51
|
Wei L, Deng W, Cheng Z, Guo H, Wang S, Zhang X, He Y, Tang Q. Effects of hesperetin on platelet-derived growth factor-BB-induced pulmonary artery smooth muscle cell proliferation. Mol Med Rep 2015; 13:955-60. [PMID: 26647836 DOI: 10.3892/mmr.2015.4625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 10/29/2015] [Indexed: 11/06/2022] Open
Abstract
Hesperetin is a natural flavonoid, which has been reported to exert various biological activities and positive health effects on mammalian cells. The present study aimed to investigate the effects of hesperetin on the proliferation of primary cultured rat pulmonary artery smooth muscle cells (PASMCs), and to elucidate the possible underlying molecular mechanisms. The results of the present study indicated that hesperetin was able to inhibit the proliferation and DNA synthesis of platelet‑derived growth factor‑BB (PDGF‑BB)‑induced PASMCs in a dose‑ and time‑dependent manner, without exerting cell cytotoxicity. In addition, hesperetin blocked the progression of the cell cycle from G0/G1 to S phase, which was correlated with the decreased mRNA expression levels of cyclin D1, cyclin E, cyclin‑dependent kinase (CDK)2 and CDK4, and the increased mRNA expression levels of p27. Furthermore, the anti‑proliferative effects of hesperetin were associated with suppression of the AKT/glycogen synthase kinase (GSK)3β and p38 signaling pathway, but were not associated with the extracellular signal‑regulated kinases 1/2 and c‑Jun N‑terminal kinases signaling pathways. These results suggested that hesperetin may inhibit PDGFa‑BB‑induced PASMC proliferation via the AKT/GSK3β signaling pathway, and that it may possess therapeutic potential for the treatment of pulmonary vascular remodeling diseases.
Collapse
Affiliation(s)
- Li Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhihong Cheng
- National Pharmaceutical Engineering Research Center, Shanghai 201203, P.R. China
| | - Haipeng Guo
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shihong Wang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yiyu He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
52
|
Bencivenga D, Tramontano A, Borgia A, Negri A, Caldarelli I, Oliva A, Perrotta S, Della Ragione F, Borriello A. P27Kip1 serine 10 phosphorylation determines its metabolism and interaction with cyclin-dependent kinases. Cell Cycle 2015; 13:3768-82. [PMID: 25483085 DOI: 10.4161/15384101.2014.965999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
p27Kip1 is a critical modulator of cell proliferation by controlling assembly, localization and activity of cyclin-dependent kinase (CDK). p27Kip1 also plays important roles in malignant transformation, modulating cell movement and interaction with the extracellular matrix. A critical p27Kip1 feature is the lack of a stable tertiary structure that enhances its "adaptability" to different interactors and explains the heterogeneity of its function. The absence of a well-defined folding underlines the importance of p27Kip1 post-translational modifications that might highly impact the protein functions. Here, we characterize the metabolism and CDK interaction of phosphoserine10-p27Kip1 (pS10- p27Kip1), the major phosphoisoform of p27Kip1. By an experimental strategy based on specific immunoprecipitation and bidimensional electrophoresis, we established that pS10-p27Kip1 is mainly bound to cyclin E/CDK2 rather than to cyclin A/CDK2. pS10- p27Kip1 is more stable than non-modified p27Kip1, since it is not (or scarcely) phosphorylated on T187, the post-translational modification required for p27Kip1 removal in the nucleus. pS10-p27Kip1 does not bind CDK1. The lack of this interaction might represent a mechanism for facilitating CDK1 activation and allowing mitosis completion. In conclusion, we suggest that nuclear p27Kip1 follows 2 almost independent pathways operating at different rates. One pathway involves threonine-187 and tyrosine phosphorylations and drives the protein toward its Skp2-dependent removal. The other involves serine-10 phosphorylation and results in the elongation of p27Kip1 half-life and specific CDK interactions. Thus, pS10-p27Kip1, due to its stability, might be thought as a major responsible for the p27Kip1-dependent arrest of cells in G1/G0 phase.
Collapse
Affiliation(s)
- Debora Bencivenga
- a Department of Biochemistry; Biophysics and General Pathology ; Second University of Naples ; Naples , Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Hnit SST, Xie C, Yao M, Holst J, Bensoussan A, De Souza P, Li Z, Dong Q. p27(Kip1) signaling: Transcriptional and post-translational regulation. Int J Biochem Cell Biol 2015; 68:9-14. [PMID: 26279144 DOI: 10.1016/j.biocel.2015.08.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 11/30/2022]
Abstract
p27(Kip1) is an inhibitor of a broad spectrum of cyclin-dependent kinases (CDKs), and the loss of a single p27(Kip1) allele is thereby sufficient to increase tumor incidence via CDK-mediated cell cycle entry. As such, down-regulation of p27(Kip1) protein levels, in particular nuclear expressed p27(Kip1), is implicated in both disease progression and poor prognosis in a variety of cancers. p27(Kip1) expression is positively regulated by the transcription factor MENIN, and inhibited by oncogenic transcription factors MYC and PIM. However, regulation of p27(Kip1) protein expression and function is predominantly through post-translational modifications that alter both the cellular localization and the extent of E3 ubiquitin ligase-mediated degradation. Phosphorylation of p27(Kip1) at Thr(187) and Ser(10) is a prerequisite for its degradation via the E3 ubiquitin ligases SKP2 (nuclear) and KPC (cytoplasmic), respectively. Additionally, Ser(10) phosphorylated p27(Kip1) is predominantly localized in the cytoplasm due to the nuclear export protein CRM1. Another E3 ubiquitin ligase, PIRH2, degrades p27(Kip1) in both the cytoplasm and nucleus independent of phosphorylation state. As such, inhibition of cell cycle entry and progression in a variety of cancers may be achieved with therapies designed to correct p27(Kip1) localization and/or block its degradation.
Collapse
Affiliation(s)
- Su Su Thae Hnit
- School of Science and Health, University of Western Sydney, Australia
| | - Chanlu Xie
- School of Science and Health, University of Western Sydney, Australia
| | - Mu Yao
- Central Clinical School and Charles Perkins Centre, The University of Sydney and Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Jeff Holst
- Origins of Cancer Program, Centenary Institute, Camperdown, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Alan Bensoussan
- National Institute of Complementary Medicine, University of Western Sydney, Australia
| | - Paul De Souza
- School of Medicine, University of Western Sydney, Australia
| | - Zhong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Qihan Dong
- School of Science and Health, University of Western Sydney, Australia; Central Clinical School and Charles Perkins Centre, The University of Sydney and Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia; School of Medicine, University of Western Sydney, Australia.
| |
Collapse
|
54
|
Patel P, Asbach B, Shteyn E, Gomez C, Coltoff A, Bhuyan S, Tyner AL, Wagner R, Blain SW. Brk/Protein tyrosine kinase 6 phosphorylates p27KIP1, regulating the activity of cyclin D-cyclin-dependent kinase 4. Mol Cell Biol 2015; 35:1506-22. [PMID: 25733683 PMCID: PMC4387217 DOI: 10.1128/mcb.01206-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/23/2014] [Accepted: 01/17/2015] [Indexed: 12/13/2022] Open
Abstract
Cyclin D and cyclin-dependent kinase 4 (cdk4) are overexpressed in a variety of tumors, but their levels are not accurate indicators of oncogenic activity because an accessory factor such as p27(Kip1) is required to assemble this unstable dimer. Additionally, tyrosine (Y) phosphorylation of p27 (pY88) is required to activate cdk4, acting as an "on/off switch." We identified two SH3 recruitment domains within p27 that modulate pY88, thereby modulating cdk4 activity. Via an SH3-PXXP interaction screen, we identified Brk (breast tumor-related kinase) as a high-affinity p27 kinase. Modulation of Brk in breast cancer cells modulates pY88 and increases resistance to the cdk4 inhibitor PD 0332991. An alternatively spliced form of Brk (Alt Brk) which contains its SH3 domain blocks pY88 and acts as an endogenous cdk4 inhibitor, identifying a potentially targetable regulatory region within p27. Brk is overexpressed in 60% of breast carcinomas, suggesting that this facilitates cell cycle progression by modulating cdk4 through p27 Y phosphorylation. p27 has been considered a tumor suppressor, but our data strengthen the idea that it should also be considered an oncoprotein, responsible for cyclin D-cdk4 activity.
Collapse
Affiliation(s)
- Priyank Patel
- School of Graduate Studies, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Elina Shteyn
- School of Graduate Studies, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Cindy Gomez
- Departments of Pediatrics and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Alexander Coltoff
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Sadia Bhuyan
- Departments of Pediatrics and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Stacy W Blain
- Departments of Pediatrics and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
55
|
Tsaur I, Hudak L, Makarević J, Juengel E, Mani J, Borgmann H, Gust KM, Schilling D, Bartsch G, Nelson K, Haferkamp A, Blaheta RA. Intensified antineoplastic effect by combining an HDAC-inhibitor, an mTOR-inhibitor and low dosed interferon alpha in prostate cancer cells. J Cell Mol Med 2015; 19:1795-804. [PMID: 25808196 PMCID: PMC4549030 DOI: 10.1111/jcmm.12583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/25/2015] [Indexed: 12/14/2022] Open
Abstract
A significant proportion of men diagnosed with prostate cancer (PCa) eventually develop metastatic disease, which progresses to castration resistance, despite initial response to androgen deprivation. As anticancer therapy has become increasingly effective, acquired drug resistance has emerged, limiting efficacy. Combination treatment, utilizing different drug classes, exemplifies a possible strategy to foil resistance development. The effects of the triple application of the histone deacetylase (HDAC) inhibitor valproic acid (VPA), the mammalian target of rapamycin inhibitor everolimus and low dosed interferon alpha (IFNα) on PCa cell growth and dissemination capacity were investigated. For that purpose, the human PCa cell lines, PC-3, DU-145 and LNCaP were treated with the combined regimen or separate single agents. Cell growth was investigated by the MTT dye reduction assay. Flow cytometry served to analyse cell cycle progression. Adhesion to vascular endothelium or immobilized collagen, fibronectin and laminin was quantified. Migration and invasion characteristics were determined by the modified Boyden chamber assay. Integrin α and β subtypes were investigated by flow cytometry, western blotting and RT-PCR. Integrin related signalling, Epidermal Growth Factor Receptor (EGFr), Akt, p70S6kinase and extracellular signal-regulated kinases (ERK)1/2 activation were also assessed. The triple application of VPA, everolimus and low dosed IFNα blocked tumour cell growth and dissemination significantly better than any agent alone. Antitumour effects were associated with pronounced alteration in the cell cycle machinery, intracellular signalling and integrin expression profile. Combining VPA, everolimus and low dosed IFNα might be a promising option to counteract resistance development and improve outcome in PCa patients.
