51
|
Lechtreck KF, Rostmann J, Grunow A. Analysis ofChlamydomonasSF-assemblin by GFP tagging and expression of antisense constructs. J Cell Sci 2002; 115:1511-22. [PMID: 11896198 DOI: 10.1242/jcs.115.7.1511] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Striated fiber assemblin (SF-assemblin or SFA) is the major component of the striated microtubule-associated fibers (SMAFs) in the flagellar basal apparatus of green flagellates. We generated nuclear transformants of Chlamydomonas expressing green fluorescent protein (GFP) fused to the C-terminus of SFA. SFA-GFP assembled into striated fibers that exceeded those of wild-type cells in size by several fold. At elevated temperatures(≥32°C) SFA-GFP was mostly soluble and heat shock depolymerized the SMAFs. C-terminal deletions of 18 or only six residues disturbed the ability of SFA-GFP to polymerize, indicating an important role of the C-terminal domain for fiber formation. The exchange of the penultimate Ser275 with alanine made SFA-GFP highly insoluble, causing aberrant fiber formation and conferring heat stability to the fibers. By contrast, a replacement with glutamic acid increased the solubilty of the molecule, indicating that phosphorylation on Ser275 might control solubility of SFA. In vivo observation of GFP fluorescence showed that SFA-GFP fibers were disassembled during mitosis. In cells overexpressing full-length or truncated SFA-GFP, the amount of wild-type protein was reduced. Elevated temperatures dissolved SFA-GFP fibers and induced the synthesis of SFA, suggesting that cells control both the amount of soluble and polymeric SFA. By expressing constructs consisting of cDNA and genomic DNA for parts of SFA in antiparallel configuration, the amount of SFA was severely reduced. In these strains we observed defects in flagellar assembly, indicating an important role for noncontractile striated roots in the flagella apparatus.
Collapse
|
52
|
Tam LW, Lefebvre PA. The Chlamydomonas MBO2 locus encodes a conserved coiled-coil protein important for flagellar waveform conversion. CELL MOTILITY AND THE CYTOSKELETON 2002; 51:197-212. [PMID: 11977094 DOI: 10.1002/cm.10023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chlamydomonas flagella can undergo a calcium-dependent conversion between an asymmetric ciliary waveform and a symmetric flagellar waveform. Mutations at three MBO loci abolish the predominant ciliary waveform and result in cells that move backward only with the flagellar waveform. We have cloned and characterized the MBO2 gene. It encodes a novel protein with extensive alpha-helical coiled-coils and two leucine zippers. Sequences highly similar to MBO2p were found in a variety of organisms with cilia and flagella, suggesting that the MBO2 gene function may be conserved in many diverse taxa. Antibodies to MBO2p recognized an axonemal protein of 110 kDa, which appeared to be tightly associated with doublet microtubules. The protein was present in flagella of a variety of paralyzed flagellar mutants that lacked different axonemal structures, indicating that MBO2p is a component of a previously uncharacterized flagellar protein complex. In contrast to the earlier suggestion that the MBO2 gene may encode a component of an intramicrotubular beak-like structure present only proximally in flagella, we localized an epitope-tagged MBO2p along the entire length of the flagella. Moreover, the insertion of a hemagglutinin (HA) epitope in the conserved C-terminal domain of MBO2p reduced the swimming velocity of cells transformed with the epitope-tagged gene. These results indicate that MBO2p may play a role both in the assembly of the beak-like structure and the regulation of the force-generation machinery during the ciliary beat.
Collapse
Affiliation(s)
- Lai-Wa Tam
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
53
|
Simpson C, Stern D. Chlamydomonas reinhardtii as a model system for dissecting chloroplast RNA processing and decay mechanisms. Methods Enzymol 2002; 342:384-407. [PMID: 11586911 DOI: 10.1016/s0076-6879(01)42561-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- C Simpson
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
54
|
Kovar JL, Zhang J, Funke RP, Weeks DP. Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:109-117. [PMID: 12060231 DOI: 10.1046/j.1365-313x.2002.01193.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Genomic and cDNA clones of the acetolactate synthase (ALS) gene of Chlamydomonas reinhardtii have been isolated from a mutant, c85-20 (Hartnett et al., 1987), that is resistant to high concentrations of sulfometuron methyl (SMM) and related sulfonylurea herbicides. Comparison of the ALS gene sequences from the wild-type and the SMM resistant (SMMr) strains revealed two amino acid differences in the mature enzyme, a lysine to threonine change at position 257 (K257T) and a leucine to valine change at position 294 (L294V). Transformation of wild-type C. reinhardtii with the mutant ALS gene produced no transformants with ability to grow in the presence of a minimum toxic concentration of SMM (3 microm). Substitution of the ALS promoter with the promoter of the C. reinhardtii Rubisco small subunit gene (RbcS2) permitted recovery of SMMr colonies. In vitro mutagenesis of the wild-type ALS gene to produce various combinations of mutations (K257T, L294V and W580L) indicated that the K257T mutation was necessary and sufficient to confer the SMMr phenotype. Optimum transformation rates were obtained with two constructs (pJK7 and pRP-ALS) in which all introns in the coding region were present. Rates of transformation with construct pJK7 were approximately 2.5 x 10-4 transformants/cell (i.e. one transformant for each of 4000 initial cells) using electroporation and 8.5 x 10-6 transformants/cell using the glass bead vortexing method. These results suggest that pJK7 and pRP-ALS can serve as important additional dominant selectable markers for the genetic transformation of C. reinhardtii.
