51
|
Kubota H, Yamamoto S, Itoh E, Abe Y, Nakamura A, Izumi Y, Okada H, Iida M, Nanjo H, Itoh H, Yamamoto Y. Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress Chaperones 2010; 15:1003-11. [PMID: 20617406 PMCID: PMC3024075 DOI: 10.1007/s12192-010-0211-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 01/25/2023] Open
Abstract
Co-chaperone HOP (also called stress-inducible protein 1) is a co-chaperone that interacts with the cytosolic 70-kDa heat shock protein (HSP70) and 90-kDa heat shock protein (HSP90) families using different tetratricopeptide repeat domains. HOP plays crucial roles in the productive folding of substrate proteins by controlling the chaperone activities of HSP70 and HSP90. Here, we examined the levels of HOP, HSC70 (cognate of HSP70, also called HSP73), and HSP90 in the tumor tissues from colon cancer patients, in comparison with the non-tumor tissues from the same patients. Expression level of HOP was significantly increased in the tumor tissues (68% of patients, n = 19). Levels of HSC70 and HSP90 were also increased in the tumor tissues (95% and 74% of patients, respectively), and the HOP level was highly correlated with those of HSP90 (r = 0.77, p < 0.001) and HSC70 (r = 0.68, p < 0.01). Immunoprecipitation experiments indicated that HOP complexes with HSC70 or HSP90 in the tumor tissues. These data are consistent with increased formation of co-chaperone complexes in colon tumor specimens compared to adjacent normal tissue and could reflect a role for HOP in this process.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata-Gakuencho, Akita, 010-8502 Japan
| | - Soh Yamamoto
- Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata-Gakuencho, Akita, 010-8502 Japan
| | - Eri Itoh
- Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata-Gakuencho, Akita, 010-8502 Japan
| | - Yuki Abe
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, 010-8543 Japan
| | - Asami Nakamura
- Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata-Gakuencho, Akita, 010-8502 Japan
| | - Yukina Izumi
- Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata-Gakuencho, Akita, 010-8502 Japan
| | - Hirotaka Okada
- Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata-Gakuencho, Akita, 010-8502 Japan
| | - Masatake Iida
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, 010-8543 Japan
| | - Hiroshi Nanjo
- Department of Pathology, Akita University Hospital, Akita, 010-8543 Japan
| | - Hideaki Itoh
- Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata-Gakuencho, Akita, 010-8502 Japan
| | - Yuzo Yamamoto
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, 010-8543 Japan
| |
Collapse
|
52
|
Sakowicz-Burkiewicz M, Kocbuch K, Grden M, Szutowicz A, Pawelczyk T. Regulation of adenosine receptors expression in rat B lymphocytes by insulin. J Cell Biochem 2010; 109:396-405. [PMID: 19950198 DOI: 10.1002/jcb.22417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Development of diabetes is associated with altered expression of adenosine receptors (ARs). Some of these alterations might be attributed to changes in insulin concentration. This study was undertaken to investigate the possible insulin effect on ARs level, and to determine the signaling pathway utilized by insulin to regulate the expression of ARs in rat B lymphocytes. Western blot analysis of B lymphocytes protein extracts indicated that all four ARs were present at detectable levels in the cells cultured for 24 h without insulin (<or=10(-11) M), although the protein band of A(2A)-AR was barely visible. Inclusion of insulin (10(-8) M) in the culture medium resulted in an increase of A(1)-AR and A(2A)-AR protein levels and a significant decrease of A(2B)-AR protein, whereas the protein level of A(3)-AR remained unchanged. Alterations in the ARs protein content were accompanied by changes in the ARs mRNA levels. Increase of the insulin concentration from 10(-11) to 10(-8) M resulted in 50% decrease of A(2B)-AR mRNA level and two-, and threefold increase of A(1)-AR and A(2A)-AR mRNA levels, respectively. Pretreatment of B cells with cycloheximide completely blocked the insulin action on A(1)-AR and A(2A)-AR mRNA, but not on A(2B)-AR expression. Detailed pharmacological analysis demonstrated that insulin-induced A(1)-AR and A(2A)-AR mRNA expression through the Ras/Raf-1/MEK/ERK pathway. The insulin effect on A(2B)-AR expression was blocked by p38 MAP kinase inhibitor (SB 203580). Concluding, elevated insulin concentration differentially affects the expression of ARs in B lymphocytes in a fashion that might enhance the various immunomodulatory effects of adenosine.
Collapse
|
53
|
Hsp90 as a gatekeeper of tumor angiogenesis: clinical promise and potential pitfalls. JOURNAL OF ONCOLOGY 2010; 2010:412985. [PMID: 20628489 PMCID: PMC2902748 DOI: 10.1155/2010/412985] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 04/12/2010] [Indexed: 01/05/2023]
Abstract
Tumor vascularization is an essential modulator of early tumor growth, progression, and therapeutic outcome. Although antiangiogenic treatments appear promising, intrinsic and acquired tumor resistance contributes to treatment failure. Clinical inhibition of the molecular chaperone heat shock protein 90 (Hsp90) provides an opportunity to target multiple aspects of this signaling resiliency, which may elicit more robust and enduring tumor repression relative to effects elicited by specifically targeted agents. This review highlights several primary effectors of angiogenesis modulated by Hsp90 and describes the clinical challenges posed by the redundant circuitry of these pathways. The four main topics addressed include (1) Hsp90-mediated regulation of HIF/VEGF signaling, (2) chaperone-dependent regulation of HIF-independent VEGF-mediated angiogenesis, (3) Hsp90-dependent targeting of key proangiogenic receptor tyrosine kinases and modulation of drug resistance, and (4) consideration of factors such as tumor microenvironment that pose several challenges for the clinical efficacy of anti-angiogenic therapy and Hsp90-targeted strategies.
Collapse
|
54
|
TLN-4601, a novel anticancer agent, inhibits Ras signaling post Ras prenylation and before MEK activation. Anticancer Drugs 2010; 21:543-52. [PMID: 20220516 DOI: 10.1097/cad.0b013e328337f373] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
TLN-4601 is a structurally novel farnesylated dibenzodiazepinone discovered through DECIPHER, Thallion's proprietary drug discovery platform. The compound was shown to have a broad cytotoxic activity (low micromol/l) when tested in the NCI 60 tumor cell line panel and has shown in-vivo antitumor activity in several xenograft models. Related to its farnesylated moiety, the effect of TLN-4601 on Ras mitogen-activated protein kinase signaling was assessed. Downstream Ras signaling events, Raf-1, MEK, and ERK1/2 phosphorylation in MCF7 cells were evaluated by western blot analysis. TLN-4601 prevented epidermal growth factor-induced phosphorylation of Raf-1, MEK, and ERK1/2. This effect was time-dependent and dose-dependent with complete inhibition of protein phosphorylation within 4-6 h at 10 micromol/l. The inhibition of Ras signaling was not mediated by the inhibition of protein prenylation, documented by the lack of effect TLN-4601 on the prenylation of HDJ2 (specific substrate of farnesyltransferase), RAP1A (specific substrate of geranylgeranyl transferase-1), or Ras. As TLN-4601 did not inhibit EGFR, Raf-1, MEK or ERK1/2 kinase activities, the inhibitory effect of TLN-4601 on Ras signaling is not mediated by direct kinase inhibition. Using an Elk-1 trans-activation reporter assay, we found that TLN-4601 inhibits the MEK/ERK pathway at the level of Raf-1. Interestingly, TLN-4601 induces Raf-1 proteasomal-dependent degradation. These data indicate that TLN-4601 may inhibit the Ras-mitogen-activated protein kinase-signaling pathway by depleting the Raf-1 protein.
Collapse
|
55
|
α-Dystrobrevin distribution and association with other proteins in human promyelocytic NB4 cells treated for granulocytic differentiation. Mol Biol Rep 2010; 38:3001-11. [DOI: 10.1007/s11033-010-9965-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 01/15/2010] [Indexed: 01/26/2023]
|
56
|
Padmini E. Physiological adaptations of stressed fish to polluted environments: role of heat shock proteins. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 206:1-27. [PMID: 20652666 DOI: 10.1007/978-1-4419-6260-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fish are subjected to a wide variety of environmental stressors. Stressors affect fish at all life stages and the stress-specific responses that occur at the biochemical and physiological levels affect the overall health and longevity of such animals. In this review, the organ-specific alterations in fish that inhabit polluted environments are addressed in detail. Fish,like other vertebrates, have evolved strategies to counteract stress-mediated effects. Among the key strategies that fish have developed is the induction of HSPs. The primary functions of HSPs are to promote the proper folding or refolding of proteins, to prevent potentially damaging interactions with proteins, and aiding in the disassembly of formations of protein aggregates. Stress, a state of unbalanced tissue oxidation, causes a general disturbance in the cellular antioxidant and redox balance and evokes HSP70 overexpression. Distinct families of HSPs have diverse physiological functions, and their induction, which is regulated at the transcriptional level, is mediated by the activation of heat shock factors. Interestingly, HSPs also interact with a wide variety of signaling molecules that modulate stress-mediated apoptotic effects. Hence, HSP induction is of major importance for maintenance of cell homeostasis. HSP-mediated adaptation processes are regarded as a fundamental protective mechanism that decreases cellular sensitivity to damaging events. Thus, the adaptive expression of HSPs is a protective response that helps combat stress-induced conformational damage to proteins. Additional research is needed to gain further information on the functional significance and role of individual HSPs and to enhance the understanding of the molecular mechanisms by which they act. In addition, field studies are needed to allow comprehensive evaluation of the potential use of HSPs as biomarkers for environmental monitoring. Furthermore, the expression of HSPs in fish fluctuates in response to seasonal variation. Because HSPs serves as a tool for assessing the stressed state of individuals and/or populations, the impact of seasonal influences on constitutive and inducible factors of these proteins should also be elucidated. Such research will lead to a fundamental improvement in the understanding of the functional role of HSPs in response to natural environmental changes and may allow correlation of the action of HSPs at the molecular level with the whole organismal stress response, which, so far, remains unexplained.
