51
|
Gunning P, Hardeman E, Wade R, Ponte P, Bains W, Blau HM, Kedes L. Differential patterns of transcript accumulation during human myogenesis. Mol Cell Biol 1987; 7:4100-14. [PMID: 3431550 PMCID: PMC368081 DOI: 10.1128/mcb.7.11.4100-4114.1987] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We evaluated the extent to which muscle-specific genes display identical patterns of mRNA accumulation during human myogenesis. Cloned satellite cells isolated from adult human skeletal muscle were expanded in culture, and RNA was isolated from low- and high-confluence cells and from fusing cultures over a 15-day time course. The accumulation of over 20 different transcripts was compared in these samples with that in fetal and adult human skeletal muscle. The expression of carbonic anhydrase 3, myoglobin, HSP83, and mRNAs encoding eight unknown proteins were examined in human myogenic cultures. In general, the expression of most of the mRNAs was induced after fusion to form myotubes. However, several exceptions, including carbonic anhydrase and myoglobin, showed no detectable expression in early myotubes. Comparison of all transcripts demonstrated little, if any, identity of mRNA accumulation patterns. Similar variability was also seen for mRNAs which were also expressed in nonmuscle cells. Accumulation of mRNAs encoding alpha-skeletal, alpha-cardiac, beta- and gamma-actin, total myosin heavy chain, and alpha- and beta-tubulin also displayed discordant regulation, which has important implications for sarcomere assembly. Cardiac actin was the only muscle-specific transcript that was detected in low-confluency cells and was the major alpha-actin mRNA at all times in fusing cultures. Skeletal actin was transiently induced in fusing cultures and then reduced by an order of magnitude. Total myosin heavy-chain mRNA accumulation lagged behind that of alpha-actin. Whereas beta- and gamma-actin displayed a sharp decrease after initiation of fusion and thereafter did not change, alpha- and beta-tubulin were transiently induced to a high level during the time course in culture. We conclude that each gene may have its own unique determinants of transcript accumulation and that the phenotype of a muscle may not be determined so much by which genes are active or silent but rather by the extent to which their transcript levels are modulated. Finally, we observed that patterns of transcript accumulation established within the myotube cultures were consistent with the hypothesis that myoblasts isolated from adult tissue recapitulate a myogenic developmental program. However, we also detected a transient appearance of adult skeletal muscle-specific transcripts in high-confluence myoblast cultures. This indicates that the initial differentiation of these myoblasts may reflect a more complex process than simple recapitulation of development.
Collapse
Affiliation(s)
- P Gunning
- MEDIGEN Project, Department of Medicine, Stanford University Medical School, California 94304
| | | | | | | | | | | | | |
Collapse
|
52
|
Muscat GE, Kedes L. Multiple 5'-flanking regions of the human alpha-skeletal actin gene synergistically modulate muscle-specific expression. Mol Cell Biol 1987; 7:4089-99. [PMID: 2828926 PMCID: PMC368080 DOI: 10.1128/mcb.7.11.4089-4099.1987] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transfection into myogenic and nonmyogenic cell lines was used to investigate the transcriptional regulation of the human alpha-skeletal actin gene. We demonstrated that 1,300 base pairs of the 5'-flanking region directed high-level transient expression of the bacterial chloramphenicol acetyltransferase gene in differentiated mouse C2C12 and rat L8 myotubes but not in mouse nonmuscle L.TK- and HuT-12 cells. Unidirectional 5' deletion analysis and heterologous promoter stimulation experiments demonstrated that at least three transcription-regulating subdomains lie in this 1,300-base-pair region. A proximal cis-acting transcriptional element located between positions -153 and -87 relative to the start of transcription at +1 was both sufficient and necessary for muscle-specific expression and developmental regulation during myogenesis in the two myogenic cell systems. The region 3' of position -87 interacted with factors present in both myogenic and fibroblastic cells and appeared to define, or to be a major component of, the basal promoter. In C2C12 myotubes, but not in L8 myotubes, a distal sequence domain between positions -1300 and -626 and the proximal sequence domain between positions -153 and -87 each induced transcription about 10-fold and synergistically increased CAT expression 100-fold over levels achieved by the sequences 3' of position -87. Furthermore, these cis-acting elements independently and synergistically modulated an enhancerless, heterologous simian virus 40 promoter in a tissue-specific manner. DNA fragments which included the proximal domain displayed classical enhancerlike properties. The central region between positions -626 and -153, although required in neither cell line, had a positive, two- to threefold, additive role in augmenting expression in L8 cells but not in C2C12 cells. This suggests that certain elements between positions -1300 and -153 appear to be differentially utilized for maximal expression in different myogenic cells and that the particular combination of domains used is dependent on the availability, in kind or amount, of trans-acting, transcription-modulating factors present in each cell type. Thus, multiple myogenic factors that vary qualitatively and quantitatively may be responsible for the different and complex modulatory programs of actin gene expression observed during in vivo muscle differentiation.