Collapse
Affiliation(s)
- Joy L Kovar
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | | | | | | |
Collapse
|
55
|
Minagawa J, Han KC, Dohmae N, Takio K, Inoue Y. Molecular characterization and gene expression of lhcb5 gene encoding CP26 in the light-harvesting complex II of Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2001; 46:277-287. [PMID: 11488475 DOI: 10.1023/a:1010643408100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We isolated and sequenced a cDNA clone encoding a minor chlorophyll a/b-binding protein, CP26, which is associated with the light-harvesting complex II of Chlamydomonas reinhardtii. Protein sequences of internal peptide fragments from purified CP26 were determined and used to identify a cDNA clone. The 1.1 kb lhcb5 gene codes for a polypeptide of 289 amino acids with a predicted molecular weight of 30,713. The lhcb5 gene product could reconstitute with chlorophylls and xanthophylls to form a green band on a gel. Although the expression of many lhcb genes are strictly regulated by light, the lhcb5 gene was only loosely regulated. We propose that a plant acclimatizes itself to the light environment by quantitatively and qualitatively modulating the light-harvesting complex. Characterization of the primary structure and the implications of its unique expression are discussed.
Collapse
Affiliation(s)
- J Minagawa
- Photodynamic Research Center, Institute of Physical and Chemical Research (RIKEN), Sendai, Miyagi, Japan.
| | | | | | | | | |
Collapse
|
56
|
Silflow CD, LaVoie M, Tam LW, Tousey S, Sanders M, Wu W, Borodovsky M, Lefebvre PA. The Vfl1 Protein in Chlamydomonas localizes in a rotationally asymmetric pattern at the distal ends of the basal bodies. J Cell Biol 2001; 153:63-74. [PMID: 11285274 PMCID: PMC2185524 DOI: 10.1083/jcb.153.1.63] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the unicellular alga Chlamydomonas, two anterior flagella are positioned with 180 degrees rotational symmetry, such that the flagella beat with the effective strokes in opposite directions (Hoops, H.J., and G.B. Witman. 1983. J. Cell Biol. 97:902-908). The vfl1 mutation results in variable numbers and positioning of flagella and basal bodies (Adams, G.M.W., R.L. Wright, and J.W. Jarvik. 1985. J. Cell Biol. 100:955-964). Using a tagged allele, we cloned the VFL1 gene that encodes a protein of 128 kD with five leucine-rich repeat sequences near the NH(2) terminus and a large alpha-helical-coiled coil domain at the COOH terminus. An epitope-tagged gene construct rescued the mutant phenotype and expressed a tagged protein (Vfl1p) that copurified with basal body flagellar apparatuses. Immunofluorescence experiments showed that Vfl1p localized with basal bodies and probasal bodies. Immunogold labeling localized Vfl1p inside the lumen of the basal body at the distal end. Distribution of gold particles was rotationally asymmetric, with most particles located near the doublet microtubules that face the opposite basal body. The mutant phenotype, together with the localization results, suggest that Vfl1p plays a role in establishing the correct rotational orientation of basal bodies. Vfl1p is the first reported molecular marker of the rotational asymmetry inherent to basal bodies.
Collapse
Affiliation(s)
- C D Silflow
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul 55108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Rupp G, O'Toole E, Porter ME. The Chlamydomonas PF6 locus encodes a large alanine/proline-rich polypeptide that is required for assembly of a central pair projection and regulates flagellar motility. Mol Biol Cell 2001; 12:739-51. [PMID: 11251084 PMCID: PMC30977 DOI: 10.1091/mbc.12.3.739] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2000] [Revised: 11/29/2000] [Accepted: 01/16/2000] [Indexed: 11/11/2022] Open
Abstract
Efficient motility of the eukaryotic flagellum requires precise temporal and spatial control of its constituent dynein motors. The central pair and its associated structures have been implicated as important members of a signal transduction cascade that ultimately regulates dynein arm activity. To identify central pair components involved in this process, we characterized a Chlamydomonas motility mutant (pf6-2) obtained by insertional mutagenesis. pf6-2 flagella twitch ineffectively and lack the 1a projection on the C1 microtubule of the central pair. Transformation with constructs containing a full-length, wild-type copy of the PF6 gene rescues the functional, structural, and biochemical defects associated with the pf6 mutation. Sequence analysis indicates that the PF6 gene encodes a large polypeptide that contains numerous alanine-rich, proline-rich, and basic domains and has limited homology to an expressed sequence tag derived from a human testis cDNA library. Biochemical analysis of an epitope-tagged PF6 construct demonstrates that the PF6 polypeptide is an axonemal component that cosediments at 12.6S with several other polypeptides. The PF6 protein appears to be an essential component required for assembly of some of these polypeptides into the C1-1a projection.
