51
|
Nishihara A, Hanai J, Imamura T, Miyazono K, Kawabata M. E1A inhibits transforming growth factor-beta signaling through binding to Smad proteins. J Biol Chem 1999; 274:28716-23. [PMID: 10497242 DOI: 10.1074/jbc.274.40.28716] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Smads form a recently identified family of proteins that mediate intracellular signaling of the transforming growth factor (TGF)-beta superfamily. Smads bind to DNA and act as transcriptional regulators. Smads interact with a variety of transcription factors, and the interaction is likely to determine the target specificity of gene induction. Smads also associate with transcriptional coactivators such as p300 and CBP. E1A, an adenoviral oncoprotein, inhibits TGF-beta-induced transactivation, and the ability of E1A to bind p300/CBP is required for the inhibition. Here we determined the Smad interaction domain (SID) in p300 and found that two adjacent regions are required for the interaction. One of the regions is the C/H3 domain conserved between p300 and CBP, and the other is a nonconserved region. p300 mutants containing SID inhibit transactivation by TGF-beta in a dose-dependent manner. E1A inhibits the interaction of Smad3 with a p300 mutant that contains SID but lacks the E1A binding domain. We found that E1A interacts specifically with receptor-regulated Smads, suggesting a novel mechanism whereby E1A antagonizes TGF-beta signaling.
Collapse
Affiliation(s)
- A Nishihara
- Department of Biochemistry, The Cancer Institute of Japanese Foundation for Cancer Research, 1-37-1 Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan
| | | | | | | | | |
Collapse
|
52
|
Docagne F, Nicole O, Marti HH, MacKenzie ET, Buisson A, Vivien D. Transforming growth factor-beta1 as a regulator of the serpins/t-PA axis in cerebral ischemia. FASEB J 1999; 13:1315-24. [PMID: 10428756 DOI: 10.1096/fasebj.13.11.1315] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The tissue type plasminogen activator (t-PA) is a serine protease that is involved in neuronal plasticity and cell death induced by excitotoxins and ischemia in the brain. t-PA activity in the central nervous system is regulated through the activation of serine protease inhibitors (serpins) such as the plasminogen activator inhibitor (PAI-1), the protease nexin-1 (PN-1), and neuroserpin (NSP). Recently we demonstrated in vitro that PAI-1 produced by astrocytes mediates the neuroprotective effect of the transforming growth factor-beta1 (TGF-beta1) in NMDA-induced neuronal cell death. To investigate whether serpins may be involved in neuronal cell death after cerebral ischemia, we determined, by using semiquantitative RT-PCR and in situ hybridization, that focal cerebral ischemia in mice induced a dramatic overexpression of PAI-1 without any effect on PN-1, NSP, or t-PA. Then we showed that although the expression of PAI-1 is restricted to astrocytes, PN-1, NSP, and t-PA are expressed in both neurons and astrocytes. Moreover, by using semiquantitative RT-PCR and Western blotting, we observed that only the expression of PAI-1 was modulated by TGF-beta1 treatment via a TGF-beta-inducible element contained in the PAI-1 promoter (CAGA box). Finally, we compared the specificity of TGF-beta1 action with other members of the TGF-beta family by using luciferase reporter genes. These data show that TGF-beta and activin were able to induce the overexpression of PAI-1 in astrocytes, but that bone morphogenetic proteins, glial cell line-derived neutrophic factor, and neurturin did not. These results provide new insights into the regulation of the serpins/t-PA axis and the mechanism by which TGF-beta may be neuroprotective.