Collapse
Affiliation(s)
- G E Muscat
- The MEDIGEN Project, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | | |
Collapse
|
53
|
Bishopric NH, Simpson PC, Ordahl CP. Induction of the skeletal alpha-actin gene in alpha 1-adrenoceptor-mediated hypertrophy of rat cardiac myocytes. J Clin Invest 1987; 80:1194-9. [PMID: 2821075 PMCID: PMC442365 DOI: 10.1172/jci113179] [Citation(s) in RCA: 169] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myocardial hypertrophy in vivo is associated with reexpression of contractile protein isogenes characteristic of fetal and neonatal development. The molecular signals for hypertrophy and isogene switching are unknown. We studied alpha (sarcomeric)-actin messenger RNA (mRNA) expression in cultured cardiac myocytes from the neonatal rat. In the cultured cells, as in the adult heart in vivo, expression of cardiac alpha-actin (cACT) predominated over that of skeletal alpha-actin (sACT) mRNA, the fetal/neonatal isoform. alpha 1-Adrenergic receptor stimulation induced hypertrophy of these cells, increasing total RNA and cytoskeletal actin mRNA by 1.8-fold over control, and total alpha-actin mRNA by 4.3 fold. This disproportionate increase in total alpha-actin mRNA was produced by a preferential induction of sACT mRNA, which increased by 10.6-fold over control versus only 2.6-fold for cACT mRNA. The alpha 1-adrenoceptor is the first identified molecular mediator of early developmental isogene reexpression in cardiac myocyte hypertrophy.
Collapse
Affiliation(s)
- N H Bishopric
- Department of Anatomy, University of California, San Francisco 94143
| | | | | |
Collapse
|
54
|
Miwa T, Kedes L. Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human alpha-cardiac actin gene. Mol Cell Biol 1987; 7:2803-13. [PMID: 2823106 PMCID: PMC367897 DOI: 10.1128/mcb.7.8.2803-2813.1987] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An upstream region from the transcription initiation site to -177 base pairs (bp) of the human alpha-cardiac actin gene directs the transient expression of a bacterial chloramphenicol acetyltransferase (CAT) gene only in muscle cells (A. Minty and L. Kedes, Mol. Cell. Biol. 6:2125-2136, 1986). We modified this promoter region by additional 5' deletions, linker-scanning mutations, and insertion-deletion mutations and demonstrated that the asymmetrical sequences in and adjacent to two CArG [for CC(A + T rich)6GG] motifs, located at -140 and -100 bp, play an important positive role in transcription. The significant impairment of transcriptional activity that accompanies the disruption of one CArG box region can be restored by either. This demonstrated that these two elements interact in a mutually dependent and similar manner. Furthermore, a DNA fragment that includes the CArG boxes had significant competitive activity for transcription directed by the alpha-cardiac actin promoter in an in vivo competition assay. We conclude that the two sequences around each CArG box may interact with the same class of trans-acting positive factor(s) and that these interactions may mediate muscle-specific expression. Each of the two CArG regions appears to be bound independently by such a positive factor(s), and the regions support high-level transcription in a synergistic manner. The transcriptional activity of this regulatory region is proportional to its distance from a TATA box (at -30 bp) and is strictly orientation dependent relative to the direction of transcription. Therefore this upstream region is not an enhancer but is a tissue-specific regulatory upstream element.