Collapse
Affiliation(s)
- G Rupp
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
58
|
Preble AM, Giddings TH, Dutcher SK. Extragenic bypass suppressors of mutations in the essential gene BLD2 promote assembly of basal bodies with abnormal microtubules in Chlamydomonas reinhardtii. Genetics 2001; 157:163-81. [PMID: 11139500 PMCID: PMC1461482 DOI: 10.1093/genetics/157.1.163] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
bld2-1 mutant Chlamydomonas reinhardtii strains assemble basal bodies with singlet microtubules; bld2-1 cells display flagellar assembly defects as well as positioning defects of the mitotic spindle and cleavage furrow. To further understand the role of the BLD2 gene, we have isolated three new bld2 alleles and three partially dominant extragenic suppressors, rgn1-1, rgn1-2, and rgn1-3. bld2 rgn1-1 strains have phenotypes intermediate between those of bld2 and wild-type strains with respect to flagellar number, microtubule rootlet organization, cleavage furrow positioning, and basal body structural phenotypes. Instead of the triplet microtubules of wild-type cells, bld2 rgn1-1 basal bodies have mixtures of no, singlet, doublet, and triplet microtubules. The bld2-4 allele was made by insertional mutagenesis and identified in a noncomplementation screen in a diploid strain. The bld2-4 allele has a lethal phenotype based on mitotic segregation in diploid strains and in haploid strains generated by meiotic recombination. The lethal phenotype in haploid strains is suppressed by rgn1-1; these suppressed strains have similar phenotypes to other bld2 rgn1-1 double mutants. It is likely that BLD2 is an essential gene that is needed for basal body assembly and function.
Collapse
Affiliation(s)
- A M Preble
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | |
Collapse
|
59
|
Abstract
Chlamydomonas reinhardtii has been the subject of genetic, biochemical, cytological, and molecular analyses for over 50 years. It is an ideal model system for the study of flagella and basal bodies as well as the study of photosynthesis and chloroplast biogenesis, cell-cell recognition and fusion, phototaxis, and secretion. It is clear that many of the genes identified in Chlamydomonas have homologs in land plants as well as animals. Thus, a genomic approach in Chlamydomonas will provide another important avenue for the understanding of important biological processes.
Collapse
Affiliation(s)
- S K Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
60
|
Silflow CD, Liu B, LaVoie M, Richardson EA, Palevitz BA. Gamma-tubulin in Chlamydomonas: characterization of the gene and localization of the gene product in cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 42:285-97. [PMID: 10223635 DOI: 10.1002/(sici)1097-0169(1999)42:4<285::aid-cm3>3.0.co;2-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In addition to their role in nucleating the assembly of axonemal microtubules, basal bodies often are associated with a microtubule organizing center (MTOC) for cytoplasmic microtubules. In an effort to define molecular components of the basal body apparatus in Chlamydomonas reinhardtii, genomic and cDNA clones encoding gamma-tubulin were isolated and sequenced. The gene, present in a single copy in the Chlamydomonas genome, encodes a protein with a predicted molecular mass of 52,161 D and 73% and 65% conservation with gamma-tubulin from higher plants and humans, respectively. To examine the distribution of gamma-tubulin in cells, a polyclonal antibody was raised against two peptides contained within the protein. Immunoblots of Chlamydomonas proteins show a major cross-reaction with a protein of Mr 53,000. In Chlamydomonas cells, the antibody stains the basal body apparatus as two or four spots at the base of the flagella and proximal to the microtubule rootlets. During cell division, two groups of fluorescent dots separate and localize to opposite ends of the mitotic apparatus. They then migrate during cleavage to positions known to be occupied by basal bodies. Changes in gamma-tubulin localization during the cell cycle are consistent with a role for this protein in the nucleation of microtubules of both the interphase cytoplasmic array and the mitotic spindle. Immunogold labeling of cell sections showed that gamma-tubulin is closely associated with the basal bodies. The flagellar transition region was also labeled, possibly indicating a role for gamma-tubulin in assembly of the central pair microtubules of the axoneme.
Collapse
Affiliation(s)
- C D Silflow
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | |
Collapse
|
61
|
Rochaix J, Fischer N, Hippler M. Chloroplast site-directed mutagenesis of photosystem I in Chlamydomonas: electron transfer reactions and light sensitivity. Biochimie 2000; 82:635-45. [PMID: 10946112 DOI: 10.1016/s0300-9084(00)00604-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The photosystem I (PSI) complex is a multisubunit protein-pigment complex embedded in the thylakoid membrane which acts as a light-driven plastocyanin/cytochrome c(6)-ferredoxin oxido-reductase. The use of chloroplast transformation and site-directed mutagenesis coupled with the biochemical and biophysical analysis of mutants of the green alga Chlamydomonas reinhardtii with specific amino acid changes in several subunits of PSI has provided new insights into the structure-function relationship of this important photosynthetic complex. In particular, this molecular-genetic analysis has identified key residues of the reaction center polypeptides of PSI which are the ligands of some of the redox cofactors and it has also provided important insights into the orientation of the terminal electron acceptors of this complex. Finally this analysis has also shown that mutations affecting the donor side of PSI are limiting for overall electron transfer under high light and that electron trapping within the terminal electron acceptors of PSI is highly deleterious to the cells.
