51
|
Riuzzi F, Sorci G, Donato R. S100B protein regulates myoblast proliferation and differentiation by activating FGFR1 in a bFGF-dependent manner. J Cell Sci 2011; 124:2389-400. [PMID: 21693575 DOI: 10.1242/jcs.084491] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
S100B protein has been shown to exert anti-myogenic and mitogenic effects in myoblast cultures through inhibition of the myogenic p38 MAPK and activation of the mitogenic ERK1/2. However, the receptor mediating these effects had not been identified. Here, we show that S100B increases and/or stabilizes the binding of basic fibroblast growth factor (bFGF) to bFGF receptor 1 (FGFR1) by interacting with bFGF, thereby enhancing FGFR1 activation and the mitogenic and anti-myogenic effects of FGFR1. S100B also binds to its canonical receptor RAGE (receptor for advanced glycation end-products), a multi-ligand receptor previously shown to transduce a pro-myogenic signal when activated by HMGB1, and recruits RAGE into a RAGE-S100B-bFGF-FGFR1 complex. However, when bound to S100B-bFGF-FGFR1, RAGE can no longer stimulate myogenic differentiation, whereas in the absence of either bFGF or FGFR1, binding of S100B to RAGE results in stimulation of RAGE anti-mitogenic and promyogenic signaling. An S100B-bFGF-FGFR1 complex also forms in Rage(-/-) myoblasts, leading to enhanced proliferation and reduced differentiation, which points to a dispensability of RAGE for the inhibitory effects of S100B on myoblasts under the present experimental conditions. These results reveal a new S100B-interacting protein - bFGF - in the extracellular milieu and suggest that S100B stimulates myoblast proliferation and inhibits myogenic differentiation by activating FGFR1 in a bFGF-dependent manner.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences and Istituto Interuniversitario di Miologia, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | | | | |
Collapse
|
52
|
Al-Shanti N, Faulkner SH, Saini A, Loram I, Stewart CE. A semi-automated programme for tracking myoblast migration following mechanical damage: manipulation by chemical inhibitors. Cell Physiol Biochem 2011; 27:625-36. [PMID: 21691080 DOI: 10.1159/000330071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Potential roles for undifferentiated skeletal muscle stem cells or satellite cells in muscle hypertrophy and repair have been reported, however, the capacity, the mode and the mechanisms underpinning migration have not been investigated. We hypothesised that damaged skeletal myoblasts would elicit a mesenchymal-like migratory response, which could be precisely tracked and subsequently manipulated. METHODS We therefore established a model of mechanical damage and developed a MATLAB(TM) tool to measure the migratory capacity of myoblasts in a non-subjective manner. RESULTS Basal migration following damage was highly directional, with total migration distances of 948μm ± 239μm being recorded (average 0-24 hour distances: 491μm ± 113μm and 24-48 hour distances: 460μm ± 218μm). Pharmacological inhibition of MEK or PI3-K using PD98059 (20μM) or LY294002 (5μm), resulted in significant reduction of overall cell migration distances of 38% (p<0.001) and 39.5% (p<0.0004), respectively. Using the semi-automated cell tracking using MATLAB(TM) program we validated that not only was migration distance reduced as a consequence of reduced cell velocity, but critically also as a result of altered directionality of migration. CONCLUSION These studies demonstrate that murine myoblasts in culture migrate and provide a good model for studying responsiveness to damage in vitro. They illustrate for the first time the powerful tool that MATLAB(TM) provides in determining that both velocity and directional capacity influence the migratory potential of cellular movement with obvious implications for homing and for metastases.
Collapse
Affiliation(s)
- Nasser Al-Shanti
- School of Healthcare Science, Institute for Biomedical Research Into Human Movement and Health (IRM), MMU, Oxford Road, Manchester, UK.
| | | | | | | | | |
Collapse
|
53
|
Bianchi R, Kastrisianaki E, Giambanco I, Donato R. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 2011; 286:7214-26. [PMID: 21209080 PMCID: PMC3044978 DOI: 10.1074/jbc.m110.169342] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/29/2010] [Indexed: 01/11/2023] Open
Abstract
The Ca(2+)-binding protein of the EF-hand type, S100B, is abundantly expressed in and secreted by astrocytes, and release of S100B from damaged astrocytes occurs during the course of acute and chronic brain disorders. Thus, the concept has emerged that S100B might act an unconventional cytokine or a damage-associated molecular pattern protein playing a role in the pathophysiology of neurodegenerative disorders and inflammatory brain diseases. S100B proinflammatory effects require relatively high concentrations of the protein, whereas at physiological concentrations S100B exerts trophic effects on neurons. Most if not all of the extracellular (trophic and toxic) effects of S100B in the brain are mediated by the engagement of RAGE (receptor for advanced glycation end products). We show here that high S100B stimulates murine microglia migration in Boyden chambers via RAGE-dependent activation of Src kinase, Ras, PI3K, MEK/ERK1/2, RhoA/ROCK, Rac1/JNK/AP-1, Rac1/NF-κB, and, to a lesser extent, p38 MAPK. Recruitment of the adaptor protein, diaphanous-1, a member of the formin protein family, is also required for S100B/RAGE-induced migration of microglia. The S100B/RAGE-dependent activation of diaphanous-1/Rac1/JNK/AP-1, Ras/Rac1/NF-κB and Src/Ras/PI3K/RhoA/diaphanous-1 results in the up-regulation of expression of the chemokines, CCL3, CCL5, and CXCL12, whose release and activity are required for S100B to stimulate microglia migration. Lastly, RAGE engagement by S100B in microglia results in up-regulation of the chemokine receptors, CCR1 and CCR5. These results suggests that S100B might participate in the pathophysiology of brain inflammatory disorders via RAGE-dependent regulation of several inflammation-related events including activation and migration of microglia.
Collapse
Affiliation(s)
- Roberta Bianchi
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | - Eirini Kastrisianaki
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | - Ileana Giambanco
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | - Rosario Donato
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
54
|
Loell I, Lundberg IE. Can muscle regeneration fail in chronic inflammation: a weakness in inflammatory myopathies? J Intern Med 2011; 269:243-57. [PMID: 21205023 DOI: 10.1111/j.1365-2796.2010.02334.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Idiopathic inflammatory myopathies (IIMs), collectively termed myositis, include three major subgroups: polymyositis, dermatomyositis and inclusion body myositis. IIMs are characterized clinically by muscle weakness and reduced muscle endurance preferentially affecting the proximal skeletal muscle. In typical cases, inflammatory cell infiltrates and proinflammatory cytokines, alarmins and eicosanoids are present in muscle tissue. Treatment with glucocorticoids and other immunosuppressants results in improved performance, but complete recovery is rarely seen. The mechanisms that cause muscle weakness and reduced muscle endurance are multi-factorial, and different mechanisms predominate in different phases of disease. It is likely that a combination of immune-mediated and nonimmune-mediated mechanisms contributes to clinical muscle symptoms. Immune-mediated mechanisms include immune cell-mediated muscle fibre necrosis as well as direct effects of various cytokines on muscle fibre contractility. Among the nonimmune-mediated mechanisms, an acquired metabolic myopathy and so-called endoplasmic reticulum stress may be important. There is also a possibility of defective repair mechanisms, with an influence of both disease-related factors and glucocorticoid treatment. Several proinflammatory molecules observed in muscle tissue of myositis patients, including interleukin (IL)-1, IL-15, tumour necrosis factor, high-mobility group box-1 and eicosanoids, have a role in muscle fibre regeneration, and blocking these molecule may impair muscle repair and recovery. The delicate balance between immunosuppressive treatment to downregulate proinflammatory molecules and an inhibitory effect on muscle fibre regeneration needs to be further understood. This would also be relevant for other chronic inflammatory diseases.
Collapse
Affiliation(s)
- I Loell
- Department of Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
| | | |
Collapse
|
55
|
Ker EDF, Chu B, Phillippi JA, Gharaibeh B, Huard J, Weiss LE, Campbell PG. Engineering spatial control of multiple differentiation fates within a stem cell population. Biomaterials 2011; 32:3413-22. [PMID: 21316755 DOI: 10.1016/j.biomaterials.2011.01.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/13/2011] [Indexed: 12/22/2022]
Abstract
The capability to engineer microenvironmental cues to direct a stem cell population toward multiple fates, simultaneously, in spatially defined regions is important for understanding the maintenance and repair of multi-tissue units. We have previously developed an inkjet-based bioprinter to create patterns of solid-phase growth factors (GFs) immobilized to an extracellular matrix (ECM) substrate, and applied this approach to drive muscle-derived stem cells toward osteoblasts 'on-pattern' and myocytes 'off-pattern' simultaneously. Here this technology is extended to spatially control osteoblast, tenocyte and myocyte differentiation simultaneously. Utilizing immunofluorescence staining to identify tendon-promoting GFs, fibroblast growth factor-2 (FGF-2) was shown to upregulate the tendon marker Scleraxis (Scx) in C3H10T1/2 mesenchymal fibroblasts, C2C12 myoblasts and primary muscle-derived stem cells, while downregulating the myofibroblast marker α-smooth muscle actin (α-SMA). Quantitative PCR studies indicated that FGF-2 may direct stem cells toward a tendon fate via the Ets family members of transcription factors such as pea3 and erm. Neighboring patterns of FGF-2 and bone morphogenetic protein-2 (BMP-2) printed onto a single fibrin-coated coverslip upregulated Scx and the osteoblast marker ALP, respectively, while non-printed regions showed spontaneous myotube differentiation. This work illustrates spatial control of multi-phenotype differentiation and may have potential in the regeneration of multi-tissue units.