Collapse
Affiliation(s)
- T Miwa
- MEDIGEN Project, Department of Medicine, Stanford University School of Medicine, Palo Alto
| | | |
Collapse
|
55
|
Tissue-specific and developmentally regulated expression of a chimeric actin-globin gene in transgenic mice. Mol Cell Biol 1987. [PMID: 3023942 DOI: 10.1128/mcb.6.7.2624] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A chimeric plasmid containing about 2/3 of the rat skeletal muscle actin gene plus 730 base pairs of its 5' flanking sequences fused to the 3' end of a human embryonic globin gene (D. Melloul, B. Aloni, J. Calvo, D. Yaffe, and U. Nudel, EMBO J. 3:983-990, 1984) was inserted into mice by microinjection into fertilized eggs. Eleven transgenic mice carrying the chimeric gene with or without plasmid pBR322 DNA sequences were identified. The majority of these mice transmitted the injected DNA to about 50% of their progeny. However, in transgenic mouse CV1, transmission to progeny was associated with amplification or deletion of the injected DNA sequences, while in transgenic mouse CV4 transmission was distorted, probably as a result of insertional mutagenesis. Tissue-specific expression was dependent on the removal of the vector DNA sequences from the chimeric gene sequences prior to microinjection. None of the transgenic mice carrying the chimeric gene together with plasmid pBR322 sequences expressed the introduced gene in striated muscles. In contrast, the six transgenic mice carrying the chimeric gene sequences alone expressed the inserted gene specifically in skeletal and cardiac muscles. Moreover, expression of the chimeric gene was not only tissue specific, but also developmentally regulated. Similar to the endogenous skeletal muscle actin gene, the chimeric gene was expressed at a relatively high level in cardiac muscle of neonatal mice and at a significantly lower level in adult cardiac muscle. These results indicate that the injected DNA included sufficient cis-acting control elements for its tissue-specific and developmentally regulated expression in transgenic mice.
Collapse
|
56
|
Two-level regulation of cardiac actin gene transcription: muscle-specific modulating factors can accumulate before gene activation. Mol Cell Biol 1986. [PMID: 3785190 DOI: 10.1128/mcb.6.6.2137] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously proposed that the upstream regions of the human cardiac actin gene contain sequences that interact with muscle-specific factors with direct high-level transcription of this gene in differentiated muscle cells. In this study we showed that these factors already accumulate in the dividing myoblasts of the mouse C2C12 cell line before differentiation of the cells. The endogenous cardiac actin gene in the C2C12 line is expressed only at a low level in myoblasts but at a high level when these cells differentiate into multinucleate myotubes. In contrast, human cardiac actin genes stably introduced into C2C12 cells show high-level expression in both myoblasts and myotubes, indicating that the endogenous cardiac actin gene is repressed in myoblasts by a mechanism which does not affect transfected genes. In a second muscle cell line (the rat L8 cell line), the level of expression of transfected cardiac actin genes increases when these cells differentiate into myotubes, paralleling the expression of the endogenous sarcomeric actin genes. We suggest that the level of transcriptional modulating factors is low in L8 myoblasts and increases when these cells differentiate into myotubes. Our results demonstrate that at least two steps are necessary for high-level cardiac actin gene expression: activation of the gene and subsequent modulation of its transcriptional activity. Furthermore, the results indicate that the two regulatory steps can be dissociated and that the factors involved in modulation are distinct from those involved in gene activation.
Collapse
|
57
|
Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol Cell Biol 1986. [PMID: 3785189 DOI: 10.1128/mcb.6.6.2125] [Citation(s) in RCA: 229] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfection into cultured cell lines was used to investigate the transcriptional regulation of the human cardiac actin gene. We first demonstrated that in both human heart and human skeletal muscle, cardiac actin mRNAs initiate at the identical site and contain the same first exon, which is separated from the first coding exon by an intron of 700 base pairs. A region of 485 base pairs upstream from the transcription initiation site of the human cardiac actin gene directs high-level transient expression of the bacterial chloramphenicol acetyltransferase gene in differentiated myotubes of the mouse C2C12 muscle cell line, but not in mouse L fibroblast or rat PC-G2 pheochromocytoma cells. Deletion analysis of this region showed that at least two physically separated sequence elements are involved, a distal one starting between -443 and -395 and a proximal one starting between -177 and -118, and suggested that these sequences interact with positively acting transcriptional factors in muscle cells. When these two sequence elements are inserted separately upstream of a heterologous (simian virus 40) promoter, they do not affect transcription but do give a small (four- to fivefold) stimulation when tested together. Overall, these regulatory regions upstream of the cap site of the human cardiac actin gene show remarkably high sequence conservation with the equivalent regions of the mouse and chick genes. Furthermore, there is an evolutionarily conserved repeated motif that may be important in the transcriptional regulation of actin and other contractile protein genes.