Collapse
Affiliation(s)
- J Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30, quai Ernest-Ansermet, 1211 4, Geneva, Switzerland.
| | | | | |
Collapse
|
62
|
Grossman AR. Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. CURRENT OPINION IN PLANT BIOLOGY 2000; 3:132-137. [PMID: 10712957 DOI: 10.1016/s1369-5266(99)00053-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Genetic and physiological features of the green alga Chlamydomonas reinhardtii have provided a useful model for elucidating the function, biogenesis and regulation of the photosynthetic apparatus. Combining these characteristics with newly developed molecular technologies for engineering Chlamydomonas and the promise of global analyses of nuclear and chloroplast gene expression will add a new perspective to views on photosynthetic function and regulation.
Collapse
Affiliation(s)
- A R Grossman
- Department of Plant Biology, The Carnegie Institution of Washington, Stanford 94305, USA.
| |
Collapse
|
63
|
Hippler M, Biehler K, Krieger-Liszkay A, van Dillewjin J, Rochaix JD. Limitation in electron transfer in photosystem I donor side mutants of Chlamydomonas reinhardtii. Lethal photo-oxidative damage in high light is overcome in a suppressor strain deficient in the assembly of the light harvesting complex. J Biol Chem 2000; 275:5852-9. [PMID: 10681576 DOI: 10.1074/jbc.275.8.5852] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Strains of Chlamydomonas reinhardtii lacking the PsaF gene or containing the mutation K23Q within the N-terminal part of PsaF are sensitive to high light (>400 microE m(-2) s(-1)) under aerobic conditions. In vitro experiments indicate that the sensitivity to high light of the isolated photosystem I (PSI) complex from wild type and from PsaF mutants is similar. In vivo measurements of photochemical quenching and oxygen evolution show that impairment of the donor side of PSI in the PsaF mutants leads to a diminished linear electron transfer and/or a decrease of photosystem II (PSII) activity in high light. Thermoluminescence measurements indicate that the PSII reaction center is directly affected under photo-oxidative stress when the rate of electron transfer becomes limiting in the PsaF-deficient strain and in the PsaF mutant K23Q. We have isolated a high light-resistant PsaF-deficient suppressor strain that has a high chlorophyll a/b ratio and is affected in the assembly of light-harvesting complex. These results indicate that under high light a functionally intact donor side of PSI is essential for protection of C. reinhardtii against photo-oxidative damage when the photosystems are properly connected to their light-harvesting antennae.
Collapse
Affiliation(s)
- M Hippler
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
64
|
Norrander JM, deCathelineau AM, Brown JA, Porter ME, Linck RW. The Rib43a protein is associated with forming the specialized protofilament ribbons of flagellar microtubules in Chlamydomonas. Mol Biol Cell 2000; 11:201-15. [PMID: 10637302 PMCID: PMC14768 DOI: 10.1091/mbc.11.1.201] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ciliary and flagellar microtubules contain a specialized set of three protofilaments, termed ribbons, that are composed of tubulin and several associated proteins. Previous studies of sea urchin sperm flagella identified three of the ribbon proteins as tektins, which form coiled-coil filaments in doublet microtubules and which are associated with basal bodies and centrioles. To study the function of tektins and other ribbon proteins in the assembly of flagella and basal bodies, we have begun an analysis of ribbons from the unicellular biflagellate, Chlamydomonas reinhardtii, and report here the molecular characterization of the ribbon protein rib43a. Using antibodies against rib43a to screen an expression library, we recovered a full-length cDNA clone that encodes a 42,657-Da polypeptide. On Northern blots, the rib43a cDNA hybridized to a 1. 7-kb transcript, which was up-regulated upon deflagellation, consistent with a role for rib43a in flagellar assembly. The cDNA was used to isolate RIB43a, an approximately 4.6-kb genomic clone containing the complete rib43a coding region, and restriction fragment length polymorphism analysis placed the RIB43a gene on linkage group III. Sequence analysis of the RIB43a gene indicates that the substantially coiled-coil rib43a protein shares a high degree of sequence identity with clones from Trypanosoma cruzi and Homo sapiens (genomic, normal fetal kidney, and endometrial and germ cell tumors) but little sequence similarity to other proteins including tektins. Affinity-purified antibodies against native and bacterially expressed rib43a stained both flagella and basal bodies by immunofluorescence microscopy and stained isolated flagellar ribbons by immuno-electron microscopy. The structure of rib43a and its association with the specialized protofilament ribbons and with basal bodies is relevant to the proposed role of ribbons in forming and stabilizing doublet and triplet microtubules and in organizing their three-dimensional structure.
