optimized the physicochemical conditions including pH, salt concentrations and detergent levels. Through an established AlphaScreen-based high-throughput screening assay against an in-house compound library, DCSM06 was identified as a novel SMARCA2-BRD inhibitor with an IC50 value of 39.9±3.0 μmol/L. Surface plasmon resonance demonstrated the binding between SMARCA2-BRD and DCSM06 (Kd=38.6 μmol/L). A similarity-based analog search led to identification of DCSM06-05 with an IC50 value of 9.0±1.4 μmol/L. Molecular docking was performed to predict the binding mode of DCSM06-05 and to decipher the structural basis of the infiuence of chemical modifications on inhibitor potency. DCSM06-05 may be used as a starting point for further medicinal chemistry optimization and could function as a chemical tool for SMARCA2-related functional studies.
Collapse
|
95
|
Abstract
The genetic concept of synthetic lethality has now been validated clinically through the demonstrated efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of cancers in individuals with germline loss-of-function mutations in either BRCA1 or BRCA2. Three different PARP inhibitors have now been approved for the treatment of patients with BRCA-mutant ovarian cancer and one for those with BRCA-mutant breast cancer; these agents have also shown promising results in patients with BRCA-mutant prostate cancer. Here, we describe a number of other synthetic lethal interactions that have been discovered in cancer. We discuss some of the underlying principles that might increase the likelihood of clinical efficacy and how new computational and experimental approaches are now facilitating the discovery and validation of synthetic lethal interactions. Finally, we make suggestions on possible future directions and challenges facing researchers in this field.
Collapse
Affiliation(s)
- Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
96
|
Bögershausen N, Wollnik B. Mutational Landscapes and Phenotypic Spectrum of SWI/SNF-Related Intellectual Disability Disorders. Front Mol Neurosci 2018; 11:252. [PMID: 30123105 PMCID: PMC6085491 DOI: 10.3389/fnmol.2018.00252] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/03/2018] [Indexed: 12/29/2022] Open
Abstract
Mutations in genes that encode proteins of the SWI/SNF complex, called BAF complex in mammals, cause a spectrum of disorders that ranges from syndromic intellectual disability to Coffin-Siris syndrome (CSS) to Nicolaides-Baraitser syndrome (NCBRS). While NCBRS is known to be a recognizable and restricted phenotype, caused by missense mutations in SMARCA2, the term CSS has been used lately for a more heterogeneous group of phenotypes that are caused by mutations in either of the genes ARID1B, ARID1A, ARID2, SMARCA4, SMARCB1, SMARCE1, SOX11, or DPF2. In this review, we summarize the current knowledge on the phenotypic traits and molecular causes of the above named conditions, consider the question whether a clinical distinction of the phenotypes is still adequate, and suggest the term "SWI/SNF-related intellectual disability disorders" (SSRIDDs). We will also outline important features to identify the ARID1B-related phenotype in the absence of classic CSS features, and discuss distinctive and overlapping features of the SSRIDD subtypes. Moreover, we will briefly review the function of the SWI/SNF complex in development and describe the mutational landscapes of the genes involved in SSRIDD.
Collapse
Affiliation(s)
- Nina Bögershausen
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
97
|
Fukumoto T, Magno E, Zhang R. SWI/SNF Complexes in Ovarian Cancer: Mechanistic Insights and Therapeutic Implications. Mol Cancer Res 2018; 16:1819-1825. [PMID: 30037854 DOI: 10.1158/1541-7786.mcr-18-0368] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/05/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022]
Abstract
Ovarian cancer remains the most lethal gynecologic malignancy in the developed world. Despite the unprecedented progress in understanding the genetics of ovarian cancer, cures remain elusive due to a lack of insight into the mechanisms that can be targeted to develop new therapies. SWI/SNF chromatin remodeling complexes are genetically altered in approximately 20% of all human cancers. SWI/SNF alterations vary in different histologic subtypes of ovarian cancer, with ARID1A mutation occurring in approximately 50% of ovarian clear cell carcinomas. Given the complexity and prevalence of SWI/SNF alterations, ovarian cancer represents a paradigm for investigating the molecular basis and exploring therapeutic strategies for SWI/SNF alterations. This review discusses the recent progress in understanding SWI/SNF alterations in ovarian cancer and specifically focuses on: (i) ARID1A mutation in endometriosis-associated clear cell and endometrioid histologic subtypes of ovarian cancer; (ii) SMARCA4 mutation in small cell carcinoma of the ovary, hypercalcemic type; and (iii) amplification/upregulation of CARM1, a regulator of BAF155, in high-grade serous ovarian cancer. Understanding the molecular underpinning of SWI/SNF alterations in different histologic subtypes of ovarian cancer will provide mechanistic insight into how these alterations contribute to ovarian cancer. Finally, the review discusses how these newly gained insights can be leveraged to develop urgently needed therapeutic strategies in a personalized manner.
