51
|
Behm-Ansmant I, Helm M, Motorin Y. Use of specific chemical reagents for detection of modified nucleotides in RNA. J Nucleic Acids 2011; 2011:408053. [PMID: 21716696 PMCID: PMC3118635 DOI: 10.4061/2011/408053] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/24/2011] [Indexed: 12/18/2022] Open
Abstract
Naturally occurring cellular RNAs contain an impressive number of chemically distinct modified residues which appear posttranscriptionally, as a result of specific action of the corresponding RNA modification enzymes. Over 100 different chemical modifications have been identified and characterized up to now. Identification of the chemical nature and exact position of these modifications is typically based on 2D-TLC analysis of nucleotide digests, on HPLC coupled with mass spectrometry, or on the use of primer extension by reverse transcriptase. However, many modified nucleotides are silent in reverse transcription, since the presence of additional chemical groups frequently does not change base-pairing properties. In this paper, we give a summary of various chemical approaches exploiting the specific reactivity of modified nucleotides in RNA for their detection.
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire ARN-RNP Maturation-Structure-Fonction, Enzymologie Moléculaire et Structurale (AREMS), UMR 7214 CNRS-UHP, Nancy Université, boulevard des Aiguillettes, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|
52
|
Abad MG, Long Y, Willcox A, Gott JM, Gray MW, Jackman JE. A role for tRNA(His) guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5'-tRNA editing. RNA (NEW YORK, N.Y.) 2011; 17:613-23. [PMID: 21307182 PMCID: PMC3062173 DOI: 10.1261/rna.2517111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Genes with sequence similarity to the yeast tRNA(His) guanylyltransferase (Thg1) gene have been identified in all three domains of life, and Thg1 family enzymes are implicated in diverse processes, ranging from tRNA(His) maturation to 5'-end repair of tRNAs. All of these activities take advantage of the ability of Thg1 family enzymes to catalyze 3'-5' nucleotide addition reactions. Although many Thg1-containing organisms have a single Thg1-related gene, certain eukaryotic microbes possess multiple genes with sequence similarity to Thg1. Here we investigate the activities of four Thg1-like proteins (TLPs) encoded by the genome of the slime mold, Dictyostelium discoideum (a member of the eukaryotic supergroup Amoebozoa). We show that one of the four TLPs is a bona fide Thg1 ortholog, a cytoplasmic G(-1) addition enzyme likely to be responsible for tRNA(His) maturation in D. discoideum. Two other D. discoideum TLPs exhibit biochemical activities consistent with a role for these enzymes in mitochondrial 5'-tRNA editing, based on their ability to efficiently repair the 5' ends of mitochondrial tRNA editing substrates. Although 5'-tRNA editing was discovered nearly two decades ago, the identity of the protein(s) that catalyze this activity has remained elusive. This article provides the first identification of any purified protein that appears to play a role in the 5'-tRNA editing reaction. Moreover, the presence of multiple Thg1 family members in D. discoideum suggests that gene duplication and divergence during evolution has resulted in paralogous proteins that use 3'-5' nucleotide addition reactions for diverse biological functions in the same organism.
Collapse
Affiliation(s)
- Maria G Abad
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
53
|
Yuan J, Gogakos T, Babina AM, Söll D, Randau L. Change of tRNA identity leads to a divergent orthogonal histidyl-tRNA synthetase/tRNAHis pair. Nucleic Acids Res 2010; 39:2286-93. [PMID: 21087993 PMCID: PMC3064791 DOI: 10.1093/nar/gkq1176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mature tRNAHis has at its 5′-terminus an extra guanylate, designated as G−1. This is the major recognition element for histidyl-tRNA synthetase (HisRS) to permit acylation of tRNAHis with histidine. However, it was reported that tRNAHis of a subgroup of α-proteobacteria, including Caulobacter crescentus, lacks the critical G−1 residue. Here we show that recombinant C. crescentus HisRS allowed complete histidylation of a C. crescentus tRNAHis transcript (lacking G−1). The addition of G−1 did not improve aminoacylation by C. crescentus HisRS. However, mutations in the tRNAHis anticodon caused a drastic loss of in vitro histidylation, and mutations of bases A73 and U72 also reduced charging. Thus, the major recognition elements in C. crescentus tRNAHis are the anticodon, the discriminator base and U72, which are recognized by the divergent (based on sequence similarity) C. crescentus HisRS. Transplantation of these recognition elements into an Escherichia coli tRNAHis template, together with addition of base U20a, created a competent substrate for C. crescentus HisRS. These results illustrate how a conserved tRNA recognition pattern changed during evolution. The data also uncovered a divergent orthogonal HisRS/tRNAHis pair.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
54
|
tRNA(His) guanylyltransferase (THG1), a unique 3'-5' nucleotidyl transferase, shares unexpected structural homology with canonical 5'-3' DNA polymerases. Proc Natl Acad Sci U S A 2010; 107:20305-10. [PMID: 21059936 DOI: 10.1073/pnas.1010436107] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All known DNA and RNA polymerases catalyze the formation of phosphodiester bonds in a 5' to 3' direction, suggesting this property is a fundamental feature of maintaining and dispersing genetic information. The tRNA(His) guanylyltransferase (Thg1) is a member of a unique enzyme family whose members catalyze an unprecedented reaction in biology: 3'-5' addition of nucleotides to nucleic acid substrates. The 2.3-Å crystal structure of human THG1 (hTHG1) reported here shows that, despite the lack of sequence similarity, hTHG1 shares unexpected structural homology with canonical 5'-3' DNA polymerases and adenylyl/guanylyl cyclases, two enzyme families known to use a two-metal-ion mechanism for catalysis. The ability of the same structural architecture to catalyze both 5'-3' and 3'-5' reactions raises important questions concerning selection of the 5'-3' mechanism during the evolution of nucleotide polymerases.