Collapse
Affiliation(s)
- Elmer D F Ker
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Ley C, Svala E, Nilton A, Lindahl A, Eloranta ML, Ekman S, Skiöldebrand E. Effects of high mobility group box protein-1, interleukin-1β, and interleukin-6 on cartilage matrix metabolism in three-dimensional equine chondrocyte cultures. Connect Tissue Res 2010; 52:290-300. [PMID: 21117899 DOI: 10.3109/03008207.2010.523803] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of high mobility group box protein (HMGB)-1, interleukin (IL)-1β, and IL-6 on equine articular chondrocytes were investigated, with emphasis on detecting differences between anatomical sites exposed to different loading in vivo, using three-dimensional (3D) cell cultures established with chondrocytes from dorsal radial facet (DRF, highly loaded) and palmar condyle (PC, less loaded) of the third carpal bone (C3). Expression of important genes involved in cartilage metabolism, presence of glycosaminoglycans and cartilage oligomeric matrix protein (COMP) in pellets, and concentrations of matrix metalloproteinase (MMP)-13 and aggrecan epitope CS 846 were evaluated. Compared to controls, IL-1β treatment increased gene expression of versican, matrix-degrading enzymes, and tissue inhibitor of metalloproteinase (TIMP)-1, and decreased aggrecan and collagen type I and type II expression. In addition, IL-1β-treated pellets showed decreased safranin O staining and increased COMP immunostaining and MMP-13 concentrations in culture supernatants. Effects of IL-6 and HMGB-1 on gene expression were variable, although upregulation of Sry-related high-mobility group box 9 (Sox9) was often present and statistically increased in HMGB-1-treated pellets. Response to cytokines rarely differed between DRF and PC pellets. Thus, site-associated cartilage deterioration in equine carpal osteoarthritis (OA) is not explained by topographically different responses to inflammatory mediators. Differences in gene expressions of structural matrix proteins in untreated DRF and PC pellets were noted in the youngest horses, which may indicate differences in the chondrocytes potential to produce matrix in vivo. Overall, a strong catabolic response was induced by IL-1β, whereas slight anabolic effects were induced by IL-6 and HMGB-1.
Collapse
Affiliation(s)
- Cecilia Ley
- Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
57
|
Sorci G, Bianchi R, Riuzzi F, Tubaro C, Arcuri C, Giambanco I, Donato R. S100B Protein, A Damage-Associated Molecular Pattern Protein in the Brain and Heart, and Beyond. Cardiovasc Psychiatry Neurol 2010; 2010:656481. [PMID: 20827421 PMCID: PMC2933911 DOI: 10.1155/2010/656481] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/08/2010] [Indexed: 12/15/2022] Open
Abstract
S100B belongs to a multigenic family of Ca(2+)-binding proteins of the EF-hand type and is expressed in high abundance in the brain. S100B interacts with target proteins within cells thereby altering their functions once secreted/released with the multiligand receptor RAGE. As an intracellular regulator, S100B affects protein phosphorylation, energy metabolism, the dynamics of cytoskeleton constituents (and hence, of cell shape and migration), Ca(2+) homeostasis, and cell proliferation and differentiation. As an extracellular signal, at low, physiological concentrations, S100B protects neurons against apoptosis, stimulates neurite outgrowth and astrocyte proliferation, and negatively regulates astrocytic and microglial responses to neurotoxic agents, while at high doses S100B causes neuronal death and exhibits properties of a damage-associated molecular pattern protein. S100B also exerts effects outside the brain; as an intracellular regulator, S100B inhibits the postinfarction hypertrophic response in cardiomyocytes, while as an extracellular signal, (high) S100B causes cardiomyocyte death, activates endothelial cells, and stimulates vascular smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Claudia Tubaro
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|
58
|
Abstract
BACKGROUND Advanced glycation end-products (AGEs) are increased in situations with hyperglycemia and oxidative stress such as diabetes mellitus. They are products of nonenzymatic glycation and oxidation of proteins and lipids. The kidney plays an important role in clearance and metabolism of AGEs. METHODS Medline and other relevant databases were searched. In addition, key review articles were scanned for relevant original publication. Finally, original data from our research group were also included. RESULTS Kidney podocytes and endothelial cells express specific receptors for AGEs. Their activation leads to multiple pathophysiological effects including hypertrophy with cell cycle arrest and apoptosis, altered migration, and generation of proinflammatory cytokines. AGEs have been primarily implicated in the pathophysiology of diabetic nephropathy and diabetic microvascular complications. AGEs are also involved in other primary renal diseases as well as in the development and progression of atherosclerosis. However, serum or plasma concentrations of AGEs do not correlate well with cardiovascular events in patients with chronic kidney disease (CKD). This is likely due to the fact that serum concentrations failed to correlate with AGEs deposited in target tissues. Several inhibitors of the AGE-RAGE axis are currently tested for various indications. CONCLUSION AGEs and their receptors are involved in the pathogenesis of vascular and kidney disease. The role of circulating AGEs as biomarkers for cardiovascular risk estimation is questionable. Whether putative inhibitors of AGEs will get the maturity for its therapeutic use in the future remains open.
Collapse
Affiliation(s)
- Martin Busch
- Department of Internal Medicine III, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | | | | | | |
Collapse
|
59
|
Ligands of the receptor for advanced glycation end products, including high-mobility group box 1, limit bacterial dissemination during Escherichia coli peritonitis. Crit Care Med 2010; 38:1414-22. [PMID: 20386310 DOI: 10.1097/ccm.0b013e3181de18bc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The receptor for advanced glycation end products mediates a variety of inflammatory responses. Soluble receptor for advanced glycation end products has been suggested to function as a decoy abrogating cellular activation. High-mobility group box 1 is a high-affinity binding ligand for the receptor for advanced glycation end products with cytokine activities and plays a role in sepsis. DESIGN Controlled, in vivo laboratory study. SETTING Research laboratory of a health sciences university. SUBJECTS C57BL/6 mice. INTERVENTIONS Peritonitis was induced by intraperitoneal injection of Escherichia coli. Mice received soluble receptor for advanced glycation end products or anti-high-mobility group box 1 immunoglobulin G, or the appropriate control treatment. MEASUREMENTS AND MAIN RESULTS Soluble receptor for advanced glycation end products-treated mice demonstrated an enhanced bacterial dissemination to liver and lungs, accompanied by increased hepatocellular injury and exaggerated systemic cytokine release, 20 hrs after intraperitoneal administration of Escherichia coli. Soluble receptor for advanced glycation end products administration in healthy, uninfected mice did not induce an immune response. Remarkably, lung inflammation was unaffected. Furthermore, high-mobility group box 1 release was enhanced during peritonitis and anti-high-mobility group box 1 treatment was associated with higher bacterial loads in liver and lungs. CONCLUSIONS These data are the first to suggest that receptor for advanced glycation end products ligands, including high-mobility group box 1, limit bacterial dissemination during Gram-negative sepsis.
Collapse
|
60
|
Biscetti F, Straface G, De Cristofaro R, Lancellotti S, Rizzo P, Arena V, Stigliano E, Pecorini G, Egashira K, De Angelis G, Ghirlanda G, Flex A. High-mobility group box-1 protein promotes angiogenesis after peripheral ischemia in diabetic mice through a VEGF-dependent mechanism. Diabetes 2010; 59:1496-505. [PMID: 20200317 PMCID: PMC2874711 DOI: 10.2337/db09-1507] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE High-mobility group box-1 (HMGB1) protein is a nuclear DNA-binding protein released from necrotic cells, inducing inflammatory responses and promoting tissue repair and angiogenesis. Diabetic human and mouse tissues contain lower levels of HMGB1 than their normoglycemic counterparts. Deficient angiogenesis after ischemia contributes to worse outcomes of peripheral arterial disease in patients with diabetes. To test the hypothesis that HMGB1 enhances ischemia-induced angiogenesis in diabetes, we administered HMGB1 protein in a mouse hind limb ischemia model using diabetic mice. RESEARCH DESIGN AND METHODS After the induction of diabetes by streptozotocin, we studied ischemia-induced neovascularization in the ischemic hind limb of normoglycemic, diabetic, and HMGB1-treated diabetic mice. RESULTS We found that the perfusion recovery was significantly attenuated in diabetic mice compared with normoglycemic control mice. Interestingly, HMGB1 protein expression was lower in the ischemic tissue of diabetic mice than in normoglycemic mice. Furthermore, we observed that HMGB1 administration restored the blood flow recovery and capillary density in the ischemic muscle of diabetic mice, that this process was associated with the increased expression of vascular endothelial growth factor (VEGF), and that HMGB1-induced angiogenesis was significantly reduced by inhibiting VEGF activity. CONCLUSIONS The results of this study show that endogenous HMGB1 is crucial for ischemia-induced angiogenesis in diabetic mice and that HMGB1 protein administration enhances collateral blood flow in the ischemic hind limbs of diabetic mice through a VEGF-dependent mechanism.
Collapse
Affiliation(s)
- Federico Biscetti
- Laboratory of Vascular Biology and Genetics, Department of Medicine, A. Gemelli University Hospital, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Tubaro C, Arcuri C, Giambanco I, Donato R. S100B protein in myoblasts modulates myogenic differentiation via NF-kappaB-dependent inhibition of MyoD expression. J Cell Physiol 2010; 223:270-82. [PMID: 20069545 DOI: 10.1002/jcp.22035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
S100B, a Ca(2+)-binding protein of the EF-hand type, is expressed in myoblasts, the precursors of skeletal myofibers, and muscle satellite cells (this work). S100B has been shown to participate in the regulation of several intracellular processes including cell cycle progression and differentiation. We investigated regulatory activities of S100B within myoblasts by stable overexpression of S100B and by inhibition of S100B expression. Overexpression of S100B in myoblast cell lines and primary myoblasts resulted in inhibition of myogenic differentiation, evidenced by lack of expression of myogenin and myosin heavy chain (MyHC) and absence of myotube formation. S100B-overexpressing myoblasts showed reduced MyoD expression levels and unchanged Myf5 expression levels, compared with control myoblasts, and transient transfection of S100B-overexpressing myoblasts with MyoD, but not Myf5, restored differentiation and fusion in part. The transcriptional activity of NF-kappaB, a negative regulator of MyoD expression, was enhanced in S100B-overexpressing myoblasts, and blocking NF-kappaB activity resulted in reversal of S100B's inhibitory effects. Yin Yang1, a transcriptional repressor that is induced by NF-kappaB (p65) and mediates NF-kappaB inhibitory effects on several myofibrillary genes, also was upregulated in S100B-overexpressing myoblasts. Conversely, silencing S100B expression in myoblast cell lines by RNA interference resulted in reduced NF-kappaB activity and enhanced MyoD, myogenin and MyHC expression and myotube formation. Thus, intracellular S100B might modulate myoblast differentiation by interfering with MyoD expression in an NF-kappaB-dependent manner.