Collapse
Affiliation(s)
- F Docagne
- Université de Caen, CNRS UMR 6551, IFR 47, bd H. Becquerel, BP 5229, 14074 Caen Cedex, France Max-Planck-Institut, für physiologische und klinische Forschung, D-61231 Bad-Nauheim, Germany
| | | | | | | | | | | |
Collapse
|
53
|
Tong Y, Liu H. P15—A new tumor suppressor gene. CHINESE SCIENCE BULLETIN-CHINESE 1999. [DOI: 10.1007/bf02885957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
54
|
Fernandes ER, Rooney RJ. Suppression of E1A-mediated transformation by the p50E4F transcription factor. Mol Cell Biol 1999; 19:4739-49. [PMID: 10373523 PMCID: PMC84272 DOI: 10.1128/mcb.19.7.4739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The adenovirus E1A gene can act as an oncogene or a tumor suppressor, with the latter effect generally arising from the induction of apoptosis or the repression of genes that provide oncogenic growth stimuli (e.g., HER-2/c-erbB2/neu) or increased metastatic invasiveness (e.g., metalloproteases). In this study, coexpression of E1A and p50E4F, a cellular transcription factor whose DNA binding activity is stimulated by E1A, suppressed colony formation by NIH 3T3 cells and transformation of primary rat embryo fibroblasts but had no observed effect in the absence of E1A. Domains in p50E4F required for stimulation of the adenovirus E4 promoter were required for the suppressive effect, indicating a transcriptional mechanism. In serum-containing media, retroviral expression of p50E4F in E1A13S/ras-transformed NIH 3T3 fibroblasts had little effect on subconfluent cultures but accelerated a decline in viability after the cultures reached confluence. Cell death occurred by both apoptosis and necrosis, with the predominance of each process determined by culture conditions. In serum-free media, p50E4F accelerated E1A-induced apoptosis. The results suggest that p50E4F sensitizes cells to signals or conditions that cause cell death.
Collapse
Affiliation(s)
- E R Fernandes
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
55
|
Saile B, Matthes N, Knittel T, Ramadori G. Transforming growth factor beta and tumor necrosis factor alpha inhibit both apoptosis and proliferation of activated rat hepatic stellate cells. Hepatology 1999; 30:196-202. [PMID: 10385656 DOI: 10.1002/hep.510300144] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transforming growth factor beta (TGF-beta) as well as tumor necrosis factor alpha (TNF-alpha) gene expression are up-regulated in chronically inflamed liver. These cytokines were investigated for their influence on apoptosis and proliferation of activated hepatic stellate cells (HSCs). Spontaneous apoptosis in activated HSC was significantly down-regulated by 53% +/- 8% (P <.01) under the influence of TGF-beta and by 28% +/- 2% (P <.05) under the influence of TNF-alpha. TGF-beta and TNF-alpha significantly reduced expression of CD95L in activated HSCs, whereas CD95 expression remained unchanged. Furthermore, HSC apoptosis induced by CD95-agonistic antibodies was reduced from 96% +/- 2% to 51 +/- 7% (P <.01) by TGF-beta, and from 96% +/- 2% to 58 +/- 2% (P <.01) by TNF-alpha, suggesting that intracellular antiapoptotic mechanisms may also be activated by both cytokines. During activation, HSC cultures showed a reduced portion of cells in the G0/G1 phase and a strong increment of G2-phase cells. This increment was significantly inhibited (G1 arrest) by administration of TGF-beta and/or TNF-alpha to activated cells. In liver sections of chronically damaged rat liver (CCl4 model), using desmin and CD95L as markers for activated HSC, most of these cells did not show apoptotic signs (TUNEL-negative). Taken together, these findings indicate that TGF-beta and/or TNF-alpha both inhibit proliferation and also apoptosis in activated HSC in vitro. Both processes seem to be linked to each other, and their inhibition could represent the mechanism responsible for prolonged survival of activated HSC in chronic liver damage in vivo.