Collapse
Affiliation(s)
- Igor Tsaur
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Lukasz Hudak
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Jasmina Makarević
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Eva Juengel
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Jens Mani
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Hendrik Borgmann
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Kilian M Gust
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - David Schilling
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Georg Bartsch
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Karen Nelson
- Department of Vascular and Endovascular Surgery, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Axel Haferkamp
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Roman A Blaheta
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
56
|
Roy A, Banerjee S. p27 and Leukemia: Cell Cycle and Beyond. J Cell Physiol 2014; 230:504-9. [PMID: 25205053 DOI: 10.1002/jcp.24819] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/05/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Anita Roy
- Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics; 1/AF Bidhannagar Kolkata West Bengal India
| | - Subrata Banerjee
- Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics; 1/AF Bidhannagar Kolkata West Bengal India
| |
Collapse
|
57
|
Lupino E, Ramondetti C, Buccinnà B, Piccinini M. Exposure of neuroblastoma cell lines to imatinib results in the upregulation of the CDK inhibitor p27(KIP1) as a consequence of c-Abl inhibition. Biochem Pharmacol 2014; 92:235-50. [PMID: 25264277 DOI: 10.1016/j.bcp.2014.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
Imatinib mesylate is a tyrosine kinase inhibitor with selectivity for abelson tyrosine-protein kinase 1 (c-Abl), breakpoint cluster region (Bcr)-Abl fusion protein (Bcr-Abl), mast/stem cell growth factor receptor Kit (c-Kit), and platelet-derived growth factor receptor (PDGFR). Previous studies demonstrated that imatinib in the low micromolar range exerted antiproliferative effects on neuroblastoma cell lines. However, although neuroblastoma cells express c-Kit and PDGFR, the imatinib concentrations required to achieve significant growth inhibitory effects (≥ 10 μM) are substantially higher than those required for inhibition of ligand-induced phosphorylation of wild type c-Kit and PDGFR (≤ 1 μM), suggesting that additional mechanisms are responsible for the antitumor activity of imatinib on these cells. In this study, we show that treatment of neuroblastoma cell lines with 1-15 μM imatinib resulted in a dose dependent inhibition of 5-bromo-2'-deoxyuridine (BrdU) incorporation into newly synthesized DNA. The antiproliferative effect of imatinib was dependent on the upregulation of the cyclin-dependent kinase (CDK) inhibitor p27(KIP1) in the nuclear compartment as a result of increased p27(KIP1) protein stability. We demonstrate that the mechanism of p27(KIP1) stabilization relied on inhibition of p27(KIP1) phosphorylation on tyrosine residues by c-Abl. We provide evidence that in neuroblastoma cell lines a significant fraction of cellular c-Abl is phosphorylated on Tyr-245, consistent with an open and active conformation. Notably, exposure to imatinib did not affect Tyr-245 phosphorylation. Given the low affinity of active c-Abl for imatinib, these data provide a molecular explanation for the relatively high imatinib concentrations required to inhibit neuroblastoma cell proliferation.
Collapse
Affiliation(s)
- Elisa Lupino
- Department of Oncology, School of Medicine, University of Torino, Italy
| | | | - Barbara Buccinnà
- Department of Oncology, School of Medicine, University of Torino, Italy
| | - Marco Piccinini
- Department of Oncology, School of Medicine, University of Torino, Italy.
| |
Collapse
|
58
|
Genetic characterization of the role of the Cip/Kip family of proteins as cyclin-dependent kinase inhibitors and assembly factors. Mol Cell Biol 2014; 34:1452-9. [PMID: 24515438 DOI: 10.1128/mcb.01163-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Cip/Kip family, namely, p21(Cip1), p27(Kip1), and p57(Kip2), are stoichiometric cyclin-dependent kinase inhibitors (CKIs). Paradoxically, they have been proposed to also act as positive regulators of Cdk4/6-cyclin D by stabilizing these heterodimers. Loss of p21(Cip1) and p27(Kip1) reduces Cdk4/6-cyclin D complexes, although with limited phenotypic consequences compared to the embryonic lethality of Cdk4/6 or triple cyclin D deficiency. This milder phenotype was attributed to Cdk2 compensatory mechanisms. To address this controversy using a genetic approach, we generated Cdk2(-/-) p21(-/-) p27(-/-) mice. Triple-knockout mouse embryonic fibroblasts (MEFs) displayed minimal levels of D-type cyclins and Cdk4/6-cyclin D complexes. p57(Kip2) downregulation in the absence of p21(Cip1) and p27(Kip1) aggravated this phenotype, yet MEFs lacking all Cip/Kip proteins exhibited increased retinoblastoma phosphorylation, together with enhanced proliferation and transformation capacity. In vivo, Cdk2 ablation induced partial perinatal lethality in p21(-/-) p27(-/-) mice, suggesting partial Cdk2-dependent compensation. However, Cdk2(-/-) p21(-/-) p27(-/-) survivors displayed all phenotypes described for p27(-/-) mice, including organomegalia and pituitary tumors. Thus, Cip/Kip deficiency does not impair interphasic Cdk activity even in the absence of Cdk2, suggesting that their Cdk-cyclin assembly function is dispensable for homeostatic control in most cell types.
Collapse
|
59
|
Dombrowski C, Helledie T, Ling L, Grünert M, Canning CA, Jones CM, Hui JH, Nurcombe V, van Wijnen AJ, Cool SM. FGFR1 Signaling Stimulates Proliferation of Human Mesenchymal Stem Cells by Inhibiting the Cyclin-Dependent Kinase Inhibitors p21Waf1and p27Kip1. Stem Cells 2013; 31:2724-36. [DOI: 10.1002/stem.1514] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/27/2013] [Accepted: 07/22/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Christian Dombrowski
- Institute of Medical Biology; Glycotherapeutics Group; 8A Biomedical Grove, #06-06 Immunos, A*STAR, Singapore Singapore
| | - Torben Helledie
- Institute of Medical Biology; Glycotherapeutics Group; 8A Biomedical Grove, #06-06 Immunos, A*STAR, Singapore Singapore
| | - Ling Ling
- Institute of Medical Biology; Glycotherapeutics Group; 8A Biomedical Grove, #06-06 Immunos, A*STAR, Singapore Singapore
| | - Martin Grünert
- Institute of Medical Biology; Glycotherapeutics Group; 8A Biomedical Grove, #06-06 Immunos, A*STAR, Singapore Singapore
| | - Claire A. Canning
- Institute of Medical Biology; Glycotherapeutics Group; 8A Biomedical Grove, #06-06 Immunos, A*STAR, Singapore Singapore
| | - C. Michael Jones
- Institute of Medical Biology; Glycotherapeutics Group; 8A Biomedical Grove, #06-06 Immunos, A*STAR, Singapore Singapore
| | - James H. Hui
- Department of Orthopaedic Surgery; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| | - Victor Nurcombe
- Institute of Medical Biology; Glycotherapeutics Group; 8A Biomedical Grove, #06-06 Immunos, A*STAR, Singapore Singapore
| | - Andre J. van Wijnen
- Department of Orthopaedic Surgery; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
- Department of Orthopedic Surgery; Mayo Clinic; Rochester Minnesota USA
| | - Simon M. Cool
- Institute of Medical Biology; Glycotherapeutics Group; 8A Biomedical Grove, #06-06 Immunos, A*STAR, Singapore Singapore
- Department of Orthopaedic Surgery; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| |
Collapse
|
60
|
Nelson DE, Randle SJ, Laman H. Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins. Open Biol 2013; 3:130131. [PMID: 24107298 PMCID: PMC3814724 DOI: 10.1098/rsob.130131] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases. To date, 69 FBPs have been identified in humans, but ubiquitinated substrates have only been identified for a few, with the majority of FBPs remaining ‘orphans’. In recent years, a growing body of work has identified non-canonical, SCF-independent roles for about 12% of the human FBPs. These atypical FBPs affect processes as diverse as transcription, cell cycle regulation, mitochondrial dynamics and intracellular trafficking. Here, we provide a general review of FBPs, with a particular emphasis on these expanded functions. We review Fbxo7 as an exemplar of this special group as it has well-defined roles in both SCF and non-SCF complexes. We review its function as a cell cycle regulator, via its ability to stabilize p27 protein and Cdk6 complexes, and as a proteasome regulator, owing to its high affinity binding to PI31. We also highlight recent advances in our understanding of Fbxo7 function in Parkinson's disease, where it functions in the regulation of mitophagy with PINK1 and Parkin. We postulate that a few extraordinary FBPs act as platforms that seamlessly segue their canonical and non-canonical functions to integrate different cellular pathways and link their regulation.
Collapse
Affiliation(s)
- David E Nelson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
61
|
A Cdk7-Cdk4 T-loop phosphorylation cascade promotes G1 progression. Mol Cell 2013; 50:250-60. [PMID: 23622515 DOI: 10.1016/j.molcel.2013.04.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/20/2013] [Accepted: 04/01/2013] [Indexed: 01/13/2023]
Abstract
Eukaryotic cell division is controlled by cyclin-dependent kinases (CDKs), which require phosphorylation by a CDK-activating kinase (CAK) for full activity. Chemical genetics uncovered requirements for the metazoan CAK Cdk7 in determining cyclin specificity and activation order of Cdk2 and Cdk1 during S and G2 phases. It was unknown if Cdk7 also activates Cdk4 and Cdk6 to promote passage of the restriction (R) point, when continued cell-cycle progression becomes mitogen independent, or if CDK-activating phosphorylation regulates G1 progression. Here we show that Cdk7 is a Cdk4- and Cdk6-activating kinase in human cells, required to maintain activity, not just to establish the active state, as is the case for Cdk1 and Cdk2. Activating phosphorylation of Cdk7 rises concurrently with that of Cdk4 as cells exit quiescence and accelerates Cdk4 activation in vitro. Therefore, mitogen signaling drives a CDK-activation cascade during G1 progression, and CAK might be rate-limiting for R point passage.