Collapse
Affiliation(s)
- Ekambaram Padmini
- Department of Biochemistry, Bharathi Women's College, Chennai, 600 108, TN, India.
| |
Collapse
|
57
|
Kummar S, Gutierrez ME, Gardner ER, Chen X, Figg WD, Zajac-Kaye M, Chen M, Steinberg SM, Muir CA, Yancey MA, Horneffer YR, Juwara L, Melillo G, Ivy SP, Merino M, Neckers L, Steeg PS, Conley BA, Giaccone G, Doroshow JH, Murgo AJ. Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies. Eur J Cancer 2009; 46:340-7. [PMID: 19945858 DOI: 10.1016/j.ejca.2009.10.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 10/20/2009] [Accepted: 10/29/2009] [Indexed: 01/07/2023]
Abstract
PURPOSE Phase I dose-escalation study to determine the toxicity and maximum tolerated dose (MTD) of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein 90 (Hsp90) inhibitor, administered on a twice weekly schedule in patients with advanced cancer. EXPERIMENTAL DESIGN 17-DMAG was administered as a 1- to 2-h infusion twice weekly in 4-week cycles. An accelerated titration design was followed until toxicity was observed, at which point standard dose-escalation proceeded. MTD was defined as the dose at which no more than one of the six patients experienced a dose-limiting toxicity (DLT). Pharmacokinetics were assessed, and Hsp70 mRNA, whose gene product is a chaperone previously shown to be upregulated following the inhibition of Hsp90, was measured in peripheral blood mononuclear cells (PBMCs). RESULTS A total of 31 patients received 92 courses of treatment. The MTD was 21mg/m(2)/d; 20 patients were enrolled at this dose level. Nine patients had stable disease for a median of 4 (range 2-22) months. Both C(max) and AUC increased proportionally with dose. The most common toxicities were grade 1 or 2 fatigue, anorexia, nausea, blurred vision and musculoskeletal pain. DLTs were peripheral neuropathy and renal dysfunction. Expression of Hsp70 mRNA in PBMCs was highly variable. CONCLUSION Twice-weekly i.v. infusion of 17-DMAG is well tolerated, and combination phase I studies are warranted.
Collapse
Affiliation(s)
- Shivaani Kummar
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Can BAD pores be good? New insights from examining BAD as a target of RAF kinases. ACTA ACUST UNITED AC 2009; 50:147-59. [PMID: 19895838 DOI: 10.1016/j.advenzreg.2009.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
59
|
Huang KH, Veal JM, Fadden RP, Rice JW, Eaves J, Strachan JP, Barabasz AF, Foley BE, Barta TE, Ma W, Silinski MA, Hu M, Partridge JM, Scott A, DuBois LG, Freed T, Steed PM, Ommen AJ, Smith ED, Hughes PF, Woodward AR, Hanson GJ, McCall WS, Markworth CJ, Hinkley L, Jenks M, Geng L, Lewis M, Otto J, Pronk B, Verleysen K, Hall SE. Discovery of novel 2-aminobenzamide inhibitors of heat shock protein 90 as potent, selective and orally active antitumor agents. J Med Chem 2009; 52:4288-305. [PMID: 19552433 DOI: 10.1021/jm900230j] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel class of heat shock protein 90 (Hsp90) inhibitors was developed from an unbiased screen to identify protein targets for a diverse compound library. These indol-4-one and indazol-4-one derived 2-aminobenzamides showed strong binding affinity to Hsp90, and optimized analogues exhibited nanomolar antiproliferative activity across multiple cancer cell lines. Heat shock protein 70 (Hsp70) induction and specific client protein degradation in cells on treatment with the inhibitors supported Hsp90 inhibition as the mechanism of action. Computational chemistry and X-ray crystallographic analysis of selected member compounds clearly defined the protein-inhibitor interaction and assisted the design of analogues. 4-[6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydro-1H-indazol-1-yl]-2-[(trans-4-hydroxycyclohexyl)amino]benzamide (SNX-2112, 9) was identified as highly selective and potent (IC(50) Her2 = 11 nM, HT-29 = 3 nM); its prodrug amino-acetic acid 4-[2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-trifluoromethyl-4,5,6,7-tetrahydro-indazol-1-yl)-phenylamino]-cyclohexyl ester methanesulfonate (SNX-5422, 10) was orally bioavailable and efficacious in a broad range of xenograft tumor models (e.g. 67% growth delay in a HT-29 model) and is now in multiple phase I clinical trials.
Collapse
|
60
|
Kawabe M, Mandic M, Taylor JL, Vasquez CA, Wesa AK, Neckers LM, Storkus WJ. Heat shock protein 90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin enhances EphA2+ tumor cell recognition by specific CD8+ T cells. Cancer Res 2009; 69:6995-7003. [PMID: 19690146 DOI: 10.1158/0008-5472.can-08-4511] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
EphA2, a member of the receptor tyrosine kinase family, is commonly expressed by a broad range of cancer types, where its level of (over)expression correlates with poor clinical outcome. Because tumor cell expressed EphA2 is a nonmutated "self" protein, specific CD8(+) T cells are subject to self-tolerance mechanisms and typically exhibit only moderate-to-low functional avidity, rendering them marginally competent to recognize EphA2(+) tumor cells in vitro or in vivo. We have recently reported that the ability of specific CD8(+) T cells to recognize EphA2(+) tumor cells can be augmented after the cancer cells are pretreated with EphA2 agonists that promote proteasomal degradation and up-regulated expression of EphA2/class I complexes on the tumor cell membrane. In the current study, we show that treatment of EphA2(+) tumor cells with the irreversible heat shock protein 90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), similarly enhances their recognition by EphA2-specific CD8(+) T-cell lines and clones in vitro via a mechanism that is dependent on proteasome and transporter-associated protein function as well as the retrotranslocation of EphA2 into the tumor cytoplasm. When 17-DMAG and agonist anti-EphA2 monoclonal antibodies are coapplied, T-cell recognition of tumor cells is further increased over that observed for either agent alone. These studies suggest that EphA2 represents a novel heat shock protein 90 client protein and that the treatment of cancer patients with 17-DMAG-based "pulse" therapy may improve the antitumor efficacy of CD8(+) T effector cells reactive against EphA2-derived epitopes.
Collapse
Affiliation(s)
- Mayumi Kawabe
- Department of Immunology, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Akimoto T, Nonaka T, Harashima K, Sakurai H, Ishikawa H, Mitsuhashi N. Radicicol potentiates heat‐induced cell killing in a human oesophageal cancer cell line: the Hsp90 chaperone complex as a new molecular target for enhancement of thermosensitivity. Int J Radiat Biol 2009; 80:483-92. [PMID: 15360086 DOI: 10.1080/09553000410001725107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To examine the ability of a heat shock protein 90 (Hsp90) chaperone complex inhibitor, radicicol, to modify thermal response and heat-induced cell killing, and to clarify the underlining mechanisms. MATERIALS AND METHODS A human oesophageal cancer cell line (TE-1), with a mutant p53 gene, was used. To examine the effect of radicicol on heat-induced cell killing, radicicol at a concentration of 100 nM was incubated with the cells for 7 h during heat treatment. Changes in the expression of proteins were examined by Western blot and immunofluorescence analysis. RESULTS Radicicol in combination with heat synergistically potentiated heat-induced cellular killing despite an increase in the expression of Hsp72 and Hsp27 caused by radicicol. Heat alone activated Raf-1 and p42/p44 extracellular signal-regulated kinase (Erk), and heat in combination with radicicol inhibited the activation of Raf-1 and p42/p44 Erk through reduced binding of Raf-1 to Hsp90. Phosphorylation of Akt was also decreased by radicicol. CONCLUSIONS The Hsp90 chaperone complex inhibitor, radicicol, potentiated heat-induced cellular killing, and inhibition of p42/p44 Erk and Akt activation rather than modification of Hsp expression might be involved in enhancing cellular thermosensitivity. Results suggest that the Hsp90 chaperone complex could be a new molecular target for the modification of the cellular response to heat.
Collapse
Affiliation(s)
- T Akimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | |
Collapse
|
62
|
Wang S, Pashtan I, Tsutsumi S, Xu W, Neckers L. Cancer cells harboring MET gene amplification activate alternative signaling pathways to escape MET inhibition but remain sensitive to Hsp90 inhibitors. Cell Cycle 2009; 8:2050-6. [PMID: 19502802 PMCID: PMC7282701 DOI: 10.4161/cc.8.13.8861] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) receptor c-Met is implicated in growth, invasion and metastasis of many tumors. Tumor cells harboring MET gene amplification are initially sensitive to c-Met tyrosine kinase inhibitors (TKI), but escape from long-term treatment has not been investigated. C-Met is a client of heat shock protein 90 (Hsp90) and is destabilized by Hsp90 inhibitors, suggesting that these drugs may inhibit tumors driven by MET amplification, although tumor escape under these conditions also has not been explored. Here, we evaluated the initial inhibitory effects of, and the likelihood of escape from, the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) and the c-Met TKI SU11274, using two cell lines harboring MET gene amplification. 17-AAG inhibited cell growth in both cell lines and induced substantial apoptosis, whereas SU11274 was only growth inhibitory in one cell line. In both cell lines, c-Met-dependent Akt, Erk and/or STAT3 signaling, as well as activation of the EGFR family, resumed shortly after treatment with c-Met TKI despite sustained c-Met inhibition. PKC delta upregulation may participate in reactivation of c-Met downstream signaling in both cell lines. In contrast to c-Met TKI, 17-AAG destabilized c-Met protein and durably blocked reactivation of downstream signaling pathways and EGFR family members. Our data demonstrate that downstream signaling in tumor cells overexpressing c-Met is not stably suppressed by c-Met TKI, even though c-Met remains fully inhibited. In contrast, Hsp90 inhibitors provide long-lasting suppression of c-Met-dependent signaling, and these drugs should be further evaluated in tumors driven by MET gene amplification.