Collapse
Affiliation(s)
- B Saile
- University of Göttingen, Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Göttingen, Germany
| | | | | | | |
Collapse
|
56
|
Harris DL, Joyce NC. Transforming growth factor-beta suppresses proliferation of rabbit corneal endothelial cells in vitro. J Interferon Cytokine Res 1999; 19:327-34. [PMID: 10334383 DOI: 10.1089/107999099314027] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Corneal endothelial cells in vivo appear to be inhibited in G1 phase of the cell cycle. Studies were carried out to determine whether cultured rabbit corneal endothelium expresses transforming growth factor-beta (TGF-beta) receptor types I, II, and III, suggesting they would be sensitive to a TGF-beta-induced signal. In addition, we explored if TGF-beta might mediate this G1 phase inhibition by implementing flow cytometry and 5-bromo-2'-deoxyuridine (BrdU) immunofluorescence. Reverse transcription-polymerase chain reaction (RT-PCR) products of the expected size were obtained for all three TGF-beta receptor types. Flow cytometry revealed a dose-dependent suppression in the percentage of S phase cells in cultures treated with TGF-beta1 or TGF-beta2. The lowest percentage of S phase cells was found for 10 ng/ml TGF-beta1 and 0.1 ng/ml TGF-beta2. BrdU, an S phase marker, was immunolocalized, and semiquantitative analysis of stained cells showed a maximum suppression of S phase entry at 18 h for 10 ng/ml of TGF-beta11 and 24 h for 10 ng/ml of TGF-beta2. In rabbit, the corneal endothelium expresses TGF-beta receptor types I, II, and III, permitting a TGF-beta signal to be transduced. Flow cytometry reveals a dose-dependent response to both TGF-beta1 and TGF-beta2, and the cells are more sensitive to TGF-beta2. At optimal TGF-beta concentrations, the percentage of S phase cells is comparable to that of a non-proliferating culture, suggesting TGF-beta prevents the cells from proceeding through the G1/S phase transition. This suppression was also seen with BrdU labeling. Together, these results indicate that TGF-beta could be one of the pathways that leads to G1 phase arrest in corneal endothelial cells.
Collapse
Affiliation(s)
- D L Harris
- Schephens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
57
|
Gartel AL, Tyner AL. The growth-regulatory role of p21 (WAF1/CIP1). PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 20:43-71. [PMID: 9928526 DOI: 10.1007/978-3-642-72149-6_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- A L Gartel
- Department of Genetics, University of Illinois at Chicago 60607, USA
| | | |
Collapse
|
58
|
Cameron EE, Bachman KE, Myöhänen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21:103-7. [PMID: 9916800 DOI: 10.1038/5047] [Citation(s) in RCA: 1378] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Densely methylated DNA associates with transcriptionally repressive chromatin characterized by the presence of underacetylated histones. Recently, these two epigenetic processes have been dynamically linked. The methyl-CpG-binding protein MeCP2 appears to reside in a complex with histone deacetylase activity. MeCP2 can mediate formation of transcriptionally repressive chromatin on methylated promoter templates in vitro, and this process can be reversed by trichostatin A (TSA), a specific inhibitor of histone deacetylase. Little is known, however, about the relative roles of methylation and histone deacetylase activity in the stable inhibition of transcription on densely methylated endogenous promoters, such as those for silenced alleles of imprinted genes, genes on the female inactive X chromosome and tumour-suppressor genes inactivated in cancer cells. We show here that the hypermethylated genes MLH1, TIMP3 (TIMP3), CDKN2B (INK4B, p15) and CDKN2A (INK4, p16) cannot be transcriptionally reactivated with TSA alone in tumour cells in which we have shown that TSA alone can upregulate the expression of non-methylated genes. Following minimal demethylation and slight gene reactivation in the presence of low dose 5-aza-2'deoxycytidine (5Aza-dC), however, TSA treatment results in robust re-expression of each gene. TSA does not contribute to demethylation of the genes, and none of the treatments alter the chromatin structure associated with the hypermethylated promoters. Thus, although DNA methylation and histone deacetylation appear to act as synergistic layers for the silencing of genes in cancer, dense CpG island methylation is dominant for the stable maintenance of a silent state at these loci.