Collapse
|
62
|
Mallampalli RK, Kaercher L, Snavely C, Pulijala R, Chen BB, Coon T, Zhao J, Agassandian M. Fbxl12 triggers G1 arrest by mediating degradation of calmodulin kinase I. Cell Signal 2013; 25:2047-59. [PMID: 23707388 DOI: 10.1016/j.cellsig.2013.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 05/07/2013] [Indexed: 12/18/2022]
Abstract
Cell cycle progression through its regulatory control by changes in intracellular Ca(2+) levels at the G1/S transition mediates cellular proliferation and viability. Ca(2+)/CaM-dependent kinase 1 (CaMKI) appears critical in regulating the assembly of the cyclin D1/cdk4 complex essential for G1 progression, but how this occurs is unknown. Cyclin D1/cdk4 assembly in the early G1 phase is also regulated via binding to p27. Here, we show that a ubiquitin E3 ligase component, F-box protein Fbxl12, mediates CaMKI degradation via a proteasome-directed pathway leading to disruption of cyclin D1/cdk4 complex assembly and resultant G1 arrest in lung epithelia. We also demonstrate that i) CaMKI phosphorylates p27 at Thr(157) and Thr(198) in human cells and at Thr(170) and Thr(197) in mouse cells to modulate its subcellular localization; ii) Fbxl12-induced CaMKI degradation attenuates p27 phosphorylation at these sites in early G1 and iii) activation of CaMKI during G1 transition followed by p27 phosphorylation appears to be upstream to other p27 phosphorylation events, an effect abrogated by Fbxl12 overexpression. Lastly, known inducers of G1 arrest significantly increase Fbxl12 levels in cells. Thus, Fbxl12 may be a previously uncharacterized, functional growth inhibitor regulating cell cycle progression that might be used for mechanism-based therapy.
Collapse
Affiliation(s)
- Rama K Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence, The University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Signaling through cyclin D-dependent kinases. Oncogene 2013; 33:1890-903. [PMID: 23644662 DOI: 10.1038/onc.2013.137] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 12/13/2022]
Abstract
Research over the past quarter century has identified cyclin D-dependent kinases, CDK4 and CDK6, as the major oncogenic drivers among members of the CDK superfamily. CDK4/6 are rendered hyperactive in the majority of human cancers through a multitude of genomic alterations. Sustained activation of these protein kinases provides cancer cells with the power to enter the cell cycle continuously by triggering G1-S-phase transitions and dramatically shortening the duration of the G1 phase. It has also become clear, however, that CDK4/6 effectively counter cancer cell-intrinsic tumor suppression mechanisms, senescence and apoptosis, which must be overcome during cell transformation and kept at bay throughout all stages of tumorigenesis. As a central 'node' in cellular signaling networks, cyclin D-dependent kinases sense a plethora of mitogenic signals to orchestrate specific transcriptional programs. As the complexity of the cellular signaling network regulated by these oncogenic kinases unfolds, much remains to be learned about its architecture, its dynamics and the consequences of its perturbation.
Collapse
|
64
|
Abstract
Cyclin-dependent kinases (CDKs) play essential roles in cell proliferation and gene expression. Although distinct sets of CDKs work in cell division and transcription by RNA polymerase II (Pol II), they share a CDK-activating kinase (CAK), which is itself a CDK-Cdk7-in metazoans. Thus a unitary CDK network controls and may coordinate cycles of cell division and gene expression. Recent work reveals decisive roles for Cdk7 in both pathways. The CAK function of Cdk7 helps determine timing of activation and cyclin-binding preferences of different CDKs during the cell cycle. In the transcription cycle, Cdk7 is both an effector kinase, which phosphorylates Pol II and other proteins and helps establish promoter-proximal pausing; and a CAK for Cdk9 (P-TEFb), which releases Pol II from the pause. By governing the transition from initiation to elongation, Cdk7, Cdk9 and their substrates influence expression of genes important for developmental and cell-cycle decisions, and ensure co-transcriptional maturation of Pol II transcripts. Cdk7 engaged in transcription also appears to be regulated by phosphorylation within its own activation (T) loop. Here I review recent studies of CDK regulation in cell division and gene expression, and propose a model whereby mitogenic signals trigger a cascade of CDK T-loop phosphorylation that drives cells past the restriction (R) point, when continued cell-cycle progression becomes growth factor-independent. Because R-point control is frequently deregulated in cancer, the CAK-CDK pathway is an attractive target for chemical inhibition aimed at impeding the inappropriate commitment to cell division.
Collapse
|
65
|
Liu Y, Raheja R, Yeh N, Ciznadija D, Pedraza AM, Ozawa T, Hukkelhoven E, Erdjument-Bromage H, Tempst P, Gauthier NP, Brennan C, Holland EC, Koff A. TRIM3, a tumor suppressor linked to regulation of p21(Waf1/Cip1.). Oncogene 2013; 33:308-15. [PMID: 23318451 PMCID: PMC3928554 DOI: 10.1038/onc.2012.596] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/01/2012] [Accepted: 11/04/2012] [Indexed: 02/06/2023]
Abstract
The TRIM family of genes is largely studied because of their roles in development, differentiation and host cell antiviral defenses; however, roles in cancer biology are emerging. Loss of heterozygosity of the TRIM3 locus in ∼20% of human glioblastomas raised the possibility that this NHL-domain containing member of the TRIM gene family might be a mammalian tumor suppressor. Consistent with this, reducing TRIM3 expression increased the incidence of and accelerated the development of platelet-derived growth factor -induced glioma in mice. Furthermore, TRIM3 can bind to the cdk inhibitor p21(WAF1/CIP1). Thus, we conclude that TRIM3 is a tumor suppressor mapping to chromosome 11p15.5 and that it might block tumor growth by sequestering p21 and preventing it from facilitating the accumulation of cyclin D1-cdk4.
Collapse
Affiliation(s)
- Y Liu
- Programs in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R Raheja
- Programs in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N Yeh
- Programs in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - D Ciznadija
- Programs in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A M Pedraza
- Human Oncology and Pathogenesis, New York, NY, USA
| | - T Ozawa
- Cancer Biology, New York, NY, USA
| | - E Hukkelhoven
- Programs in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - H Erdjument-Bromage
- Programs in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - P Tempst
- Programs in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N P Gauthier
- Computational Biology. Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Brennan
- Human Oncology and Pathogenesis, New York, NY, USA
| | | | - A Koff
- Programs in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
66
|
Romanov VS, Pospelov VA, Pospelova TV. Cyclin-dependent kinase inhibitor p21(Waf1): contemporary view on its role in senescence and oncogenesis. BIOCHEMISTRY (MOSCOW) 2012; 77:575-84. [PMID: 22817456 DOI: 10.1134/s000629791206003x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
p21(Waf1) was identified as a protein suppressing cyclin E/A-CDK2 activity and was originally considered as a negative regulator of the cell cycle and a tumor suppressor. It is now considered that p21(Waf1) has alternative functions, and the view of its role in cellular processes has begun to change. At present, p21(Waf1) is known to be involved in regulation of fundamental cellular programs: cell proliferation, differentiation, migration, senescence, and apoptosis. In fact, it not only exhibits antioncogenic, but also oncogenic properties. This review provides a contemporary understanding of the functions of p21(Waf1) depending on its intracellular localization. On one hand, when in the nucleus, it serves as a negative cell cycle regulator and tumor suppressor, in particular by participating in the launch of a senescence program. On the other hand, when p21(Waf1) is localized in the cytoplasm, it acts as an oncogene by regulating migration, apoptosis, and proliferation.
Collapse
Affiliation(s)
- V S Romanov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, 194064 St. Petersburg, Russia.
| | | | | |
Collapse
|
67
|
Perez-Madrigal D, Finegan KG, Paramo B, Tournier C. The extracellular-regulated protein kinase 5 (ERK5) promotes cell proliferation through the down-regulation of inhibitors of cyclin dependent protein kinases (CDKs). Cell Signal 2012; 24:2360-8. [PMID: 22917534 DOI: 10.1016/j.cellsig.2012.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/27/2012] [Accepted: 08/07/2012] [Indexed: 01/11/2023]
Abstract
Activation of the extracellular-regulated protein kinase 5 (ERK5) has been associated with mitogenic signal transduction. However, conflicting findings have challenged the idea that ERK5 is a critical regulator of cell proliferation. We have addressed this issue by testing the effect of the conditional loss of ERK5 in primary fibroblasts. We have discovered that ERK5 suppressed the expression of the cyclin dependent protein kinase (CDKs) inhibitors, p21 and p27, by decreasing mRNA and protein stability, respectively. As a result, low level CDK2 activity detected in ERK5-deficient cells correlated with a defect in G1 to S phase transition of the cell cycle. Similarly, we found that the malignant MDA-MB-231 human breast cancer cell line was dependent on ERK5 to proliferate. We propose that ERK5 blocks p21 expression in MDA-MB-231 cells via a mechanism that implicates c-Myc-dependent transcriptional regulation of the miR-17-92 cluster. Together with evidence that cancer patients with poor prognosis display a high level of expression of components of the ERK5 signaling pathway, these findings support the hypothesis that ERK5 can be a potential target for cancer therapy.