Collapse
Affiliation(s)
- Suiquan Wang
- Urologic Oncology Branch; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Itai Pashtan
- Urologic Oncology Branch; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Shinji Tsutsumi
- Urologic Oncology Branch; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Wanping Xu
- Urologic Oncology Branch; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Len Neckers
- Urologic Oncology Branch; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| |
Collapse
|
63
|
Synergism of heat shock protein 90 and histone deacetylase inhibitors in synovial sarcoma. Sarcoma 2009; 2009:794901. [PMID: 19325926 PMCID: PMC2659882 DOI: 10.1155/2009/794901] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/02/2009] [Accepted: 01/18/2009] [Indexed: 12/02/2022] Open
Abstract
Current systemic therapies have little curative benefit for synovial sarcoma. Histone deacetylase (HDAC) inhibitors and the heat shock protein 90 (Hsp90) inhibitor 17-AAG have recently been shown to inhibit synovial sarcoma in preclinical models. We tested combinations of
17-AAG with the HDAC inhibitor MS-275 for synergism by proliferation and apoptosis assays. The combination was found to be synergistic at multiple time points in two synovial sarcoma cell lines. Previous studies have shown that HDAC inhibitors not only induce cell death but also activate the survival pathway NF-κB, potentially limiting therapeutic benefit. As 17-AAG inhibits activators of NF-κB, we tested if 17-AAG synergizes with MS-275 through abrogating NF-κB activation. In our assays, adding 17-AAG blocks NF-κB activation by MS-275 and siRNA directed against histone deacetylase 3 (HDAC3) recapitulates the effects of MS-275. Additionally, we find that the NF-κB inhibitor BAY 11-7085 synergizes with MS-275. We conclude that agents inhibiting NF-κB synergize with HDAC inhibitors against synovial sarcoma.
Collapse
|
64
|
Mkaddem SB, Werts C, Goujon JM, Bens M, Pedruzzi E, Ogier-Denis E, Vandewalle A. Heat shock protein gp96 interacts with protein phosphatase 5 and controls toll-like receptor 2 (TLR2)-mediated activation of extracellular signal-regulated kinase (ERK) 1/2 in post-hypoxic kidney cells. J Biol Chem 2009; 284:12541-9. [PMID: 19265198 DOI: 10.1074/jbc.m808376200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) induces an innate immune response, leading to an inflammatory reaction and tissue damage that have been attributed to engagement of the Toll-like receptor (TLR) 2 and 4. However, the respective roles of TLR2 and/or TLR4 in mediating downstream activation of mitogen-activated protein kinase (MAPK) pathways during IRI have not been fully elucidated. Here we show that extracellular signal-regulated kinase (ERK)1/2 is activated in both intact kidneys and cultured renal tubule epithelial cells (RTECs) from wildtype and Tlr4 knockout mice, but not those from Tlr2 knockout mice subjected to transient ischemia. Geldanamycin (GA), an inhibitor of heat shock protein 90 and reticulum endoplasmic-resident gp96, and gp96 mRNA silencing (siRNA), did not affect ERK1/2 activation in either post-hypoxic wild-type or Tlr4-deficient RTECs, but did restore its activation in post-hypoxic Tlr2-deficient RTECs. Immunoprecipitation studies revealed that gp96 co-immunoprecipitates with the serine-threonine protein phosphatase 5 (PP5), identified as a negative modulator of the mitogen extracellular kinase (MEK)-ERK pathway, in unstressed wild-type and post-hypoxic Tlr2-deficient RTECs. In contrast, PP5 co-immunoprecipitation with gp96 was strikingly reduced in post-hypoxic wild-type RTECs, suggesting that the inactivation of PP5 resulting from the dissociation of PP5 from gp96 allows the activation of ERK1/2 to occur. Inhibition of PP5 by okadaic acid, and Pp5 siRNA also restored TLR2-mediated phosphorylation of ERK1/2, and apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK)-mediated apoptosis in post-hypoxic Tlr2-deficient RTECs. These findings indicate that gp96 interacts with PP5 and controls TLR2-mediated induction of ERK1/2 in post-hypoxic renal tubule cells.
Collapse
Affiliation(s)
- Sanae Ben Mkaddem
- INSERM U773, Centre de Recherche Biomédicale Bichat-Beaujon CRB3, UFR de Médecine Xavier Bichat, Université Paris 7-Denis Diderot, Site Bichat, BP 416, F-75870 Paris Cedex 18, France
| | | | | | | | | | | | | |
Collapse
|
65
|
Jin E, Sano M. Neurite outgrowth of NG108-15 cells induced by heat shock protein 90 inhibitors. Cell Biochem Funct 2009; 26:825-32. [PMID: 18636417 DOI: 10.1002/cbf.1458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We previously reported that radicicol (Rad) and geldanamycin (Geld), heat shock protein 90 (Hsp90) inhibitors, potentiate neurite growth of cultured sensory neurons from chick embryo. We now show that the antibiotics induce neurite growth in NG108-15 cells. Treatment of the cells with these drugs caused transient decrease in protein levels of Raf1, ERK1/2, phosphorylated ERK1/2, Akt1, and CDK4. The neurite growth of NG108-15 induced by the inhibitors was blocked by actynomycin D, but the neurite growth stimulated by dbcAMP in the cells was not affected. The neurite growth could be due to a change in the synthesis of some specific protein(s) and is speculated to be due to the transient downregulation of particular-signaling molecules stabilized by Hsp90.
Collapse
Affiliation(s)
- Erika Jin
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto 603-8334, Japan
| | | |
Collapse
|
66
|
Fang S, Fu J, Yuan X, Han C, Shi L, Xin Y, Luo L, Yin Z. Heat shock protein 90 regulates the stability of MEKK3 in HEK293 cells. Cell Immunol 2009; 259:49-55. [DOI: 10.1016/j.cellimm.2009.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/14/2009] [Accepted: 05/22/2009] [Indexed: 12/21/2022]
|
67
|
Solit DB, Osman I, Polsky D, Panageas KS, Daud A, Goydos JS, Teitcher J, Wolchok JD, Germino FJ, Krown SE, Coit D, Rosen N, Chapman PB. Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res 2008; 14:8302-7. [PMID: 19088048 PMCID: PMC2629404 DOI: 10.1158/1078-0432.ccr-08-1002] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Activation of the mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol 3-kinase/AKT pathway seems to be critical for melanoma proliferation. Components of these pathways are client proteins of heat-shock protein 90 (hsp90), suggesting that inhibition of hsp90 could have significant antimelanoma effects. We conducted a phase II trial using the hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) in melanoma patients. The primary end points were clinical responses and whether treatment inhibited MAPK pathway activity. EXPERIMENTAL DESIGN Melanoma patients with measurable disease were stratified on the basis of whether or not their tumor harbored a V600E BRAF mutation. The hsp90 inhibitor 17-AAG was administered i.v. once weekly x 6 weeks at 450 mg/m2. Tumor biopsies were obtained pretreatment and 18 to 50 hours after the first dose of 17-AAG, and were snap-frozen. RESULTS Fifteen evaluable patients were treated; nine had BRAF mutations and six were wild-type. No objective responses were observed. Western blot analysis of tumor biopsies showed an increase in hsp70 and a decrease in cyclin D1 expression in the posttreatment biopsies but no significant effect on RAF kinases or phospho-extracellular signal-regulated kinase expression. Plasma analyzed by mutant-specific PCR for V600E BRAF showed 86% sensitivity and 67% specificity in predicting tumor DNA sequencing results. CONCLUSIONS At this dose and schedule of 17-AAG, the effects of 17-AAG on RAF kinase expression were short-lived, and no objective antimelanoma responses were seen. Future trials in melanoma should focus on a more potent hsp90 inhibitor or a formulation that can be administered chronically for a more prolonged suppression of the MAPK pathway.
Collapse
Affiliation(s)
- David B. Solit
- Department of Medicine, Memorial Sloan-Kettering Cancer Center
| | - Iman Osman
- Department of Urology, NYU Cancer Institute, New York University School of Medicine, New York, New York
- Department of Dermatology, NYU Cancer Institute, New York University School of Medicine, New York, New York
| | - David Polsky
- Department of Dermatology, NYU Cancer Institute, New York University School of Medicine, New York, New York
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, New York, New York
| | - Katherine S. Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center
| | - Adil Daud
- Department of Medicine, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - James S. Goydos
- Department of Surgery, The Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | - Jedd D. Wolchok
- Department of Medicine, Memorial Sloan-Kettering Cancer Center
| | - F. Joseph Germino
- Department of Medicine, The Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Susan E. Krown
- Department of Medicine, Memorial Sloan-Kettering Cancer Center
| | - Daniel Coit
- Department of Surgery, Memorial Sloan-Kettering Cancer Center
| | - Neal Rosen
- Department of Medicine, Memorial Sloan-Kettering Cancer Center
| | - Paul B. Chapman
- Department of Medicine, Memorial Sloan-Kettering Cancer Center
| |
Collapse
|
68
|
X-linked and cellular IAPs modulate the stability of C-RAF kinase and cell motility. Nat Cell Biol 2008; 10:1447-55. [PMID: 19011619 DOI: 10.1038/ncb1804] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/27/2008] [Indexed: 12/18/2022]
Abstract
Inhibitor of apoptosis proteins (IAP) are evolutionarily conserved anti-apoptotic regulators. C-RAF protein kinase is a direct RAS effector protein, which initiates the classical mitogen-activated protein kinase (MAPK) cascade. This signalling cascade mediates diverse biological functions, such as cell growth, proliferation, migration, differentiation and survival. Here we demonstrate that XIAP and c-IAPs bind directly to C-RAF kinase and that siRNA-mediated silencing of XIAP and c-IAPs leads to stabilization of C-RAF in human cells. XIAP binds strongly to C-RAF and promotes the ubiquitylation of C-RAF in vivo through the Hsp90-mediated quality control system, independently of its E3 ligase activity. In addition, XIAP or c-IAP-1/2 knockdown cells showed enhanced cell migration in a C-RAF-dependent manner. XIAP promotes binding of CHIP (carboxy terminal Hsc70-interacting protein), a chaperone-associated ubiquitin ligase, to the C-RAF-Hsp90 complex in vivo. Interfering with CHIP expression resulted in stabilization of C-RAF and enhanced cell migration, as observed in XIAP knockdown cells. Our data show an unexpected role of XIAP and c-IAPs in the turnover of C-RAF protein, thereby modulating the MAPK signalling pathway and cell migration.