Collapse
Affiliation(s)
- J M Norrander
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
65
|
Myster SH, Knott JA, Wysocki KM, O'Toole E, Porter ME. Domains in the 1alpha dynein heavy chain required for inner arm assembly and flagellar motility in Chlamydomonas. J Cell Biol 1999; 146:801-18. [PMID: 10459015 PMCID: PMC2156140 DOI: 10.1083/jcb.146.4.801] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1999] [Accepted: 07/20/1999] [Indexed: 11/22/2022] Open
Abstract
Flagellar motility is generated by the activity of multiple dynein motors, but the specific role of each dynein heavy chain (Dhc) is largely unknown, and the mechanism by which the different Dhcs are targeted to their unique locations is also poorly understood. We report here the complete nucleotide sequence of the Chlamydomonas Dhc1 gene and the corresponding deduced amino acid sequence of the 1alpha Dhc of the I1 inner dynein arm. The 1alpha Dhc is similar to other axonemal Dhcs, but two additional phosphate binding motifs (P-loops) have been identified in the NH(2)- and COOH-terminal regions. Because mutations in Dhc1 result in motility defects and loss of the I1 inner arm, a series of Dhc1 transgenes were used to rescue the mutant phenotypes. Motile cotransformants that express either full-length or truncated 1alpha Dhcs were recovered. The truncated 1alpha Dhc fragments lacked the dynein motor domain, but still assembled with the 1beta Dhc and other I1 subunits into partially functional complexes at the correct axoneme location. Analysis of the transformants has identified the site of the 1alpha motor domain in the I1 structure and further revealed the role of the 1alpha Dhc in flagellar motility and phototactic behavior.
Collapse
Affiliation(s)
- Steven H. Myster
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Julie A. Knott
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Katrina M. Wysocki
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Eileen O'Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309-0347
| | - Mary E. Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| |
Collapse
|
66
|
de Vitry C, Vallon O. Mutants of Chlamydomonas: tools to study thylakoid membrane structure, function and biogenesis. Biochimie 1999; 81:631-43. [PMID: 10433117 DOI: 10.1016/s0300-9084(99)80120-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a model system for the study of photosynthesis and chloroplast biogenesis. C. reinhardtii has a photosynthesis apparatus similar to that of higher plants and it grows at rapid rate (generation time about 8 h). It is a facultative phototroph, which allows the isolation of mutants unable to perform photosynthesis and its sexual cycle allows a variety of genetic studies. Transformation of the nucleus and chloroplast genomes is easily performed. Gene transformation occurs mainly by homologous recombination in the chloroplast and heterologous recombination in the nucleus. Mutants are precious tools for studies of thylakoid membrane structure, photosynthetic function and assembly. Photosynthesis mutants affected in the biogenesis of a subunit of a protein complex usually lack the entire complex; this pleiotropic effect has been used in the identification of the other subunits, in the attribution of spectroscopic signals and also as a 'genetic cleaning' process which facilitates both protein complex purification, absorption spectroscopy studies or freeze-fracture analysis. The cytochrome b6f complex is not required for the growth of C. reinhardtii, unlike the case of photosynthetic prokaryotes in which the cytochrome complex is also part of the respiratory chain, and can be uniquely studied in Chlamydomonas by genetic approaches. We describe in greater detail the use of Chlamydomonas mutants in the study of this complex.
Collapse
Affiliation(s)
- C de Vitry
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, CNRS-UPR 1261, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
67
|
Porter ME, Bower R, Knott JA, Byrd P, Dentler W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 1999; 10:693-712. [PMID: 10069812 PMCID: PMC25196 DOI: 10.1091/mbc.10.3.693] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A second cytoplasmic dynein heavy chain (cDhc) has recently been identified in several organisms, and its expression pattern is consistent with a possible role in axoneme assembly. We have used a genetic approach to ask whether cDhc1b is involved in flagellar assembly in Chlamydomonas. Using a modified PCR protocol, we recovered two cDhc sequences distinct from the axonemal Dhc sequences identified previously. cDhc1a is closely related to the major cytoplasmic Dhc, whereas cDhc1b is closely related to the minor cDhc isoform identified in sea urchins, Caenorhabditis elegans, and Tetrahymena. The Chlamydomonas cDhc1b transcript is a low-abundance mRNA whose expression is enhanced by deflagellation. To determine its role in flagellar assembly, we screened a collection of stumpy flagellar (stf) mutants generated by insertional mutagenesis and identified two strains in which portions of the cDhc1b gene have been deleted. The two mutants assemble short flagellar stumps (<1-2 micrometer) filled with aberrant microtubules, raft-like particles, and other amorphous material. The results indicate that cDhc1b is involved in the transport of components required for flagellar assembly in Chlamydomonas.
Collapse
Affiliation(s)
- M E Porter
- Department of Cell Biology and Neuroanatomy, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
68
|
Perrone CA, Yang P, O'Toole E, Sale WS, Porter ME. The Chlamydomonas IDA7 locus encodes a 140-kDa dynein intermediate chain required to assemble the I1 inner arm complex. Mol Biol Cell 1998; 9:3351-65. [PMID: 9843574 PMCID: PMC25636 DOI: 10.1091/mbc.9.12.3351] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/1998] [Accepted: 09/21/1998] [Indexed: 11/11/2022] Open
Abstract
To identify new loci that are involved in the assembly and targeting of dynein complexes, we have screened a collection of motility mutants that were generated by insertional mutagenesis. One such mutant, 5B10, lacks the inner arm isoform known as the I1 complex. This isoform is located proximal to the first radial spoke in each 96-nm axoneme repeat and is an important target for the regulation of flagellar motility. Complementation tests reveal that 5B10 represents a new I1 locus, IDA7. Biochemical analyses confirm that ida7 axonemes lack at least five I1 complex subunits. Southern blots probed with a clone containing the gene encoding the 140-kDa intermediate chain (IC) indicate that the ida7 mutation is the result of plasmid insertion into the IC140 gene. Transformation with a wild-type copy of the IC140 gene completely rescues the mutant defects. Surprisingly, transformation with a construct of the IC140 gene lacking the first four exons of the coding sequence also rescues the mutant phenotype. These studies indicate that IC140 is essential for assembly of the I1 complex, but unlike other dynein ICs, the N-terminal region is not critical for its activity.
