51
|
Lengeler KB, Davidson RC, D'souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 2000. [PMID: 11104818 DOI: 10.1023/a:1024123915158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Cellular differentiation, mating, and filamentous growth are regulated in many fungi by environmental and nutritional signals. For example, in response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous growth referred to as pseudohyphal differentiation. Yeast filamentous growth is regulated, in part, by two conserved signal transduction cascades: a mitogen-activated protein kinase cascade and a G-protein regulated cyclic AMP signaling pathway. Related signaling cascades play an analogous role in regulating mating and virulence in the plant fungal pathogen Ustilago maydis and the human fungal pathogens Cryptococcus neoformans and Candida albicans. We review here studies on the signaling cascades that regulate development of these and other fungi. This analysis illustrates both how the model yeast S. cerevisiae can serve as a paradigm for signaling in other organisms and also how studies in other fungi provide insights into conserved signaling pathways that operate in many divergent organisms.
Collapse
Affiliation(s)
- K B Lengeler
- Departments of Genetics, Pharmacology and Cancer Biology, Microbiology, and Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Noubissi FK, McCluskey K, Kasbekar DP. Repeat-induced point mutation (RIP) in crosses with wild-isolated strains of Neurospora crassa: evidence for dominant reduction of RIP. Fungal Genet Biol 2000; 31:91-7. [PMID: 11170738 DOI: 10.1006/fgbi.2000.1235] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seventy-one wild-isolated strains of Neurospora crassa were examined for their ability to support repeat-induced point mutation (RIP) in the erg-3 locus. RIP was exceptionally inefficient but detectable in crosses with the strain FGSC 430 from Adiopodoume, Ivory Coast. We could find no consistent differences in ascospore yields when wild isolates identified as "low-RIP" or "high-RIP" strains were crossed with strains bearing the segmental duplication Dp(IIIR > [I; II])AR17. This suggested that RIP may not be responsible for the barren phenotype of crosses involving segmental duplication strains.
Collapse
Affiliation(s)
- F K Noubissi
- Centre for Cellular and Molecular Biology, Hyderabad, 500 007, India
| | | | | |
Collapse
|
53
|
Turgeon BG, Yoder OC. Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 2000; 31:1-5. [PMID: 11118130 DOI: 10.1006/fgbi.2000.1227] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- B G Turgeon
- Department of Plant Pathology, Cornell University, 334 Plant Science Building, Ithaca, New York 14853, USA.
| | | |
Collapse
|
54
|
Mir-Rashed N, Jacobson DJ, Dehghany MR, Micali OC, Smith ML. Molecular and functional analyses of incompatibility genes at het-6 in a population of Neurospora crassa. Fungal Genet Biol 2000; 30:197-205. [PMID: 11035941 DOI: 10.1006/fgbi.2000.1218] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two closely linked genes, un-24 and het-6, associated with the het-6 heterokaryon incompatibility functional haplotype were examined in 40 Neurospora crassa strains from a Louisiana sugarcane field. Partial diploid analyses were used to determine that half of the strains were functionally Oak Ridge (OR) and half were non-OR and indistinguishable from the standard Panama (PA) form. PCR-based markers were developed to identify polymorphisms within both un-24 and het-6. Two common forms of each gene occur based on these molecular markers. Rare forms of both un-24 and het-6 were identified as variants of the non-OR form by a DNA transformation assay. The heterokaryon incompatibility function of haplotypes, based on partial diploid analyses, was perfectly correlated with the PCR-based markers at both loci. This correlation indicates that the two loci are in severe linkage disequilibrium in this population sample and may act as an incompatibility gene complex. Southern hybridizations using OR- and PA-derived cloned probes from the region that spans un-24 and het-6 showed that the apparent absence of recombination in this approximately 25-kbp region is associated with low levels of overall sequence identity between the PA and OR forms.