Collapse
Affiliation(s)
- E E Cameron
- The Oncology Center, Predoctoral Training Program in Human Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
59
|
Shen X, Hu PP, Liberati NT, Datto MB, Frederick JP, Wang XF. TGF-beta-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein. Mol Biol Cell 1998; 9:3309-19. [PMID: 9843571 PMCID: PMC25628 DOI: 10.1091/mbc.9.12.3309] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Smads are intermediate effector proteins that transduce the TGF-beta signal from the plasma membrane to the nucleus, where they participate in transactivation of downstream target genes. We have shown previously that coactivators p300/CREB-binding protein are involved in TGF-beta-mediated transactivation of two Cdk inhibitor genes, p21 and p15. Here we examined the possibility that Smads function to regulate transcription by directly interacting with p300/CREB-binding protein. We show that Smad3 can interact with a C-terminal fragment of p300 in a temporal and phosphorylation-dependent manner. TGF-beta-mediated phosphorylation of Smad3 potentiates the association between Smad3 and p300, likely because of an induced conformational change that removes the autoinhibitory interaction between the N- and C-terminal domains of Smad3. Consistent with a role for p300 in the transcription regulation of multiple genes, overexpression of a Smad3 C-terminal fragment causes a general squelching effect on multiple TGF-beta-responsive reporter constructs. The adenoviral oncoprotein E1A can partially block Smad-dependent transcriptional activation by directly competing for binding to p300. Taken together, these findings define a new role for phosphorylation of Smad3: in addition to facilitating complex formation with Smad4 and promoting nuclear translocation, the phosphorylation-induced conformational change of Smad3 modulates its interaction with coactivators, leading to transcriptional regulation.
Collapse
Affiliation(s)
- X Shen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
60
|
Buisson A, Nicole O, Docagne F, Sartelet H, Mackenzie ET, Vivien D. Up‐regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor β1. FASEB J 1998. [DOI: 10.1096/fasebj.12.15.1683] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alain Buisson
- Université de CAENCNRS UMR 6551Laboratoire de Neurosciences bd H. Becquerel, BP 5229 14074 CAEN Cedex France
| | - Olivier Nicole
- Université de CAENCNRS UMR 6551Laboratoire de Neurosciences bd H. Becquerel, BP 5229 14074 CAEN Cedex France
| | - Fabian Docagne
- Université de CAENCNRS UMR 6551Laboratoire de Neurosciences bd H. Becquerel, BP 5229 14074 CAEN Cedex France
| | - Hervé Sartelet
- Université de REIMSCNRS UPRES‐AMoulin de la Housse BP 1039 51687 REIMS cedex 2 France
| | - Eric T. Mackenzie
- Université de CAENCNRS UMR 6551Laboratoire de Neurosciences bd H. Becquerel, BP 5229 14074 CAEN Cedex France
| | - Denis Vivien
- Université de CAENCNRS UMR 6551Laboratoire de Neurosciences bd H. Becquerel, BP 5229 14074 CAEN Cedex France
| |
Collapse
|
61
|
Blagosklonny MV. The mitogen-activated protein kinase pathway mediates growth arrest or E1A-dependent apoptosis in SKBR3 human breast cancer cells. Int J Cancer 1998; 78:511-7. [PMID: 9797142 DOI: 10.1002/(sici)1097-0215(19981109)78:4<511::aid-ijc19>3.0.co;2-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previously, we have shown that phorbol ester (PMA) induces p21(WAF1/CIP1)-dependent growth arrest in SKBr3 breast cancer and LNCaP prostate cancer cells. Here, I demonstrate that inhibition of Raf-1 kinase by dominant-negative Raf-1 or pharmacological depletion of Raf-1 prevented PMA-mediated induction of p21(WAF1/CIP1). Similarly, PD98059, a specific inhibitor of MEK, abolished p21(WAF1/CIP1) induction and PMA-induced growth arrest. Like PMA, the H-ras oncogene, another activator of the Raf-1/MEK/MAPK pathway, transactivated p21(WAF1/CIP1) in SKBr3 cells. I further investigated PMA-induced growth arrest following infection of SKBr3 cells with 12S E1A-expressing adenovirus. Although high levels of E1A oncoprotein prevented both PMA-induced p21(WAF1/CIP1) and growth arrest, smaller amounts of E1A abrogated growth arrest without down-regulation of p21(WAF1/CIP1). Therefore, E1A can stimulate proliferation downstream of p21(WAF1/CIP1). Albeit less effective than full activity, either Rb- or p300-binding activity of E1A was sufficient for the abrogation of PMA-mediated growth arrest. E1A-driven proliferation of PMA-treated SKBr3 cells was accompanied by apoptosis. New therapeutic approaches can be envisioned that would utilize stimulation of the Raf-1/MEK/MAPK pathway to inhibit growth of PMA-sensitive cancer cells.