Collapse
Affiliation(s)
- C A Perrone
- Department of Cell Biology and Neuroanatomy, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
69
|
Randolph-Anderson BL, Sato R, Johnson AM, Harris EH, Hauser CR, Oeda K, Ishige F, Nishio S, Gillham NW, Boynton JE. Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides. PLANT MOLECULAR BIOLOGY 1998; 38:839-859. [PMID: 9862501 DOI: 10.1023/a:1006085026294] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In plant and algal cells, inhibition of the enzyme protoporphyrinogen oxidase (Protox) by the N-phenyl heterocyclic herbicide S-23142 causes massive protoporphyrin IX accumulation, resulting in membrane deterioration and cell lethality in the light. We have identified a 40.4 kb genomic fragment encoding S-23142 resistance by using transformation to screen an indexed cosmid library made from nuclear DNA of the dominant rs-3 mutant of Chlamydomonas reinhardtii. A 10.0 kb HindIII subclone (Hind10) of this insert yields a high frequency of herbicide-resistant transformants, consistent with frequent non-homologous integration of the complete RS-3 gene. A 3.4 kb XhoI subfragment (Xho3.4) yields rare herbicide-resistant transformants, suggestive of homologous integration of a portion of the coding sequence containing the mutation. Molecular and genetic analysis of the transformants localized the rs-3 mutation conferring S-23142 resistance to the Xho3.4 fragment, which was found to contain five putative exons encoding a protein with identity to the C-terminus of the A rabidopsis Protox enzyme. A cDNA clone containing a 1698 bp ORF that encodes a 563 amino acid peptide with 51% and 53% identity to Arabidopsis and tobacco Protox I, respectively, was isolated from a wild-type C. reinhardtii library. Comparison of the wild-type cDNA sequence with the putative exon sequences present in the mutant Xho3.4 fragment revealed a G-->A change at 291 in the first putative exon, resulting in a Val-->Met substitution at a conserved position equivalent to Val-389 of the wild-type C. reinhardtii cDNA. A sequence comparison of genomic Hind10 fragments from C. reinhardtii rs-3 and its wild-type progenitor CC-407 showed this G-->A change at the equivalent position (5751) within exon 10.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Chlamydomonas reinhardtii/drug effects
- Chlamydomonas reinhardtii/enzymology
- Chlamydomonas reinhardtii/genetics
- Clone Cells/drug effects
- Cloning, Molecular
- Cosmids
- DNA/chemistry
- DNA/genetics
- DNA Mutational Analysis
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Drug Resistance
- Exons
- Genes/drug effects
- Genes/genetics
- Genomic Library
- Herbicides/pharmacology
- Molecular Sequence Data
- Mutation
- Nucleic Acid Hybridization
- Oxidoreductases/genetics
- Oxidoreductases Acting on CH-CH Group Donors
- Protoporphyrinogen Oxidase
- RNA/analysis
- RNA/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Transformation, Genetic
Collapse
|
70
|
Hippler M, Redding K, Rochaix JD. Chlamydomonas genetics, a tool for the study of bioenergetic pathways. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1367:1-62. [PMID: 9784589 DOI: 10.1016/s0005-2728(98)00136-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M Hippler
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva-4, Switzerland
| | | | | |
Collapse
|
71
|
Abstract
Signal-induced deflagellation in Chlamydomonas involves Ca2+-activated breakage of the nine outer-doublet axonemal microtubules at a specific site in the flagellar transition zone. In this study, we isolated 13 new deflagellation mutants that can be divided into two phenotypic classes, the Adf class and the Fa class. Cells with the Adf deflagellation phenotype are defective in acid-stimulated Ca2+ influx, but can be induced to deflagellate by treatment with nonionic detergent and Ca2+. Genetic analyses show that the five new Adf mutations, as well as the previously identified adf1 mutation, are alleles of the ADF1 gene. Mutants in the second phenotypic class, the Fa mutants, fail to deflagellate in response to any known chemical stimulus and are defective in Ca2+-activated microtubule severing. Genetic analysis of these eight new Fa strains demonstrated that they define two complementation groups, and one of these contains the previously identified fa1 mutation. Diploid analysis showed that five alleles map to the FA1 gene, whereas four alleles define a novel gene that we have named FA2. The isolation of multiple mutant alleles of each gene, generated by either ultraviolet irradiation or insertional mutagenesis, indicates that ADF1, FA1, and FA2 may be the only genes that can be identified in a loss-of-function screen. These alleles should provide a better understanding of the regulation of microtubule severing by Ca2+.