Collapse
Affiliation(s)
- N Mir-Rashed
- Biology Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | | | | | | | | |
Collapse
|
55
|
Smith ML, Micali OC, Hubbard SP, Mir-Rashed N, Jacobson DJ, Glass NL. Vegetative incompatibility in the het-6 region of Neurospora crassa is mediated by two linked genes. Genetics 2000; 155:1095-104. [PMID: 10880472 PMCID: PMC1461168 DOI: 10.1093/genetics/155.3.1095] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Non-self-recognition during asexual growth of Neurospora crassa involves restriction of heterokaryon formation via genetic differences at 11 het loci, including mating type. The het-6 locus maps to a 250-kbp region of LGIIL. We used restriction fragment length polymorphisms in progeny with crossovers in the het-6 region and a DNA transformation assay to identify two genes in a 25-kbp region that have vegetative incompatibility activity. The predicted product of one of these genes, which we designate het-6(OR), has three regions of amino acid sequence similarity to the predicted product of the het-e vegetative incompatibility gene in Podospora anserina and to the predicted product of tol, which mediates mating-type vegetative incompatibility in N. crassa. The predicted product of the alternative het-6 allele, HET-6(PA), shares only 68% amino acid identity with HET-6(OR). The second incompatibility gene, un-24(OR), encodes the large subunit of ribonucleotide reductase, which is essential for de novo synthesis of DNA. A region in the carboxyl-terminal portion of UN-24 is associated with incompatibility and is variable between un-24(OR) and the alternative allele un-24(PA). Linkage analysis indicates that the 25-kbp un-24-het-6 region is inherited as a block, suggesting that a nonallelic interaction may occur between un-24 and het-6 and possibly other loci within this region to mediate vegetative incompatibility in the het-6 region of N. crassa.
Collapse
Affiliation(s)
- M L Smith
- Biology Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
| | | | | | | | | | | |
Collapse
|
56
|
Gorovits R, Sjollema KA, Sietsma JH, Yarden O. Cellular distribution of COT1 kinase in Neurospora crassa. Fungal Genet Biol 2000; 30:63-70. [PMID: 10955908 DOI: 10.1006/fgbi.2000.1198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Neurospora crassa cot-1 gene encodes a Ser/Thr protein kinase, which is involved in hyphal elongation. Many vacuoles, abnormally shaped mitochondria, and nuclei, along with differences in the structure of the cell wall and hyphal septa, were observed in hyphae of the cot-1 mutant shortly after a shift to the restrictive temperature. Immunolocalization experiments indicated that COT1 was associated with the cytoplasmic membrane; COT1 was also detected in the cytoplasm. The membrane-associated COT1 was absent from the cot-1 mutant when shifted to the restrictive temperature, as was a lower molecular weight isoform of COT1. We propose that COT1 may be involved in several cellular processes, and the spatial and temporal regulation of COT1 activity involves trafficking of the kinase within the fungal cell and its possible interaction with additional proteins.
Collapse
Affiliation(s)
- R Gorovits
- Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
57
|
Wendland J, Philippsen P. Determination of cell polarity in germinated spores and hyphal tips of the filamentous ascomycete Ashbya gossypii requires a rhoGAP homolog. J Cell Sci 2000; 113 ( Pt 9):1611-21. [PMID: 10751152 DOI: 10.1242/jcs.113.9.1611] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the filamentous ascomycete Ashbya gossypii, like in other filamentous fungi onset of growth in dormant spores occurs as an isotropic growth phase generating spherical germ cells. Thereafter, a switch to polarized growth results in the formation of the first hyphal tip. The initial steps of hyphal tip formation in filamentous fungi, therefore, resemble processes taking place prior to and during bud emergence of unicellular yeast-like fungi. We investigated whether phenotypic similarities between these distinct events extended to the molecular level. To this end we isolated and characterized the A. gossypii homolog of the Saccharomyces cerevisiae BEM2 gene which is part of a network of rho-GTPases and their regulators required for bud emergence and bud growth in yeast. Here we show that the AgBem2 protein contains a GAP- (GTPase activating protein) domain for rho-like GTPases at its carboxy terminus, and that this part of AgBem2p is required for complementation of an Agbem2 null strain. Germination of spores resulted in enlarged Agbem2 germ cells that were unable to generate the bipolar branching pattern found in wild-type germ cells. In addition, mutant hyphae were swollen due to defects in polarized cell growth indicated by the delocalized distribution of chitin and cortical actin patches. Surprisingly, the complete loss of cell polarity which lead to spherical hyphal tips was overcome by the establishment of new cell polarities and the formation of multiple new hyphal tips. In conclusion these results and other findings demonstrate that establishment of cell polarity, maintenance of cell polarity, and polarized hyphal growth in filamentous fungi require members of Ρ-GTPase modules.