Collapse
|
55
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
56
|
Placido A, Sieber F, Gobert A, Gallerani R, Giegé P, Maréchal-Drouard L. Plant mitochondria use two pathways for the biogenesis of tRNAHis. Nucleic Acids Res 2010; 38:7711-7. [PMID: 20660484 PMCID: PMC2995067 DOI: 10.1093/nar/gkq646] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All tRNAHis possess an essential extra G–1 guanosine residue at their 5′ end. In eukaryotes after standard processing by RNase P, G–1 is added by a tRNAHis guanylyl transferase. In prokaryotes, G–1 is genome-encoded and retained during maturation. In plant mitochondria, although trnH genes possess a G–1 we find here that both maturation pathways can be used. Indeed, tRNAHis with or without a G–1 are found in a plant mitochondrial tRNA fraction. Furthermore, a recombinant Arabidopsis mitochondrial RNase P can cleave tRNAHis precursors at both positions G+1 and G–1. The G–1 is essential for recognition by plant mitochondrial histidyl-tRNA synthetase. Whether, as shown in prokaryotes and eukaryotes, the presence of uncharged tRNAHis without G–1 has a function or not in plant mitochondrial gene regulation is an open question. We find that when a mutated version of a plant mitochondrial trnH gene containing no encoded extra G is introduced and expressed into isolated potato mitochondria, mature tRNAHis with a G–1 are recovered. This shows that a previously unreported tRNAHis guanylyltransferase activity is present in plant mitochondria.
Collapse
Affiliation(s)
- Antonio Placido
- Dipartimento di Biochimica e Biologia Molecolare Ernesto Quagliariello, Universita' degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
57
|
Heinemann IU, Randau L, Tomko RJ, Söll D. 3'-5' tRNAHis guanylyltransferase in bacteria. FEBS Lett 2010; 584:3567-72. [PMID: 20650272 DOI: 10.1016/j.febslet.2010.07.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 11/28/2022]
Abstract
The identity of the histidine specific transfer RNA (tRNA(His)) is largely determined by a unique guanosine residue at position -1. In eukaryotes and archaea, the tRNA(His) guanylyltransferase (Thg1) catalyzes 3'-5' addition of G to the 5'-terminus of tRNA(His). Here, we show that Thg1 also occurs in bacteria. We demonstrate in vitro Thg1 activity for recombinant enzymes from the two bacteria Bacillus thuringiensis and Myxococcus xanthus and provide a closer investigation of several archaeal Thg1. The reaction mechanism of prokaryotic Thg1 differs from eukaryotic enzymes, as it does not require ATP. Complementation of a yeast thg1 knockout strain with bacterial Thg1 verified in vivo activity and suggests a relaxed recognition of the discriminator base in bacteria.
Collapse
Affiliation(s)
- Ilka U Heinemann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | |
Collapse
|
58
|
Kuratani M, Hirano M, Goto-Ito S, Itoh Y, Hikida Y, Nishimoto M, Sekine SI, Bessho Y, Ito T, Grosjean H, Yokoyama S. Crystal structure of Methanocaldococcus jannaschii Trm4 complexed with sinefungin. J Mol Biol 2010; 401:323-33. [PMID: 20600111 DOI: 10.1016/j.jmb.2010.06.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/17/2010] [Accepted: 06/19/2010] [Indexed: 12/19/2022]
Abstract
tRNA:m(5)C methyltransferase Trm4 generates the modified nucleotide 5-methylcytidine in archaeal and eukaryotic tRNA molecules, using S-adenosyl-l-methionine (AdoMet) as methyl donor. Most archaea and eukaryotes possess several Trm4 homologs, including those related to diseases, while the archaeon Methanocaldococcus jannaschii has only one gene encoding a Trm4 homolog, MJ0026. The recombinant MJ0026 protein catalyzed AdoMet-dependent methyltransferase activity on tRNA in vitro and was shown to be the M. jannaschii Trm4. We determined the crystal structures of the substrate-free M. jannaschii Trm4 and its complex with sinefungin at 1.27 A and 2.3 A resolutions, respectively. This AdoMet analog is bound in a negatively charged pocket near helix alpha8. This helix can adopt two different conformations, thereby controlling the entry of AdoMet into the active site. Adjacent to the sinefungin-bound pocket, highly conserved residues form a large, positively charged surface, which seems to be suitable for tRNA binding. The structure explains the roles of several conserved residues that were reportedly involved in the enzymatic activity or stability of Trm4p from the yeast Saccharomyces cerevisiae. We also discuss previous genetic and biochemical data on human NSUN2/hTrm4/Misu and archaeal PAB1947 methyltransferase, based on the structure of M. jannaschii Trm4.