Collapse
|
68
|
Dasatinib, a small molecule inhibitor of the Src kinase, reduces the growth and activates apoptosis in pre-neoplastic Barrett's esophagus cell lines: evidence for a noninvasive treatment of high-grade dysplasia. J Thorac Cardiovasc Surg 2012; 145:531-8. [PMID: 23142123 DOI: 10.1016/j.jtcvs.2012.10.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/02/2012] [Accepted: 10/22/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Only local ablation (radiofrequency ablation, cryotherapy) or esophagectomy currently is available to treat high-grade dysplasia in Barrett's esophagus. Alternative treatments, specifically chemopreventive strategies, are lacking. Our understanding of the molecular changes of high-grade dysplasia in Barrett's esophagus offers an opportunity to inhibit neoplastic progression of high-grade dysplasia in Barrett's esophagus. Increased activity of the Src kinase and deregulation of the tumor suppressor p27 are features of malignant cells and high-grade dysplasia in Barrett's esophagus. Src phosphorylates p27, inhibiting its regulatory function and increasing cell growth and proliferation. We hypothesized that a small molecule inhibitor of Src might reduce the growth and reverse Src-mediated deregulation of p27 in Barrett's esophagus cells. METHODS Immortalized Barrett's esophagus cell lines established from patient biopsies were treated with the Src kinase inhibitor dasatinib and evaluated for p27 localization and protein levels, as well as for effects on the cell cycle and apoptosis using flow cytometry, viability assays, and protein and RNA markers. RESULTS Dasatinib reduced both Src activation and p27 phosphorylation and increased p27 protein levels and nuclear localization. These effects correlated with decreased proliferation, cell-cycle arrest, and activation of apoptosis. Analysis of biopsies of patients with Barrett's esophagus revealed the presence of phosphorylated p27 in high-grade dysplasia, consistent with in vitro findings. CONCLUSIONS Dasatinib has considerable antineoplastic effects on Barrett's esophagus cell lines carrying genetic markers associated with dysplasia, which correlates with the reversal of p27 deregulation. These findings suggest that dasatinib has potential as a treatment for patients with high-grade dysplasia and Barrett's esophagus and that p27 holds promise as a biomarker in the clinical use of dasatinib in patients with high-grade dysplasia and Barrett's esophagus.
Collapse
|
69
|
Abstract
The cell cycle is regulated in part by cyclins and their associated serine/threonine cyclin-dependent kinases, or CDKs. CDK4, in conjunction with the D-type cyclins, mediates progression through the G1 phase when the cell prepares to initiate DNA synthesis. Although CDK4-null mutant mice are viable and cell proliferation is not significantly affected in vitro due to compensatory roles played by other CDKs, this gene plays a key role in mammalian development and cancer. This review discusses the role that CDK4 plays in cell cycle control, normal development, and tumorigenesis as well as how small molecule inhibitors of CDK4 can be used to treat disease.
Collapse
|
70
|
Hukkelhoven E, Liu Y, Yeh N, Ciznadija D, Blain SW, Koff A. Tyrosine phosphorylation of the p21 cyclin-dependent kinase inhibitor facilitates the development of proneural glioma. J Biol Chem 2012; 287:38523-30. [PMID: 23007395 DOI: 10.1074/jbc.m112.366542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of Tyr-88/Tyr-89 in the 3(10) helix of p27 reduces its cyclin-dependent kinase (CDK) inhibitory activity. This modification does not affect the interaction of p27 with cyclin-CDK complexes but does interfere with van der Waals and hydrogen bond contacts between p27 and amino acids in the catalytic cleft of the CDK. Thus, it had been suggested that phosphorylation of this site could switch the tumor-suppressive CDK inhibitory activity to an oncogenic activity. Here, we examined this hypothesis in the RCAS-PDGF-HA/nestin-TvA proneural glioma mouse model, in which p21 facilitates accumulation of nuclear cyclin D1-CDK4 and promotes tumor development. In these tumor cells, approximately one-third of the p21 is phosphorylated at Tyr-76 in the 3(10) helix. Mutation of this residue to glutamate reduced inhibitory activity in vitro. Mutation of this residue to phenylalanine reduced the tumor-promoting activity of p21 in the animal model, whereas glutamate or alanine substitution allowed tumor formation. Consequently, we conclude that tyrosine phosphorylation contributes to the conversion of CDK inhibitors from tumor-suppressive roles to oncogenic roles.
Collapse
Affiliation(s)
- Ellen Hukkelhoven
- Gerstner School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
71
|
Jäkel H, Peschel I, Kunze C, Weinl C, Hengst L. Regulation of p27 (Kip1) by mitogen-induced tyrosine phosphorylation. Cell Cycle 2012; 11:1910-7. [PMID: 22580455 DOI: 10.4161/cc.19957] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Extracellular mitogen signal transduction is initiated by ligand binding to specific receptors of target cells. This causes a cellular response that frequently triggers the activation of tyrosine kinases. Non-receptor kinases like Src and Lyn can directly phosphorylate the Cdk inhibitor protein p27 (Kip1) . Tyrosine phosphorylation can cause impaired Cdk-inhibitory activity and decreased stability of p27. In addition to these non-receptor tyrosine kinases, the receptor-associated tyrosine kinase Janus kinase 2 (JAK2) was recently identified to phosphorylate p27. JAK2 becomes activated through binding of various cytokines and growth factors to their corresponding receptors and can directly bind and selectively phosphorylate tyrosine residue 88 (Y88) of the Cdk inhibitor p27. This impairs Cdk inhibition by p27 and promotes its ubiquitin-dependent proteasomal degradation. Via this mechanism, JAK2 can link cytokine and growth factor initiated signal transduction to p27 regulation, whereas oncogenes like JAK2V617F or BCR-Abl can use this mechanism to inactivate the Cdk inhibitor.
Collapse
Affiliation(s)
- Heidelinde Jäkel
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | | | | | | | | |
Collapse
|
72
|
Pfeuty B. Strategic cell-cycle regulatory features that provide mammalian cells with tunable G1 length and reversible G1 arrest. PLoS One 2012; 7:e35291. [PMID: 22558136 PMCID: PMC3339863 DOI: 10.1371/journal.pone.0035291] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/14/2012] [Indexed: 12/25/2022] Open
Abstract
Transitions between consecutive phases of the eukaryotic cell cycle are driven by the catalytic activity of selected sets of cyclin-dependent kinases (Cdks). Yet, their occurrence and precise timing is tightly scheduled by a variety of means including Cdk association with inhibitory/adaptor proteins (CKIs). Here we focus on the regulation of G1-phase duration by the end of which cells of multicelled organisms must decide whether to enter S phase or halt, and eventually then, differentiate, senesce or die to obey the homeostatic rules of their host. In mammalian cells, entry in and progression through G1 phase involve sequential phosphorylation and inactivation of the retinoblastoma Rb proteins, first, by cyclin D-Cdk4,6 with the help of CKIs of the Cip/Kip family and, next, by the cyclin E-Cdk2 complexes that are negatively regulated by Cip/Kip proteins. Using a dynamical modeling approach, we show that the very way how the Rb and Cip/Kip regulatory modules interact differentially with cyclin D-Cdk4,6 and cyclin E-Cdk2 provides to mammalian cells a powerful means to achieve an exquisitely-sensitive control of G1-phase duration and fully reversible G1 arrests. Consistently, corruption of either one of these two modules precludes G1 phase elongation and is able to convert G1 arrests from reversible to irreversible. This study unveils fundamental design principles of mammalian G1-phase regulation that are likely to confer to mammalian cells the ability to faithfully control the occurrence and timing of their division process in various conditions.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- Laboratoire de Physique des Lasers, Atomes, et Molécules, CNRS, UMR8523, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France.
| |
Collapse
|
73
|
Ou L, Waddell MB, Kriwacki RW. Mechanism of cell cycle entry mediated by the intrinsically disordered protein p27(Kip1). ACS Chem Biol 2012; 7:678-82. [PMID: 22276948 DOI: 10.1021/cb200487h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
p27(Kip1) (p27), a prototypical intrinsically disordered protein (IDP), regulates eukaryotic cell division through interactions with cyclin-dependent kinase (Cdk)/cyclin complexes. The activity, stability, and subcellular localization of p27 are regulated by phosphorylation. We illustrate how p27 integrates regulatory signals from several non-receptor tyrosine kinases (NRTKs) to activate Cdk4 and initiate cell cycle entry. Unmodified p27 potently inhibits Cdk/cyclin complexes, including Cdk4/cyclin D (IC(50), 1 nM). Some NRTKs (e.g., Abl) phosphorylate p27 on Tyr 88, which facilitates a second modification on Tyr 74 by another NRTK (e.g., Src). Importantly, this second modification causes partial reactivation of Cdk4 within ternary complexes containing doubly Tyr phosphorylated p27. Partial activation of Cdk4 initiates entry into the cell division cycle. Therefore, p27's disordered features enable NRTKs to sequentially promote a phosphorylation cascade that controls cell fate. Beyond cell cycle control, these results illustrate general concepts regarding why IDPs are well-suited for roles in signaling and regulation in biological systems.
Collapse
Affiliation(s)
| | | | - Richard W. Kriwacki
- Department of Microbiology, Immunology
and Biochemistry, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
74
|
Pippa R, Espinosa L, Gundem G, García-Escudero R, Dominguez A, Orlando S, Gallastegui E, Saiz C, Besson A, Pujol MJ, López-Bigas N, Paramio JM, Bigas A, Bachs O. p27Kip1 represses transcription by direct interaction with p130/E2F4 at the promoters of target genes. Oncogene 2011; 31:4207-20. [DOI: 10.1038/onc.2011.582] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
75
|
Ye W, Blain SW. Chk1 has an essential role in the survival of differentiated cortical neurons in the absence of DNA damage. Apoptosis 2011; 16:449-59. [PMID: 21336968 DOI: 10.1007/s10495-011-0579-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuronal death in the central nervous system contributes to the development of age-related neurodegeneration. The ATR/Chk1 pathway appears to function neuroprotectively to prevent DNA damage induced by cytotoxic agents. Here, we examine the function of Chk1 on cell viability of cortical neurons in the absence of additional DNA damaging stimuli. The Chk1-specific inhibitor, UCN-01, and the ATR inhibitor, Caffeine, cause neuronal apoptosis in differentiated neurons in the absence of additional treatment, whereas inhibition of ATM or Chk2, does not. UCN-01 treatment increased the detection of γ-H2AX phosphorylation, DNA strand breaks, and an activated p53-dependent DNA damage response (DDR), suggesting that Chk1 normally helps to maintain genomic stability. UCN-01 treatment also enhanced the apoptosis seen in neurons treated with DNA damaging agents, such as camptothecin (CPT). Our results indicate that Chk1 is essential for neuronal survival, and perturbation of this pathway increases a cell's sensitivity to naturally accumulating DNA damage.