Collapse
Affiliation(s)
- Claudia Tubaro
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
62
|
Bruscoli S, Donato V, Velardi E, Di Sante M, Migliorati G, Donato R, Riccardi C. Glucocorticoid-induced leucine zipper (GILZ) and long GILZ inhibit myogenic differentiation and mediate anti-myogenic effects of glucocorticoids. J Biol Chem 2010; 285:10385-96. [PMID: 20124407 DOI: 10.1074/jbc.m109.070136] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Myogenesis is a process whereby myoblasts differentiate and fuse into multinucleated myotubes, the precursors of myofibers. Various signals and factors modulate this process, and glucocorticoids (GCs) are important regulators of skeletal muscle metabolism. We show that glucocorticoid-induced leucine zipper (GILZ), a GC-induced gene, and the newly identified isoform long GILZ (L-GILZ) are expressed in skeletal muscle tissue and in C2C12 myoblasts where GILZ/L-GILZ maximum expression occurs during the first few days in differentiation medium. Moreover, we observed that GC treatment of myoblasts, which increased GILZ/L-GILZ expression, resulted in reduced myotube formation, whereas GILZ and L-GILZ silencing dampened GC effects. Inhibition of differentiation caused by GILZ/L-GILZ overexpression correlated with inhibition of MyoD function and reduced expression of myogenin. Notably, results indicate that GILZ and L-GILZ bind and regulate MyoD/HDAC1 transcriptional activity, thus mediating the anti-myogenic effect of GCs.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Dipartimento di Medicina Clinica e Sperimentale, Sezione di Farmacologia, Tossicologia e Chemioterapia, Universitá di Perugia, 06122 Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
63
|
Ramasamy R, Yan SF, Schmidt AM. Polyol pathway and RAGE: a central metabolic and signaling axis in diabetic complications. Expert Rev Endocrinol Metab 2010; 5:65-75. [PMID: 30934384 DOI: 10.1586/eem.09.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There are multiple metabolic and molecular consequences of hyperglycemia. This review will focus on the roles of the polyol pathway and the receptor for advanced glycation end products (RAGE) in the pathogenesis of diabetic complications. The lead enzyme of the polyol pathway, aldose reductase, transduces maladaptive effects of hyperglycemia by multiple mechanisms, at least in part via the generation of the products of nonenzymatic glycation of proteins, the advanced glycation end products (AGEs). Furthermore, seminal shifts in metabolic flux in the intracellular space stimulated by aldose reductase action activate signal transduction pathways, which alter gene expression and change cellular phenotype. Among the ligands of the multi-ligand receptor RAGE are the AGEs. AGE-RAGE stimulation mediates vascular and target cell dysfunction. The intersection and interdependence of the polyol pathway-RAGE connection suggest that targeting this axis may provide benefit in reducing the complications of diabetes.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- a Division of Surgical Science, Department of Surgery, Columbia University, College of Physicians and Surgeons, P&S 17-501, 630 West 168th Street, New York, NY 10032, USA
| | - Shi Fang Yan
- a Division of Surgical Science, Department of Surgery, Columbia University, College of Physicians and Surgeons, P&S 17-501, 630 West 168th Street, New York, NY 10032, USA
| | - Ann Marie Schmidt
- b Division of Surgical Science, Department of Surgery, Columbia University, College of Physicians and Surgeons, P&S 17-501, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
64
|
King MD, Laird MD, Ramesh SS, Youssef P, Shakir B, Vender JR, Alleyne CH, Dhandapani KM. Elucidating novel mechanisms of brain injury following subarachnoid hemorrhage: an emerging role for neuroproteomics. Neurosurg Focus 2010; 28:E10. [PMID: 20043714 PMCID: PMC3151677 DOI: 10.3171/2009.10.focus09223] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating neurological injury associated with significant patient morbidity and death. Since the first demonstration of cerebral vasospasm nearly 60 years ago, the preponderance of research has focused on strategies to limit arterial narrowing and delayed cerebral ischemia following SAH. However, recent clinical and preclinical data indicate a functional dissociation between cerebral vasospasm and neurological outcome, signaling the need for a paradigm shift in the study of brain injury following SAH. Early brain injury may contribute to poor outcome and early death following SAH. However, elucidation of the complex cellular mechanisms underlying early brain injury remains a major challenge. The advent of modern neuroproteomics has rapidly advanced scientific discovery by allowing proteome-wide screening in an objective, nonbiased manner, providing novel mechanisms of brain physiology and injury. In the context of neurosurgery, proteomic analysis of patient-derived CSF will permit the identification of biomarkers and/or novel drug targets that may not be intuitively linked with any particular disease. In the present report, the authors discuss the utility of neuroproteomics with a focus on the roles for this technology in understanding SAH. The authors also provide data from our laboratory that identifies high-mobility group box protein-1 as a potential biomarker of neurological outcome following SAH in humans.
Collapse
Affiliation(s)
- Melanie D King
- Department of Neurosurgery, Medical College of Georgia, Augusta, Georgia 30809, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 2009; 11:615-28. [PMID: 19568407 DOI: 10.1593/neo.09284] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 02/06/2023] Open
Abstract
Inflammatory mediators play important roles in the development and progression of cancer. Cellular stress, damage, inflammation, and necrotic cell death cause release of endogenous damage-associated molecular pattern (DAMP) molecules or alarmins, which alert the host of danger by triggering immune responses and activating repair mechanisms through their interaction with pattern recognition receptors. Recent studies show that abnormal persistence of these molecules in chronic inflammation and in tumor microenvironments underlies carcinogenesis and tumor progression, indicating that DAMP molecules and their receptors could provide novel targets for therapy. This review focuses on the role of DAMP molecules high-mobility group box 1 and S100 proteins in inflammation, tumor growth, and early metastatic events.
Collapse
|
66
|
Smith LR, Pontén E, Hedström Y, Ward SR, Chambers HG, Subramaniam S, Lieber RL. Novel transcriptional profile in wrist muscles from cerebral palsy patients. BMC Med Genomics 2009; 2:44. [PMID: 19602279 PMCID: PMC2722667 DOI: 10.1186/1755-8794-2-44] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 07/14/2009] [Indexed: 12/22/2022] Open
Abstract
Background Cerebral palsy (CP) is an upper motor neuron disease that results in a progressive movement disorder. Secondary to the neurological insult, muscles from CP patients often become spastic. Spastic muscle is characterized by an increased resistance to stretch, but often develops the further complication of contracture which represents a prominent disability in children with CP. This study's purpose is to characterize alterations of spastic muscle on the transcriptional level. Increased knowledge of spastic muscle may lead to novel therapies to improve the quality of life for children with CP. Method The transcriptional profile of spastic muscles were defined in children with cerebral palsy and compared to control patients using Affymetrix U133A chips. Expression data were verified using quantitative-PCR (QPCR) and validated with SDS-PAGE for select genes. Significant genes were determined using a 2 × 2 ANOVA and results required congruence between 3 preprocessing algorithms. Results CP patients clustered independently and 205 genes were significantly altered, covering a range of cellular processes. Placing gene expression in the context of physiological pathways, the results demonstrated that spastic muscle in CP adapts transcriptionally by altering extracellular matrix, fiber type, and myogenic potential. Extracellular matrix adaptations occur primarily in the basal lamina although there is increase in fibrillar collagen components. Fiber type is predominately fast compared to normal muscle as evidenced by contractile gene isoforms and decrease in oxidative metabolic gene transcription, despite a paradoxical increased transcription of slow fiber pathway genes. We also found competing pathways of fiber hypertrophy with an increase in the anabolic IGF1 gene in parallel with a paradoxical increase in myostatin, a gene responsible for stopping muscle growth. We found evidence that excitation-contraction coupling genes are altered in muscles from patients with CP and may be a significant component of disease. Conclusion This is the first transcriptional profile performed on spastic muscle of CP patients and these adaptations were not characteristic of those observed in other disease states such as Duchenne muscular dystrophy and immobilization-induced muscle atrophy. Further research is required to understand the mechanism of muscle adaptation to this upper motor neuron lesion that could lead to the development of innovative therapies.
Collapse
Affiliation(s)
- Lucas R Smith
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA.
| | | | | | | | | | | | | |
Collapse
|
67
|
van Zoelen MAD, van der Sluijs KF, Achouiti A, Florquin S, Braun-Pater JM, Yang H, Nawroth PP, Tracey KJ, Bierhaus A, van der Poll T. Receptor for advanced glycation end products is detrimental during influenza A virus pneumonia. Virology 2009; 391:265-73. [PMID: 19592063 DOI: 10.1016/j.virol.2009.05.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 05/19/2009] [Indexed: 01/13/2023]
Abstract
Pneumonia caused by influenza A virus (IAV) can have devastating effects, resulting in respiratory failure and death. The idea that a new influenza pandemic might occur in the near future has triggered renewed interests in IAV infection. The receptor for advanced glycation end products (RAGE) is expressed on different cell types and plays a key role in diverse inflammatory processes. We here investigated the role of RAGE in the host response to IAV pneumonia using wild-type (wt) and RAGE deficient ((-/-)) mice. Whereas strong RAGE was constitutively expressed in the lungs of uninfected wt mice, in particular on endothelium, IAV pneumonia was associated with enhanced expression on endothelium and de novo expression on bronchial epithelium. Additionally, the high-affinity RAGE ligand high mobility group box 1 was upregulated during IAV pneumonia. RAGE(-/-) mice were relatively protected from IAV induced mortality and showed an improved viral clearance and enhanced cellular T cell response and activation of neutrophils. These data suggest that RAGE is detrimental during IAV pneumonia.