Collapse
Affiliation(s)
- Mitsuo Kuratani
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Preston MA, Phizicky EM. The requirement for the highly conserved G-1 residue of Saccharomyces cerevisiae tRNAHis can be circumvented by overexpression of tRNAHis and its synthetase. RNA (NEW YORK, N.Y.) 2010; 16:1068-77. [PMID: 20360392 PMCID: PMC2856879 DOI: 10.1261/rna.2087510] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 02/12/2010] [Indexed: 05/23/2023]
Abstract
Nearly all tRNA(His) species have an additional 5' guanine nucleotide (G(-1)). G(-1) is encoded opposite C(73) in nearly all prokaryotes and in some archaea, and is added post-transcriptionally by tRNA(His) guanylyltransferase (Thg1) opposite A(73) in eukaryotes, and opposite C(73) in other archaea. These divergent mechanisms of G(-1) conservation suggest that G(-1) might have an important cellular role, distinct from its role in tRNA(His) charging. Thg1 is also highly conserved and is essential in the yeast Saccharomyces cerevisiae. However, the essential roles of Thg1 are unclear since Thg1 also interacts with Orc2 of the origin recognition complex, is implicated in the cell cycle, and catalyzes an unusual template-dependent 3'-5' (reverse) polymerization in vitro at the 5' end of activated tRNAs. Here we show that thg1-Delta strains are viable, but only if histidyl-tRNA synthetase and tRNA(His) are overproduced, demonstrating that the only essential role of Thg1 is its G(-1) addition activity. Since these thg1-Delta strains have severe growth defects if cytoplasmic tRNA(His) A(73) is overexpressed, and distinct, but milder growth defects, if tRNA(His) C(73) is overexpressed, these results show that the tRNA(His) G(-1) residue is important, but not absolutely essential, despite its widespread conservation. We also show that Thg1 catalyzes 3'-5' polymerization in vivo on tRNA(His) C(73), but not on tRNA(His) A(73), demonstrating that the 3'-5' polymerase activity is pronounced enough to have a biological role, and suggesting that eukaryotes may have evolved to have cytoplasmic tRNA(His) with A(73), rather than C(73), to prevent the possibility of 3'-5' polymerization.
Collapse
MESH Headings
- Base Sequence
- Conserved Sequence
- Gene Expression
- Genes, Fungal
- Histidine-tRNA Ligase/genetics
- Histidine-tRNA Ligase/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleotidyltransferases/genetics
- Nucleotidyltransferases/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, His/chemistry
- RNA, Transfer, His/genetics
- RNA, Transfer, His/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Melanie A Preston
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
60
|
Kuranda K, François J, Palamarczyk G. The isoprenoid pathway and transcriptional response to its inhibitors in the yeastSaccharomyces cerevisiae. FEMS Yeast Res 2010; 10:14-27. [DOI: 10.1111/j.1567-1364.2009.00560.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
61
|
Phizicky EM, Alfonzo JD. Do all modifications benefit all tRNAs? FEBS Lett 2009; 584:265-71. [PMID: 19931536 DOI: 10.1016/j.febslet.2009.11.049] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Despite the universality of tRNA modifications, some tRNAs lacking specific modifications are subject to degradation pathways, while other tRNAs lacking the same modifications are resistant. Here, we suggest a model in which some modifications have minor, possibly redundant, roles in specific tRNAs. This model is consistent with the low specificity of some modification enzymes. Limitations of this model include the limited assays and growth conditions on which these conclusions are based, as well as the high specificity exhibited by many modification enzymes with important roles in translation. The specificity of these enzymes is often enhanced by complex substrate recognition patterns and sub-cellular compartmentalization.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | |
Collapse
|
62
|
Hopper AK, Pai DA, Engelke DR. Cellular dynamics of tRNAs and their genes. FEBS Lett 2009; 584:310-7. [PMID: 19931532 DOI: 10.1016/j.febslet.2009.11.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
This discussion focuses on the cellular dynamics of tRNA transcription, processing, and turnover. Early tRNA biosynthesis steps are shared among most tRNAs, while later ones are often individualized for specific tRNAs. In yeast, tRNA transcription and early processing occur coordinately in the nucleolus, requiring topological arrangement of approximately 300 tRNA genes and early processing enzymes to this site; later processing events occur in the nucleoplasm or cytoplasm. tRNA nuclear export requires multiple exporters which function in parallel and the export process is coupled with other cellular events. Nuclear-cytoplasmic tRNA subcellular movement is not unidirectional as a retrograde pathway delivers mature cytoplasmic tRNAs to the nucleus. Despite the long half-lives, there are multiple pathways to turnover damaged tRNAs or normal tRNAs upon cellular stress.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, 484 W. 12th Ave., Room Riffe 800, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
63
|