Collapse
Affiliation(s)
- Weizhen Ye
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, 12003, USA
| | | |
Collapse
|
76
|
Arginine vasopressin controls p27Kip1 protein expression by PKC activation and irreversibly inhibits the proliferation of K-Ras-dependent mouse Y1 adrenocortical malignant cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1438-45. [DOI: 10.1016/j.bbamcr.2011.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 03/04/2011] [Accepted: 04/27/2011] [Indexed: 11/20/2022]
|
77
|
Ou L, Ferreira AM, Otieno S, Xiao L, Bashford D, Kriwacki RW. Incomplete folding upon binding mediates Cdk4/cyclin D complex activation by tyrosine phosphorylation of inhibitor p27 protein. J Biol Chem 2011; 286:30142-51. [PMID: 21715330 DOI: 10.1074/jbc.m111.244095] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
p27(Kip1) (p27), an intrinsically disordered protein, regulates the various Cdk/cyclin complexes that control cell cycle progression. The kinase inhibitory domain of p27 contains a cyclin-binding subdomain (D1), a Cdk-binding subdomain (D2), and a linker helix subdomain that connects D1 and D2. Here, we report that, despite extensive sequence conservation between Cdk4/cyclin D1 (hereafter Cdk4/cyclin D) and Cdk2/cyclin A, the thermodynamic details describing how the individual p27 subdomains contribute to equally high affinity binding to these two Cdk/cyclin complexes are strikingly different. Differences in enthalpy/entropy compensation revealed that the D2 subdomain of p27 folds incompletely when binding Cdk4/cyclin D versus Cdk2/cyclin A. Incomplete binding-induced folding exposes tyrosine 88 of p27 for phosphorylation by the nonreceptor tyrosine kinase Abl. Importantly, tyrosine phosphorylation (of p27) relieves Cdk inhibition by p27, enabling cell cycle entry. Furthermore, the interaction between a conserved hydrophobic patch on cyclin D and subdomain D1 is much weaker than that with cyclin A; consequently, a construct containing subdomains D1 and LH (p27-D1LH) does not inhibit substrate binding to Cdk4/cyclin D as it does to Cdk2/cyclin A. Our results provide a mechanism by which Cdk4 (within the p27/Cdk4/cyclin D complex) is poised to be activated by extrinsic mitogenic signals that impinge upon p27 at the earliest stage of cell division. More broadly, our results further illustrate the regulatory versatility of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Li Ou
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
78
|
Cohen JD, Tham KY, Mastrandrea NJ, Gallegos AC, Monks TJ, Lau SS. cAMP-dependent cytosolic mislocalization of p27(kip)-cyclin D1 during quinol-thioether-induced tuberous sclerosis renal cell carcinoma. Toxicol Sci 2011; 122:361-71. [PMID: 21693435 DOI: 10.1093/toxsci/kfr118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The loss of tuberin, the tuberous sclerosis-2 (Tsc-2) gene product, is associated with cytoplasmic mislocalization of p27 in uterine leiomyomas derived from Eker rats (Tsc-2(EK/+)) and in human metastatic renal cell carcinoma tissue. Signaling associated with cytoplasmic mislocalization of p27 in renal cancer is relatively unknown. Renal tumors derived from 2,3,5-tris-(glutathion-S-yl)hydroquinone (TGHQ)-treated Tsc-2(EK/+) rats, and null for tuberin, display elevated nuclear and cytosolic p27, with parallel increases in cytosolic cyclin D1 levels. Similar changes are observed in TGHQ-transformed renal epithelial cells derived from Tsc-2(EK/+) rats (QTRRE cells), which, in addition to the cytoplasmic mislocalization of p27 and cyclin D1, exhibit high ERK, B-Raf, and Raf-1 kinase activity. Renal tumor xenografts, derived from subcutaneous injection of QTRRE cells into nude mice, also display increases in cytosolic mislocalization of p27 and cyclin D1. Dibutyryl cAMP and/or phosphodiesterase inhibitors (PIs; pentoxifylline or theophylline) increase Rap1B activation, B-Raf kinase activity, and cytosolic p27/cyclin D1 protein levels in QTRRE cells. Inhibition of Raf kinases with either sorafenib or B-Raf small interfering RNA (siRNA) caused a mitogen-activated protein kinase-mediated downregulation of p27. Moreover, decreases in cyclin D1 were also associated with p27 siRNA knockdown in QTRRE cells. Finally, theophylline-mediated increases in p27 and cyclin D1 were attenuated by sorafenib, which modulated Raf/MEK/ERK signaling. Collectively, these data suggest that the cAMP/Rap1B/B-Raf pathway modulates the expression of p27 and the cytoplasmic mislocalization of p27-cyclin D1 in tuberous sclerosis gene-regulated-renal cancer. Therefore, the loss of tuberin and engagement of the cAMP pathway may independently direct p27-cyclin D1 cytosolic stabilization during renal tumor formation.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Department of Pharmacology and Toxicology, Southwest Environmental Health Sciences Center, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
79
|
Ibañez IL, Policastro LL, Tropper I, Bracalente C, Palmieri MA, Rojas PA, Molinari BL, Durán H. H2O2 scavenging inhibits G1/S transition by increasing nuclear levels of p27KIP1. Cancer Lett 2011; 305:58-68. [DOI: 10.1016/j.canlet.2011.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 01/15/2023]
|
80
|
Jäkel H, Weinl C, Hengst L. Phosphorylation of p27Kip1 by JAK2 directly links cytokine receptor signaling to cell cycle control. Oncogene 2011; 30:3502-12. [PMID: 21423214 DOI: 10.1038/onc.2011.68] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Janus kinase 2 (JAK2) couples ligand activation of cell surface cytokine receptors to the regulation of cellular functions including cell cycle progression, differentiation and apoptosis. It thereby coordinates biological programs such as development and hematopoiesis. Unscheduled activation of JAK2 by point mutations or chromosomal translocations can induce hyperproliferation and hematological malignancies. Typical signal transduction by the JAK2 tyrosine kinase comprises phosphorylation of STAT transcription factors. In this study, we describe the identification of the cyclin-dependent kinase (CDK) inhibitor p27(Kip1) as a novel JAK2 substrate. JAK2 can directly bind and phosphorylate p27(Kip1). Both, the JAK2 FERM domain and its kinase domain bind to p27(Kip1). JAK2 phosphorylates tyrosine residue 88 (Y88) of p27(Kip1). We previously reported that Y88 phosphorylation of p27(Kip1) by oncogenic tyrosine kinases impairs p27(Kip1)-mediated CDK inhibition, and initiates its ubiquitin-dependent proteasomal degradation. Consistently, we now find that active oncogenic JAK2V617F reduces p27(Kip1) stability and protein levels in patient-derived cell lines harboring the mutant JAK2V617F allele. Moreover, tyrosine phosphorylation of p27(Kip1) is impaired and p27(Kip1) expression is restored upon JAK2V617F inactivation by small hairpin RNA-mediated knockdown or by the pyridone-containing tetracycle JAK inhibitor-I, indicating that direct phosphorylation of p27(Kip1) can contribute to hyperproliferation of JAK2V617F-transformed cells. Activation of endogenous JAK2 by interleukin-3 (IL-3) induces Y88 phosphorylation of p27(Kip1), thus unveiling a novel link between cytokine signaling and cell cycle control in non-transformed cells. Oncogenic tyrosine kinases could use this novel pathway to promote hyperproliferation in tumor cells.
Collapse
Affiliation(s)
- H Jäkel
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | |
Collapse
|
81
|
Cuomo ME, Platt GM, Pearl LH, Mittnacht S. Cyclin-cyclin-dependent kinase regulatory response is linked to substrate recognition. J Biol Chem 2011; 286:9713-25. [PMID: 21233209 DOI: 10.1074/jbc.m110.173872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin/cyclin-dependent kinase (CDK) complexes are critical regulators of cellular proliferation. A complex network of regulatory mechanisms has evolved to control their activity, including activating and inactivating phosphorylation of the catalytic CDK subunit and inhibition through specific regulatory proteins. Primate herpesviruses, including the oncogenic Kaposi sarcoma herpesvirus, encode cyclin D homologues. Viral cyclins have diverged from their cellular progenitor in that they elicit holoenzyme activity independent of activating phosphorylation by the CDK-activating kinase and resistant to inhibition by CDK inhibitors. Using sequence comparison and site-directed mutagenesis, we performed molecular analysis of the cellular cyclin D and the Kaposi sarcoma herpesvirus-cyclin to delineate the molecular mechanisms behind their different behavior. This provides evidence that a surface recognized for its involvement in the docking of CIP/KIP inhibitors is required and sufficient to modulate cyclin-CDK response to a range of regulatory cues, including INK4 sensitivity and CDK-activating kinase dependence. Importantly, amino acids in this region are critically linked to substrate selection, suggesting that a mutational drift in this surface simultaneously affects function and regulation. Together our work provides novel insight into the molecular mechanisms governing cyclin-CDK function and regulation and defines the biological forces that may have driven evolution of viral cyclins.