Collapse
Affiliation(s)
- Marieke A D van Zoelen
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Ramasamy R, Yan SF, Schmidt AM. RAGE: therapeutic target and biomarker of the inflammatory response--the evidence mounts. J Leukoc Biol 2009; 86:505-12. [PMID: 19477910 DOI: 10.1189/jlb.0409230] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The RAGE binds multiple ligand families linked to hyperglycemia, aging, inflammation, neurodegeneration, and cancer. Activation of RAGE by its ligands stimulates diverse signaling cascades. The recent observation that the cytoplasmic domain of RAGE interacts with diaphanous or mDia-1 links RAGE signal transduction to cellular migration and activation of the Rho GTPases, cdc42 and rac-1. Pharmacological blockade of RAGE or genetic deletion of RAGE imparts significant protection in murine models of diabetes, inflammatory conditions, Alzheimer's disease, and tumors. Intriguingly, soluble forms of RAGE, including the splice variant-derived esRAGE, circulate in human plasma. Studies in human subjects suggest that sRAGE levels may be modulated by the diseases impacted by RAGE and its ligands. Thus, in addition to being a potential therapeutic target in chronic disease, monitoring of plasma sRAGE levels may provide a novel biomarker platform for tracking chronic inflammatory diseases, their severity, and response to therapeutic intervention.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
69
|
van Zoelen MAD, Schouten M, de Vos AF, Florquin S, Meijers JCM, Nawroth PP, Bierhaus A, van der Poll T. The receptor for advanced glycation end products impairs host defense in pneumococcal pneumonia. THE JOURNAL OF IMMUNOLOGY 2009; 182:4349-56. [PMID: 19299735 DOI: 10.4049/jimmunol.0801199] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. The receptor for advanced glycation end products (RAGE) is a multiligand receptor that is expressed ubiquitously in the lungs. Engagement of RAGE leads to activation of multiple intracellular signaling pathways, including NF-kappaB and subsequent transcription of several proinflammatory mediators. To determine the role of RAGE in the innate immune response to S. pneumoniae pneumonia, RAGE-deficient (RAGE(-/-)) and wild-type mice were intranasally inoculated with S. pneumoniae. S. pneumoniae pneumonia resulted in an up-regulation of constitutively present RAGE expression in lung tissue, especially in the interalveolar septae. RAGE(-/-) mice showed an improved survival, which was accompanied by a lower bacterial load in the lungs at 16 h and a decreased dissemination of the bacteria to blood and spleen at 16 and 48 h after inoculation. RAGE(-/-) macrophages showed an improved killing capacity of S. pneumoniae in vitro. Lung inflammation was attenuated in RAGE(-/-) mice at 48 h after inoculation, as indicated by histopathology and cytokine/chemokine levels. Neutrophil migration to the lungs was mitigated in the RAGE(-/-) mice. In addition, in RAGE(-/-) mice, activation of coagulation was diminished. Additional studies examining the effect of RAGE deficiency on the early (6-h) inflammatory response to S. pneumoniae did not reveal an early accelerated or enhanced immune response. These data suggest that RAGE plays a detrimental role in the host response to S. pneumoniae pneumonia by facilitating the bacterial growth and dissemination and concurrently enhancing the pulmonary inflammatory and procoagulant response.
Collapse
|
70
|
Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I. S100B's double life: intracellular regulator and extracellular signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:1008-22. [PMID: 19110011 DOI: 10.1016/j.bbamcr.2008.11.009] [Citation(s) in RCA: 520] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/12/2008] [Accepted: 11/21/2008] [Indexed: 12/22/2022]
Abstract
The Ca2+-binding protein of the EF-hand type, S100B, exerts both intracellular and extracellular functions. Recent studies have provided more detailed information concerning the mechanism(s) of action of S100B as an intracellular regulator and an extracellular signal. Indeed, intracellular S100B acts as a stimulator of cell proliferation and migration and an inhibitor of apoptosis and differentiation, which might have important implications during brain, cartilage and skeletal muscle development and repair, activation of astrocytes in the course of brain damage and neurodegenerative processes, and of cardiomyocyte remodeling after infarction, as well as in melanomagenesis and gliomagenesis. As an extracellular factor, S100B engages RAGE (receptor for advanced glycation end products) in a variety of cell types with different outcomes (i.e. beneficial or detrimental, pro-proliferative or pro-differentiative) depending on the concentration attained by the protein, the cell type and the microenvironment. Yet, RAGE might not be the sole S100B receptor, and S100B's ability to engage RAGE might be regulated by its interaction with other extracellular factors. Future studies using S100B transgenic and S100B null mice might shed more light on the functional role(s) of the protein.
Collapse
Affiliation(s)
- Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, Section Anatomy, University of Perugia, Via del Giochetto C.P. 81 Succ. 3, 06122 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Tateno T, Ueno S, Hiwatashi K, Matsumoto M, Okumura H, Setoyama T, Uchikado Y, Sakoda M, Kubo F, Ishigami S, Shinchi H, Natsugoe S. Expression of receptor for advanced glycation end products (RAGE) is related to prognosis in patients with esophageal squamous cell carcinoma. Ann Surg Oncol 2008; 16:440-6. [PMID: 19023628 DOI: 10.1245/s10434-008-0237-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/18/2022]
Abstract
The receptor for advanced glycation end products (RAGE), known as a multiligand receptor for certain stress-associated factors, has been considered to affect the characteristic differences of various cancer cells. We analyzed the expression and clinicopathological significance of RAGE in esophageal squamous cell carcinoma. We investigated immunohistochemically the relationship between RAGE expression and clinicopathological factors, including prognosis, in surgical specimens of primary tumors in 216 patients with esophageal squamous cell carcinoma. Prognostic factors were examined by univariate and multivariate analyses (Cox proportional hazard regression model). The positive expression rate of RAGE was 50%. RAGE expression was negatively correlated with depth of invasion and venous invasion. Moreover, tumors with positive RAGE expression exhibited better prognosis than those with negative RAGE expression (5-year survival, 52% vs. 32%, respectively). Multivariate analysis indicated that the positive expression of RAGE was an independent prognostic factor, along with tumor depth and nodal metastasis. Our findings suggest that loss of RAGE expression may play an important role in the progression of esophageal squamous cell carcinoma. Evaluation of the expression of RAGE could be useful for determining the tumor properties, including those associated with prognosis, in patients with esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Taro Tateno
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School of Medicine and Dental Sciences, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Qin J, Goswami R, Dawson S, Dawson G. Expression of the receptor for advanced glycation end products in oligodendrocytes in response to oxidative stress. J Neurosci Res 2008; 86:2414-22. [PMID: 18438937 DOI: 10.1002/jnr.21692] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Demyelination is a common result of oxidative stress in the nervous system, and we report here that the response of oligodendrocytes to oxidative stress involves the receptor for advanced glycation end products (RAGE). RAGE has not previously been reported in neonatal rat oligodendrocytes (NRO), but, by using primers specific for rat RAGE, we were able to show expression of messenger RNA (mRNA) for RAGE in NRO, and a 55-kDa protein was detected by Western blotting with antibodies to RAGE. Neonatal rat oligodendrocytes stained strongly for RAGE, suggesting membrane localization of RAGE. Addition of low concentrations of hydrogen peroxide (100 microM) initiated 55-kDa RAGE shedding from the cell membrane and the appearance of "soluble" 45-kDa RAGE in the culture medium, followed by restoration of RAGE expression to normal levels. Increasing hydrogen peroxide concentration (>200 microM) resulted in no restoration of RAGE, and the cells underwent apoptosis and necrosis. We further confirmed the observation in a human oligodendroglioma-derived (HOG) cell line. Both the antioxidant N-acetyl-L-cysteine and the broad-spectrum metalloproteases inhibitor TAPI0 were able partially to inhibit shedding of RAGE, suggesting involvement of metalloproteases in cleavage to produce soluble RAGE. The level of 55-kDa RAGE in autopsy brain of patients undergoing neurodegeneration with accompanying inflammation [multiple sclerosis and neuronal ceroid-lipofuscinosis (Batten's disease)] was much lower than that in age-matched controls, suggesting that shedding of RAGE might occur as reactive oxygen species accumulate in brain cells and be part of the process of neurodegeneration.
Collapse
Affiliation(s)
- Jingdong Qin
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
73
|
Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med 2008; 14:476-84. [PMID: 18431461 PMCID: PMC2323334 DOI: 10.2119/2008-00034.klune] [Citation(s) in RCA: 616] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 04/10/2008] [Indexed: 12/20/2022] Open
Abstract
While foreign pathogens and their products have long been known to activate the innate immune system, the recent recognition of a group of endogenous molecules that serve a similar function has provided a framework for understanding the overlap between the inflammatory responses activated by pathogens and injury. These endogenous molecules, termed alarmins, are normal cell constituents that can be released into the extracellular milieu during states of cellular stress or damage and subsequently activate the immune system. One nuclear protein, High mobility group box-1 (HMGB1), has received particular attention as fulfilling the functions of an alarmin by being involved in both infectious and non-infectious inflammatory conditions. Once released, HMGB1 signals through various receptors to activate immune cells involved in the immune process. Although initial studies demonstrated HMGB1 as a late mediator of sepsis, recent findings indicate HMGB1 to have an important role in models of non-infectious inflammation, such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. Furthermore, in contrast to its pro-inflammatory functions, there is evidence that HMGB1 also has restorative effects leading to tissue repair and regeneration. The complex functions of HMGB1 as an archetypical alarmin are outlined here to review our current understanding of a molecule that holds the potential for treatment in many important human conditions.