Collapse
Affiliation(s)
- M V Blagosklonny
- Medicine Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
62
|
Pouponnot C, Jayaraman L, Massagué J. Physical and functional interaction of SMADs and p300/CBP. J Biol Chem 1998; 273:22865-8. [PMID: 9722503 DOI: 10.1074/jbc.273.36.22865] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
SMADs are transforming growth factor beta (TGF-beta) receptor substrates and mediators of TGF-beta transcriptional responses. Here we provide evidence that the coactivators p300 and CBP interact with Smads 1 through 4. The biological relevance of this interaction is shown in vivo by overexpression of the adenovirus E1A protein and mutant forms of E1A that lack p300-binding sites. Wild-type E1A, but not the mutants, inhibits SMAD-dependent transcriptional responses to TGF-beta. E1A also inhibits the intrinsic transactivating function of the Smad4 MH2 domain. In addition, overexpression of p300 enhances SMAD-dependent transactivation. Our results suggest a role for p300/CBP in SMAD-mediated transcriptional activation and provide an explanation for the observed ability of E1A to interfere with TGF-beta action.
Collapse
Affiliation(s)
- C Pouponnot
- Cell Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
63
|
Nishihara A, Hanai JI, Okamoto N, Yanagisawa J, Kato S, Miyazono K, Kawabata M. Role of p300, a transcriptional coactivator, in signalling of TGF-beta. Genes Cells 1998; 3:613-23. [PMID: 9813111 DOI: 10.1046/j.1365-2443.1998.00217.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Smad proteins are novel transcriptional regulators mediating the signalling of the transforming growth factor-beta (TGF-beta) superfamily. Coactivators such as p300/CBP promote transactivation by various transcription factors through a direct interaction with them. Adenoviral oncoprotein E1A, which binds p300, was shown to inhibit the signalling of TGF-beta. These findings raise the possibility that p300 may be involved in TGF-beta signalling. RESULTS We investigated whether p300 is involved in transactivation by Smads. p300 enhanced the Smad-induced transactivation of p3TP-Lux, a TGF-beta responsive reporter. E1A inhibited this enhancement, and the inhibition required its ability to bind p300/CBP. p300 and Smad3, as well as Smad2, interacted in vivo in a ligand-dependent manner. The binding region in Smad3 was its C-terminal half that was previously shown to possess an intrinsic transactivation activity. The binding region in p300 was mapped to its C-terminal 678 amino acids. The minimal Smad2/3-interacting region, as well as the rest of the p300, inhibited the transactivation of p3TP-Lux in a dominant-negative fashion. CONCLUSION p300 interacted with Smad2 and Smad3 in a ligand-dependent manner, and enhanced the transactivation by Smads. Our results present the molecular basis of the transactivation by Smad proteins.
