51
|
Pott J, Stockinger S. Type I and III Interferon in the Gut: Tight Balance between Host Protection and Immunopathology. Front Immunol 2017; 8:258. [PMID: 28352268 PMCID: PMC5348535 DOI: 10.3389/fimmu.2017.00258] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
The intestinal mucosa forms an active interface to the outside word, facilitating nutrient and water uptake and at the same time acts as a barrier toward the highly colonized intestinal lumen. A tight balance of the mucosal immune system is essential to tolerate harmless antigens derived from food or commensals and to effectively defend against potentially dangerous pathogens. Interferons (IFN) provide a first line of host defense when cells detect an invading organism. Whereas type I IFN were discovered almost 60 years ago, type III IFN were only identified in the early 2000s. It was initially thought that type I IFN and type III IFN performed largely redundant functions. However, it is becoming increasingly clear that type III IFN exert distinct and non-redundant functions compared to type I IFN, especially in mucosal tissues. Here, we review recent progress made in unraveling the role of type I/III IFN in intestinal mucosal tissue in the steady state, in response to mucosal pathogens and during inflammation.
Collapse
Affiliation(s)
- Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Silvia Stockinger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine , Vienna , Austria
| |
Collapse
|
52
|
Majoros A, Platanitis E, Kernbauer-Hölzl E, Rosebrock F, Müller M, Decker T. Canonical and Non-Canonical Aspects of JAK-STAT Signaling: Lessons from Interferons for Cytokine Responses. Front Immunol 2017; 8:29. [PMID: 28184222 PMCID: PMC5266721 DOI: 10.3389/fimmu.2017.00029] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 01/07/2023] Open
Abstract
Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signal transduction mediates cytokine responses. Canonical signaling is based on STAT tyrosine phosphorylation by activated JAKs. Downstream of interferon (IFN) receptors, activated JAKs cause the formation of the transcription factors IFN-stimulated gene factor 3 (ISGF3), a heterotrimer of STAT1, STAT2 and interferon regulatory factor 9 (IRF9) subunits, and gamma interferon-activated factor (GAF), a STAT1 homodimer. In recent years, several deviations from this paradigm were reported. These include kinase-independent JAK functions as well as extra- and intranuclear activities of U-STATs without phosphotyrosines. Additionally, transcriptional control by STAT complexes resembling neither GAF nor ISGF3 contributes to transcriptome changes in IFN-treated cells. Our review summarizes the contribution of non-canonical JAK-STAT signaling to the innate antimicrobial immunity imparted by IFN. Moreover, we touch upon functions of IFN pathway proteins beyond the IFN response. These include metabolic functions of IRF9 as well as the regulation of natural killer cell activity by kinase-dead TYK2 and different phosphorylation isoforms of STAT1.
Collapse
Affiliation(s)
- Andrea Majoros
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ekaterini Platanitis
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Elisabeth Kernbauer-Hölzl
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Felix Rosebrock
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
53
|
Suprunenko T, Hofer MJ. The emerging role of interferon regulatory factor 9 in the antiviral host response and beyond. Cytokine Growth Factor Rev 2016; 29:35-43. [PMID: 26987614 DOI: 10.1016/j.cytogfr.2016.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/24/2022]
Abstract
The host response to viral infections relies on tightly regulated and intricate signaling pathways involving type I interferons (IFN-Is). The IFN-Is mediate their antiviral effects predominantly through a signaling factor complex that comprises the transcription factors, interferon regulatory factor 9 (IRF9) and the signal transducers and activators of transcription (STAT) 1 and STAT2. While STAT1 and STAT2 have been studied extensively, the biological significance of IRF9 is only beginning to emerge. Recent studies have revealed a unique role for IRF9 as a conductor of the cellular responses to IFN-Is. Intriguingly, novel roles for IRF9 outside of the antiviral response are also being identified. Thus IRF9 may have a more extensive influence on cellular processes than previously recognized, ranging from antiviral immune responses to oncogenesis and gut homeostasis. In this review, we will focus on the distinct and emerging roles of IRF9 in the antiviral host response and beyond.
Collapse
Affiliation(s)
- Tamara Suprunenko
- School of Life and Environmental Sciences, The Charles Perkins Centre and the Bosch Institute, Maze Crescent G08, The University of Sydney, NSW 2006, Australia.
| | - Markus J Hofer
- School of Life and Environmental Sciences, The Charles Perkins Centre and the Bosch Institute, Maze Crescent G08, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
54
|
Hainzl E, Stockinger S, Rauch I, Heider S, Berry D, Lassnig C, Schwab C, Rosebrock F, Milinovich G, Schlederer M, Wagner M, Schleper C, Loy A, Urich T, Kenner L, Han X, Decker T, Strobl B, Müller M. Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5011-24. [PMID: 26432894 PMCID: PMC4635564 DOI: 10.4049/jimmunol.1402565] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
In the intestinal tract, IL-22 activates STAT3 to promote intestinal epithelial cell (IEC) homeostasis and tissue healing. The mechanism has remained obscure, but we demonstrate that IL-22 acts via tyrosine kinase 2 (Tyk2), a member of the Jak family. Using a mouse model for colitis, we show that Tyk2 deficiency is associated with an altered composition of the gut microbiota and exacerbates inflammatory bowel disease. Colitic Tyk2(-/-) mice have less p-STAT3 in colon tissue and their IECs proliferate less efficiently. Tyk2-deficient primary IECs show reduced p-STAT3 in response to IL-22 stimulation, and expression of IL-22-STAT3 target genes is reduced in IECs from healthy and colitic Tyk2(-/-) mice. Experiments with conditional Tyk2(-/-) mice reveal that IEC-specific depletion of Tyk2 aggravates colitis. Disease symptoms can be alleviated by administering high doses of rIL-22-Fc, indicating that Tyk2 deficiency can be rescued via the IL-22 receptor complex. The pivotal function of Tyk2 in IL-22-dependent colitis was confirmed in Citrobacter rodentium-induced disease. Thus, Tyk2 protects against acute colitis in part by amplifying inflammation-induced epithelial IL-22 signaling to STAT3.
Collapse
Affiliation(s)
- Eva Hainzl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - Silvia Stockinger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria;
| | - Isabella Rauch
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Susanne Heider
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - David Berry
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria; Biomodels Austria, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - Clarissa Schwab
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Felix Rosebrock
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gabriel Milinovich
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | | | - Michael Wagner
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Christa Schleper
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Alexander Loy
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Tim Urich
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria; Institute for Clinical Pathology, Medical University Vienna, 1090 Vienna, Austria; Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria; and
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria; Biomodels Austria, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria;
| |
Collapse
|