Collapse
|
69
|
Macy ME, Sawczyn KK, Garrington TP, Graham DK, Gore L. Pediatric developmental therapies: interesting new drugs now in early-stage clinical trials. Curr Oncol Rep 2008; 10:477-90. [PMID: 18928662 PMCID: PMC3309527 DOI: 10.1007/s11912-008-0073-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The current high cure rates for children diagnosed with cancer can be attributed in part to emphasis on large cooperative group clinical trials. The significant improvement in pediatric cancer survival over the past few decades is the result of optimized chemotherapy drug dosing, timing, and intensity; however, further alterations in traditional chemotherapy agents are unlikely to produce substantially better outcomes. Furthermore, there remains a subset of patients who have a very poor prognosis due to tumor type or stage at presentation, or who have a dismal prognosis with relapse or recurrence. As such, innovative approaches to therapy and new drugs are clearly needed for introduction into the current pediatric oncology arsenal. A variety of biologically targeted therapies that have shown promise in preclinical studies and early-phase adult clinical trials are now being explored in pediatric clinical trials. These novel agents hold the promise for continuing to drive forward improvements in patient survival, with potentially less toxicity than exists with traditional chemotherapy drugs.
Collapse
|
70
|
Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 2008; 33:341-65. [PMID: 11101008 PMCID: PMC6496586 DOI: 10.1046/j.1365-2184.2000.00189.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chaperones/heat shock proteins (HSPs) of the HSP90 and HSP70 families show elevated levels in proliferating mammalian cells and a cell cycle-dependent expression. They transiently associate with key molecules of the cell cycle control system such as Cdk4, Wee-1, pRb, p53, p27/Kip1 and are involved in the nuclear localization of regulatory proteins. They also associate with viral oncoproteins such as SV40 super T, large T and small t antigen, polyoma large and middle S antigen and EpsteinBarr virus nuclear antigen. This association is based on a J-domain in the viral proteins and may assist their targeting to the pRb/E2F complex. Small HSPs and their state of phosphorylation and oligomerization also seem to be involved in proliferation and differentiation. Chaperones/HSPs thus play important roles within cell cycle processes. Their exact functioning, however, is still a matter of discussion. HSP90 in particular, but also HSP70 and other chaperones associate with proteins of the mitogen-activated signal cascade, particularly with the Src kinase, with tyrosine receptor kinases, with Raf and the MAP-kinase activating kinase (MEK). This apparently serves the folding and translocation of these proteins, but possibly also the formation of large immobilized complexes of signal transducing molecules (scaffolding function).
Collapse
Affiliation(s)
- K Helmbrecht
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany
| | | | | |
Collapse
|
71
|
Al Shaer L, Walsby E, Gilkes A, Tonks A, Walsh V, Mills K, Burnett A, Rowntree C. Heat shock protein 90 inhibition is cytotoxic to primary AML cells expressing mutant FLT3 and results in altered downstream signalling. Br J Haematol 2008; 141:483-93. [DOI: 10.1111/j.1365-2141.2008.07053.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
72
|
Chandarlapaty S, Sawai A, Ye Q, Scott A, Silinski M, Huang K, Fadden P, Partdrige J, Hall S, Steed P, Norton L, Rosen N, Solit DB. SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase-dependent cancers. Clin Cancer Res 2008; 14:240-8. [PMID: 18172276 DOI: 10.1158/1078-0432.ccr-07-1667] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The heat shock protein 90 (Hsp90) chaperone plays an important role in transformation by regulating the conformational maturation and stability of oncogenic kinases and transcription factors. Ansamycins, such as 17-(allylamino)-17-demethoxygeldanmycin (17-AAG), inhibit Hsp90 function; induce the degradation of Hsp90 client proteins such as HER2, and have shown activity in early clinical trials. However, the utility of these drugs has been limited by their hepatotoxicity, poor solubility, and poorly tolerated formulations. EXPERIMENTAL DESIGN We determined the pharmacodynamic and antitumor properties of a novel, synthetic Hsp90 inhibitor, SNX-2112, in cell culture and xenograft models of HER kinase-dependent cancers. RESULTS We show in a panel of tumor cell lines that SNX-2112 and its prodrug SNX-5542 are Hsp90 inhibitors with properties and potency similar to that of 17-AAG, including: degradation of HER2, mutant epidermal growth factor receptor, and other client proteins, inhibition of extracellular signal-regulated kinase and Akt activation, and induction of a Rb-dependent G(1) arrest with subsequent apoptosis. SNX-5542 can be administered to mice orally on a daily schedule. Following oral administration, SNX-5542 is rapidly converted to SNX-2112, which accumulates in tumors relative to normal tissues. A single dose of SNX-5542 causes HER2 degradation and inhibits its downstream signaling for up to 24 h, and daily dosing results in regression of HER2-dependent xenografts. SNX-5542 also shows greater activity than 17-AAG in a non-small cell lung cancer xenograft model expressing mutant EGFR. CONCLUSIONS These results suggest that Hsp90 inhibition with SNX-2112 (delivered as a prodrug) may represent a promising therapeutic strategy for tumors whose growth and survival is dependent on Hsp90 clients.
Collapse
Affiliation(s)
- Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Sawai A, Chandarlapaty S, Greulich H, Gonen M, Ye Q, Arteaga CL, Sellers W, Rosen N, Solit DB. Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel. Cancer Res 2008; 68:589-96. [PMID: 18199556 DOI: 10.1158/0008-5472.can-07-1570] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in the kinase domain of the epidermal growth factor receptor (EGFR) are found in a subset of patients with lung cancer and correlate with response to EGFR tyrosine kinase inhibitors (TKI). Resistance to these agents invariably develops, and current treatment strategies have limited efficacy in this setting. Hsp90 inhibitors, such as 17-allylamino-17-demethoxygeldanamycin (17-AAG), induce the degradation of EGFR and other Hsp90 interacting proteins and may thus have utility in tumors dependent upon sensitive Hsp90 clients. We find that the EGFR mutations found most commonly in patients with lung adenocarcinoma who respond to EGFR TKIs are potently degraded by 17-AAG. Although the expression of wild-type EGFR was also down-regulated by 17-AAG, its degradation required higher concentrations of drug and a longer duration of drug exposure. In animal models, a single dose of 17-AAG was sufficient to induce degradation of mutant EGFR and inhibit downstream signaling. 17-AAG treatment, at its maximal tolerated dose, caused a significant delay in H3255 (L858R EGFR) xenograft growth but was less effective than the EGFR TKI gefitinib. 17-AAG alone delayed, but did not completely inhibit, the growth of H1650 and H1975 xenografts, two EGFR mutant models which show intermediate and high levels of gefitinib resistance. 17-AAG could be safely coadministered with paclitaxel, and the combination was significantly more effective than either drug alone. These data suggest that Hsp90 inhibition in combination with chemotherapy may represent an effective treatment strategy for patients whose tumors express EGFR kinase domain mutations, including those with de novo and acquired resistance to EGFR TKIs.
Collapse
Affiliation(s)
- Ayana Sawai
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Banerji U, Sain N, Sharp SY, Valenti M, Asad Y, Ruddle R, Raynaud F, Walton M, Eccles SA, Judson I, Jackman AL, Workman P. An in vitro and in vivo study of the combination of the heat shock protein inhibitor 17-allylamino-17-demethoxygeldanamycin and carboplatin in human ovarian cancer models. Cancer Chemother Pharmacol 2008; 62:769-78. [DOI: 10.1007/s00280-007-0662-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 12/08/2007] [Indexed: 10/22/2022]
|
75
|
Georgakis GV, Li Y, Rassidakis GZ, Medeiros LJ, Younes A. The HSP90 inhibitor 17-AAG synergizes with doxorubicin and U0126 in anaplastic large cell lymphoma irrespective of ALK expression. Exp Hematol 2007; 34:1670-9. [PMID: 17157164 DOI: 10.1016/j.exphem.2006.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/08/2006] [Accepted: 07/10/2006] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Heat shock protein 90 (HSP90) chaperones and maintains the molecular integrity of a variety of signal transduction proteins, including the nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) oncogenic protein, a genetic abnormality that is frequently observed in anaplastic large cell lymphoma (ALCL) cells. Here we demonstrate that HSP90 is overexpressed in primary and cultured ALK-positive and ALK-negative ALCL cells, and we evaluate the potential role of the small molecule inhibitor of HSP90, 17-allylamino-17-demethoxygeldanamycin (17-AAG) in treating ALCL. METHODS The antiproliferative effect of 17-AAG-cultured cells was determined by MTS assay. Apoptosis and cell-cycle arrest were determined by Annexin-V/propidium iodide and propidium iodide staining, respectively, and fluorescein-activated cell sorting analysis. Expression of HSP90 was evaluated by immunohistochemistry, and molecular changes were determined by Western blot. RESULTS Treatment of cultured ALCL cells with 17-AAG induced cell-cycle arrest and apoptosis, irrespective of ALK expression. At the molecular level, 17-AAG induced degradation of ALK and Akt proteins, dephosphorylated extracellular signal-regulated kinase, and degraded the cell-cycle regulatory protein cyclin D1 and its cyclin-dependent kinases, CDK4 and CDK6, but had a differential effect on p27 and p53 proteins. Inhibition of extracellular signal-regulated kinase phosphorylation by the mitogen activated protein kinase inhibitor U0126 induced cell death in all ALCL cell lines, and sublethal concentration 17-AAG showed synergistic antiproliferative effects when combined with U0126 or doxorubicin. CONCLUSION Our data demonstrate that targeting HSP90 function by 17-AAG may offer a novel therapeutic strategy for ALCL, either as single-agent activity or by combining 17-AAG with conventional or targeted therapeutic schemes.