Collapse
Affiliation(s)
- A Nishihara
- Department of Biochemistry, The Cancer Institute, Japanese Foundation for Cancer Research (JFCR), and Research for the Future Program, Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
Snowden AW, Perkins ND. Cell cycle regulation of the transcriptional coactivators p300 and CREB binding protein. Biochem Pharmacol 1998; 55:1947-54. [PMID: 9714314 DOI: 10.1016/s0006-2952(98)00020-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To respond to changes in its environment, the cell utilizes mechanisms that integrate extracellular signals with specific changes in gene expression. To better understand these critical regulatory mechanisms, research has focused, for the most part, on the identification of sequence-specific DNA-binding proteins, such as the nuclear factor kappaB (NF-kappaB) or activator protein 1 (AP-1) families of transcription factors, that interact with the promoter and enhancer elements of genes induced or repressed during cellular activation. More recently, however, it has become apparent that non-DNA-binding transcriptional coactivators, such as p300 and CREB binding protein (CBP), previously thought to function primarily as "bridging" proteins between DNA-bound transcription factors and the basal transcription complex, play a critical regulatory role as integrators of diverse signalling pathways with the selective induction of gene expression. In this commentary, we shall discuss the implications of a particular aspect of this growing and expanding field: how cell cycle regulation of p300 and CBP impacts our understanding of cellular differentiation, the response to DNA damage, and oncogenesis.
Collapse
Affiliation(s)
- A W Snowden
- Department of Biochemistry, University of Dundee, Scotland, UK
| | | |
Collapse
|
65
|
Affiliation(s)
- P P Hu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
66
|
Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998; 17:3091-100. [PMID: 9606191 PMCID: PMC1170648 DOI: 10.1093/emboj/17.11.3091] [Citation(s) in RCA: 1507] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Smad proteins play a key role in the intracellular signalling of transforming growth factor beta (TGF beta), which elicits a large variety of cellular responses. Upon TGF beta receptor activation, Smad2 and Smad3 become phosphorylated and form heteromeric complexes with Smad4. These complexes translocate to the nucleus where they control expression of target genes. However, the mechanism by which Smads mediate transcriptional regulation is largely unknown. Human plasminogen activator inhibitor-1 (PAI-1) is a gene that is potently induced by TGF beta. Here we report the identification of Smad3/Smad4 binding sequences, termed CAGA boxes, within the promoter of the human PAI-1 gene. The CAGA boxes confer TGF beta and activin, but not bone morphogenetic protein (BMP) stimulation to a heterologous promoter reporter construct. Importantly, mutation of the three CAGA boxes present in the PAI-1 promoter was found to abolish TGF beta responsiveness. Thus, CAGA elements are essential and sufficient for the induction by TGF beta. In addition, TGFbeta induces the binding of a Smad3/Smad4-containing nuclear complex to CAGA boxes. Furthermore, bacterially expressed Smad3 and Smad4 proteins, but not Smad1 nor Smad2 protein, bind directly to this sequence in vitro. The presence of this box in TGF beta-responsive regions of several other genes suggests that this may be a widely used motif in TGF beta-regulated transcription.
Collapse
Affiliation(s)
- S Dennler
- Laboratoire Glaxo Wellcome, 25 avenue de Québec, 91951 Les Ulis Cedex, France
| | | | | | | | | | | |
Collapse
|
67
|
Owen GI, Richer JK, Tung L, Takimoto G, Horwitz KB. Progesterone regulates transcription of the p21(WAF1) cyclin- dependent kinase inhibitor gene through Sp1 and CBP/p300. J Biol Chem 1998; 273:10696-701. [PMID: 9553133 DOI: 10.1074/jbc.273.17.10696] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Progesterone has biphasic effects on proliferation of breast cancer cells; it stimulates growth in the first cell cycle, then arrests cells at G1/S of the second cycle accompanied by up-regulation of the cyclin-dependent kinase inhibitor, p21. We now show that progesterone regulates transcription of the p21 promoter by an unusual mechanism. This promoter lacks a canonical progesterone response element. Instead, progesterone receptors (PRs) interact with the promoter through the transcription factor Sp1 at the third and fourth of six Sp1 binding sites located downstream of nucleotide 154. Mutation of Sp1 site 3 eliminates basal transcription, and mutation of sites 3 and 4 eliminates transcriptional up-regulation by progesterone. Progesterone-mediated transcription is further prevented by overexpression of E1A, suggesting that CBP/p300 is required. Indeed, in HeLa cells, Sp1 and CBP/p300 associate with stably integrated flag-tagged PRs in a multiprotein complex. Since many signals converge on p21, cross-talk between PRs and other factors co-localized on the p21 promoter, may explain how progesterone can be either proliferative or differentiative in different target cells.