Collapse
Affiliation(s)
- Maria Emanuela Cuomo
- Section of Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, SW3 6JB London, United Kingdom.
| | | | | | | |
Collapse
|
82
|
Ruiz-Miró M, Colomina N, Fernández RMH, Garí E, Gallego C, Aldea M. Translokin (Cep57) interacts with cyclin D1 and prevents its nuclear accumulation in quiescent fibroblasts. Traffic 2011; 12:549-62. [PMID: 21306487 DOI: 10.1111/j.1600-0854.2011.01176.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear accumulation of cyclin D1 because of altered trafficking or degradation is thought to contribute directly to neoplastic transformation and growth. Mechanisms of cyclin D1 localization in S phase have been studied in detail, but its control during exit from the cell cycle and quiescence is poorly understood. Here we report that translokin (Tlk), a microtubule-associated protein also termed Cep57, interacts with cyclin D1 and controls its nucleocytoplasmic distribution in quiescent cells. Tlk binds to regions of cyclin D1 also involved in binding to cyclin-dependent kinase 4 (Cdk4), and a fraction of cyclin D1 associates to the juxtanuclear Tlk network in the cell. Downregulation of Tlk levels results in undue nuclear accumulation of cyclin D1 and increased Cdk4-dependent phosphorylation of pRB under quiescence conditions. In turn, overexpression of Tlk prevents proper cyclin D1 accumulation in the nucleus of proliferating cells in an interaction-dependent manner, inhibits Cdk4-dependent phosphorylation of pRB and hinders cell cycle progression to S phase. We propose that the Tlk acts as a key negative regulator in the pathway that drives nuclear import of cyclin D1, thus contributing to prevent pRB inactivation and to maintain cellular quiescence.
Collapse
Affiliation(s)
- Maria Ruiz-Miró
- Departament de Ciències Mèdiques Bàsiques, IRBLLEIDA, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
83
|
Hodeify R, Tarcsafalvi A, Megyesi J, Safirstein RL, Price PM. Cdk2-dependent phosphorylation of p21 regulates the role of Cdk2 in cisplatin cytotoxicity. Am J Physiol Renal Physiol 2011; 300:F1171-9. [PMID: 21325496 DOI: 10.1152/ajprenal.00507.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cisplatin cytotoxicity is dependent on cyclin-dependent kinase 2 (Cdk2) activity in vivo and in vitro. We found that an 18-kDa protein identified by mass spectrometry as p21(WAF1/Cip1) was phosphorylated by Cdk2 starting 12 h after cisplatin exposure. The analysis showed it was phosphorylated at serine 78, a site not previously identified. The adenoviral transduction of p21 before cisplatin exposure protects from cytotoxicity by inhibiting Cdk2. Although cisplatin causes induction of endogenous p21, the protection is inefficient. We hypothesized that phosphorylation of p21 at serine 78 could affect its role as a Cdk inhibitor, and thereby lessen its ability to protect from cisplatin cytotoxicity. To investigate the effect of serine 78 phosphorylation on p21 activity, we replaced serine 78 with aspartic acid, creating the phosphomimic p21(S78D). Mutant p21(S78D) was an inefficient inhibitor of Cdk2 and was inefficient at protecting TKPTS cells from cisplatin-induced cell death. We conclude that phosphorylation of p21 by Cdk2 limits the effectiveness of p21 to inhibit Cdk2, which is the mechanism for continued cisplatin cytotoxicity even after the induction of a protective protein.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | | | | | | | | |
Collapse
|
84
|
Liu S, Bolger JK, Kirkland LO, Premnath PN, McInnes C. Structural and functional analysis of cyclin D1 reveals p27 and substrate inhibitor binding requirements. ACS Chem Biol 2010; 5:1169-82. [PMID: 20843055 DOI: 10.1021/cb1001262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An alternative strategy for inhibition of the cyclin dependent kinases (CDKs) in antitumor drug discovery is afforded through the substrate recruitment site on the cyclin positive regulatory subunit. Critical CDK substrates such as the Rb and E2F families must undergo cyclin groove binding before phosphorylation, and hence inhibitors of this interaction also block substrate specific kinase activity. This approach offers the potential to generate highly selective and cell cycle specific CDK inhibitors and to reduce the inhibition of transcription mediated through CDK7 and 9, commonly observed with ATP competitive compounds. While highly potent peptide and small molecule inhibitors of CDK2/cyclin A, E substrate recruitment have been reported, little information has been generated on the determinants of inhibitor binding to the cyclin groove of the CDK4/cyclin D1 complex. CDK4/cyclin D is a validated anticancer drug target and continues to be widely pursued in the development of new therapeutics based on cell cycle blockade. We have therefore investigated the structural basis for peptide binding to its cyclin groove and have examined the features contributing to potency and selectivity of inhibitors. Peptidic inhibitors of CDK4/cyclin D of pRb phosphorylation have been synthesized, and their complexes with CDK4/cyclin D1 crystal structures have been generated. Based on available structural information, comparisons of the cyclin grooves of cyclin A2 and D1 are presented and provide insights into the determinants for peptide binding and the basis for differential binding and inhibition. In addition, a complex structure has been generated in order to model the interactions of the CDKI, p27(KIP)¹, with cyclin D1. This information has been used to shed light onto the endogenous inhibition of CDK4 and also to identify unique aspects of cyclin D1 that can be exploited in the design of cyclin groove based CDK inhibitors. Peptidic and nonpeptidic compounds have been synthesized in order to explore structure-activity relationship for binding to the cyclin D1 groove, which to date has not been carried out in a systematic fashion. Collectively, the data presented provide new insights into how compounds can be developed that function as chemical biology probes to determine the cellular and antitumor effects of CDK inhibition. Furthermore, such compounds will serve as templates for structure-guided efforts to develop potential therapeutics based on selective inhibition of CDK4/cyclin D activity.
Collapse
Affiliation(s)
- Shu Liu
- Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Joshua K. Bolger
- Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Lindsay O. Kirkland
- Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Padmavathy N. Premnath
- Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Campbell McInnes
- Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
85
|
Bhatia B, Malik A, Fernandez-L A, Kenney AM. p27(Kip1), a double-edged sword in Shh-mediated medulloblastoma: Tumor accelerator and suppressor. Cell Cycle 2010; 9:4307-14. [PMID: 21051932 DOI: 10.4161/cc.9.21.13441] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medulloblastoma, a brain tumor arising in the cerebellum, is the most common solid childhood malignancy. the current standard of care for medulloblastoma leaves survivors with life-long side effects. Gaining insight into mechanisms regulating transformation of medulloblastoma cells-of-origin may lead to development of better treatments for these tumors. Cerebellar granule neuron precursors (CGNps) are proposed cells-of-origin for certain classes of medulloblastoma, specifically those marked by aberrant Sonic hedgehog (Shh) signaling pathway activation. CGNps require signaling by Shh for proliferation during brain development. In mitogen-stimulated cells, nuclear localized cyclin dependent kinase (cdk) inhibitor p27 (Kip1) functions as a checkpoint control at the G1- to S-phase transition by inhibiting cdk2. Recent studies have suggested cytoplasmically localized p27(Kip1) acquires oncogenic functions. Here, we show that p27(Kip1) is cytoplasmically localized in CGNps and mouse Shh-mediated medulloblastomas. transgenic mice bearing an activating mutation in the Shh pathway and lacking one or both p27(Kip1) alleles have accelerated tumor incidence compared to mice bearing both p27(Kip1) alleles. Interestingly, mice heterozygous for p27(Kip1) have decreased survival latency compared to p27(Kip1)-null animals. our data indicate that this may reflect the requirement for at least one copy of p27(Kip1) for recruiting cyclin D/cdk4/6 to promote cell cycle progression yet insufficient expression in the heterozygous or null state to inhibit cyclin E/cdk2. Finally, we find that mis-localized p27(Kip1) may play a positive role in motility in medulloblastoma cells. Together, our data indicate that the dosage of p27(Kip1) plays a role in cell cycle progression and tumor suppression in Shh-mediated medulloblastoma expansion.
Collapse
Affiliation(s)
- Bobby Bhatia
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | |
Collapse
|
86
|
Wander SA, Zhao D, Slingerland JM. p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clin Cancer Res 2010; 17:12-8. [PMID: 20966355 DOI: 10.1158/1078-0432.ccr-10-0752] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phosphorylation of the cyclin-dependent kinase inhibitor p27 by upstream mitogenic signaling pathways regulates its stability, localization, and biological function. In human cancers, loss of the antiproliferative action of p27 can arise through reduced protein levels and/or cytoplasmic mislocalization, leading to increased cell proliferation and/or cell migration, respectively. Reduced p27 expression levels and p27 mislocalization have potential prognostic and therapeutic implications in various types of human cancers. This review highlights mechanisms of functional deregulation of p27 by oncogenic signaling that provide an important molecular rationale for pathway targeting in cancer treatment.
Collapse
Affiliation(s)
- Seth A Wander
- Braman Family Breast Cancer Institute, University of Miami Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
87
|
Ye W, Blain SW. S phase entry causes homocysteine-induced death while ataxia telangiectasia and Rad3 related protein functions anti-apoptotically to protect neurons. Brain 2010; 133:2295-312. [PMID: 20639548 DOI: 10.1093/brain/awq139] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A major phenotype seen in neurodegenerative disorders is the selective loss of neurons due to apoptotic death and evidence suggests that inappropriate re-activation of cell cycle proteins in post-mitotic neurons may be responsible. To investigate whether reactivation of the G1 cell cycle proteins and S phase entry was linked with apoptosis, we examined homocysteine-induced neuronal cell death in a rat cortical neuron tissue culture system. Hyperhomocysteinaemia is a physiological risk factor for a variety of neurodegenerative diseases, including Alzheimer's disease. We found that in response to homocysteine treatment, cyclin D1, and cyclin-dependent kinases 4 and 2 translocated to the nucleus, and p27 levels decreased. Both cyclin-dependent kinases 4 and 2 regained catalytic activity, the G1 gatekeeper retinoblastoma protein was phosphorylated and DNA synthesis was detected, suggesting transit into S phase. Double-labelling immunofluorescence showed a 95% co-localization of anti-bromodeoxyuridine labelling with apoptotic markers, demonstrating that those cells that entered S phase eventually died. Neurons could be protected from homocysteine-induced death by methods that inhibited G1 phase progression, including down-regulation of cyclin D1 expression, inhibition of cyclin-dependent kinases 4 or 2 activity by small molecule inhibitors, or use of the c-Abl kinase inhibitor, Gleevec, which blocked cyclin D and cyclin-dependent kinase 4 nuclear translocation. However, blocking cell cycle progression post G1, using DNA replication inhibitors, did not prevent apoptosis, suggesting that death was not preventable post the G1-S phase checkpoint. While homocysteine treatment caused DNA damage and activated the DNA damage response, its mechanism of action was distinct from that of more traditional DNA damaging agents, such as camptothecin, as it was p53-independent. Likewise, inhibition of the DNA damage sensors, ataxia-telangiectasia mutant and ataxia telangiectasia and Rad3 related proteins, did not rescue apoptosis and in fact exacerbated death, suggesting that the DNA damage response might normally function neuroprotectively to block S phase-dependent apoptosis induction. As cell cycle events appear to be maintained in vivo in affected neurons for weeks to years before apoptosis is observed, activation of the DNA damage response might be able to hold cell cycle-induced death in check.