Murthi A, Shaheen HH, Huang HY, Preston MA, Lai TP, Phizicky EM, Hopper AK. Regulation of tRNA bidirectional nuclear-cytoplasmic trafficking in Saccharomyces cerevisiae. Mol Biol Cell 2009; 21:639-49. [PMID: 20032305 PMCID: PMC2820427 DOI: 10.1091/mbc.e09-07-0551] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
tRNAs traffic between the nucleus and the cytoplasm in response to nutrient availability. Using a new assay to track tRNA within cells, we show that tRNA nuclear import is constitutive, whereas tRNA reexport to the cytoplasm is regulated. Msn5 functions only in tRNA re-export, whereas Los1 functions in both the primary and reexport steps. tRNAs in yeast and vertebrate cells move bidirectionally and reversibly between the nucleus and the cytoplasm. We investigated roles of members of the β-importin family in tRNA subcellular dynamics. Retrograde import of tRNA into the nucleus is dependent, directly or indirectly, upon Mtr10. tRNA nuclear export utilizes at least two members of the β-importin family. The β-importins involved in nuclear export have shared and exclusive functions. Los1 functions in both the tRNA primary export and the tRNA reexport processes. Msn5 is unable to export tRNAs in the primary round of export if the tRNAs are encoded by intron-containing genes, and for these tRNAs Msn5 functions primarily in their reexport to the cytoplasm. The data support a model in which tRNA retrograde import to the nucleus is a constitutive process; in contrast, reexport of the imported tRNAs back to the cytoplasm is regulated by the availability of nutrients to cells and by tRNA aminoacylation in the nucleus. Finally, we implicate Tef1, the yeast orthologue of translation elongation factor eEF1A, in the tRNA reexport process and show that its subcellular distribution between the nucleus and cytoplasm is dependent upon Mtr10 and Msn5.
Collapse
Affiliation(s)
- Athulaprabha Murthi
- Department of Molecular Genetics, Graduate Program in Molecular, Cellular, and Developmental Biology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Template-dependent 3'-5' nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life. Proc Natl Acad Sci U S A 2009; 107:674-9. [PMID: 20080734 DOI: 10.1073/pnas.0910961107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence of an additional 5' guanosine residue (G(-1)) is a unique feature of tRNA(His). G(-1) is incorporated posttranscriptionally in eukarya via an unusual 3'-5' nucleotide addition reaction catalyzed by the tRNA(His) guanylyltransferase (Thg1). Yeast Thg1 catalyzes an unexpected second activity: Watson-Crick-dependent 3'-5' nucleotide addition that occurs in the opposite direction to nucleotide addition by all known DNA and RNA polymerases. This discovery led to the hypothesis that there are alternative roles for Thg1 family members that take advantage of this unusual enzymatic activity. Here we show that archaeal homologs of Thg1 catalyze G(-1) addition, in vitro and in vivo in yeast, but only in a templated reaction, i.e. with tRNA(His) substrates that contain a C(73) discriminator nucleotide. Because tRNA(His) from archaea contains C(73), these findings are consistent with a physiological function for templated nucleotide addition in archaeal tRNA(His) maturation. Moreover, unlike yeast Thg1, archaeal Thg1 enzymes also exhibit a preference for template-dependent U(-1) addition to A(73)-containing tRNA(His). Taken together, these results demonstrate that Watson-Crick template-dependent 3'-5' nucleotide addition is a shared catalytic activity exhibited by Thg1 family members from multiple domains of life, and therefore, that this unusual reaction may constitute an ancestral activity present in the earliest members of the Thg1 enzyme family.
Collapse
|
65
|
Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res 2009; 38:1415-30. [PMID: 20007150 PMCID: PMC2836557 DOI: 10.1093/nar/gkp1117] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nucleobase modification 5-methylcytosine (m5C) is widespread both in DNA and different cellular RNAs. The functions and enzymatic mechanisms of DNA m5C-methylation were extensively studied during the last decades. However, the location, the mechanism of formation and the cellular function(s) of the same modified nucleobase in RNA still remain to be elucidated. The recent development of a bisulfite sequencing approach for efficient m5C localization in various RNA molecules puts ribo-m5C in a highly privileged position as one of the few RNA modifications whose detection is amenable to PCR-based amplification and sequencing methods. Additional progress in the field also includes the characterization of several specific RNA methyltransferase enzymes in various organisms, and the discovery of a new and unexpected link between DNA and RNA m5C-methylation. Numerous putative RNA:m5C-MTases have now been identified and are awaiting characterization, including the identification of their RNA substrates and their related cellular functions. In order to bring these recent exciting developments into perspective, this review provides an ordered overview of the detection methods for RNA methylation, of the biochemistry, enzymology and molecular biology of the corresponding modification enzymes, and discusses perspectives for the emerging biological functions of these enzymes.