Collapse
|
58
|
Human glyceraldehyde-3-phosphate dehydrogenase: mRNA levels and enzyme activity in developing muscle. Mol Cell Biol 1986. [PMID: 3837856 DOI: 10.1128/mcb.5.8.2147] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of human glyceraldehyde-3-phosphate dehydrogenase mRNA revealed that levels in adult skeletal muscle are 12-fold greater per microgram of polyadenylated RNA than in fetal skeletal muscle, whereas in cardiac muscle RNA levels were about equal in fetal and adult tissue. The mRNA levels correlate well with glyceraldehyde 3-phosphate dehydrogenase enzyme activities. There was no evidence for fetus- or tissue-specific forms.
Collapse
|
59
|
Erba HP, Gunning P, Kedes L. Nucleotide sequence of the human gamma cytoskeletal actin mRNA: anomalous evolution of vertebrate non-muscle actin genes. Nucleic Acids Res 1986; 14:5275-94. [PMID: 3737401 PMCID: PMC311540 DOI: 10.1093/nar/14.13.5275] [Citation(s) in RCA: 135] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Two distinct, but iso-coding, gamma non-muscle actin cDNAs were isolated from an SV40-transformed human fibroblast library. The complete nucleotide sequence of the human gamma non-muscle actin cDNAs indicates that they may have arisen from polymorphic alleles. By using genomic DNA and cellular RNA transfer blots, we demonstrate that the 3' untranslated region (UTR) of the gamma actin mRNA consists of an evolutionarily conserved 5' and more divergent 3' segments. In fact, the conserved segment of the 3' UTR detects a single-copy sequence in the chicken genome and a 20S RNA transcript in chicken non-muscle tissues. The coding regions of these cDNAs were compared with those of other vertebrate non-muscle actin genes. Surprisingly, the percentage of silent base substitutions between the human beta and gamma actin coding regions is anomalously low and indicates greater sequence conservation than would be expected for a gene pair which arose during pre-avian evolution. We discuss gene conversion and recent selective pressure as possible explanations of the apparently anomalous evolution of the gamma non-muscle actin gene.
Collapse
|
60
|
Shani M. Tissue-specific and developmentally regulated expression of a chimeric actin-globin gene in transgenic mice. Mol Cell Biol 1986; 6:2624-31. [PMID: 3023942 PMCID: PMC367818 DOI: 10.1128/mcb.6.7.2624-2631.1986] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A chimeric plasmid containing about 2/3 of the rat skeletal muscle actin gene plus 730 base pairs of its 5' flanking sequences fused to the 3' end of a human embryonic globin gene (D. Melloul, B. Aloni, J. Calvo, D. Yaffe, and U. Nudel, EMBO J. 3:983-990, 1984) was inserted into mice by microinjection into fertilized eggs. Eleven transgenic mice carrying the chimeric gene with or without plasmid pBR322 DNA sequences were identified. The majority of these mice transmitted the injected DNA to about 50% of their progeny. However, in transgenic mouse CV1, transmission to progeny was associated with amplification or deletion of the injected DNA sequences, while in transgenic mouse CV4 transmission was distorted, probably as a result of insertional mutagenesis. Tissue-specific expression was dependent on the removal of the vector DNA sequences from the chimeric gene sequences prior to microinjection. None of the transgenic mice carrying the chimeric gene together with plasmid pBR322 sequences expressed the introduced gene in striated muscles. In contrast, the six transgenic mice carrying the chimeric gene sequences alone expressed the inserted gene specifically in skeletal and cardiac muscles. Moreover, expression of the chimeric gene was not only tissue specific, but also developmentally regulated. Similar to the endogenous skeletal muscle actin gene, the chimeric gene was expressed at a relatively high level in cardiac muscle of neonatal mice and at a significantly lower level in adult cardiac muscle. These results indicate that the injected DNA included sufficient cis-acting control elements for its tissue-specific and developmentally regulated expression in transgenic mice.