Collapse
Affiliation(s)
- G I Owen
- Departments of Medicine and Pathology, and the Molecular Biology Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
68
|
Fischer RS, Quinlan MP. Expression of the pRb-binding regions of E1A enables efficient transformation of primary epithelial cells by v-src. J Virol 1998; 72:2815-24. [PMID: 9525601 PMCID: PMC109726 DOI: 10.1128/jvi.72.4.2815-2824.1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/1997] [Accepted: 12/23/1997] [Indexed: 02/06/2023] Open
Abstract
Primary cultures of rat embryo fibroblasts have been shown to be resistant to transformation by dominant oncogenes such as v-src. We sought to determine if similar resistance is displayed by primary epithelial cells, and, if so, whether an immortalizing oncogene such as E1A could enhance transformation of primary epithelial cells by v-src. Transformation of primary rat epithelial cells by v-src was synergistically enhanced when E1A expression plasmids were cotransfected with a v-src expression plasmid. Foci were more numerous and observed earlier (9 to 14 days) with E1A plus v-src than with v-src alone (18 to 28 days). This cotransformation ability was abrogated by deletions in CR1 or CR2 of E1A, which encode the binding regions for the pRb family and are responsible for E1A-mediated cell cycle activation. Mutations in the p300 binding site or the second exon, which abolish immortalization, did not affect v-src cooperation, in contrast to ras and adenovirus E1B. While kinase activation was required for growth in soft agar, differential activation of Src kinase did not correlate with transformation efficiency. Cell morphology and actin structures were not dramatically impacted by E1A expression; thus, hypertransformation, as previously described for ras cotransformation, was not observed with v-src and second-exon mutants of E1A. However, growth rates for cells expressing both E1A and v-Src were higher than those for cells expressing only v-Src. These results suggest that functions involved in cell cycle activation encoded by E1A first exon can enhance v-src transformation of primary epithelial cells.
Collapse
Affiliation(s)
- R S Fischer
- Department of Microbiology and Immunology, University of Tennessee Health Science Center, Memphis 38163, USA
| | | |
Collapse
|
69
|
Ray RB, Steele R, Meyer K, Ray R. Hepatitis C virus core protein represses p21WAF1/Cip1/Sid1 promoter activity. Gene X 1998; 208:331-6. [PMID: 9524287 DOI: 10.1016/s0378-1119(98)00030-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) often causes a prolonged and persistent infection, and an association between hepatocellular carcinoma (HCC) and HCV infection has been noted. Recent experimental evidence using a cloned genomic region suggests that the putative core protein of HCV has numerous biological properties and is implicated as a viral factor for HCV mediated pathogenesis. WAF1/Cip1/Sid1 (p21) is the prototype of a family of proteins that inhibit cyclin-dependent kinases (CDK) and regulate cell cycle progression in eukaryotic cells. In this study, we have observed that the HCV core protein represses the transcriptional activity of the p21 promoter when tested separately by an in-vitro transient expression assay using murine fibroblasts (NIH3T3), human hepatocellular carcinoma (HepG2), and human cervical carcinoma (HeLa) cells. A deletion analysis of the p21 promoter suggested that the HCV core responsive region is located downstream of the p53 binding site. A gel mobility shift analysis showed that the HCV core protein does not bind directly to p21 regulatory sequences. Thus, the HCV core protein appears to act as an effector in the promotion of cell growth by repressing p21 transcription through unknown cellular factor(s).