Collapse
Affiliation(s)
- Yuri Motorin
- Laboratoire ARN-RNP Maturation-Structure-Fonction, Enzymologie Moléculaire et Structurale (AREMS), UMR 7214 CNRS-UHP Faculté des Sciences et Techniques, Université Henri Poincaré, Nancy 1, Bld des Aiguillettes, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|
66
|
Schaefer M, Pollex T, Hanna K, Lyko F. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 2008; 37:e12. [PMID: 19059995 PMCID: PMC2632927 DOI: 10.1093/nar/gkn954] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Covalent modifications of nucleic acids play an important role in regulating their functions. Among these modifications, (cytosine-5) DNA methylation is best known for its role in the epigenetic regulation of gene expression. Post-transcriptional RNA modification is a characteristic feature of noncoding RNAs, and has been described for rRNAs, tRNAs and miRNAs. (Cytosine-5) RNA methylation has been detected in stable and long-lived RNA molecules, but its function is still unclear, mainly due to technical limitations. In order to facilitate the analysis of RNA methylation patterns we have established a protocol for the chemical deamination of cytosines in RNA, followed by PCR-based amplification of cDNA and DNA sequencing. Using tRNAs and rRNAs as examples we show that cytosine methylation can be reproducibly and quantitatively detected by bisulfite sequencing. The combination of this method with deep sequencing allowed the analysis of a large number of RNA molecules. These results establish a versatile method for the identification and characterization of RNA methylation patterns, which will be useful for defining the biological function of RNA methylation.
Collapse
Affiliation(s)
- Matthias Schaefer
- Division of Epigenetics, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|
67
|
Jackman JE, Phizicky EM. Identification of critical residues for G-1 addition and substrate recognition by tRNA(His) guanylyltransferase. Biochemistry 2008; 47:4817-25. [PMID: 18366186 DOI: 10.1021/bi702517q] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The yeast tRNA(His) guanylyltransferase (Thg1) is an essential enzyme in yeast. Thg1 adds a single G residue to the 5' end of tRNA(His) (G(-1)), which serves as a crucial determinant for aminoacylation of tRNA(His). Thg1 is the only known gene product that catalyzes the 3'-5' addition of a single nucleotide via a normal phosphodiester bond, and since there is no identifiable sequence similarity between Thg1 and any other known enzyme family, the mechanism by which Thg1 catalyzes this unique reaction remains unclear. We have altered 29 highly conserved Thg1 residues to alanine, and using three assays to assess Thg1 catalytic activity and substrate specificity, we have demonstrated that the vast majority of these highly conserved residues (24/29) affect Thg1 function in some measurable way. We have identified 12 Thg1 residues that are critical for G(-1) addition, based on significantly decreased ability to add G(-1) to tRNA(His) in vitro and significant defects in complementation of a thg1Delta yeast strain. We have also identified a single Thg1 alteration (D68A) that causes a dramatic decrease in the rigorous specificity of Thg1 for tRNA(His). This single alteration enhances the k(cat)/K(M) for ppp-tRNA(Phe) by nearly 100-fold relative to that of wild-type Thg1. These results suggest that Thg1 substrate recognition is at least in part mediated by preventing recognition of incorrect substrates for nucleotide addition.
Collapse
Affiliation(s)
- Jane E Jackman
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | |
Collapse
|
68
|
Hopper AK, Shaheen HH. A decade of surprises for tRNA nuclear-cytoplasmic dynamics. Trends Cell Biol 2008; 18:98-104. [PMID: 18262788 DOI: 10.1016/j.tcb.2008.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 11/30/2022]
Abstract
The biosynthesis of tRNA was previously thought to occur solely in the nucleus, with tRNA functioning only in the cytoplasm of eukaryotic cells. However, recent publications have reported that pre-tRNA splicing can occur in the cytoplasm, that aminoacylation can occur in the nucleus and that tRNA can travel in a retrograde direction from the cytoplasm to the nucleus. Moreover, the subcellular distribution of tRNA seems to serve unanticipated functions in diverse processes, including response to nutrient availability, DNA repair and HIV replication.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Ohio State University, 484 West 12th Avenue, Room Riffe 800, Columbus, OH 43210, USA.
| | | |
Collapse
|
69
|
Chernyakov I, Baker MA, Grayhack EJ, Phizicky EM. Chapter 11. Identification and analysis of tRNAs that are degraded in Saccharomyces cerevisiae due to lack of modifications. Methods Enzymol 2008; 449:221-37. [PMID: 19215761 PMCID: PMC2788775 DOI: 10.1016/s0076-6879(08)02411-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mounting evidence shows that tRNA modifications play crucial roles in the maintenance of wild-type levels of several tRNA species. This chapter describes a generalized framework in which to study tRNA turnover in the yeast Saccharomyces cerevisiae as a consequence of a defect in tRNA modification status. It describes several approaches for the identification of tRNA species that are reduced as a consequence of a modification defect, methods for analysis of the rate of tRNA loss and analysis of its aminoacylation, and methods for initial characterization of tRNA turnover. These approaches have been used successfully for several modification defects that result in tRNA turnover.