Collapse
|
61
|
Minty A, Blau H, Kedes L. Two-level regulation of cardiac actin gene transcription: muscle-specific modulating factors can accumulate before gene activation. Mol Cell Biol 1986; 6:2137-48. [PMID: 3785190 PMCID: PMC367754 DOI: 10.1128/mcb.6.6.2137-2148.1986] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have previously proposed that the upstream regions of the human cardiac actin gene contain sequences that interact with muscle-specific factors with direct high-level transcription of this gene in differentiated muscle cells. In this study we showed that these factors already accumulate in the dividing myoblasts of the mouse C2C12 cell line before differentiation of the cells. The endogenous cardiac actin gene in the C2C12 line is expressed only at a low level in myoblasts but at a high level when these cells differentiate into multinucleate myotubes. In contrast, human cardiac actin genes stably introduced into C2C12 cells show high-level expression in both myoblasts and myotubes, indicating that the endogenous cardiac actin gene is repressed in myoblasts by a mechanism which does not affect transfected genes. In a second muscle cell line (the rat L8 cell line), the level of expression of transfected cardiac actin genes increases when these cells differentiate into myotubes, paralleling the expression of the endogenous sarcomeric actin genes. We suggest that the level of transcriptional modulating factors is low in L8 myoblasts and increases when these cells differentiate into myotubes. Our results demonstrate that at least two steps are necessary for high-level cardiac actin gene expression: activation of the gene and subsequent modulation of its transcriptional activity. Furthermore, the results indicate that the two regulatory steps can be dissociated and that the factors involved in modulation are distinct from those involved in gene activation.
Collapse
|
62
|
Minty A, Kedes L. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol Cell Biol 1986; 6:2125-36. [PMID: 3785189 PMCID: PMC367753 DOI: 10.1128/mcb.6.6.2125-2136.1986] [Citation(s) in RCA: 217] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transfection into cultured cell lines was used to investigate the transcriptional regulation of the human cardiac actin gene. We first demonstrated that in both human heart and human skeletal muscle, cardiac actin mRNAs initiate at the identical site and contain the same first exon, which is separated from the first coding exon by an intron of 700 base pairs. A region of 485 base pairs upstream from the transcription initiation site of the human cardiac actin gene directs high-level transient expression of the bacterial chloramphenicol acetyltransferase gene in differentiated myotubes of the mouse C2C12 muscle cell line, but not in mouse L fibroblast or rat PC-G2 pheochromocytoma cells. Deletion analysis of this region showed that at least two physically separated sequence elements are involved, a distal one starting between -443 and -395 and a proximal one starting between -177 and -118, and suggested that these sequences interact with positively acting transcriptional factors in muscle cells. When these two sequence elements are inserted separately upstream of a heterologous (simian virus 40) promoter, they do not affect transcription but do give a small (four- to fivefold) stimulation when tested together. Overall, these regulatory regions upstream of the cap site of the human cardiac actin gene show remarkably high sequence conservation with the equivalent regions of the mouse and chick genes. Furthermore, there is an evolutionarily conserved repeated motif that may be important in the transcriptional regulation of actin and other contractile protein genes.
Collapse
|
63
|
Saez L, Leinwand LA. Characterization of diverse forms of myosin heavy chain expressed in adult human skeletal muscle. Nucleic Acids Res 1986; 14:2951-69. [PMID: 2421254 PMCID: PMC339714 DOI: 10.1093/nar/14.7.2951] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In an attempt to define myosin heavy chain (MHC) gene organization and expression in adult human skeletal muscle, we have isolated and characterized genomic sequences corresponding to different human sarcomeric MHC genes (1). In this report, we present the complete DNA sequence of two different adult human skeletal muscle MHC cDNA clones, one of which encodes the entire light meromyosin (LMM) segment of MHC and represents the longest described MHC cDNA sequence. Additionally, both clones provide new sequence data from a 228 amino acid segment of the MHC tail for which no protein or DNA sequence has been previously available. One clone encodes a "fast" form of skeletal muscle MHC while the other clone most closely resembles a MHC form described in rat cardiac ventricles. We show that the 3' untranslated region of skeletal MHC cDNAs are homologous from widely separated species as are cardiac MHC cDNAs. However, there is no homology between the 3' untranslated region of cardiac and skeletal muscle MHCs. Isotype-specific preservation of MHC 3' untranslated sequences during evolution suggests a functional role for these regions.