Collapse
Affiliation(s)
- Georgios V Georgakis
- Departments of Lymphoma and Myeloma, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
76
|
Kummar S, Gutierrez M, Gardner ER, Donovan E, Hwang K, Chung EJ, Lee MJ, Maynard K, Kalnitskiy M, Chen A, Melillo G, Ryan QC, Conley B, Figg WD, Trepel JB, Zwiebel J, Doroshow JH, Murgo AJ. Phase I trial of MS-275, a histone deacetylase inhibitor, administered weekly in refractory solid tumors and lymphoid malignancies. Clin Cancer Res 2007; 13:5411-7. [PMID: 17875771 DOI: 10.1158/1078-0432.ccr-07-0791] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE MS-275 is a histone deacetylase inhibitor that has shown potent and unique anticancer activity in preclinical models. The aims of this phase I trial were to determine the dose-limiting toxicities and maximum tolerated dose of oral MS-275 in humans administered with food on a once weekly schedule and to study the pharmacokinetics of oral MS-275. EXPERIMENTAL DESIGN Patients with refractory solid tumors and lymphoid malignancies were treated with oral MS-275 on a once weekly schedule for 4 weeks of a 6-week cycle. Samples for pharmacokinetic and pharmacodynamic analyses were collected during cycle 1. Protein acetylation in subpopulations of peripheral blood mononuclear cells was measured using a multivariable flow cytometry assay. RESULTS A total of 22 patients were enrolled, and 19 were considered evaluable for toxicity. The maximum tolerated dose was 6 mg/m(2). No National Cancer Institute Common Toxicity Criteria grade 4 toxicities were observed. Dose-limiting grade 3 toxicities were reversible and consisted of hypophosphatemia, hyponatremia, and hypoalbuminemia. Non-dose-limiting grade 3 myelosuppression was also observed. The mean terminal half-life of MS-275 was 33.9 +/- 26.2 and the T(max) ranged from 0.5 to 24 h. Although there was considerable interpatient variability in pharmacokinetics, the area under the plasma concentration versus time curve increased linearly with dose. CONCLUSIONS MS-275 is well tolerated at a dose of 6 mg/m(2) administered weekly with food for 4 weeks every 6 weeks. Drug exposure increases linearly with dose, and protein acetylation increased in all the subpopulations of peripheral blood mononuclear cells following MS-275 administration.
Collapse
Affiliation(s)
- Shivaani Kummar
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Bagatell R, Gore L, Egorin MJ, Ho R, Heller G, Boucher N, Zuhowski EG, Whitlock JA, Hunger SP, Narendran A, Katzenstein HM, Arceci RJ, Boklan J, Herzog CE, Whitesell L, Ivy SP, Trippett TM. Phase I pharmacokinetic and pharmacodynamic study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study. Clin Cancer Res 2007; 13:1783-8. [PMID: 17363533 DOI: 10.1158/1078-0432.ccr-06-1892] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Heat shock protein 90 (Hsp90) is essential for the posttranslational control of many regulators of cell growth, differentiation, and apoptosis. 17-N-Allylamino-17-demethoxygeldanamycin (17-AAG) binds to Hsp90 and alters levels of proteins regulated by Hsp90. We conducted a phase I trial of 17-AAG in pediatric patients with recurrent or refractory neuroblastoma, Ewing's sarcoma, osteosarcoma, and desmoplastic small round cell tumor to determine the maximum tolerated dose, define toxicity and pharmacokinetic profiles, and generate data about molecular target modulation. EXPERIMENTAL DESIGN Escalating doses of 17-AAG were administered i.v. over 1 to 2 h twice weekly for 2 weeks every 21 days until patients experienced disease progression or toxicity. harmacokinetic and pharmacodynamic studies were done during cycle 1. RESULTS Fifteen patients were enrolled onto dose levels between 150 and 360 mg/m(2); 13 patients were evaluable for toxicity. The maximum tolerated dose was 270 mg/m(2). DLTs were grade 3 transaminitis and hypoxia. Two patients with osteosarcoma and bulky pulmonary metastases died during cycle 1 and were not evaluable for toxicity. No objective responses were observed. 17-AAG pharmacokinetics in pediatric patients were linear; clearance and half-life were 21.6 +/- 6.21 (mean +/- SD) L/h/m(2) and 2.6 +/- 0.95 h, respectively. Posttherapy increases in levels of the inducible isoform of Hsp70, a marker of target modulation, were detected in peripheral blood mononuclear cells at all dose levels. CONCLUSION 17-AAG was well tolerated at a dose of 270 mg/m(2) administered twice weekly for 2 of 3 weeks. Caution should be used in treatment of patients with bulky pulmonary disease.
Collapse
Affiliation(s)
- Rochelle Bagatell
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Kasibhatla SR, Hong K, Biamonte MA, Busch DJ, Karjian PL, Sensintaffar JL, Kamal A, Lough RE, Brekken J, Lundgren K, Grecko R, Timony GA, Ran Y, Mansfield R, Fritz LC, Ulm E, Burrows FJ, Boehm MF. Rationally Designed High-Affinity 2-Amino-6-halopurine Heat Shock Protein 90 Inhibitors That Exhibit Potent Antitumor Activity. J Med Chem 2007; 50:2767-78. [PMID: 17488003 DOI: 10.1021/jm050752+] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone protein implicated in stabilizing the conformation and maintaining the function of many cell-signaling proteins. Many oncogenic proteins are more dependent on Hsp90 in maintaining their conformation, stability, and maturation than their normal counterparts. Furthermore, recent data show that Hsp90 exists in an activated form in malignant cells but in a latent inactive form in normal tissues, suggesting that inhibitors selective for the activated form could provide a high therapeutic index. Hence, Hsp90 is emerging as an exciting new target for the treatment of cancer. We now report on a novel series of 2-amino-6-halopurine Hsp90 inhibitors exemplified by 2-amino-6-chloro-9-(4-iodo-3,5-dimethylpyridin-2-ylmethyl)purine (30). These highly potent inhibitors (IC50 of 30 = 0.009 microM in a HER-2 degradation assay) also display excellent antiproliferative activity against various tumor cell lines (IC50 of 30 = 0.03 microM in MCF7 cells). Moreover, this class of inhibitors shows higher affinity for the activated form of Hsp90 compared to our earlier 8-sulfanylpurine Hsp90 inhibitor series. When administered orally to mice, these compounds exhibited potent tumor growth inhibition (>80%) in an N87 xenograft model, similar to that observed with 17-allylamino-17-desmethoxygeldanamycin (17-AAG), which is a compound currently in phase I/II clinical trials.
Collapse
Affiliation(s)
- Srinivas R Kasibhatla
- Department of Chemistry, Biogen Idec, Inc., 5200 Research Place, San Diego, CA 92122, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Solit DB, Ivy SP, Kopil C, Sikorski R, Morris MJ, Slovin SF, Kelly WK, DeLaCruz A, Curley T, Heller G, Larson S, Schwartz L, Egorin MJ, Rosen N, Scher HI. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin Cancer Res 2007; 13:1775-82. [PMID: 17363532 PMCID: PMC3203693 DOI: 10.1158/1078-0432.ccr-06-1863] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To define the maximum tolerated dose (MTD), toxicities, and pharmacokinetics of 17-allylamino-17-demethoxygeldanamycin (17-AAG) when administered using continuous and intermittent dosing schedules. EXPERIMENTAL DESIGN Patients with progressive solid tumor malignancies were treated with 17-AAG using an accelerated titration dose escalation schema. The starting dose and schedule were 5 mg/m(2) daily for 5 days with cycles repeated every 21 days. Dosing modifications based on safety, pharmacodynamic modeling, and clinical outcomes led to the evaluation of the following schedules: daily x 3 repeated every 14 days; twice weekly (days 1, 4, 8, and 11) for 2 weeks every 3 weeks; and twice weekly (days 1 and 4) without interruption. During cycle 1, blood was collected for pharmacokinetic and pharmacodynamic studies. RESULTS Fifty-four eligible patients were treated. The MTD was schedule dependent: 56 mg/m(2) on the daily x 5 schedule; 112 mg/m(2) on the daily x 3 schedule; and 220 mg/m(2) on the days 1, 4, 8, and 11 every-21-day schedule. Continuous twice-weekly dosing was deemed too toxic because of delayed hepatotoxicity. Hepatic toxicity was also dose limiting with the daily x 5 schedule. Other common toxicities encountered were fatigue, myalgias, and nausea. This latter adverse effect may have been attributable, in part, to the DMSO-based formulation. Concentrations of 17-AAG above those required for activity in preclinical models could be safely achieved in plasma. Induction of a heat shock response and down-regulation of Akt and Raf-1 were observed in biomarker studies. CONCLUSION The MTD and toxicity profile of 17-AAG were schedule dependent. Intermittent dosing schedules were less toxic and are recommended for future phase II studies.
Collapse
Affiliation(s)
- David B. Solit
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - S. Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Centers, National Cancer Institute, Bethesda, Maryland
| | - Catherine Kopil
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Rachel Sikorski
- Molecular Therapeutics/Drug Discovery Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael J. Morris
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Susan F. Slovin
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - W. Kevin Kelly
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Anthony DeLaCruz
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Tracy Curley
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Glenn Heller
- Department of Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Steven Larson
- Department of Nuclear Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lawrence Schwartz
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Merrill J. Egorin
- Molecular Therapeutics/Drug Discovery Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Neal Rosen
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Howard I. Scher
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
80
|
Takabatake R, Ando Y, Seo S, Katou S, Tsuda S, Ohashi Y, Mitsuhara I. MAP kinases function downstream of HSP90 and upstream of mitochondria in TMV resistance gene N-mediated hypersensitive cell death. PLANT & CELL PHYSIOLOGY 2007; 48:498-510. [PMID: 17289794 DOI: 10.1093/pcp/pcm021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although the involvement of heat shock protein 90 (HSP90), mitogen-activated protein kinase (MAPK) cascades and organelle dysfunction in plant hypersensitive cell death has been suggested, the mutual relationship among them has not been elucidated. Here, we show the molecular network of HSP90, the wound-induced protein kinase (WIPK)/salicylic acid-induced protein kinase (SIPK)-mediated MAPK cascade and mitochondrial dysfunction in tobacco mosaic virus (TMV) resistance gene N-dependent cell death. p50, the Avr component for N, NtMEK2(DD), a constitutively active form of a MAPK kinase of WIPK/SIPK, and a mammalian pro-apoptotic factor Bax were used for cell death induction. Suppression of HSP90 and treatment with geldanamycin, a specific inhibitor of HSP90, compromised p50- but not NtMEK2(DD)- or Bax-mediated cell death accompanying the reduction of NtMEK2, WIPK and SIPK activation. In WIPK/SIPK-double knockdown plants, p50- and NtMEK2(DD)- but not Bax-mediated cell death was suppressed. All three types of cell death induced mitochondrial dysfunction, but they were similarly suppressed by Bcl-xL, which is a mammalian anti-apoptotic factor, and prevents mitochondrial dysfunction in plants as it does in animals in the cell death signal pathway. Taken together with the expression profile of hypersensitive reaction marker genes, it was indicated that the MAPK cascade functions downstream of HSP90 and transduces the cell death signal to mitochondria for N gene-dependent cell death. Furthermore, we found that WIPK and SIPK are functionally redundant in cell death signaling using WIPK/SIPK single or double knockdown plants.