Collapse
Affiliation(s)
- Irina Chernyakov
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, USA
| | | | | | | |
Collapse
|
70
|
Auxilien S, El Khadali F, Rasmussen A, Douthwaite S, Grosjean H. Archease from Pyrococcus abyssi improves substrate specificity and solubility of a tRNA m5C methyltransferase. J Biol Chem 2007; 282:18711-21. [PMID: 17470432 DOI: 10.1074/jbc.m607459200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Members of the archease superfamily of proteins are represented in all three domains of life. Archease genes are generally located adjacent to genes encoding proteins involved in DNA or RNA processing. Archease have therefore been predicted to play a modulator or chaperone role in selected steps of DNA or RNA metabolism, although the roles of archeases remain to be established experimentally. Here we report the function of one of these archeases from the hyperthermophile Pyrococcus abyssi. The corresponding gene (PAB1946) is located in a bicistronic operon immediately upstream from a second open reading frame (PAB1947), which is shown here to encode a tRNA m(5)C methyltransferase. In vitro, the purified recombinant methyltransferase catalyzes m(5)C formation at several cytosines within tRNAs with preference for C49. The specificity of the methyltransferase is increased by the archease. In solution, the archease exists as a monomer, trimer, and hexamer. Only the oligomeric states bind the methyltransferase and prevent its aggregation, in addition to hindering dimerization of the methyltransferase-tRNA complex. This P. abyssi system possibly reflects the general function of archeases in preventing protein aggregation and modulating the function of their accompanying proteins.
Collapse
Affiliation(s)
- Sylvie Auxilien
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
71
|
Wilkinson ML, Crary SM, Jackman JE, Grayhack EJ, Phizicky EM. The 2'-O-methyltransferase responsible for modification of yeast tRNA at position 4. RNA (NEW YORK, N.Y.) 2007; 13:404-13. [PMID: 17242307 PMCID: PMC1800514 DOI: 10.1261/rna.399607] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The methylation of the ribose 2'-OH of RNA occurs widely in nature and in all stable RNAs and occurs at five positions in yeast tRNA. 2'-O-methylation of tRNA at position 4 is interesting because it occurs in the acceptor stem (which is normally undermodified), it is the only 2'-O-methylation that occurs in the middle of a duplex region in tRNA, the modification is conserved in eukaryotes, and the features of the tRNA necessary for substrate recognition are poorly defined. We show here that Saccharomyces cerevisiae ORF YOL125w (TRM13) is necessary and sufficient for 2'-O-methylation at position 4 of yeast tRNA. Biochemical analysis of the S. cerevisiae proteome shows that Trm13 copurifies with 2'-O-methylation activity, using tRNAGlyGCC as a substrate, and extracts made from a trm13-Delta strain have undetectable levels of this activity. Trm13 is necessary for activity in vivo because tRNAs isolated from a trm13-Delta strain lack the corresponding 2'-O-methylated residue for each of the three known tRNAs with this modification. Trm13 is sufficient for 2'-O-methylation at position 4 in vitro since yeast Trm13 protein purified after expression in Escherichia coli has the same activity as that produced in yeast. Trm13 protein binds substrates tRNAHis and tRNAGlyGCC with KD values of 85+/-8 and 100+/-14 nM, respectively, and has a KM for tRNAHis of 10 nM, but binds nonsubstrate tRNAs very poorly (KD>1 microM). Trm13 is conserved in eukaryotes, but there is no sequence similarity between Trm13 and other known methyltransferases.
Collapse
Affiliation(s)
- Martha L Wilkinson
- Department of Biochemistry, University of Rochester School of Medicine, NY 14642, USA
| | | | | | | | | |
Collapse
|
72
|
Grosjean H, Droogmans L, Roovers M, Keith G. Detection of enzymatic activity of transfer RNA modification enzymes using radiolabeled tRNA substrates. Methods Enzymol 2007; 425:55-101. [PMID: 17673079 DOI: 10.1016/s0076-6879(07)25003-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The presence of modified ribonucleotides derived from adenosine, guanosine, cytidine, and uridine is a hallmark of almost all cellular RNA, and especially tRNA. The objective of this chapter is to describe a few simple methods that can be used to identify the presence or absence of a modified nucleotide in tRNA and to reveal the enzymatic activity of particular tRNA-modifying enzymes in vitro and in vivo. The procedures are based on analysis of prelabeled or postlabeled nucleotides (mainly with [(32)P] but also with [(35)S], [(14)C] or [(3)H]) generated after complete digestion with selected nucleases of modified tRNA isolated from cells or incubated in vitro with modifying enzyme(s). Nucleotides of the tRNA digests are separated by two-dimensional (2D) thin-layer chromatography on cellulose plates (TLC), which allows establishment of base composition and identification of the nearest neighbor nucleotide of a given modified nucleotide in the tRNA sequence. This chapter provides useful maps for identification of migration of approximately 70 modified nucleotides on TLC plates by use of two different chromatographic systems. The methods require only a few micrograms of purified tRNA and can be run at low cost in any laboratory.