Collapse
Affiliation(s)
- R B Ray
- Division of Infectious Diseases and Immunology, Saint Louis University, MO 63110, USA.
| | | | | | | |
Collapse
|
70
|
Fernandes ER, Zhang JY, Rooney RJ. Adenovirus E1A-regulated transcription factor p120E4F inhibits cell growth and induces the stabilization of the cdk inhibitor p21WAF1. Mol Cell Biol 1998; 18:459-67. [PMID: 9418893 PMCID: PMC121515 DOI: 10.1128/mcb.18.1.459] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1997] [Accepted: 10/22/1997] [Indexed: 02/05/2023] Open
Abstract
Adenovirus E1A proteins influence cell growth and phenotype through physical interactions with cellular proteins that regulate basic processes such as cell cycle progression, DNA synthesis, and differentiation. p120E4F is a low-abundance cellular transcription factor that represses the adenovirus E4 promoter and is regulated by E1A, through a phosphorylation-induced reduction of its DNA binding activity, to permit activation of the E4 promoter during early infection. To determine the normal biological role of p120E4F, we assessed its ability to influence fibroblast cell growth and transformation. p120E4F suppressed NIH 3T3 fibroblast colony formation but had little effect when coexpressed with E1A and/or activated ras. Cells that overexpressed p120E4F were inhibited in their ability to enter S phase, had elevated levels of the cdk inhibitor p21WAF1, and reduced cyclin D-cdk4/6 kinase activity. The increase of p21WAF1 levels occurred through a p53-independent posttranscriptional mechanism that included a three- to fourfold increase in the half-life of p21WAF1 protein. Coexpression of activated ras with p120E4F stimulated cyclin D1 expression, elevated cyclin D-cdk4/6 kinase activity, and accelerated cell growth. These data suggest an important role for p120E4F in normal cell division and demonstrate that p21WAF1 can be regulated by protein turnover.
Collapse
Affiliation(s)
- E R Fernandes
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
71
|
Abstract
In this review, the complex relationship between tissue-specific transcription factors and genes regulating cell cycle is taken into account. Both E1-A binding proteins belonging to the family of the retinoblastoma gene product and the CBP/p300 coactivator of transcription interact physically and functionally with tissue-specific transcription factor. The relationship between these two classes of molecules regulates cell fate in differentiating cells, deciding whether cells continue to replicate, undergo apoptosis or terminally differentiate. We provide here an update on the recent advances in this field and some models of interaction between E1A binding protein and tissue-specific transcription factors.
Collapse
Affiliation(s)
- G Condorelli
- Kimmel Cancer Center, Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
72
|
Jones DL, Alani RM, Münger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev 1997; 11:2101-11. [PMID: 9284049 PMCID: PMC316455 DOI: 10.1101/gad.11.16.2101] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1997] [Accepted: 07/03/1997] [Indexed: 02/05/2023]
Abstract
The high risk human papillomaviruses (HPVs) are associated etiologically with the majority of human cervical carcinomas. These HPVs encode two viral oncoproteins, E6 and E7, which are expressed consistently in cervical cancers. The function of these viral oncoproteins during a productive infection is to ensure viral replication in cells that have normally withdrawn from the cell division cycle and are committed to terminal differentiation. Expression of the E7 oncoprotein has been shown to lead to the abrogation of various negative growth regulatory signals, including a p53-mediated G1 growth arrest, TGFbeta-mediated growth inhibition, and quiescence of suprabasal keratinocytes. Here we describe a novel mechanism by which E7 can uncouple cellular proliferation and differentiation. In contrast to normal, differentiating keratinocytes, HPV-16 E7-expressing keratinocytes show delayed cellular differentiation and elevated cdk2 kinase activity despite high levels of p21(Cip1) and association of p21(Cip1) with cdk2. We show that the HPV E7 protein can interact with p21(Cip1) and abrogate p21(Cip1)-mediated inhibition of cyclin A and E-associated kinase activities. Based on these findings, we propose that this capacity of the HPV E7 oncoprotein to overcome p21(Cip1)-mediated inhibition of cdk2 activity during keratinocyte differentiation contributes to the ability of E7 to allow for cellular DNA synthesis in differentiated keratinocytes.
Collapse
Affiliation(s)
- D L Jones
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|