Collapse
Affiliation(s)
- Reona Takabatake
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
81
|
Chung EJ, Lee MJ, Lee S, Trepel JB. Assays for pharmacodynamic analysis of histone deacetylase inhibitors. Expert Opin Drug Metab Toxicol 2007; 2:213-30. [PMID: 16866608 DOI: 10.1517/17425255.2.2.213] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Histone deacetylase inhibitors (HDACIs) are a promising new class of targeted anticancer drugs. The pharmacodynamic (PD) assessment of whether a drug has hit its target is critically important to the successful development of any molecular targeted therapy. In the case of HDACIs there are many issues to be considered in PD development and implementation. Although originally it was thought that measurement of core histone hyperacetylation in peripheral blood mononuclear cells might suffice as a PD marker, as the field is evolving it is becoming evident that other measures may be essential, and are likely to be tumour context specific. This paper provides an overview of the assays that have been performed thus far in HDACI clinical trials, with an analysis of relative strengths and weaknesses, and a delineation of the complexity of HDACI PD analysis. Consideration is given to where new approaches are needed and potential approaches for future monotherapy and combination therapy trials are suggested.
Collapse
Affiliation(s)
- Eun Joo Chung
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Medical Oncology Branch, Building 10, Room 12N230, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
82
|
Affiliation(s)
- Kathryn Graham
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | | |
Collapse
|
83
|
Ohnishi K, Ohnishi T. Hyperthermic sensitizers targeting heat-induced signal transductions. ACTA ACUST UNITED AC 2007. [DOI: 10.4993/acrt.15.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ken Ohnishi
- Department of Biology, Nara Medical University School of Medicine
| | - Takeo Ohnishi
- Department of Biology, Nara Medical University School of Medicine
| |
Collapse
|
84
|
Zhang H, Yang YC, Zhang L, Fan J, Chung D, Choi D, Grecko R, Timony G, Karjian P, Boehm M, Burrows F. Dimeric ansamycins-A new class of antitumor Hsp90 modulators with prolonged inhibitory activity. Int J Cancer 2006; 120:918-26. [PMID: 17131314 DOI: 10.1002/ijc.22392] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The geldanamycin derivative 17-allyamino-17-demethoxygeldanamycin (17-AAG) is a clinical stage ATP-competitive HSP90 inhibitor that induces degradation of HSP90 client proteins. 17-AAG contains 1 ansamycin moiety and is highly potent in conventional cell killing assays. Since active Hsp90 exists as a dimer, we hypothesized that dimeric compounds containing 2 ansamycin pharmacophores might inhibit Hsp90 function more efficiently than 17-AAG. Here, we show that monomeric and dimeric ansamycins exert their activity in distinct ways. Under conditions of continuous exposure, 17-AAG induced client degradation and cell growth inhibition more readily than the dimeric drugs CF237 and CF483. By contrast, 24 hr treatment of various tumor cells with 17-AAG followed by drug washout caused temporary client degradation and cell cycle arrest but minimal cell death, whereas both dimers induced massive apoptosis. CF237 remained bound to Hsp90 for days after drug withdrawal and, while both monomeric and dimeric compounds caused accumulation of the inactive intermediate Hsp90 complex, this effect disappeared following washout of 17-AAG but not CF237. The dimer was also retained for longer in tumor xenografts and displayed superior antitumor activity in vivo. These results indicate that monomeric and dimeric Hsp90 inhibitors have distinct biological profiles and work differentially toward target inhibition.
Collapse
Affiliation(s)
- Hong Zhang
- Conforma Therapeutics Corporation, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Chatterjee M, Jain S, Stühmer T, Andrulis M, Ungethüm U, Kuban RJ, Lorentz H, Bommert K, Topp M, Krämer D, Müller-Hermelink HK, Einsele H, Greiner A, Bargou RC. STAT3 and MAPK signaling maintain overexpression of heat shock proteins 90alpha and beta in multiple myeloma cells, which critically contribute to tumor-cell survival. Blood 2006; 109:720-8. [PMID: 17003370 DOI: 10.1182/blood-2006-05-024372] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The combined blockade of the IL-6R/STAT3 and the MAPK signaling pathways has been shown to inhibit bone marrow microenvironment (BMM)-mediated survival of multiple myeloma (MM) cells. Here, we identify the molecular chaperones heat shock proteins (Hsp) 90alpha and beta as target genes of both pathways. The siRNA-mediated knockdown of Hsp90 or treatment with the novel Hsp90 inhibitor 17-DMAG attenuated the levels of STAT3 and phospho-ERK and decreased the viability of MM cells. Although knockdown of Hsp90beta-unlike knockdown of Hsp90alpha-was sufficient to induce apoptosis, this effect was strongly increased when both Hsp90s were targeted, indicating a cooperation of both. Given the importance of the BMM for drug resistance and MM-cell survival, apoptosis induced by Hsp90 inhibition was not mitigated in the presence of bone marrow stromal cells, osteoclasts, or endothelial cells. These observations suggest that a positive feedback loop consisting of Hsp90alpha/beta and major signaling pathways supports the survival of MM cells. Finally, in situ overexpression of both Hsp90 proteins was observed in most MMs but not in monoclonal gammopathy of undetermined significance (MGUS) or in normal plasma cells. Our results underpin a role for Hsp90alpha and beta in MM pathogenesis.
Collapse
Affiliation(s)
- Manik Chatterjee
- Division of Hematology, University Hospital of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Premkumar DR, Arnold B, Pollack IF. Cooperative inhibitory effect of ZD1839 (Iressa) in combination with 17-AAG on glioma cell growth. Mol Carcinog 2006; 45:288-301. [PMID: 16550610 DOI: 10.1002/mc.20141] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ZD1839 ("Iressa") is an orally active, selective epidermal growth factor (EGF) receptor-tyrosine kinase inhibitor. We evaluated the antitumor activity of ZD1839 in combination with HSP90 antagonist, 17-AAG in malignant human glioma cell lines. ZD1839 independently produced a dose-dependent inhibition of cellular proliferation in glioma cells grown in culture with time- and dose-dependent accumulation of cells in G(1) phase of the cell cycle on flow cytometric analysis, although the concentrations required for optimal efficacy were at or above the limits of clinically achievable levels. Because the heat shock protein (HSP) is involved in the conformational maturation of a number of signaling proteins critical to the proliferation of malignant glioma cells, we hypothesized that the HSP90 inhibitor 17-AAG would potentiate ZD 1839-mediated glioma cytotoxicity by decreasing the activation status of EGF receptor, as well as down regulating the levels of other relevant signaling effectors. We, therefore, examined the effects of ZD1839 and 17-AAG, alone and in combination, on signal transduction and apoptosis in a series of malignant glioma cell lines. Simultaneous exposure to these inhibitors significantly induced cell death and quantitative analysis revealed that interaction between ZD1839 and 17-AAG-induced cytotoxicity was synergistic, leading to a pronounced increase in active caspase-3 and PARP cleavage. No significant growth inhibition or caspase activation was seen in control cells. The enhanced cytotoxicity of this combination was associated with diminished Akt activation and a significant downregulation of EGFR receptor, Raf-1 and mitogen activated protein kinase (MAPK). Cells exposed to 17-AAG and ZD1839 displayed a significant reduction in cell cycle regulatory proteins, such as CDK4 and CDK6. Taken together, these findings suggest that ZD1839, an EGF receptor tyrosine kinase inhibitor, plays a critical role in regulating the apoptotic response to 17-AAG and that multi-site targeting of growth signaling and cell survival pathways could provide a potent strategy to treat patients with malignant gliomas.
Collapse
Affiliation(s)
- Daniel R Premkumar
- Department of Neurosurgery, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
87
|
Citri A, Harari D, Shohat G, Ramakrishnan P, Gan J, Lavi S, Eisenstein M, Kimchi A, Wallach D, Pietrokovski S, Yarden Y. Hsp90 recognizes a common surface on client kinases. J Biol Chem 2006; 281:14361-9. [PMID: 16551624 DOI: 10.1074/jbc.m512613200] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp90 is a highly abundant chaperone whose clientele includes hundreds of cellular proteins, many of which are central players in key signal transduction pathways and the majority of which are protein kinases. In light of the variety of Hsp90 clientele, the mechanism of selectivity of the chaperone toward its client proteins is a major open question. Focusing on human kinases, we have demonstrated that the chaperone recognizes a common surface in the amino-terminal lobe of kinases from diverse families, including two newly identified clients, NFkappaB-inducing kinase and death-associated protein kinase, and the oncoprotein HER2/ErbB-2. Surface electrostatics determine the interaction with the Hsp90 chaperone complex such that introduction of a negative charge within this region disrupts recognition. Compiling information on the Hsp90 dependence of 105 protein kinases, including 16 kinases whose relationship to Hsp90 is first examined in this study, reveals that surface features, rather than a contiguous amino acid sequence, define the capacity of the Hsp90 chaperone machine to recognize client kinases. Analyzing Hsp90 regulation of two major signaling cascades, the mitogen-activated protein kinase and phosphatidylinositol 3-kinase, leads us to propose that the selectivity of the chaperone to specific kinases is functional, namely that Hsp90 controls kinases that function as hubs integrating multiple inputs. These lessons bear significance to pharmacological attempts to target the chaperone in human pathologies, such as cancer.
Collapse
Affiliation(s)
- Ami Citri
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 97100, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Moyano JV, Evans JR, Chen F, Lu M, Werner ME, Yehiely F, Diaz LK, Turbin D, Karaca G, Wiley E, Nielsen TO, Perou CM, Cryns VL. AlphaB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 2006; 116:261-70. [PMID: 16395408 PMCID: PMC1323258 DOI: 10.1172/jci25888] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 09/27/2005] [Indexed: 01/13/2023] Open
Abstract
Recent gene profiling studies have identified a new breast cancer subtype, the basal-like group, which expresses genes characteristic of basal epithelial cells and is associated with poor clinical outcomes. However, the genes responsible for the aggressive behavior observed in this group are largely unknown. Here we report that the small heat shock protein alpha-basic-crystallin (alphaB-crystallin) was commonly expressed in basal-like tumors and predicted poor survival in breast cancer patients independently of other prognostic markers. We also demonstrate that overexpression of alphaB-crystallin transformed immortalized human mammary epithelial cells (MECs). In 3D basement membrane culture, alphaB-crystallin overexpression induced luminal filling and other neoplastic-like changes in mammary acini, while silencing alphaB-crystallin by RNA interference inhibited these abnormalities. alphaB-Crystallin overexpression also induced EGF- and anchorage-independent growth, increased cell migration and invasion, and constitutively activated the MAPK kinase/ERK (MEK/ERK) pathway. Moreover, the transformed phenotype conferred by alphaB-crystallin was suppressed by MEK inhibitors. In addition, immortalized human MECs overexpressing alphaB-crystallin formed invasive mammary carcinomas in nude mice that recapitulated aspects of human basal-like breast tumors. Collectively, our results indicate that alphaB-crystallin is a novel oncoprotein expressed in basal-like breast carcinomas that independently predicts shorter survival. Our data also implicate the MEK/ERK pathway as a potential therapeutic target for these tumors.