Collapse
|
64
|
Abstract
Embryonic muscle development permits the study of contractile protein gene regulation during cellular differentiation. To distinguish the appearance of particular actin mRNAs during chicken myogenesis, we have constructed DNA probes from the transcribed 3' noncoding region of the single-copy alpha-skeletal, alpha-cardiac, and beta-cytoplasmic actin genes. Hybridization experiments showed that at day 10 in ovo (stage 36), embryonic hindlimbs contain low levels of actin mRNA, predominantly consisting of the alpha-cardiac and beta-actin isotypes. However, by day 17 in ovo (stage 43), the amount of alpha-skeletal actin mRNA/microgram total RNA increased more than 30-fold and represented approximately 90% of the assayed actin mRNA. Concomitantly, alpha-cardiac and beta-actin mRNAs decreased by 30% and 70%, respectively, from the levels observed at day 10. In primary myoblast cultures, beta-actin mRNA increased sharply during the proliferative phase before fusion and steadily declined thereafter. alpha-Cardiac actin mRNA increased to levels 15-fold greater than alpha-skeletal actin mRNA in prefusion myoblasts (36 h), and remained at elevated levels. In contrast, the alpha-skeletal actin mRNA remained low until fusion had begun (48 h), increased 25-fold over the prefusion level by the completion of fusion, and then decreased at later times in culture. Thus, the sequential accumulation of sarcomeric alpha-actin mRNAs in culture mimics some of the events observed in embryonic limb development. However, maintenance of high levels of alpha-cardiac actin mRNA as well as the transient accumulation of appreciable alpha-skeletal actin mRNA suggests that myoblast cultures lack one or more essential components for phenotypic maturation.
Collapse
|
65
|
Varadarajan R, Szabo A, Boxer SG. Cloning, expression in Escherichia coli, and reconstitution of human myoglobin. Proc Natl Acad Sci U S A 1985; 82:5681-4. [PMID: 3898068 PMCID: PMC390615 DOI: 10.1073/pnas.82.17.5681] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A full-length cDNA clone for human myoglobin has been isolated from a human skeletal muscle cDNA library. The clone as isolated has a cDNA insert approximately one kilobase long and has 5' and 3' untranslated regions of approximately 80 and 530 base pairs, respectively. The sequence of the translated region corresponds exactly to that predicted for human myoglobin. The cDNA was expressed in high yield in Escherichia coli as a fusion protein consisting of the first 31 amino acids of the phage lambda cII gene, the tetrapeptide Ile-Glu-Gly-Arg, and the myoglobin sequence by following the approach of Nagai and Thogersen [Nagai, K. & Thogersen, M. C. (1984) Nature (London) 309, 810-812]. The fusion product was isolated, reconstituted with heme, cleaved with trypsin, and purified to generate a protein whose properties are indistinguishable from those for authentic human myoglobin. Myoglobin can be readily prepared on a gram scale by using these methods.
Collapse
|
66
|
Barton PJ, Robert B, Fiszman MY, Leader DP, Buckingham ME. The same myosin alkali light chain gene is expressed in adult cardiac atria and in fetal skeletal muscle. J Muscle Res Cell Motil 1985; 6:461-75. [PMID: 3840808 DOI: 10.1007/bf00712583] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have isolated from a cDNA library constructed using mouse cardiac mRNA sequences, a clone (pC6) homologous to part of the mRNA encoding the myosin alkali light chain MLC1A from adult mouse atria. This sequence also hybridizes to mRNA encoding the fetal light chain form MLC1emb expressed in both fused myotubes in culture and in 18 day fetal skeletal muscle. These mRNA sequences are indistinguishable from the MLC1A messenger both on the basis of size and of their thermal stability of hybridization. In vitro translation of mRNA selected by hybridization with pC6 results in a protein that comigrates with the fetal MLC1emb isoform, and two-dimensional gel electrophoresis of adult atrial and fetal skeletal muscle proteins shows MLC1A and MLC1emb to be indistinguishable in the mouse. Southern blot hybridization of clone pC6 to mouse genomic DNA and the analysis of restriction fragment length polymorphisms between different mouse species demonstrates the presence of a single hybridizing locus in the mouse genome. These data provide strong evidence that the atrial MLC1A and fetal skeletal MLC1emb isoform are encoded by the same gene and by the same mRNA and are thus identical proteins.