Collapse
Affiliation(s)
- Weizhen Ye
- Department of Paediatrics, State University of New York, Downstate Medical Centre, Brooklyn, NY 11203, USA
| | | |
Collapse
|
88
|
Lu Z, Hunter T. Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle 2010; 9:2342-52. [PMID: 20519948 DOI: 10.4161/cc.9.12.11988] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The expression levels of the p21(Cip1) family CDK inhibitors (CKIs), p21(Cip1), p27(Kip1) and p57(Kip2), play a pivotal role in the precise regulation of cyclin-dependent kinase (CDK) activity, which is instrumental to proper cell cycle progression. The stabilities of p21(Cip1), p27(Kip1) and p57(Kip2) are all tightly and differentially regulated by ubiquitylation and proteasome-mediated degradation during various stages of the cell cycle, either in steady state or in response to extracellular stimuli, which often elicit site-specific phosphorylation of CKIs triggering their degradation.
Collapse
Affiliation(s)
- Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | | |
Collapse
|
89
|
Abstract
Human cells divide and proliferate during the early stages of life to support development, and throughout adult life to support normal cellular turnover. Each dividing cell follows an orderly and tightly regulated series of events known as the cell cycle. This process ensures proper cellular division that maintains DNA and chromosomal integrity and responds appropriately to external signals which communicate the level of demand for new cells. In cancer, genetic mutations leading to the overexpression of proteins which support cell cycle progression, or the downregulation of proteins involved in cell cycle inhibition contributes to the dysregulated cellular division and proliferation of malignant cells. The resulting uninhibited cellular proliferation provides ample opportunity for additional genetic mutations that lead to tumor progression. In the following review, we provide a brief introduction to the cell cycle and a discussion of the mechanism underlying the dysregulation of the cell cycle in human cancer. We pay particular attention to pancreatic adenocarcinoma, an aggressive tumor that has a 5-year survival rate of 3-5%, and is the fourth leading cause of cancer mortality in the US. and IAP.
Collapse
Affiliation(s)
- Yang Liu
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minn., USA
| | | | | |
Collapse
|
90
|
Merrick KA, Fisher RP. Putting one step before the other: distinct activation pathways for Cdk1 and Cdk2 bring order to the mammalian cell cycle. Cell Cycle 2010; 9:706-14. [PMID: 20139727 DOI: 10.4161/cc.9.4.10732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cell division is controlled by the activity of cyclin-dependent kinases (CDKs). Cdk1 and Cdk2, which function at different stages of the mammalian cell cycle, both require cyclin-binding and phosphorylation of the activation (T-) loop for full activity, but differ with respect to the order in which the two steps occur in vivo. To form stable complexes with either of its partners-cyclins A and B-Cdk1 must be phosphorylated on its T-loop, but that phosphorylation in turn depends on the presence of cyclin. Cdk2 can follow a kinetically distinct path to activation in which T-loop phosphorylation precedes cyclin-binding, and thereby out-compete the more abundant Cdk1 for limiting amounts of cyclin A. Mathematical modeling suggests this could be a principal basis for the temporal ordering of CDK activation during S phase, which may dictate the sequence in which replication origins fire. Still to be determined are how: (1) the activation machinery discriminates between closely related CDKs, and (2) coordination of the cell cycle is affected when this mechanism of pathway insulation breaks down.
Collapse
Affiliation(s)
- Karl A Merrick
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
91
|
Moffat JF, Greenblatt RJ. Effects of varicella-zoster virus on cell cycle regulatory pathways. Curr Top Microbiol Immunol 2010; 342:67-77. [PMID: 20397072 DOI: 10.1007/82_2010_28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Varicella-zoster virus (VZV) grows efficiently in quiescent cells in vivo and in culture, and virus infection activates cell cycle and signaling pathways without cell division. VZV ORFs have been identified that determine the tissue tropism for nondividing skin, T cells, and neurons in SCID-Hu mouse models. The normal cell cycle status of human foreskin fibroblasts was characterized and was dysregulated upon infection by VZV. The expression of cyclins A, B1, and D3 was highly elevated but did not correspond with extensive cellular DNA synthesis. Cell cycle arrest may be due to activation of the DNA damage response during VZV DNA replication. Other host regulatory proteins were induced in infected cells, including p27, p53, and ATM kinase. A possible explanation for the increase in cell cycle regulatory proteins is activation of transcription factors during VZV infection. There is evidence that VZV infection activates transcription factors through the mitogen-activated protein kinase pathways extracellular-regulated kinase (ERK) and c-Jun N-terminal (transpose these parts of the compound noun) kinase (JNK), which could selectively increase cyclin levels. Some of these perturbed cell functions are essential for VZV replication, such as cyclin-dependent kinase (CDK) activity, and reveal targets for interventions.
Collapse
Affiliation(s)
- Jennifer F Moffat
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
92
|
Echalier A, Endicott JA, Noble MEM. Recent developments in cyclin-dependent kinase biochemical and structural studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:511-9. [PMID: 19822225 DOI: 10.1016/j.bbapap.2009.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/30/2009] [Accepted: 10/02/2009] [Indexed: 01/28/2023]
Abstract
The cyclin-dependent kinases (CDKs) have been intensely studied because of their involvement in regulating essential cellular activities that include proliferation and transcription. A series of CDK2-containing structures have informed a general model for the molecular details of CDK activation and regulation. Recent structural studies of other members of the CDK family have lead to a re-appraisal of this model. In this review, we describe alternative CDK-cyclin assemblies taking the recently characterised CDK/cyclin complexes, CDK9/cyclinT1 and CDK4/cyclinD as examples. The differential effects of CDK phosphorylation on CDK activation state and substrate specificity are examined in the light of recent data on CDK2/cyclinA, CDK9/cyclinT, CDK4/cyclinD and Pho85/Pho80. We also present an overview of factors that affect CDK substrate specificity, and, in particular, the contributions that are made by the cyclin subunit. Finally, we review recent results that have helped to unravel the molecular mechanisms underlying the conflicting roles of the Cip/Kip CDK inhibitor family in CDK regulation.
Collapse
Affiliation(s)
- Aude Echalier
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | | | | |
Collapse
|
93
|
Differential regulation of cyclin-dependent kinase 4 (CDK4) and CDK6, evidence that CDK4 might not be activated by CDK7, and design of a CDK6 activating mutation. Mol Cell Biol 2009; 29:4188-200. [PMID: 19487459 DOI: 10.1128/mcb.01823-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The homologous cyclin-dependent kinases (CDK) CDK4 and CDK6 integrate mitogenic and oncogenic signaling cascades with the cell cycle. Their activation requires binding to a D-type cyclin and then T-loop phosphorylation at T172 and T177 (respectively) by the only CDK-activating kinase identified in animal cells, cyclin H-CDK7. At odds with the existing data showing the constitutive activity of CDK7, we have recently identified the T172 phosphorylation of cyclin D-bound CDK4 as a crucial cell cycle regulatory target. Here we show that T172 phosphorylation of CDK4 is conditioned by its unique proline 173 residue. In contrast to CDK4, CDK6 does not contain such a proline and, unexpectedly, remained poorly phosphorylated and active in a variety of cells. Mutations of proline 173 did not adversely affect CDK4 activation by CDK7, but in cells they abolished CDK4 T172 phosphorylation and activity. Conversely, substituting a proline for the corresponding residue of CDK6 enforced its complete, apparently cyclin-independent T177 phosphorylation and dramatically increased its activity. These results lead us to propose that CDK4 might not be phosphorylated by CDK7 in intact cells but is more likely phosphorylated by another, presumably proline-directed kinase(s). Moreover, they provide a new model of a potentially oncogenic activating mutation of a CDK.
Collapse
|
94
|
RSK1 drives p27Kip1 phosphorylation at T198 to promote RhoA inhibition and increase cell motility. Proc Natl Acad Sci U S A 2009; 106:9268-73. [PMID: 19470470 DOI: 10.1073/pnas.0805057106] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p90 ribosomal S6 kinase (RSK1) is an effector of both Ras/MEK/MAPK and PI3K/PDK1 pathways. We present evidence that RSK1 drives p27 phosphorylation at T198 to increase RhoA-p27 binding and cell motility. RSK1 activation and p27pT198 both increase in early G(1). As for many kinase-substrate pairs, cellular RSK1 coprecipitates with p27. siRNA to RSK1 and RSK1 inhibition both rapidly reduce cellular p27pT198. RSK1 overexpression increases p27pT198, p27-cyclin D1-Cdk4 complexes, and p27 stability. Moreover, RSK1 transfectants show mislocalization of p27 to cytoplasm, increased motility, and reduced RhoA-GTP, phospho-cofilin, and actin stress fibers, all of which were reversed by shRNA to p27. Phosphorylation by RSK1 increased p27pT198 binding to RhoA in vitro, whereas p27T157A/T198A bound poorly to RhoA compared with WTp27 in cells. Coprecipitation of cellular p27-RhoA was increased in cells with constitutive PI3K activation and increased in early G(1). Thus T198 phosphorylation not only stabilizes p27 and mislocalizes p27 to the cytoplasm but also promotes RhoA-p27 interaction and RhoA pathway inhibition. These data link p27 phosphorylation at T198 and cell motility. As for other PI3K effectors, RSK1 phosphorylates p27 at T198. Because RSK1 is also activated by MAPK, the increased cell motility and metastatic potential of cancer cells with PI3K and/or MAPK pathway activation may result in part from RSK1 activation, leading to accumulation of p27T198 in the cytoplasm, p27:RhoA binding, inhibition of RhoA/Rock pathway activation, and loss of actomyosin stability.