Collapse
Affiliation(s)
- R J Finst
- Department of Cell Biology, Cell & Developmental Biology, Emory University School of Medicine, Atlanta, Georgia 30322-3030, USA
| | | | | |
Collapse
|
72
|
|
73
|
Fujii T, Ohba M. The Ipecac Alkaloids and Related Bases. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 1998. [DOI: 10.1016/s0099-9598(08)60007-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
74
|
[3] High-frequency nuclear transformation of Chlamydomonas reinhardtii. Methods Enzymol 1998. [DOI: 10.1016/s0076-6879(98)97005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
75
|
Abstract
Previously we described a large collection of cloned human DNAs that encode chemically defined missense mutations within the ribosomal protein S14 sequence. We determined that biologically inactive (i.e. null) alleles resulted primarily from point mutations targeted to two internal segments of the S14-coding sequence and designated these functionally critical regions as domains B and D. Further, we inferred that structural determinants within domains B and D are required for proper incorporation of the S14 protein into nascent 40 S ribosomal particles and/or for the normal function of mature cytoplasmic ribosomes. In this study we have used immunofluorescence to monitor the intracellular trafficking of epitopically labeled human S14 protein isoforms transiently expressed by cultured Chinese hamster cells. Data obtained distinguish null alleles of RPS14 which encode proteins that are not incorporated into pre-ribosomal subunit particles from null alleles whose products are compatible with normal ribosome assembly processes but result in functionally inactive cytoplasmic 40 S ribosomal subunits. Mutations assigned to the first allele class involve amino acid replacements located within S14 domains B and D; whereas mutations assigned to the second class are distributed throughout the S14 protein-coding sequence.
Collapse
Affiliation(s)
- J Martin-Nieto
- Division of Biology and Center for Basic Cancer Research, Kansas State University, Manhattan 66506, USA
| | | |
Collapse
|
76
|
Cerutti H, Johnson AM, Gillham NW, Boynton JE. A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. Genetics 1997; 145:97-110. [PMID: 9017393 PMCID: PMC1207788 DOI: 10.1093/genetics/145.1.97] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have constructed a dominant selectable marker for nuclear transformation of C. reinhardtii, composed of the coding sequence of the eubacterial aadA gene (conferring spectinomycin resistance) fused to the 5' and 3' untranslated regions of the endogenous RbcS2 gene. Spectinomycin-resistant transformants isolated by direct selection (1) contain the chimeric gene(s) stably integrated into the nuclear genome, (2) show cosegregation of the resistance phenotype with the introduced DNA, and (3) synthesize the expected mRNA and protein. Small linearized plasmids appeared to be inserted into the nuclear genome preferentially through their ends, with relatively few large deletions and/or rearrangements. Multiple copy transformants often integrated concatemers of transforming DNA. Our detailed analysis of the complex integration patterns of plasmid DNA in C. reinhardtii nuclear transformants should be useful for improving the technique of insertional mutagenesis. We also found that the spectinomycin-resistance phenotype was unstable in about half of the transformants. When maintained under nonselective conditions, neither the aadA mRNA nor the AadA protein were detected in these subclones. Moreover, since the integrated transforming DNA was not altered or lost expression of the RbcS2::aadA::RbcS2 gene(s) appears to be repressed. Measurements of transcriptional activity, mRNA accumulation, and mRNA stability suggest that expression of this chimeric gene(s) may also be affected by rapid RNA degradation, presumably due to defects in mRNA processing and, or nuclear export. Thus, both gene silencing and transcript instability, rather than biased codon usage, may explain the difficulties encountered in the expression of foreign genes in the nuclear genome of Chlamydomonas.
Collapse
Affiliation(s)
- H Cerutti
- Department of Botany, Duke University, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
77
|
Chen Q, Silflow CD. Isolation and characterization of glutamine synthetase genes in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 1996; 112:987-96. [PMID: 8938407 PMCID: PMC158025 DOI: 10.1104/pp.112.3.987] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To elucidate the role of glutamine synthetase (GS) in nitrogen assimilation in the green alga Chlamydomonas reinhardtii we used maize GS1 (the cytosolic form) and GS2 (the chloroplastic form) cDNAs as hybridization probes to isolate C. reinhardtii cDNA clones. The amino acid sequences derived from the C. reinhardtii clones have extensive homology with GS enzymes from higher plants. A putative amino-terminal transit peptide encoded by the GS2 cDNA suggests that the protein localizes to the chloroplast. Genomic DNA blot analysis indicated that GS1 is encoded by a single gene, whereas two genomic fragments hybridized to the GS2 cDNA probe. All GS2 cDNA clones corresponded to only one of the two GS2 genomic sequences. We provide evidence that ammonium, nitrate, and light regulate GS transcript accumulation in green algae. Our results indicate that the level of GS1 transcripts is repressed by ammonium but induced by nitrate. The level of GS2 transcripts is not affected by ammonium or nitrate. Expression of both GS1 and GS2 genes is regulated by light, but perhaps through different mechanisms. Unlike in higher plants, no decreased level of GS2 transcripts was detected when cells were grown under conditions that repress photorespiration. Analysis of GS transcript levels in mutants with defects in the nitrate assimilation pathway show that nitrate assimilation and ammonium assimilation are regulated independently.