Collapse
|
67
|
Edwards YH, Lloyd JC, McMillan SL, Benham FJ. Human glyceraldehyde-3-phosphate dehydrogenase: mRNA levels and enzyme activity in developing muscle. Mol Cell Biol 1985; 5:2147-9. [PMID: 3837856 PMCID: PMC366933 DOI: 10.1128/mcb.5.8.2147-2149.1985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Analysis of human glyceraldehyde-3-phosphate dehydrogenase mRNA revealed that levels in adult skeletal muscle are 12-fold greater per microgram of polyadenylated RNA than in fetal skeletal muscle, whereas in cardiac muscle RNA levels were about equal in fetal and adult tissue. The mRNA levels correlate well with glyceraldehyde 3-phosphate dehydrogenase enzyme activities. There was no evidence for fetus- or tissue-specific forms.
Collapse
|
68
|
Abstract
We identified a novel chicken actin gene. The actin protein deduced from its nucleotide sequence very closely resembles the vertebrate cytoplasmic actins; accordingly, we classified this gene as a nonmuscle type. We adopted the convention for indicating the nonmuscle actins of the class Amphibia (Vandekerckhove et al., J. Mol. Biol. 152:413-426) and denoted this gene as type 5. RNA blot analysis demonstrated that the type 5 actin mRNA transcripts accumulate in adult tissues in a pattern indicative of a nonmuscle actin gene. Genomic DNA blots indicated that the type 5 actin is a single copy gene and a distinct member of the chicken actin multigene family. Inspection of the nucleotide sequence revealed many features that distinguished the type 5 gene from all other vertebrate actin genes examined to date. These unique characteristics include: (i) an initiation Met codon preceding an Ala codon, a feature previously known only in plant actins, (ii) a single intron within the 5' untranslated region, with no interruptions in the coding portion of the gene, and (iii) an atypical Goldberg-Hogness box (ATAGAA) preceding the mRNA initiation terminus. These unusual features have interesting implications for actin gene diversification during evolution.
Collapse
|
69
|
Abstract
We identified a novel chicken actin gene. The actin protein deduced from its nucleotide sequence very closely resembles the vertebrate cytoplasmic actins; accordingly, we classified this gene as a nonmuscle type. We adopted the convention for indicating the nonmuscle actins of the class Amphibia (Vandekerckhove et al., J. Mol. Biol. 152:413-426) and denoted this gene as type 5. RNA blot analysis demonstrated that the type 5 actin mRNA transcripts accumulate in adult tissues in a pattern indicative of a nonmuscle actin gene. Genomic DNA blots indicated that the type 5 actin is a single copy gene and a distinct member of the chicken actin multigene family. Inspection of the nucleotide sequence revealed many features that distinguished the type 5 gene from all other vertebrate actin genes examined to date. These unique characteristics include: (i) an initiation Met codon preceding an Ala codon, a feature previously known only in plant actins, (ii) a single intron within the 5' untranslated region, with no interruptions in the coding portion of the gene, and (iii) an atypical Goldberg-Hogness box (ATAGAA) preceding the mRNA initiation terminus. These unusual features have interesting implications for actin gene diversification during evolution.
Collapse
|
70
|
Chang KS, Rothblum KN, Schwartz RJ. The complete sequence of the chicken alpha-cardiac actin gene: a highly conserved vertebrate gene. Nucleic Acids Res 1985; 13:1223-37. [PMID: 3855241 PMCID: PMC341068 DOI: 10.1093/nar/13.4.1223] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We sequenced the entire chicken alpha-cardiac actin gene. A single intron was positioned 20 bp upstream from the initiation ATG codon in the 5' non-coding region while the coding region was interrupted by 5 introns at amino acid positions 41/42, 150, 204, 267, and 327/328. Sequencing allowed the first comparison of the alpha-cardiac and alpha-skeletal actin transcriptional promoters. These highly G+C rich promoters share two regions of homology which are found at position -134 (10 bp) and -296 (12 bp) in the alpha-cardiac actin promoter. A smaller 9 bp motif (CCGCGCCGG) homologous to the -134 sequence was detected before, between and after the TATA and CAAT boxes of the alpha-cardiac actin gene. The polyadenylation signal (AATAAA) was located 156 bp downstream from the translation termination codon. The complete length of the alpha-cardiac actin mRNA excluding the poly A tail is 1370 nucleotides. The 3' noncoding transcribed portion of the chicken alpha-cardiac actin gene was found to be extraordinarily conserved when compared to the human and rat alpha-cardiac actin mRNA sequences.