Collapse
Affiliation(s)
- Jose V Moyano
- Cell Death Regulation Laboratory, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Banerji U, Walton M, Raynaud F, Grimshaw R, Kelland L, Valenti M, Judson I, Workman P. Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models. Clin Cancer Res 2006; 11:7023-32. [PMID: 16203796 DOI: 10.1158/1078-0432.ccr-05-0518] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To establish the pharmacokinetic and pharmacodynamic profile of the heat shock protein 90 (HSP90) inhibitor 17-allylamino, 17-demethoxygeldanamycin (17-AAG) in ovarian cancer xenograft models. EXPERIMENTAL DESIGN The effects of 17-AAG on growth inhibition and the expression of pharmacodynamic biomarkers c-RAF-1, CDK4, and HSP70 were studied in human ovarian cancer cell lines A2780 and CH1. Corresponding experiments were conducted with established tumor xenografts. The variability and specificity of pharmacodynamic markers in human peripheral blood lymphocytes (PBL) were studied. RESULTS The IC50 values of 17-AAG in A2780 and CH1 cells were 18.3 nmol/L (SD, 2.3) and 410.1 nmol/L (SD, 9.4), respectively. Pharmacodynamic changes indicative of HSP90 inhibition were demonstrable at greater than or equal the IC50 concentration in both cell lines. Xenograft experiments confirmed tumor growth inhibition in vivo. Peak concentrations of 17-AAG achieved in A2780 and CH1 tumors were 15.6 and 16.5 micromol/L, respectively, and there was no significant difference between day 1 and 11 pharmacokinetic profiles. Reversible changes in pharmacodynamic biomarkers were shown in tumor and murine PBLs in both xenograft models. Expression of pharmacodynamic markers varied between human PBLs from different human volunteers but not within the same individual. Pharmacodynamic biomarker changes consistent with HSP90 inhibition were shown in human PBLs exposed ex vivo to 17-AAG but not to selected cytotoxic drugs. CONCLUSION Pharmacokinetic-pharmacodynamic relationships were established for 17-AAG. This information formed the basis of a pharmacokinetic-pharmacodynamic-driven phase I trial.
Collapse
Affiliation(s)
- Udai Banerji
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Turbyville TJ, Kithsiri Wijeratne EM, Liu MX, Burns AM, Seliga CJ, Luevano LA, David CL, Faeth SH, Whitesell L, Leslie Gunatilaka AA. Search for Hsp90 inhibitors with potential anticancer activity: isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert. JOURNAL OF NATURAL PRODUCTS 2006; 69:178-84. [PMID: 16499313 PMCID: PMC1876775 DOI: 10.1021/np058095b] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In an effort to discover small molecule inhibitors of Hsp90, we have screened over 500 EtOAc extracts of Sonoran desert plant-associated fungi using a two-stage strategy consisting of a primary cell-based heat shock induction assay (HSIA) followed by a secondary biochemical luciferase refolding assay (LRA). Bioassay-guided fractionation of extracts active in these assays derived from Chaetomium chiversii and Paraphaeosphaeria quadriseptata furnished the Hsp90 inhibitors radicicol (1) and monocillin I (2), respectively. In SAR studies, 1, 2, and their analogues, 3-16, were evaluated in these assays, and the antiproliferative activity of compounds active in both assays was determined using the breast cancer cell line MCF-7. Radicicol and monocillin I were also evaluated in a solid-phase competition assay for their ability to bind Hsp90 and to deplete cellular levels of two known Hsp90 client proteins with relevance to breast cancer, estrogen receptor (ER), and the type 1 insulin-like growth factor receptor (IGF-1R). Some inferences on SAR were made considering the crystal structure of the N-terminus of yeast Hsp90 bound to 1 and the observed biological activities of 1-16. Isolation of radicicol and monocillin I in this study provides evidence that we have developed an effective strategy for discovering natural product-based Hsp90 inhibitors with potential anticancer activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luke Whitesell
- * To whom correspondence should be addressed. Tel: (520) 741-1691. Fax: (520) 741-1468. E-mail (A.A.L.G.): . E-mail (L.W.):
| | - A. A. Leslie Gunatilaka
- * To whom correspondence should be addressed. Tel: (520) 741-1691. Fax: (520) 741-1468. E-mail (A.A.L.G.): . E-mail (L.W.):
| |
Collapse
|
91
|
Salehi AH, Morris SJ, Ho WC, Dickson KM, Doucet G, Milutinovic S, Durkin J, Gillard JW, Barker PA. AEG3482 Is an Antiapoptotic Compound that Inhibits Jun Kinase Activity and Cell Death through Induced Expression of Heat Shock Protein 70. ACTA ACUST UNITED AC 2006; 13:213-23. [PMID: 16492569 DOI: 10.1016/j.chembiol.2005.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 10/31/2005] [Accepted: 11/28/2005] [Indexed: 01/24/2023]
Abstract
We describe a group of small-molecule inhibitors of Jun kinase (JNK)-dependent apoptosis. AEG3482, the parental compound, was identified in a screening effort designed to detect compounds that reduce apoptosis of neonatal sympathetic neurons after NGF withdrawal. We show that AEG3482 blocks apoptosis induced by the p75 neurotrophin receptor (p75NTR) or its cytosolic interactor, NRAGE, and demonstrate that AEG3482 blocks proapoptotic JNK activity. We show that AEG3482 induces production of heat shock protein 70 (HSP70), an endogenous inhibitor of JNK, and establish that HSP70 accumulation is required for the AEG3482-induced JNK blockade. We show that AEG3482 binds HSP90 and induces HSF1-dependent HSP70 mRNA expression and find that AEG3482 facilitates HSP70 production while retaining HSP90 chaperone activity. These studies establish that AEG3482 inhibits JNK activation and apoptosis by a mechanism involving induced expression of HSP proteins.
Collapse
Affiliation(s)
- Amir H Salehi
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Georgakis GV, Li Y, Rassidakis GZ, Martinez-Valdez H, Medeiros LJ, Younes A. Inhibition of heat shock protein 90 function by 17-allylamino-17-demethoxy-geldanamycin in Hodgkin's lymphoma cells down-regulates Akt kinase, dephosphorylates extracellular signal-regulated kinase, and induces cell cycle arrest and cell death. Clin Cancer Res 2006; 12:584-90. [PMID: 16428504 DOI: 10.1158/1078-0432.ccr-05-1194] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Heat shock protein 90 (HSP90) is a chaperone for several client proteins involved in transcriptional regulation, signal transduction, and cell cycle control. HSP90 is abundantly expressed by a variety of tumor types and has been recently targeted for cancer therapy. The objective of this study was to determine the role of HSP90 in promoting growth and survival of Hodgkin's lymphoma and to determine the molecular consequences of inhibiting HSP90 function by the small-molecule 17-allylamino-17-demethoxy-geldanamycin (17-AAG) in Hodgkin's lymphoma. EXPERIMENTAL DESIGN HSP90 expression in Hodgkin's lymphoma cell lines was determined by Western blot and in primary lymph node sections from patients with Hodgkin's lymphoma by immunohistochemistry. Cell viability was determined by the 3-(4,5-dimethyl-thiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Apoptosis and cell cycle fractions were determined by flow cytometry. Expression of intracellular proteins was determined by Western blot. RESULTS HSP90 is overexpressed in primary and cultured Hodgkin's lymphoma cells. Inhibition of HSP90 function by 17-AAG showed a time- and dose-dependent growth inhibition of Hodgkin's lymphoma cell lines. 17-AAG induced cell cycle arrest and apoptosis, which were associated with a decrease in cyclin-dependent kinase (CDK) 4, CDK 6, and polo-like kinase 1 (PLK1), and induced apoptosis by caspase-dependent and caspase-independent mechanisms. Furthermore, 17-AAG depleted cellular contents of Akt, decreased extracellular signal-regulated kinase (ERK) phosphorylation, and reduced cellular FLICE-like inhibitory protein levels (FLIP), and thus enhanced the cytotoxic effect of doxorubicin and agonistic anti-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor antibodies. CONCLUSION Inhibition of HSP90 function induces cell death and enhances the activity of chemotherapy and anti-tumor necrosis factor-related apoptosis-inducing ligand death receptor antibodies, suggesting that targeting HSP90 function might be of therapeutic value in Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Georgios V Georgakis
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
Specific inhibitors of Hsp90 have recently entered human clinical trials. At the time of writing, trials have been initiated only in metastatic cancer, although a rationale exists for using these agents in a variety of human diseases where protein (mis)folding is involved in the disease pathophysiology. Hsp90 inhibitors offer a unique anti-cancer opportunity because they provide simultaneous combinatorial blockade of multiple oncogenic pathways. The first compound in this class, 17-AAG, has completed phase I trials and phase II trials are in progress. The toxicity has been manageable and evidence of possible clinical activity has been seen in metastatic melanoma, prostate cancer and multiple myeloma. Other inhibitors with improved properties are approaching clinical trials. This chapter presents an update of the current clinical trials using Hsp90 inhibitors, focussing on the areas that will be increasingly relevant in the next 5 years.