Collapse
Affiliation(s)
- John R Klune
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
74
|
Bianchi R, Giambanco I, Donato R. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging 2008; 31:665-77. [PMID: 18599158 DOI: 10.1016/j.neurobiolaging.2008.05.017] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 05/09/2008] [Accepted: 05/18/2008] [Indexed: 12/16/2022]
Abstract
Extracellular S100B is known to affect astrocytic, neuronal and microglial activities, with different effects depending on its concentration. Whereas at relatively low concentrations S100B exerts trophic effects on neurons and astrocytes, at relatively high concentrations the protein causes neuronal apoptosis and activates astrocytes and microglia, thus potentially representing an endogenous factor implicated in neuroinflammation. We have reported that RAGE ligation by S100B in BV-2 microglia results in the upregulation of expression of the pro-inflammatory cyclo-oxygenase 2 (COX-2) via parallel Ras-Cdc42-Rac1-dependent activation of c-Jun NH(2) terminal protein kinase (JNK) and Ras-Rac1-dependent stimulation of NF-kappaB transcriptional activity. We show here that: (1) S100B also stimulates AP-1 transcriptional activity in microglia via RAGE-dependent activation of JNK; (2) S100B upregulates IL-1beta and TNF-alpha expression in microglia via RAGE engagement; and (3) S100B/RAGE-induced upregulation of COX-2, IL-1beta and TNF-alpha expression requires the concurrent activation of NF-kappaB and AP-1. We also show that S100B synergizes with IL-1beta and TNF-alpha to upregulate on COX-2 expression in microglia. Given the crucial roles of COX-2, IL-1beta and TNF-alpha in the inflammatory response, we propose that, by engaging RAGE, S100B might play an important role in microglia activation in the course of brain damage.
Collapse
Affiliation(s)
- Roberta Bianchi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, C.P. 81 Succ. 3, 06122 Perugia, Italy
| | | | | |
Collapse
|
75
|
Khazaei MR, Habibi-Rezaei M, Karimzadeh F, Moosavi-Movahedi AA, Sarrafnejhad AA, Sabouni F, Bakhti M. Microglial Cell Death Induced by Glycated Bovine Serum Albumin: Nitric Oxide Involvement. ACTA ACUST UNITED AC 2008; 144:197-206. [DOI: 10.1093/jb/mvn059] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
76
|
Nah SS, Choi IY, Lee CK, Oh JS, Kim YG, Moon HB, Yoo B. Effects of advanced glycation end products on the expression of COX-2, PGE2 and NO in human osteoarthritic chondrocytes. Rheumatology (Oxford) 2008; 47:425-31. [DOI: 10.1093/rheumatology/kem376] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
77
|
Bopp C, Bierhaus A, Hofer S, Bouchon A, Nawroth PP, Martin E, Weigand MA. Bench-to-bedside review: The inflammation-perpetuating pattern-recognition receptor RAGE as a therapeutic target in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:201. [PMID: 18226173 PMCID: PMC2374592 DOI: 10.1186/cc6164] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sepsis still represents an important clinical and economic challenge for intensive care units. Severe complications like multi-organ failure with high mortality and the lack of specific diagnostic tools continue to hamper the development of improved therapies for sepsis. Fundamental questions regarding the cellular pathogenesis of experimental and clinical sepsis remain unresolved. According to experimental data, inhibiting macrophage migration inhibitory factor, high-mobility group box protein 1 (HMGB1), and complement factor C5a and inhibiting the TREM-1 (triggering receptor expressed on myeloid cells 1) signaling pathway and apoptosis represent promising new therapeutic options. In addition, we have demonstrated that blocking the signal transduction pathway of receptor of advanced glycation endproducts (RAGE), a new inflammation-perpetuating receptor and a member of the immunglobulin superfamily, increases survival in experimental sepsis. The activation of RAGE by advanced glycation end-products, S100, and HMGB1 initiates nuclear factor kappa B and mitogen-activated protein kinase pathways. Importantly, the survival rate of RAGE knockout mice was more than fourfold that of wild-type mice in a septic shock model of cecal ligation and puncture (CLP). Additionally, the application of soluble RAGE, an extracellular decoy for RAGE ligands, improves survival in mice after CLP, suggesting that RAGE is a central player in perpetuating the innate immune response. Understanding the basic signal transduction events triggered by this multi-ligand receptor may offer new diagnostic and therapeutic options in patients with sepsis.
Collapse
Affiliation(s)
- Christian Bopp
- Department of Anesthesiology, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
78
|
Muscari C, Bonafé F, Carboni M, Govoni M, Stanic I, Gamberini C, Ricci F, Tazzari PL, Caldarera CM, Guarnieri C. Difluoromethylornithine stimulates early cardiac commitment of mesenchymal stem cells in a model of mixed culture with cardiomyocytes. J Cell Biochem 2008; 103:1046-52. [DOI: 10.1002/jcb.21683] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
79
|
De Mori R, Straino S, Di Carlo A, Mangoni A, Pompilio G, Palumbo R, Bianchi ME, Capogrossi MC, Germani A. Multiple effects of high mobility group box protein 1 in skeletal muscle regeneration. Arterioscler Thromb Vasc Biol 2007; 27:2377-83. [PMID: 17872450 DOI: 10.1161/atvbaha.107.153429] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE High mobility group box 1 protein (HMGB1) is a cytokine released by necrotic and inflammatory cells in response to injury. We examined the role of HMGB1 in skeletal muscle regeneration after hindlimb ischemia. METHODS AND RESULTS Unilateral hindlimb ischemia was induced in mice by femoral artery dissection. HMGB1 levels increased in regenerating skeletal muscle and the blockade of endogenous HMGB1 by the administration of its truncated form, the BoxA, resulted in the reduction of vessel density. In contrast, intramuscular administration of HMGB1 enhanced perfusion and increased the number of regenerating fibers. To separately study the myogenic and the angiogenic effects of HMGB1, in vitro experiments were performed with isolated myoblasts and endothelial cells. Myoblasts were found to express the HMGB1 receptor RAGE and TLR4 which were downregulated during in vitro myogenic differentiation. HMGB1 was extracellularly released by differentiated myoblasts and exerted a chemotactic activity on myogenic cells. This effect was partially dependent on RAGE and was inhibited by BoxA treatment. Finally, HMGB1 stimulated tubular-like structure formation by endothelial cells through the activation of extracellular signal-regulated kinase (ERK) and JNK signal transduction pathways. CONCLUSIONS HMGB1 plays a role in skeletal muscle regeneration modulating, in an autocrine-paracrine manner, myoblast and endothelial cell functions.
Collapse
Affiliation(s)
- Roberta De Mori
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Riuzzi F, Sorci G, Donato R. RAGE expression in rhabdomyosarcoma cells results in myogenic differentiation and reduced proliferation, migration, invasiveness, and tumor growth. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:947-61. [PMID: 17640970 PMCID: PMC1959489 DOI: 10.2353/ajpath.2007.070049] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2007] [Indexed: 11/20/2022]
Abstract
Activation of receptor for advanced glycation end products (RAGE) by its ligand, HMGB1, stimulates myogenesis via a Cdc42-Rac1-MKK6-p38 mitogen-activated protein kinase pathway. In addition, functional inactivation of RAGE in myoblasts results in reduced myogenesis, increased proliferation, and tumor formation in vivo. We show here that TE671 rhabdomyosarcoma cells, which do not express RAGE, can be induced to differentiate on transfection with RAGE (TE671/RAGE cells) but not a signaling-deficient RAGE mutant (RAGEDeltacyto) (TE671/RAGEDeltacyto cells) via activation of a Cdc42-Rac1-MKK6-p38 pathway and that TE671/RAGE cell differentiation depends on RAGE engagement by HMGB1. TE671/RAGE cells also show p38-dependent inactivation of extracellular signal-regulated kinases 1 and 2 and c-Jun NH(2) terminal protein kinase and reduced proliferation, migration, and invasiveness and increased apoptosis, volume, and adhesiveness in vitro; they also grow smaller tumors and show a lower tumor incidence in vivo compared with wild-type cells. Two other rhabdomyosarcoma cell lines that express RAGE, CCA and RMZ-RC2, show an inverse relationship between the level of RAGE expression and invasiveness in vitro and exhibit reduced myogenic potential and enhanced invasive properties in vitro when transfected with RAGEDeltacyto. The rhabdomyosarcoma cell lines used here and C2C12 myoblasts express and release HMGB1, which activates RAGE in an autocrine manner. These data suggest that deregulation of RAGE expression in myoblasts might concur in rhabdomyosarcomagenesis and that increasing RAGE expression in rhabdomyosarcoma cells might reduce their tumor potential.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, Via del Giochetto C.P. 81 Succ. 3, 06122 Perugia, Italy.
| | | | | |
Collapse
|
81
|
Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem 2007; 282:31317-31. [PMID: 17726019 DOI: 10.1074/jbc.m703951200] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S100 proteins are EF-hand calcium-binding proteins with various intracellular functions including cell proliferation, differentiation, migration, and apoptosis. Some S100 proteins are also secreted and exert extracellular paracrine and autocrine functions. Experimental results suggest that the receptor for advanced glycation end products (RAGE) plays important roles in mediating S100 protein-induced cellular signaling. Here we compared the interaction of two S100 proteins, S100B and S100A6, with RAGE by in vitro assay and in culture of human SH-SY5Y neuroblastoma cells. Our in vitro binding data showed that S100B and S100A6, although structurally very similar, interact with different RAGE extracellular domains. Our cell assay data demonstrated that S100B and S100A6 differentially modulate cell survival. At micromolar concentration, S100B increased cellular proliferation, whereas at the same concentration, S100A6 triggered apoptosis. Although both S100 proteins induced the formation of reactive oxygen species, S100B recruited phosphatidylinositol 3-kinase/AKT and NF-kappaB, whereas S100A6 activated JNK. More importantly, we showed that S100B and S100A6 modulate cell survival in a RAGE-dependent manner; S100B specifically interacted with the RAGE V and C(1) domains and S100A6 specifically interacted with the C(1) and C(2) RAGE domains. Altogether these results highlight the complexity of S100/RAGE cellular signaling.