Collapse
|
71
|
Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro. Mol Cell Biol 1984. [PMID: 6493226 DOI: 10.1128/mcb.4.8.1449] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the expression of alpha-skeletal, alpha-cardiac, and beta- and gamma-cytoskeletal actin genes in a mouse skeletal muscle cell line (C2C12) during differentiation in vitro. Using isotype-specific cDNA probes, we showed that the alpha-skeletal actin mRNA pool reached only 15% of the level reached in adult skeletal muscle and required several days to attain this peak, which was then stably maintained. However, these cells accumulated a pool of alpha-cardiac actin six times higher than the alpha-skeletal actin mRNA peak within 24 h of the initiation of differentiation. After cells had been cultured for an additional 3 days, this pool declined to 10% of its peak level. In contrast, over 95% of the actin mRNA in adult skeletal muscle coded for alpha-actin. This suggests that C2C12 cells express a pattern of sarcomeric actin genes typical of either muscle development or regeneration and distinct from that seen in mature, adult tissue. Concurrently in the course of differentiation the beta- and gamma-cytoskeletal actin mRNA pools decreased to less than 10% of their levels in proliferating cells. The decreases in beta- and gamma-cytoskeletal actin mRNAs are apparently not coordinately regulated.
Collapse
|
72
|
Bains W, Ponte P, Blau H, Kedes L. Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro. Mol Cell Biol 1984; 4:1449-53. [PMID: 6493226 PMCID: PMC368933 DOI: 10.1128/mcb.4.8.1449-1453.1984] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We examined the expression of alpha-skeletal, alpha-cardiac, and beta- and gamma-cytoskeletal actin genes in a mouse skeletal muscle cell line (C2C12) during differentiation in vitro. Using isotype-specific cDNA probes, we showed that the alpha-skeletal actin mRNA pool reached only 15% of the level reached in adult skeletal muscle and required several days to attain this peak, which was then stably maintained. However, these cells accumulated a pool of alpha-cardiac actin six times higher than the alpha-skeletal actin mRNA peak within 24 h of the initiation of differentiation. After cells had been cultured for an additional 3 days, this pool declined to 10% of its peak level. In contrast, over 95% of the actin mRNA in adult skeletal muscle coded for alpha-actin. This suggests that C2C12 cells express a pattern of sarcomeric actin genes typical of either muscle development or regeneration and distinct from that seen in mature, adult tissue. Concurrently in the course of differentiation the beta- and gamma-cytoskeletal actin mRNA pools decreased to less than 10% of their levels in proliferating cells. The decreases in beta- and gamma-cytoskeletal actin mRNAs are apparently not coordinately regulated.
Collapse
|
73
|
Gunning P, Ponte P, Kedes L, Eddy R, Shows T. Chromosomal location of the co-expressed human skeletal and cardiac actin genes. Proc Natl Acad Sci U S A 1984; 81:1813-7. [PMID: 6584914 PMCID: PMC345011 DOI: 10.1073/pnas.81.6.1813] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We have examined the relationship between chromosomal location and regulation of the two human genes encoding the sarcomeric muscle actins. The human genes encoding skeletal alpha-actin and cardiac alpha-actin are co-expressed in both human skeletal muscle and heart. We have subcloned a single-copy DNA fragment from an intervening sequence in the human cardiac alpha-actin gene and a single-copy DNA sequence from the 3' untranslated region of a human skeletal alpha-actin cDNA. Using these two gene-specific probes, we examined DNA isolated from human-mouse somatic cell hybrid lines segregating human chromosomes. We observed the segregation of restriction endonuclease-generated DNA cleavage fragments that hybridize to the two probes. The two striated muscle genes do not co-segregate and are on different autosomes. The human cardiac alpha-actin gene (ACTC) is on chromosome 15 in the q11----qter region whereas the skeletal alpha-actin gene (ACTSK) is on chromosome 1 in the p21----qter region. The co-expression of these two genes is not a function of chromosomal linkage. Neither of these muscle genes can be the primary target resulting in X-linked muscular dystrophies.
Collapse
|