Collapse
Affiliation(s)
- Q Chen
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
78
|
Abstract
To correlate dynein heavy chain (Dhc) genes with flagellar mutations and gain insight into the function of specific dynein isoforms, we placed eight members of the Dhc gene family on the genetic map of Chlamydomonas. Using a PCR-based strategy, we cloned 11 Dhc genes from Chlamydomonas. Comparisons with other Dhc genes indicate that two clones correspond to genes encoding the alpha and beta heavy chains of the outer dynein arm. Alignment of the predicted amino acid sequences spanning the nucleotide binding site indicates that the remaining nine clones can be subdivided into three groups that are likely to include representatives of the inner-arm Dhc isoforms. Gene-specific probes reveal that each clone represents a single-copy gene that is expressed as a transcript of the appropriate size (> 13 kb) sufficient to encode a high molecular weight Dhc polypeptide. The expression of all nine genes is upregulated in response to deflagellation, suggesting a role in axoneme assembly or motility. Restriction fragment length polymorphisms between divergent C. reinhardtii strains have been used to place each Dhc gene on the genetic map of Chlamydomonas. These studies lay the groundwork for correlating defects in different Dhc genes with specific flagellar mutations.
Collapse
Affiliation(s)
- M E Porter
- Department of Cell Biology and Neuroanatomy, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | | | | | |
Collapse
|
79
|
Stevens DR, Rochaix JD, Purton S. The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:23-30. [PMID: 8628243 DOI: 10.1007/bf02174340] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A chimeric gene composed of the coding sequence of the ble gene from Streptoalloteichus hindustanus fused to the 5' and 3' untranslated regions of the Chlamydomonas reinhardtii nuclear gene RBCS2 has been constructed. Introduction of this chimeric gene into the nuclear genome of C. reinhardtii by co-transformation with the ARG7 marker yields Arg+ transformants of which approximately 80% possess the ble gene. Of these co-transformants, approximately 3% display a phleomycin-resistant (PmR) phenotype. Western blot analysis using antibodies against the ble gene product confirms the presence of the protein in the PmR transformants and genetic analysis demonstrates the co-segregation of the ble gene with the phenotype in progeny arising from the mating of a PmR transformant to wild-type strains. Direct selection of PmR transformants was achieved by allowing an 18-h period for recovery and growth of transformed cells prior to selection. This work represents the first demonstration of stable expression and inheritance of a foreign gene in the nuclear genome of C. reinhardtii and provides a useful dominant marker for nuclear transformation.
Collapse
Affiliation(s)
- D R Stevens
- Department of Biology, University College London, UK
| | | | | |
Collapse
|
80
|
Gumpel NJ, Ralley L, Girard-Bascou J, Wollman FA, Nugent JH, Purton S. Nuclear mutants of Chlamydomonas reinhardtii defective in the biogenesis of the cytochrome b6f complex. PLANT MOLECULAR BIOLOGY 1995; 29:921-932. [PMID: 8555456 DOI: 10.1007/bf00014966] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The random integration of transforming DNA into the nuclear genome of Chlamydomonas has been employed as an insertional mutagen to generate a collection of photosynthetic mutants that display abnormal steady-state fluorescence levels and an acetate-requiring phenotype. Electron paramagnetic resonance spectroscopy was then used to identify those mutants that specifically lack a functional cytochrome b6f complex. Our analysis of RNA and protein synthesis in five of these mutants reveals four separate phenotypes. One mutant fails to accumulate transcript for cytochrome f, whilst a second displays a severely reduced accumulation of the cytochrome b6 transcript. Two other mutants appear to be affected in the insertion of the haem co-factor into cytochrome b6. The fifth mutant displays no detectable defect in the synthesis of any of the known subunits of the complex. Genetic analysis of the mutants demonstrates that in three cases, the mutant phenotype co-segregates with the introduced DNA. For the mutant affected in the accumulation of the cytochrome f transcript, we have used the introduced DNA as a tag to isolate the wild-type version of the affected gene.
Collapse
Affiliation(s)
- N J Gumpel
- Department of Biology, University College London, UK
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
The eukaryotic flagellum is a complex biochemical machine that moves cells or moves materials over the surface of cells, such as in the mammalian esophagus, oviduct or in protozoa. It is composed of over 250 polypeptides that must be assembled into a number of different structures and each structure must be attached with an exact periodicity along the microtubules. Once the flagellum is assembled, each of the components must act in concert and in three dimensions to produce a complex waveform. This review provides an outline of the composition and function of the different structures found in the flagella of Chlamydomonas.
Collapse
Affiliation(s)
- S K Dutcher
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347, USA
| |
Collapse
|
82
|
Tam LW, Lefebvre PA. Insertional mutagenesis and isolation of tagged genes in Chlamydomonas. Methods Cell Biol 1995; 47:519-23. [PMID: 7476539 DOI: 10.1016/s0091-679x(08)60855-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- L W Tam
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
83
|
Affiliation(s)
- J A Nelson
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|