Collapse
MESH Headings
- Apoptosis
- Blotting, Western
- Caspase 3/metabolism
- Caspase 7/metabolism
- Cell Line, Tumor
- Cell Survival/physiology
- Culture Media, Serum-Free
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli/genetics
- Fluorescent Antibody Technique, Direct
- Glioblastoma/pathology
- Humans
- In Situ Nick-End Labeling
- Luminescent Measurements
- Models, Biological
- NF-kappa B/metabolism
- Neuroblastoma/pathology
- Protein Structure, Tertiary
- Reactive Oxygen Species/metabolism
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/immunology
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- S100 Proteins/genetics
- S100 Proteins/metabolism
- S100 Proteins/physiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Estelle Leclerc
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
82
|
Nah SS, Choi IY, Yoo B, Kim YG, Moon HB, Lee CK. Advanced glycation end products increases matrix metalloproteinase-1, -3, and -13, and TNF-alpha in human osteoarthritic chondrocytes. FEBS Lett 2007; 581:1928-32. [PMID: 17434489 DOI: 10.1016/j.febslet.2007.03.090] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/22/2007] [Accepted: 03/30/2007] [Indexed: 11/17/2022]
Abstract
We investigated the effects of advanced glycation end products (AGE) which accumulate in articular cartilage with age in human osteoarthritic chondrocytes. We found AGE-BSA significantly increased MMP-1, -3, and -13, and TNF-alpha in a dose-dependent manner. AGE-BSA-stimulated JNK, p38, and ERK and NF-kappaB activity. The stimulatory effect of AGE-BSA on MMP-1, -3, and -13 were reversed by treatment with specific JNK, p38 inhibitors, suggesting JNK and p38 are involved in AGE-BSA-induced MMPs and TNF-alpha. We also observed that NF-kappaB is involved in AGE-BSA-induced TNF-alpha. Pretreatment with soluble receptor for AGE (sRAGE) also reduced AGE-stimulated MMPs and TNF-alpha, implicating the involvement of receptor for AGE (RAGE). In conclusion, accumulation of AGE may have a role in the development of osteoarthritis by increasing MMP-1, -3, and -13, and TNF-alpha.
Collapse
Affiliation(s)
- Seong-Su Nah
- Division of Allergy and Rheumatology, Department of Internal Medicine, College of Medicine, University of Ulsan, Asan Medical Center, 388-1, Pungnap-dong, Songpa-gu, Seoul 138-736, Republic of Korea
| | | | | | | | | | | |
Collapse
|
83
|
Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007; 8:487-96. [PMID: 17417641 DOI: 10.1038/ni1457] [Citation(s) in RCA: 1071] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 03/08/2007] [Indexed: 11/09/2022]
Abstract
Increased concentrations of DNA-containing immune complexes in the serum are associated with systemic autoimmune diseases such as lupus. Stimulation of Toll-like receptor 9 (TLR9) by DNA is important in the activation of plasmacytoid dendritic cells and B cells. Here we show that HMGB1, a nuclear DNA-binding protein released from necrotic cells, was an essential component of DNA-containing immune complexes that stimulated cytokine production through a TLR9-MyD88 pathway involving the multivalent receptor RAGE. Moreover, binding of HMGB1 to class A CpG oligodeoxynucleotides considerably augmented cytokine production by means of TLR9 and RAGE. Our data demonstrate a mechanism by which HMGB1 and RAGE activate plasmacytoid dendritic cells and B cells in response to DNA and contribute to autoimmune pathogenesis.
Collapse
Affiliation(s)
- Jane Tian
- Inflammation and Autoimmune Group, Research Department, MedImmune, Gaithersburg, Maryland 20878, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Chen SE, Jin B, Li YP. TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol 2006; 292:C1660-71. [PMID: 17151142 PMCID: PMC3099536 DOI: 10.1152/ajpcell.00486.2006] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although p38 MAPK activation is essential for myogenesis, the upstream signaling mechanism that activates p38 during myogenesis remains undefined. We recently reported that p38 activation, myogenesis, and regeneration in cardiotoxin-injured soleus muscle are impaired in TNF-alpha receptor double-knockout (p55(-/-)p75(-/-)) mice. To fully evaluate the role of TNF-alpha in myogenic activation of p38, we tried to determine whether p38 activation in differentiating myoblasts requires autocrine TNF-alpha, and whether forced activation of p38 rescues impaired myogenesis and regeneration in the p55(-/-)p75(-/-) soleus. We observed an increase of TNF-alpha release from C2C12 or mouse primary myoblasts placed in low-serum differentiation medium. A TNF-alpha-neutralizing antibody added to differentiation medium blocked p38 activation and suppressed differentiation markers myocyte enhancer factor (MEF)-2C, myogenin, p21, and myosin heavy chain in C2C12 myoblasts. Conversely, recombinant TNF-alpha added to differentiation medium stimulated myogenesis at 0.05 ng/ml while inhibited it at 0.5 and 5 ng/ml. In addition, differentiation medium-induced p38 activation and myogenesis were compromised in primary myoblasts prepared from p55(-/-)p75(-/-) mice. Increased TNF-alpha release was also seen in cardiotoxin-injured soleus over the course of regeneration. Forced activation of p38 via the constitutive activator of p38, MKK6bE, rescued impaired myogenesis and regeneration in the cardiotoxin-injured p55(-/-)p75(-/-) soleus. These results indicate that TNF-alpha regulates myogenesis and muscle regeneration as a key activator of p38.
Collapse
MESH Headings
- Animals
- Autocrine Communication
- Cell Differentiation
- Cell Line
- Cobra Cardiotoxin Proteins
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Enzyme Activation
- MAP Kinase Kinase 6/metabolism
- Mice
- Mice, Knockout
- Muscle Development/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Diseases/chemically induced
- Muscular Diseases/metabolism
- Muscular Diseases/physiopathology
- Myoblasts/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Regeneration/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Shuen-Ei Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
85
|
Takaesu G, Kang JS, Bae GU, Yi MJ, Lee CM, Reddy EP, Krauss RS. Activation of p38alpha/beta MAPK in myogenesis via binding of the scaffold protein JLP to the cell surface protein Cdo. ACTA ACUST UNITED AC 2006; 175:383-8. [PMID: 17074887 PMCID: PMC2064516 DOI: 10.1083/jcb.200608031] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in cell differentiation, but the signaling mechanisms by which it is activated during this process are largely unknown. Cdo is an immunoglobulin superfamily member that functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that the Cdo intracellular region interacts with JLP, a scaffold protein for the p38alpha/beta MAPK pathway. Cdo, JLP, and p38alpha/beta form complexes in differentiating myoblasts, and Cdo and JLP cooperate to enhance levels of active p38alpha/beta in transfectants. Primary myoblasts from Cdo(-/-) mice, which display a defective differentiation program, are deficient in p38alpha/beta activity, and the expression of an activated form of MKK6 (an immediate upstream activator of p38) rescues the ability of Cdo(-/-) cells to differentiate. These results document a novel mechanism of signaling during cell differentiation: the interaction of a MAPK scaffold protein with a cell surface receptor.
Collapse
Affiliation(s)
- Giichi Takaesu
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Bianchi R, Adami C, Giambanco I, Donato R. S100B binding to RAGE in microglia stimulates COX-2 expression. J Leukoc Biol 2006; 81:108-18. [PMID: 17023559 DOI: 10.1189/jlb.0306198] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Besides exerting regulatory roles within astrocytes, the Ca2+-modulated protein of the EF-hand type S100B is released into the brain extracellular space, thereby affecting astrocytes, neurons, and microglia. However, extracellular effects of S100B vary, depending on the concentration attained and the protein being trophic to neurons up to nanomolar concentrations and causing neuronal apoptosis at micromolar concentrations. Effects of S100B on neurons are transduced by receptor for advanced glycation end products (RAGE). At high concentrations, S100B also up-regulates inducible NO synthase in and stimulates NO release by microglia by synergizing with bacterial endotoxin and IFN-gamma, thereby participating in microglia activation. We show here that S100B up-regulates cyclo-oxygenase-2 expression in microglia in a RAGE-dependent manner in the absence of cofactors through independent stimulation of a Cdc42-Rac1-JNK pathway and a Ras-Rac1-NF-kappaB pathway. Thus, S100B can be viewed as an astrocytic endokine, which might participate in the inflammatory response in the course of brain insults, once liberated into the brain extracellular space.
Collapse
Affiliation(s)
- Roberta Bianchi
- department of Experimental Medicine and Biochemical Sciences, Sect. Anatomy, University of Perugia, Via del Giochetto C.P. 81 Succ. 3, 06122 Perugia, Italy
| | | | | | | |
Collapse
|
87
|
Keren A, Tamir Y, Bengal E. The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 2006; 252:224-30. [PMID: 16644098 DOI: 10.1016/j.mce.2006.03.017] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Skeletal muscle development is regulated by extracellular growth factors that transmit largely unknown signals into the cell affecting the muscle-transcription program. One intracellular signaling pathway activated during the differentiation of myogenic cell lines is p38 mitogen-activated protein kinase (MAPK). As a result of modifying the activity of p38 in myoblasts, the pathway proved essential for the expression of muscle-specific genes. P38 affects the activities of transcription factors from the MyoD and MEF2 families and participates in the remodeling of chromatin at specific muscle-regulatory regions. P38 cooperates with the myogenic transcription factors in the activation of a subset of late-transcribed genes, hence contributing to the temporal expression of genes during differentiation. Recent developmental studies with mouse and Xenopus embryos, substantiated and further extended the essential role of p38 in myogenesis. Evidence exists supporting the crucial role for p38 signaling in activating MEF2 transcription factors during somite development in mice. In Xenopus, p38 signaling was shown to be needed for the early expression of Myf5 and for the expression of several muscle structural genes. The emerging data indicate that p38 participates in several stages of the myogenic program.