Collapse
|
95
|
Wali VB, Bachawal SV, Sylvester PW. Combined treatment of gamma-tocotrienol with statins induce mammary tumor cell cycle arrest in G1. Exp Biol Med (Maywood) 2009; 234:639-50. [PMID: 19359655 DOI: 10.3181/0810-rm-300] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Statins and gamma-tocotrienol (a rare isoform of vitamin E) both inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase activity and display anticancer activity. However, clinical application of statins has been limited by high dose toxicity. Previous studies showed that combined statin and gamma-tocotrienol treatment synergistically inhibits growth of highly malignant +SA mammary epithelial cells in culture. To investigate the mechanism mediating this growth inhibition, studies were conducted to determine the effect of combination low dose gamma-tocotrienol and statin treatment on +SA mammary tumor cell cycle progression. Treatment with 0.25 microM simvastatin, lovastatin, mevastatin, 10 microM pravastatin or 2.0 microM gamma-tocotrienol alone had no effect, while combined treatment of individual statins with gamma-tocotrienol significantly inhibited +SA cell proliferation during the 4-day culture period. Flow cytometric analysis demonstrated that combined treatment induced cell cycle arrest in G1. Additional studies showed that treatment with 0.25 microM simvastatin or 2 microM gamma-tocotrienol alone had no effect on the relative intracellular levels of cyclin D1, CDK2, CDK4 and CDK6, but combined treatment caused a large reduction in cyclin D1 and CDK2 levels. Combined treatments also caused a relatively large increase in p27, but had no effect on p21 and p15 levels, and resulted in a large reduction in retinoblastoma (Rb) protein phosphorylation at ser780 and ser807/811. Similar effects were observed following combined treatment of gamma-tocotrienol with low doses of lovastatin, mevastatin and pravastatin. These findings demonstrate that combination low dose statin and gamma-tocotrienol treatment induced mammary tumor cell cycle arrest at G1, resulting from an increase in p27 expression, and a corresponding decrease in cyclin D1, CDK2, and hypophosphorylation of Rb protein. These findings suggest that combined treatment of statins with gamma-tocotrienol may provide significant health benefits in the treatment of breast cancer in women, while avoiding myotoxicity associated with high dose statin monotherapy.
Collapse
Affiliation(s)
- Vikram B Wali
- College of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209-0470, USA
| | | | | |
Collapse
|
96
|
Common and specific roles of the related CDK inhibitors p27 and p57 revealed by a knock-in mouse model. Proc Natl Acad Sci U S A 2009; 106:5192-7. [PMID: 19276117 DOI: 10.1073/pnas.0811712106] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although p27 and p57 are structurally related cyclin-dependent kinase inhibitors (CKIs), and are thought to perform similar functions, p27 knockout (p27(KO)) and p57(KO) mice show distinct phenotypes. To elucidate the in vivo functions of these CKIs, we have now generated a knock-in mouse model (p57(p27KI)), in which the p57 gene has been replaced with the p27 gene. The p57(p27KI) mice are viable and appear healthy, with most of the developmental defects characteristic of p57(KO) mice having been corrected by p27 knock-in. Such developmental defects of p57(KO) mice were also ameliorated in mice deficient in both p57 and the transcription factor E2F1, suggesting that loss of p57 promotes E2F1-dependent apoptosis. The developmental defects apparent in a few tissues of p57(KO) mice were unaffected or only partially corrected by knock-in expression of p27. Thus, these observations indicate that p57 and p27 share many characteristics in vivo, but that p57 also performs specific functions not amenable to substitution with p27.
Collapse
|
97
|
Ray A, James MK, Larochelle S, Fisher RP, Blain SW. p27Kip1 inhibits cyclin D-cyclin-dependent kinase 4 by two independent modes. Mol Cell Biol 2009; 29:986-99. [PMID: 19075005 PMCID: PMC2643810 DOI: 10.1128/mcb.00898-08] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/14/2008] [Accepted: 11/15/2008] [Indexed: 12/22/2022] Open
Abstract
Cell cycle progression is regulated by cyclin-dependent kinases (cdk's), which in turn are regulated by their interactions with stoichiometric inhibitors, such as p27(Kip1). Although p27 associates with cyclin D-cyclin-dependent kinase 4 (cdk4) constitutively, whether or not it inhibits this complex is dependent on the absence or presence of a specific tyrosine phosphorylation that converts p27 from a bound inhibitor to a bound noninhibitor under different growth conditions. This phosphorylation occurs within the 3-10 helix of p27 and may dislodge the helix from cdk4's active site to allow ATP binding. Here we show that the interaction of nonphosphorylated p27 with cdk4 also prevents the activating phosphorylation of the T-loop by cyclin H-cdk7, the cdk-activating kinase (CAK). Even though the cyclin H-cdk7 complex is present and active in contact-arrested cells, p27's association with cyclin D-cdk4 prevents T-loop phosphorylation. When p27 is tyrosine phosphorylated in proliferating cells or in vitro with the tyrosine Y kinase Abl, phosphorylation of cdk4 by cyclin H-cdk7 is permitted, even without dissociation of p27. This suggests that upon release from the contact-arrested state, a temporal order for the reactivation of inactive p27-cyclin D-cdk4 complexes must exist: p27 must be Y phosphorylated first, directly permitting cyclin H-cdk7 phosphorylation of residue T172 and the consequent restoration of kinase activity. The non-Y-phosphorylated p27-cyclin D-cdk4 complex could be phosphorylated by purified Csk1, a single-subunit CAK from fission yeast, but was still inactive due to p27's occlusion of the active site. Thus, the two modes by which p27 inhibits cyclin D-cdk4 are independent and may reinforce one another to inhibit kinase activity in contact-arrested cells, while maintaining a reservoir of preformed complex that can be activated rapidly upon cell cycle reentry.
Collapse
Affiliation(s)
- Arpita Ray
- Program in Molecular and Cellular Biology, School of Graduate Studies, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | |
Collapse
|
98
|
Abstract
Regulation of the androgen receptor (AR) is critical to prostate cancer (PCa) development; therefore, AR is the first line therapeutic target for disseminated tumors. Cell cycle dependent accumulation of cyclin D1 negatively modulates the transcriptional regulation of the AR through discrete, CDK4-independent mechanisms. The transcriptional co-repressor function of cyclin D1 resides within a defined motif termed ther repressor domain (RD), and it was hypothesized that this motif could be utilized as a platform to develop new strategies for blocking AR function. Here, we demonstrate that expression of the RD peptide is sufficient to disrupt AR transcriptional activation of multiple, prostate-specific AR target genes. Importantly, these actions are sufficient to specifically inhibit S-phase progression in AR-positive PCa cells, but not in AR-negative cells or tested AR-positive cells of other lineages. As expected, impaired cell cycle progression resulted in a suppression of cell doubling. Additionally, cell death was observed in AR-positive cells that maintain androgen dependence and in a subset of castrate-resistant PCa cells, dependent on Akt activation status. Lastly, the ability of RD to cooperate with existing hormone therapies was examined, which revealed that RD enhanced the cellular response to an AR antagonist. Together, these data demonstrate that RD is sufficient to disrupt AR-dependent transcriptional and proliferative responses in PCa, and can enhance efficacy of AR antagonists, thus establishing the impetus for development of RD-based mimetics.
Collapse
|
99
|
Phosphorylation of p27Kip1 regulates assembly and activation of cyclin D1-Cdk4. Mol Cell Biol 2008; 28:6462-72. [PMID: 18710949 DOI: 10.1128/mcb.02300-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p27 mediates Cdk2 inhibition and is also found in cyclin D1-Cdk4 complexes. The present data support a role for p27 in the assembly of D-type cyclin-Cdk complexes and indicate that both cyclin D1-Cdk4-p27 assembly and kinase activation are regulated by p27 phosphorylation. Prior work showed that p27 can be phosphorylated by protein kinase B/Akt (PKB/Akt) at T157 and T198. Here we show that PKB activation and the appearance of p27pT157 and p27pT198 precede p27-cyclin D1-Cdk4 assembly in early G(1). PI3K/PKB inhibition rapidly reduced p27pT157 and p27pT198 and dissociated cellular p27-cyclin D1-Cdk4. Mutant p27 allele products lacking phosphorylation at T157 and T198 bound poorly to cellular cyclin D1 and Cdk4. Cellular p27pT157 and p27pT198 coprecipitated with Cdk4 but were not detected in Cdk2 complexes. The addition of p27 to recombinant cyclin D1 and Cdk4 led to cyclin D1-Cdk4-p27 complex formation in vitro. p27 phosphorylation by PKB increased p27-cyclin D1-Cdk4 assembly in vitro but yielded inactive Cdk4. In contrast, Src pretreatment of p27 did not affect p27-cyclin D1-Cdk4 complex formation. However, Src treatment led to tyrosine phosphorylation of p27 and catalytic activation of assembled cyclin D1-Cdk4-p27 complexes. Thus, while PKB-dependent p27 phosphorylation appears to increase cyclin D1-Cdk4-p27 assembly or stabilize these complexes in vitro, cyclin D1-Cdk4-p27 activation requires the tyrosine phosphorylation of p27. Constitutive activation of PKB and Abl or Src family kinases in cancers would drive p27 phosphorylation, increase cyclin D1-Cdk4 assembly and activation, and reduce the cyclin E-Cdk2 inhibitory function of p27. Combined therapy with both Src and PI3K/PKB inhibitors may reverse this process.
Collapse
|
100
|
Abstract
Human cancers arise from an imbalance of cell growth and cell death. Key proteins that govern this balance are those that mediate the cell cycle. Several different molecular effectors have been identified that tightly regulate specific phases of the cell cycle, including cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors. Notably, loss of expression or function of two G1-checkpoint CDK inhibitors - p21 (CDKN1A) and p27 (CDKN1B) - has been implicated in the genesis or progression of many human malignancies. Additionally, there is a growing body of evidence suggesting that functional loss of p21 or p27 can mediate a drug-resistance phenotype. However, reports in the literature have also suggested p21 and p27 can promote tumours, indicating a paradoxical effect. Here, we review historic and recent studies of these two CDK inhibitors, including their identification, function, importance to carcinogenesis and finally their roles in drug resistance.
Collapse
|