Collapse
Affiliation(s)
- Takeshi Fukumoto
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Elizabeth Magno
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
98
|
Caumanns JJ, Wisman GBA, Berns K, van der Zee AGJ, de Jong S. ARID1A mutant ovarian clear cell carcinoma: A clear target for synthetic lethal strategies. Biochim Biophys Acta Rev Cancer 2018; 1870:176-184. [PMID: 30025943 DOI: 10.1016/j.bbcan.2018.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022]
Abstract
SWI/SNF chromatin remodeling complexes play an important role in the epigenetic regulation of chromatin structure and gene transcription. Mutual exclusive subunits in the SWI/SNF complex include the DNA targeting members ARID1A and ARID1B as well as the ATPases SMARCA2 and SMARCA4. SWI/SNF complexes are mutated across many cancer types. The highest mutation incidence is found in ARID1A, primarily consisting of deleterious mutations. Current advances have reported synthetic lethal interactions with the loss of ARID1A in several cancer types. In this review, we discuss targets that are only important for tumor growth in an ARID1A mutant context. We focus on synthetic lethal strategies with ARID1A loss in ovarian clear cell carcinoma, a cancer with the highest ARID1A mutation incidence (46-57%). ARID1A directed lethal strategies that can be exploited clinically include targeting of the DNA repair proteins PARP and ATR, and the epigenetic factors EZH2, HDAC2, HDAC6 and BRD2.
Collapse
Affiliation(s)
- Joseph J Caumanns
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Katrien Berns
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Centre Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
99
|
Xu X, Zheng Z, Jia L, Suo S, Liu B, Shao T, Tu Q, Hua Y, Xu H. Overexpression of SMARCA2 or CAMK2D is associated with cisplatin resistance in human epithelial ovarian cancer. Oncol Lett 2018; 16:3796-3804. [PMID: 30127991 PMCID: PMC6096159 DOI: 10.3892/ol.2018.9109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/13/2018] [Indexed: 01/09/2023] Open
Abstract
Ovarian cancer is one of the most lethal types of gynecological cancer. Drug resistance is a major underlying cause of treatment failure, which has lead to continued poor mortality and morbidity rates in patients. In the present study, highly sensitive transcriptome sequencing was performed to systematically identify differentially expressed mRNAs in cisplatin-sensitive (A2780) and -resistant (A2780-DR) cells. Calcium/calmodulin dependent protein kinase IIδ (CAMK2D) and SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily A member 2 (SMARCA2) were identified as exhibiting increased expression in cisplatin-resistant cells. Overexpression of either SMARCA2 or CAMK2D led to a significant increase in the survival rates of A2780 and SKVO3 cells following cisplatin treatment. To further verify the contribution of these two genes in the development of drug resistance, the RNA levels in tissues with different recurrence-free survival (RFS) rates were compared. An increased mRNA level of CAMK2D was detected in samples with shorter RFS rates. An apoptosis assay revealed that overexpression of SMARCA2 or CAMK2D increased the resistance of ovarian cancer cells to cisplatin, as indicated by the decreased apoptotic cell populations. The levels of these two genes also affected the cell cycle and apoptosis-associated protein expression. Quantitative proteomic analyses revealed that overexpression of SMARCA2 or CAMK2D influences multiple metabolism and cancer-associated signaling pathways, which are critical for responses to cisplatin treatment and drug resistance development.
Collapse
Affiliation(s)
- Xiaoli Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Zhiguo Zheng
- Institute of Zhejiang Cancer Research, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Lanlan Jia
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Shasha Suo
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Bowen Liu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Tianning Shao
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Qinqing Tu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Yuejin Hua
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Hong Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| |
Collapse
|
100
|
McBride MJ, Kadoch C. Disruption of mammalian SWI/SNF and polycomb complexes in human sarcomas: mechanisms and therapeutic opportunities. J Pathol 2018; 244:638-649. [PMID: 29359803 DOI: 10.1002/path.5042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/01/2023]
Abstract
Soft-tissue sarcomas are increasingly characterized and subclassified by genetic abnormalities that represent underlying drivers of their pathology. Hallmark tumor suppressor gene mutations and pathognomonic gene fusions collectively account for approximately one-third of all sarcomas. These genetic abnormalities most often result in global transcriptional misregulation via disruption of protein regulatory complexes which govern chromatin architecture. Specifically, alterations to mammalian SWI/SNF (mSWI/SNF or BAF) ATP-dependent chromatin remodeling complexes and polycomb repressive complexes cause disease-specific changes in chromatin architecture and gene expression across a number of sarcoma subtypes. Understanding the functions of chromatin regulatory complexes and the mechanisms underpinning their roles in oncogenesis will be required for the design and development of new therapeutic strategies in sarcomas. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Matthew J McBride
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|