Collapse
Affiliation(s)
- Aviad Keren
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
88
|
Riuzzi F, Sorci G, Donato R. S100B stimulates myoblast proliferation and inhibits myoblast differentiation by independently stimulating ERK1/2 and inhibiting p38 MAPK. J Cell Physiol 2006; 207:461-70. [PMID: 16419039 DOI: 10.1002/jcp.20580] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Ca2+-modulated protein of the EF-hand type, S100B, was shown to inhibit rat L6 myoblast differentiation and myotube formation by interacting with a high affinity with an unidentified receptor (Sorci et al., 2003). We show here that S100B independently inhibits the MKK6-p38 MAPK pathway and stimulates the Ras-MEK-ERK1/2 pathway. The inhibitory effect of S100B on p38 MAPK translates into a defective induction of the muscle-specific transcription factor myogenin and the antiproliferative factor p21(WAF1), while S100B's stimulatory effect on ERK1/2 results in stimulation of myoblast proliferation via cyclin D1 induction and Rb phosphorylation and protection against apoptosis via activation of NF-kappaB transcriptional activity. Also, the S100B's effects that are mediated by the Ras-MEK-ERK1/2 pathway that is, stimulation of proliferation and protection against apoptosis, depend on reactive oxygen species production, being inhibited by antioxidants, while the S100B inhibitory effect on the MKK6-p38 MAPK pathway is not. We propose that S100B might participate in the regulation of myoblast differentiation by stimulating myoblast proliferation, protecting myoblasts against apoptosis, and modulating myotube formation.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
89
|
Palacios D, Puri PL. The epigenetic network regulating muscle development and regeneration. J Cell Physiol 2006; 207:1-11. [PMID: 16155926 DOI: 10.1002/jcp.20489] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review focuses on our current knowledge of the epigenetic changes regulating gene expression at the chromatin and DNA level, independently on the primary DNA sequence, to reprogram the nuclei of muscle precursors during developmental myogenesis and muscle regeneration. These epigenetic marks provide the blueprint by which the extra-cellular cues are interpreted at the nuclear level by the transcription machinery to select the repertoire of tissue-specific genes to be expressed. The reversibility of some of these changes necessarily reflects the dynamic nature of skeletal myogenesis, which entails the progression through two antagonistic processes--proliferation and differentiation. Other epigenetic modifications are instead associated to events conventionally considered as irreversible--e.g. maintenance of lineage commitment and terminal differentiation. However, recent results support the possibility that these events can be reversed, at least upon certain experimental conditions, thereby revealing a dynamic nature of many of the epigenetic modifications underlying skeletal myogenesis. The elucidation of the epigenetic network that regulates transcription during developmental myogenesis and muscle regeneration might provide the information instrumental to devise pharmacological interventions toward selective manipulation of gene expression to promote regeneration of skeletal muscles and possibly other tissue.
Collapse
Affiliation(s)
- Daniela Palacios
- Laboratory of Gene Expression, Dulbecco Telethon Institute at Fondazione A. Cesalpino. ICBTE, San Raffaele Biomedical Science Park of Rome, Italy
| | | |
Collapse
|
90
|
Riuzzi F, Sorci G, Donato R. The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol Chem 2006; 281:8242-53. [PMID: 16407300 DOI: 10.1074/jbc.m509436200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We reported that RAGE (receptor for advanced glycation end products), a multiligand receptor of the immunoglobulin superfamily expressed in myoblasts, when activated by its ligand amphoterin (HMGB1), stimulates rat L6 myoblast differentiation via a Cdc42-Rac-MKK6-p38 mitogen-activated protein kinase pathway, and that RAGE expression in skeletal muscle tissue is developmentally regulated. We show here that inhibition of RAGE function via overexpression of a signaling deficient RAGE mutant (RAGE delta cyto) results in increased myoblast proliferation, migration, and invasiveness, and decreased apoptosis and adhesiveness, whereas myoblasts overexpressing RAGE behave the opposite, compared with mock-transfected myoblasts. These effects are accompanied by a decreased induction of the proliferation inhibitor, p21(Waf1), and increased induction of cyclin D1 and extent of Rb, ERK1/2, and JNK phosphorylation in L6/RAGE delta cyto myoblasts, the opposite occurring in L6/RAGE myoblasts. Neutralization of culture medium amphoterin negates effects of RAGE activation, suggesting that amphoterin is the RAGE ligand involved in RAGE-dependent effects in myoblasts. Finally, mice injected with L6/RAGE delta cyto myoblasts develop tumors as opposed to mice injected with L6/RAGE or L6/mock myoblasts that do not. Thus, the amphoterin/RAGE pair stimulates myoblast differentiation by the combined effect of stimulation of differentiation and inhibition of proliferation, and deregulation of RAGE expression in myoblasts might contribute to their neoplastic transformation.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Casella Postale 81 Succursale 3, 06122 Perugia, Italy
| | | | | |
Collapse
|
91
|
Bohlender JM, Franke S, Stein G, Wolf G. Advanced glycation end products and the kidney. Am J Physiol Renal Physiol 2005; 289:F645-59. [PMID: 16159899 DOI: 10.1152/ajprenal.00398.2004] [Citation(s) in RCA: 272] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of protein and lipids to which sugar residues are covalently bound. AGE formation is increased in situations with hyperglycemia (e.g., diabetes mellitus) and is also stimulated by oxidative stress, for example in uremia. It appears that activation of the renin-angiotensin system may contribute to AGE formation through various mechanisms. Although AGEs could nonspecifically bind to basement membranes and modify their properties, they also induce specific cellular responses including the release of profibrogenic and proinflammatory cytokines by interacting with the receptor for AGE (RAGE). However, additional receptors could bind AGEs, adding to the complexity of this system. The kidney is both: culprit and target of AGEs. A decrease in renal function increases circulating AGE concentrations by reduced clearance as well as increased formation. On the other hand, AGEs are involved in the structural changes of progressive nephropathies such as glomerulosclerosis, interstitial fibrosis, and tubular atrophy. These effects are most prominent in diabetic nephropathy, but they also contribute to renal pathophysiology in other nondiabetic renal diseases. Interference with AGE formation has therapeutic potential for preventing the progression of chronic renal diseases, as shown from data of animal experiments and, more recently, the first clinical trials.
Collapse
Affiliation(s)
- Jürgen M Bohlender
- Klinik für Innere Medizin III, Universitätsklinik Jena, Erlanger Allee 101, Jena, Germany.
| | | | | | | |
Collapse
|
92
|
Haslbeck KM, Friess U, Schleicher ED, Bierhaus A, Nawroth PP, Kirchner A, Pauli E, Neundörfer B, Heuss D. The RAGE pathway in inflammatory myopathies and limb girdle muscular dystrophy. Acta Neuropathol 2005; 110:247-54. [PMID: 15986224 DOI: 10.1007/s00401-005-1043-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 05/05/2005] [Accepted: 05/17/2005] [Indexed: 10/25/2022]
Abstract
Oxidative stress and nuclear factor-kappaB (NF-kappaB) activation are linked to the pathogenesis of many metabolic, degenerative, and chronic inflammatory diseases. Activation of the receptor for advanced glycation end products (RAGE) by its specific ligand N(epsilon)-carboxymethyllysine (CML) results in the activation of NF-kappaB and the production of proinflammatory cytokines. To determine whether engagement of RAGE contributes to the pathogenesis of inflammatory myopathies, we performed immunohistochemical studies on the presence of CML-modified proteins, RAGE and activated NF-kappaB in muscle biopsies of patients with polymyositis (PM, n=10), dermatomyositis (DM, n=10), limb girdle muscular dystrophy (LGMD, n=10) and in 10 controls with normal muscle biopsy results. In inflammatory myopathies CML, RAGE and NF-kappaB were detected in mononuclear cells and in regenerating muscle fibers. CML, NF-kappaB and, to a lesser extent, RAGE were also found in degenerating muscle fibers, but colocalization of CML, RAGE and NF-kappaB was only seen in infiltrating mononuclear cells and regenerating muscle fibers. Immunofluorescence double labeling demonstrated an expression of CML, RAGE and NF-kappaB in CD4-, CD8-, CD22- and CD68-positive mononuclear cells. Western blot analysis showed an increased immunoreactivity for CML-modified proteins in PM and DM. In LGMD, CML, RAGE and NF-kappaB were found in regenerating muscle fibers and less frequently in degenerating muscle fibers, and with lower staining intensities than in inflammatory myopathies. Our data suggests that the CML-RAGE-NF-kappaB pathway is an evident proinflammatory pathomechanism in mononuclear effector cells in PM and DM. RAGE-mediated NF-kappaB activation may be involved in muscle fiber regeneration in inflammatory myopathies and LGMD.