Collapse
Affiliation(s)
- Henri Grosjean
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
73
|
Motorin Y, Muller S, Behm-Ansmant I, Branlant C. Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol 2007; 425:21-53. [PMID: 17673078 DOI: 10.1016/s0076-6879(07)25002-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Naturally occurring modified residues derived from canonical RNA nucleotides are present in most cellular RNAs. Their detection in RNA represents a difficult task because of their great diversity and their irregular distribution within RNA molecules. Over the decades, multiple experimental techniques were developed for the identification and localization of RNA modifications. Most of them are quite laborious and require purification of individual RNA to a homogeneous state. An alternative to these techniques is the use of reverse transcription (RT)-based approaches. In these approaches, purification of RNA to homogeneity is not necessary, because the selection of the analyzed RNA species is done by specific annealing of oligonucleotide DNA primers. However, results from primer extension analysis are difficult to interpret because of the unpredictable nature of RT pauses. They depend not only on the properties of nucleotides but also on the RNA primary and secondary structure. In addition, the degradation of cellular RNA during extraction, even at a very low level, may complicate the analysis of the data. RT-based techniques for the identification of modified residues were considerably improved by the development of selected chemical reagents specifically reacting with a given modified nucleotide. The RT profile obtained after such chemical modifications generally allows unambiguous identification of the chemical nature of the modified residues and their exact location in the RNA sequence. Here, we provide experimental protocols for selective chemical modification and identification of several modified residues: pseudouridine, inosine, 5-methylcytosine, 2'-O-methylations, 7-methylguanosine, and dihydrouridine. Advice for an optimized use of these methods and for correct interpretation of the data is also given. We also provide some helpful information on the ability of other naturally occurring modified nucleotides to generate RT pauses.
Collapse
Affiliation(s)
- Yuri Motorin
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, Faculté des Sciences et Techniques, Nancy Université, Vandouevre-les-Nancy, France
| | | | | | | |
Collapse
|
74
|
Abstract
tRNA(His) has thus far always been found with one of the most distinctive of tRNA features, an extra 5' nucleotide that is usually a guanylate. tRNA(His) genes in a disjoint alphaproteobacterial group comprising the Rhizobiales, Rhodobacterales, Caulobacterales, Parvularculales, and Pelagibacter generally fail to encode this extra guanylate, unlike those of other alphaproteobacteria and bacteria in general. Rather than adding an extra 5' guanylate posttranscriptionally as eukaryotes do, evidence is presented here that two of these species, Sinorhizobium meliloti and Caulobacter crescentus, simply lack any extra nucleotide on tRNA(His). This loss correlates with changes at the 3' end sequence of tRNA(His) and at many sites in histidyl-tRNA synthetase that might be expected to affect tRNA(His) recognition, in the flipping loop, the insertion domain, the anticodon-binding domain, and the motif 2 loop. The altered tRNA charging system may have affected other tRNA charging systems in these bacteria; for example, a site in tRNA(Glu) sequences was found to covary with tRNA(His) among alphaproteobacteria.
Collapse
Affiliation(s)
- Chunxia Wang
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg VA 24061, USA
| | | | | |
Collapse
|
75
|
Rosen AE, Brooks BS, Guth E, Francklyn CS, Musier-Forsyth K. Evolutionary conservation of a functionally important backbone phosphate group critical for aminoacylation of histidine tRNAs. RNA (NEW YORK, N.Y.) 2006; 12:1315-22. [PMID: 16741232 PMCID: PMC1484442 DOI: 10.1261/rna.78606] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All histidine tRNA molecules have an extra nucleotide, G-1, at the 5' end of the acceptor stem. In bacteria, archaea, and eukaryotic organelles, G-1 base pairs with C73, while in eukaryotic cytoplasmic tRNAHis, G-1 is opposite A73. Previous studies of Escherichia coli histidyl-tRNA synthetase (HisRS) have demonstrated the importance of the G-1:C73 base pair to tRNAHis identity. Specifically, the 5'-monophosphate of G-1 and the major groove amine of C73 are recognized by E. coli HisRS; these individual atomic groups each contribute approximately 4 kcal/mol to transition state stabilization. In this study, two chemically synthesized 24-nucleotide RNA microhelices, each of which recapitulates the acceptor stem of either E. coli or Saccharomyces cervisiae tRNAHis, were used to facilitate an atomic group "mutagenesis" study of the -1:73 base pair recognition by S. cerevisiae HisRS. Compared with E. coli HisRS, microhelixHis is a much poorer substrate relative to full-length tRNAHis for the yeast enzyme. However, the data presented here suggest that, similar to the E. coli system, the 5' monophosphate of yeast tRNA(His) is critical for aminoacylation by yeast HisRS and contributes approximately 3 kcal/mol to transition state stability. The primary role of the unique -1:73 base pair of yeast tRNAHis appears to be to properly position the critical 5' monophosphate for interaction with the yeast enzyme. Our data also suggest that the eukaryotic HisRS/tRNAHis interaction has coevolved to rely less on specific major groove interactions with base atomic groups than the bacterial system.