Collapse
Affiliation(s)
- S Pacey
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey
| | | | | | | |
Collapse
|
94
|
McPhillips F, Mullen P, MacLeod KG, Sewell JM, Monia BP, Cameron DA, Smyth JF, Langdon SP. Raf-1 is the predominant Raf isoform that mediates growth factor-stimulated growth in ovarian cancer cells. Carcinogenesis 2005; 27:729-39. [PMID: 16332724 DOI: 10.1093/carcin/bgi289] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is currently much interest in the role of the Raf family in cancer, particularly since mutated B-Raf has been shown to be oncogenic in certain disease types. In this study we have explored the expression, signaling and function of the three known Raf isoforms (Raf-1, A-Raf and B-Raf) in patients with ovarian cancer. While increased expression of Raf-1 was associated with poor survival, increased expression of B-Raf was associated with improved survival. Using a panel of ovarian cancer cell lines, all three isoforms were shown to be involved in growth factor initiated signaling. Antisense inhibition of function in ovarian cancer cell lines indicated that both Raf-1 and A-Raf, but not B-Raf, were linked to cell proliferation. Raf-1 (but not A-Raf or B-Raf) was also associated with reduced apoptosis. While individual Raf reduction by isoform-targeted antisense oligonucleotides (ODNs) produced growth inhibition in some cell lines, similar use of the MEK inhibitor UO126 produced growth inhibition in all cell lines tested. These data suggest that Raf-1 is the predominant Raf isoform responsible for regulating cellular growth in ovarian cancer cells and may be particularly important in high grade serous ovarian cancers.
Collapse
Affiliation(s)
- Fiona McPhillips
- Cancer Research UK Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Arlander SJH, Felts SJ, Wagner JM, Stensgard B, Toft DO, Karnitz LM. Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem 2005; 281:2989-98. [PMID: 16330544 DOI: 10.1074/jbc.m508687200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Checkpoint kinase 1 (Chk1), a serine/threonine kinase that regulates DNA damage checkpoints, is destabilized when heat shock protein 90 (Hsp90) is inhibited, suggesting that Chk1 is an Hsp90 client. In the present work we examined the interplay between Chk1 and Hsp90 in intact cells, identified a source of unchaperoned Chk1, and report the in vitro chaperoning of Chk1 in reticulocyte lysates and with purified chaperones and co-chaperones. We find that bacterially expressed Chk1 is post-translationally chaperoned to an active kinase. This reaction minimally requires Hsp90, Hsp70, Hsp40, Cdc37, and the protein kinase CK2. The co-chaperone Hop, although not essential for the activation of Chk1 in vitro, enhanced the chaperoning process, whereas the co-chaperone p23 did not stimulate the chaperoning reaction. Additionally, we found that the C-terminal regulatory domain of Chk1 affects the association of Chk1 with Hsp90. Collectively these results provide new insights into Hsp90-dependent chaperoning of a client kinase and identify a novel, biochemically tractable model system that will be useful to further dissect the Hsp90-dependent chaperoning of this important and ubiquitous class of Hsp90 clients.
Collapse
Affiliation(s)
- Sonnet J H Arlander
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School
| | | | | | | | | | | |
Collapse
|
96
|
Prince T, Matts RL. Exposure of protein kinase motifs that trigger binding of Hsp90 and Cdc37. Biochem Biophys Res Commun 2005; 338:1447-54. [PMID: 16269130 DOI: 10.1016/j.bbrc.2005.10.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2005] [Accepted: 10/18/2005] [Indexed: 01/05/2023]
Abstract
Hsp90 and its co-chaperone Cdc37 are required for the activity of numerous eukaryotic protein kinases. c-Jun N-terminal kinases (JNKs) appear to be Hsp90-independent kinases, as their activity is unaffected by Hsp90 inhibition. It is currently unknown why some protein kinases are Hsp90- and Cdc37-dependent for their function, while others are not. Therefore, we investigated what structural motifs within JNKs confer or defer Hsp90 and Cdc37 interaction. Both Hsp90 and Cdc37 recognized structural features that were exposed or destabilized upon deletion of JNK1alpha1's N-terminal non-catalytic structural motif, while only Hsp90 bound JNK when its C-terminal non-catalytic structural motif was deleted. Mutations in JNK's activation loop that are known to constitutively activate or inactivate its kinase activity had no effect on JNK's lack of interaction with Hsp90 and Cdc37. Our findings suggest a model in which Hsp90 and Cdc37 each recognize distinct features within the catalytic domains of kinases.
Collapse
Affiliation(s)
- Thomas Prince
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078-3035, USA
| | | |
Collapse
|
97
|
Abstract
Standing watch over the proteome, molecular chaperones are an ancient and evolutionarily conserved class of proteins that guide the normal folding, intracellular disposition and proteolytic turnover of many of the key regulators of cell growth, differentiation and survival. This essential guardian function is subverted during oncogenesis to allow malignant transformation and to facilitate rapid somatic evolution. Pharmacologically 'bribing' the essential guard duty of the chaperone HSP90 (heat-shock protein of 90 kDa) seems to offer a unique anticancer strategy of considerable promise.
Collapse
Affiliation(s)
- Luke Whitesell
- Steele Memorial Children's Research Center, University of Arizona, Tucson, Arizona 85724, USA.
| | | |
Collapse
|
98
|
Banerji U, O'Donnell A, Scurr M, Pacey S, Stapleton S, Asad Y, Simmons L, Maloney A, Raynaud F, Campbell M, Walton M, Lakhani S, Kaye S, Workman P, Judson I. Phase I Pharmacokinetic and Pharmacodynamic Study of 17-Allylamino, 17-Demethoxygeldanamycin in Patients With Advanced Malignancies. J Clin Oncol 2005; 23:4152-61. [PMID: 15961763 DOI: 10.1200/jco.2005.00.612] [Citation(s) in RCA: 375] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose To study the toxicity and pharmacokinetic-pharmacodynamic profile of 17-allylamino, 17- demethoxygeldanamycin (17-AAG) and to recommend a dose for phase II trials. Patients and Methods This was a phase I study examining a once-weekly dosing schedule of 17-AAG. Thirty patients with advanced malignancies were treated. Results The highest dose level reached was 450 mg/m2/week. The dose-limiting toxicities (DLTs) encountered were grade 3 diarrhea in three patients (one at 320 mg/m2/week and two at 450 mg/m2/week) and grade 3 to 4 hepatotoxicity (AST/ALT) in one patient at 450 mg/m2/week. Two of nine DLTs were at the highest dose level. Two patients with metastatic melanoma had stable disease and were treated for 15 and 41 months, respectively. The dose versus area under the curve-relationship for 17-AAG was linear (r2 = .71) over the dose range 10 to 450 mg/m2/week, with peak plasma concentrations of 8,998 μg/L (standard deviation, 2,881) at the highest dose level. After the demonstration of pharmacodynamic changes in peripheral blood leukocytes, pre- and 24 hours post-treatment, tumor biopsies were performed and demonstrated target inhibition (c-RAF-1 inhibition in four of six patients, CDK4 depletion in eight of nine patients and HSP70 induction in eight of nine patients) at the dose levels 320 and 450 mg/m2/week. It was not possible to reproducibly demonstrate these changes in biopsies taken 5 days after treatment. Conclusion It has been possible to demonstrate that 17-AAG exhibits a tolerable toxicity profile with therapeutic plasma concentrations and target inhibition for 24 hours after treatment and some indications of clinical activity at the dose level 450 mg/m2/week. We recommend this dose for phase II clinical trials.
Collapse
Affiliation(s)
- Udai Banerji
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton, Surrey SM2 5NG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Dollins DE, Immormino RM, Gewirth DT. Structure of unliganded GRP94, the endoplasmic reticulum Hsp90. Basis for nucleotide-induced conformational change. J Biol Chem 2005; 280:30438-47. [PMID: 15951571 DOI: 10.1074/jbc.m503761200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRP94, the endoplasmic reticulum paralog of Hsp90, is regulated by adenosine nucleotides that bind to its N-terminal regulatory domain. Because of its weak affinity for nucleotides, the functionally relevant transition in GRP94 is likely to be between the unliganded and nucleotide-bound states. We have determined the structure of the unliganded GRP94 N-domain. The helix 1-4-5 subdomain of the unliganded protein adopts the closed conformation seen in the structure of the protein in complex with inhibitors. This conformation is distinct from the open conformation of the subdomain seen when the protein is bound to ATP or ADP. ADP soaked into crystals of the unliganded protein reveals an intermediate conformation midway between the open and closed states and demonstrates that in GRP94 the conversion between the open and closed states is driven by ligand binding. The direction of the observed movement in GRP94 shows that nucleotides act to open the subdomain elements rather than close them, which is contrary to the motion proposed for Hsp90. These observations support a model where ATP binding dictates the conformation of the N-domain and regulates its ability to form quaternary structural interactions.
Collapse
Affiliation(s)
- D Eric Dollins
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
100
|
Ledirac N, Antherieu S, d'Uby AD, Caron JC, Rahmani R. Effects of Organochlorine Insecticides on MAP Kinase Pathways in Human HaCaT Keratinocytes: Key Role of Reactive Oxygen Species. Toxicol Sci 2005; 86:444-52. [PMID: 15888667 DOI: 10.1093/toxsci/kfi192] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Organochlorine pesticides (OCs) are reported as potential carcinogens in humans. The aim of this study was to investigate the effects of four OCs (dieldrin, endosulfan, heptachlor, and lindane) on mitogen-activated protein kinase (MAPK) cascades and more specifically to identify the mechanism underlying OC-induced ERK1/2 activation. Organochlorine pesticides increased phosphorylated Raf, MEK1/2, ERK1/2, and c-Jun in human HaCaT cells, but they had no effect on p38 MAPK activation. Moreover, blockade of Raf, MEK1/2, or PKC activation with geldanamycin, U0126, or calphostin C inhibited ERK1/2 phosphorylation, demonstrating a PKC-Raf-MEK1/2 pathway. We also showed that these insecticides induced the production of reactive oxygen species (ROS). Pre-treatment with the antioxidant molecule N-acetyl cysteine sharply decreased the level of phospho-ERK1/2 and had no effect on Raf and MEK1/2 activation, suggesting a Raf-independent mechanism. This study indicates that OCs strongly activate the ERK1/2 pathway, and it identifies a critical role of ROS in OC-induced ERK activation, probably by stabilizing its phosphorylation.
Collapse
Affiliation(s)
- Nathalie Ledirac
- Laboratoire de Toxicologie Cellulaire et Moléculaire, Centre de Recherche INRA, 400 route des Chappes, 06903 Sophia-Antipolis, France.
| | | | | | | | | |
Collapse
|