Collapse
MESH Headings
- Adult
- Aged
- Dermatomyositis/immunology
- Dermatomyositis/metabolism
- Dermatomyositis/physiopathology
- Glycation End Products, Advanced
- Humans
- Immunohistochemistry
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lysine/analogs & derivatives
- Lysine/metabolism
- Middle Aged
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Dystrophies, Limb-Girdle/immunology
- Muscular Dystrophies, Limb-Girdle/metabolism
- Muscular Dystrophies, Limb-Girdle/physiopathology
- Myositis/immunology
- Myositis/metabolism
- Myositis/physiopathology
- NF-kappa B/metabolism
- Polymyositis/immunology
- Polymyositis/metabolism
- Polymyositis/physiopathology
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Regeneration/physiology
- Signal Transduction
- Transcriptional Activation/physiology
Collapse
Affiliation(s)
- K M Haslbeck
- Department of Neurology, University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 2005; 83:876-86. [PMID: 16133426 DOI: 10.1007/s00109-005-0688-7] [Citation(s) in RCA: 928] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 05/20/2005] [Indexed: 12/11/2022]
Abstract
Advanced glycation end products (AGEs), S100/calgranulins, HMGB1-proteins, amyloid-beta peptides, and the family of beta-sheet fibrils have been shown to contribute to a number of chronic diseases such as diabetes, amyloidoses, inflammatory conditions, and tumors by promoting cellular dysfunction via binding to cellular surface receptors. The receptor for AGEs (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules acting as counter-receptor for these diverse molecules. Engagement of RAGE converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The involvement of RAGE in pathophysiologic processes has been demonstrated in murine models of chronic disease using either a receptor decoy such as soluble RAGE (sRAGE), RAGE neutralizing antibodies, or a dominant-negative form of the receptor. Studies with RAGE-/- mice confirmed that RAGE contributes, at least in part, to the development of late diabetic complications, such as neuropathy and nephropathy, macrovascular disease, and chronic inflammation. Furthermore, deletion of RAGE provided protection from the lethal effects of septic shock caused by cecal ligation and puncture (CLP). In contrast, deletion of RAGE had no effect on the host response in delayed-type hypersensitivity (DTH). Despite the lack of effect seen in adaptive immunity by the deletion of RAGE, administration of the receptor decoy, sRAGE, still afforded a protective effect in RAGE-/- mice. Thus, sRAGE is likely to sequester ligands, thereby preventing their interaction with other receptors in addition to RAGE. These data suggest that, just as RAGE is a multiligand receptor, its ligands are also likely to recognize several receptors in mediating their biologic effects.
Collapse
|
94
|
Forcales SV, Puri PL. Signaling to the chromatin during skeletal myogenesis: Novel targets for pharmacological modulation of gene expression. Semin Cell Dev Biol 2005; 16:596-611. [PMID: 16129633 DOI: 10.1016/j.semcdb.2005.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cellular differentiation entails an extensive reprogramming of the genome toward the expression of discrete subsets of genes, which establish the tissue-specific phenotype. This program is achieved by epigenetic marks of the chromatin at particular loci, and is regulated by environmental cues, such as soluble factors and cell-to-cell interactions. How the intracellular cascades convert the myriad of external stimuli into the nuclear information necessary to reprogram the genome toward specific responses is a question of biological and medical interest. The elucidation of the signaling converting cues from outside the cells into chromatin modifications at individual promoters holds the promise to unveil the targets for selective pharmacological interventions to modulate gene expression for therapeutic purposes. Enhancing muscle regeneration and preventing muscle breakdown are important goals in the therapy of muscular diseases, cancer-associated cachexia and aging-associated sarcopenia. We will summarize the recent progress of our knowledge of the regulation of gene expression by intracellular cascades elicited by external cues during skeletal myogenesis. And will illustrate the potential importance of targeting the chromatin signaling in regenerative medicine--e.g. to boost muscle regeneration.
Collapse
Affiliation(s)
- Sonia Vanina Forcales
- Laboratory of Gene Expression, Dulbecco Telethon Institute (DTI) at Fondazione A. Cesalpino, ICBTE, San Raffaele Biomedical Science Park of Rome, Rome, Italy
| | | |
Collapse
|
95
|
Harris R. Angiotensin-converting enzyme inhibition in diabetic nephropathy: it's all the RAGE. J Am Soc Nephrol 2005; 16:2251-3. [PMID: 15975994 DOI: 10.1681/asn.2005060595] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
96
|
Kumar A, Murphy R, Robinson P, Wei L, Boriek AM. Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-kappaB transcription factor. FASEB J 2005; 18:1524-35. [PMID: 15466361 DOI: 10.1096/fj.04-2414com] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myogenesis is a multistep developmental program that generates and regenerates skeletal muscles. Several extracellular factors have been identified that participate in the regulation of myogenesis. Although skeletal muscles are always subjected to mechanical stress in vivo, the role of mechanical forces in the regulation of myogenesis remains unknown. We have investigated the molecular mechanisms by which cyclic mechanical strain modulates myogenesis. Application of cyclic mechanical strain using the computer-controlled Flexcell Strain Unit increased the proliferation of C2C12 cells and inhibited their differentiation into myotubes. Cyclic strain increased the activity of cyclin-dependent kinase 2 (cdk2) and the cellular level of cyclin A, and inhibited the expression of myosin heavy chain and formation of myotubes in C2C12 cultures. The activity of nuclear factor-kappa B (NF-kappaB) transcription factor and the expression of NF-kappaB-regulated genes, cyclin D1 and IL-6, were augmented in response to mechanical strain. Cyclic strain also increased the activity of Rho GTPases, especially Rac-1. The inhibition of Rho GTPases activity, by overexpression of Rho GDP dissociation inhibitor (Rho-GDI), inhibited the strain-induced activation of NF-kappaB in C2C12 cells. Overexpression of either NF-kappaB inhibitory protein IkappaBalphaDeltaN (a degradation resistant mutant IkappaBalpha) or Rho-GDI blocked the strain-induced proliferation of C2C12 cells. Furthermore, overexpression of FRNK, a dominant negative mutant of focal adhesion kinase (FAK), inhibited the strain-induced proliferation of C2C12 cells. Our study demonstrates that cyclic mechanical strain inhibits myogenesis through the activation of FAK, Rac-1, and NF-kappaB.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Medicine, Pulmonary and Critical Care Section, Suite 520B, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
97
|
Most P, Boerries M, Eicher C, Schweda C, Völkers M, Wedel T, Söllner S, Katus HA, Remppis A, Aebi U, Koch WJ, Schoenenberger CA. Distinct subcellular location of the Ca2+-binding protein S100A1 differentially modulates Ca2+-cycling in ventricular rat cardiomyocytes. J Cell Sci 2005; 118:421-31. [PMID: 15654019 DOI: 10.1242/jcs.01614] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Calcium is a key regulator of cardiac function and is modulated through the Ca2+-sensor protein S100A1. S100 proteins are considered to exert both intracellular and extracellular functions on their target cells. Here we report the impact of an increased intracellular S100A1 protein level on Ca2+-homeostasis in neonatal ventricular cardiomyocytes in vitro. Specifically, we compare the effects of exogenously added recombinant S100A1 to those resulting from the overexpression of a transduced S100A1 gene. Extracellularly added S100A1 enhanced the Ca2+-transient amplitude in neonatal ventricular cardiomyocytes (NVCMs) through a marked decrease in intracellular diastolic Ca2+-concentrations ([Ca2+]i). The decrease in [Ca2+]i was independent of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) activity and was probably the result of an increased sarcolemmal Ca2+-extrusion through the sodium-calcium exchanger (NCX). At the same time the Ca2+-content of the sarcoplasmic reticulum (SR) decreased. These effects were dependent on the uptake of extracellularly added S100A1 protein and its subsequent routing to the endosomal compartment. Phospholipase C and protein kinase C, which are tightly associated with this subcellular compartment, were found to be activated by endocytosed S100A1.
By contrast, adenoviral-mediated intracellular S100A1 overexpression enhanced the Ca2+-transient amplitude in NVCMs mainly through an increase in systolic [Ca2+]i. The increased Ca2+-load in the SR was based on an enhanced SERCA2a activity while NCX function was unaltered. Overexpressed S100A1 colocalized with SERCA2a and other Ca2+-regulatory proteins at the SR, whereas recombinant S100A1 protein that had been endocytosed did not colocalize with SR proteins. This study provides the first evidence that intracellular S100A1, depending on its subcellular location, modulates cardiac Ca2+-turnover via different Ca2+-regulatory proteins.
Collapse
Affiliation(s)
- Patrick Most
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Adami C, Bianchi R, Pula G, Donato R. S100B-stimulated NO production by BV-2 microglia is independent of RAGE transducing activity but dependent on RAGE extracellular domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1742:169-77. [PMID: 15590067 DOI: 10.1016/j.bbamcr.2004.09.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 08/31/2004] [Accepted: 09/10/2004] [Indexed: 11/19/2022]
Abstract
The Ca(2+)-modulated protein, S100B, is expressed in high abundance in and released by astrocytes. At the low levels normally found in the brain, extracellular S100B acts as a trophic factor, protecting neurons against oxidative stress and stimulating neurite outgrowth through its binding to the receptor for advanced glycation end products (RAGE). However, upon accumulation in the brain extracellular space, S100B might be detrimental to neurons. At relatively high concentrations, S100B stimulates NO release by microglia in the presence of lipid A or interferon-gamma (IFN-gamma). We analyzed further the S100B-microglia interaction to elucidate the molecular mechanism by which the protein brings about this effect. We found that S100B increased NO release by BV-2 microglia by stimulating reactive oxygen species (ROS) production and activating the stress-activated kinases, p38 and JNK. However, S100B stimulated NO production to the same extent in microglia overexpressing a transduction-incompetent mutant of RAGE and in microglia overexpressing full-length RAGE, with a significantly smaller effect in mock-transfected microglia. This suggests that the RAGE transducing activity has little or no role in S100B-stimulated NO production by microglia, whereas RAGE extracellular domain is important, probably serving to concentrate S100B on the BV-2 cell surface. On the other hand, S100B stimulated NF-kappaB transcriptional activity in BV-2 microglia in a manner that was strictly dependent on RAGE transducing activity, pointing to additional, RAGE-mediated effects of the protein on microglia that remain to be investigated.
Collapse
Affiliation(s)
- Cecilia Adami
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, C.P. 81 Succ. 3, 06122 Perugia, Italy
| | | | | | | |
Collapse
|