Collapse
MESH Headings
- Acylation
- Base Sequence
- Evolution, Molecular
- Indicators and Reagents
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, His/chemistry
- RNA, Transfer, His/genetics
- RNA, Transfer, His/metabolism
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- Abbey E Rosen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
76
|
Jackman JE, Phizicky EM. tRNAHis guanylyltransferase adds G-1 to the 5' end of tRNAHis by recognition of the anticodon, one of several features unexpectedly shared with tRNA synthetases. RNA (NEW YORK, N.Y.) 2006; 12:1007-14. [PMID: 16625026 PMCID: PMC1464847 DOI: 10.1261/rna.54706] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All eukaryotic tRNA(His) molecules are unique among tRNA species because they require addition of a guanine nucleotide at the -1 position by tRNA(His) guanylyltransferase, encoded in yeast by THG1. This G(-1) residue is both necessary and sufficient for aminoacylation of tRNA by histidyl-tRNA synthetase in vitro and is required for aminoacylation in vivo. Although Thg1 is presumed to be highly specific for tRNA(His) to prevent misacylation of tRNAs, the source of this specificity is unknown. We show here that Thg1 is >10,000-fold more selective for its cognate substrate tRNA(His) than for the noncognate substrate tRNA(Phe). We also demonstrate that the GUG anticodon of tRNA(His) is a crucial Thg1 identity element, since alteration of this anticodon in tRNA(His) completely abrogates Thg1 activity, and the simple introduction of this GUG anticodon to any of three noncognate tRNAs results in significant Thg1 activity. For tRNA(Phe), k(cat)/K(M) is improved by at least 200-fold. Thg1 is the only protein other than aminoacyl-tRNA synthetases that is known to use the anticodon as an identity element to discriminate among tRNA species while acting at a remote site on the tRNA, an unexpected link given the lack of any identifiable sequence similarity between these two families of proteins. Moreover, Thg1 and tRNA synthetases share two other features: They act in close proximity to one another at the top of the tRNA aminoacyl-acceptor stem, and the chemistry of their respective reactions is strikingly similar.
Collapse
Affiliation(s)
- Jane E Jackman
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, New York 14642, USA
| | | |
Collapse
|
77
|
Jackman JE, Phizicky EM. tRNAHis guanylyltransferase catalyzes a 3'-5' polymerization reaction that is distinct from G-1 addition. Proc Natl Acad Sci U S A 2006; 103:8640-5. [PMID: 16731615 PMCID: PMC1482633 DOI: 10.1073/pnas.0603068103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Yeast tRNA(His) guanylyltransferase, Thg1, is an essential protein that adds a single guanine to the 5' end (G(-1)) of tRNA(His). This G(-1) residue is required for aminoacylation of tRNA(His) by histidyl-tRNA synthetase, both in vitro and in vivo. The guanine nucleotide addition reaction catalyzed by Thg1 extends the polynucleotide chain in the reverse (3'-5') direction of other known polymerases, albeit by one nucleotide. Here, we show that alteration of the 3' end of the Thg1 substrate tRNA(His) unleashes an unexpected reverse polymerase activity of wild-type Thg1, resulting in the 3'-5' addition of multiple nucleotides to the tRNA, with efficiency comparable to the G(-1) addition reaction. The addition of G(-1) forms a mismatched G.A base pair at the 5' end of tRNA(His), and, with monophosphorylated tRNA substrates, it is absolutely specific for tRNA(His). By contrast, reverse polymerization forms multiple G.C or C.G base pairs, and, with preactivated tRNA species, it can initiate at positions other than -1 and is not specific for tRNA(His). Thus, wild-type Thg1 catalyzes a templated polymerization reaction acting in the reverse direction of that of canonical DNA and RNA polymerases. Surprisingly, Thg1 can also readily use dNTPs for nucleotide addition. These results suggest that 3'-5' polymerization represents either an uncharacterized role for Thg1 in RNA or DNA repair or metabolism, or it may be a remnant of an earlier catalytic strategy used in nature.
Collapse
Affiliation(s)
- Jane E. Jackman
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
78
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|