Collapse
Affiliation(s)
- J Wendland
- Lehrstuhl für angewandte Mikrobiologie, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel.
| | | |
Collapse
|
58
|
Navaraj A, Pandit A, Maheshwari R. Senescent: a new Neurospora crassa nuclear gene mutant derived from nature exhibits mitochondrial abnormalities and a "death" phenotype. Fungal Genet Biol 2000; 29:165-73. [PMID: 10882533 DOI: 10.1006/fgbi.2000.1193] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fungi are capable of potentially unlimited growth. We resolved nuclear types from multinuclear mycelium of a phenotypically normal wild isolate of the fungus Neurospora intermedia by plating its uninucleate microconidia and obtained a strain which, unlike the "parent" strain, exhibited clonal senescence in subcultures. The mutant gene, senescent, was introgressed into N. crassa and mapped four map units to the right of the his-1 locus on linkage group VR. senescent is the first nuclear gene mutant of Neurospora derived from nature that shows the death phenotype. Death of the sen mutant occurred faster at 34 degrees C than at 22 or 26 degrees C. Measurements of oxygen uptake of conidia using respiratory inhibitors and the spectrophotometric analyses of mitochondrial cytochromes showed that in sen cultures grown at 34 degrees C, cytochromes b and aa(3) were present but cytochrome c was absent. By contrast at 26 degrees C, cytochromes b and c were present but cytochrome aa(3) was diminished in the late subcultures. This suggested that the sen mutation does not affect the potential to produce functional cytochromes. The deficiency of the respiratory chain cytochromes may not be the cause of death of the sen mutant because the cytochrome c and aa(3) mutants of N. crassa are capable of sustained growth whereas sen is not. Possible explanations for the observations are discussed.
Collapse
Affiliation(s)
- A Navaraj
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | | | |
Collapse
|
59
|
Gallegos A, Jacobson DJ, Raju NB, Skupski MP, Natvig DO. Suppressed recombination and a pairing anomaly on the mating-type chromosome of Neurospora tetrasperma. Genetics 2000; 154:623-33. [PMID: 10655216 PMCID: PMC1460935 DOI: 10.1093/genetics/154.2.623] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurospora crassa and related heterothallic ascomycetes produce eight homokaryotic self-sterile ascospores per ascus. In contrast, asci of N. tetrasperma contain four self-fertile ascospores each with nuclei of both mating types (matA and mata). The self-fertile ascospores of N. tetrasperma result from first-division segregation of mating type and nuclear spindle overlap at the second meiotic division and at a subsequent mitotic division. Recently, Merino et al. presented population-genetic evidence that crossing over is suppressed on the mating-type chromosome of N. tetrasperma, thereby preventing second-division segregation of mating type and the formation of self-sterile ascospores. The present study experimentally confirmed suppressed crossing over for a large segment of the mating-type chromosome by examining segregation of markers in crosses of wild strains. Surprisingly, our study also revealed a region on the far left arm where recombination is obligatory. In cytological studies, we demonstrated that suppressed recombination correlates with an extensive unpaired region at pachytene. Taken together, these results suggest an unpaired region adjacent to one or more paired regions, analogous to the nonpairing and pseudoautosomal regions of animal sex chromosomes. The observed pairing and obligate crossover likely reflect mechanisms to ensure chromosome disjunction.
Collapse
Affiliation(s)
- A Gallegos
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
60
|
Bowman EJ, Kendle R, Bowman BJ. Disruption of vma-1, the gene encoding the catalytic subunit of the vacuolar H(+)-ATPase, causes severe morphological changes in Neurospora crassa. J Biol Chem 2000; 275:167-76. [PMID: 10617601 DOI: 10.1074/jbc.275.1.167] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By using the process of Repeat-induced Point mutation (Selker, E. U., and Garrett, P. W. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 6870-6874), we inactivated vma-1, the gene encoding subunit A of the V-ATPase of Neurospora crassa. Two vma-1 mutant strains were characterized. One was mutated at multiple sites, did not make a protein product, and produced spores that only rarely germinated. The other had four point mutations, made a protein product, and produced viable spores. Neither strain had detectable V-ATPase activity. The vma-1 mutant strains did not grow in medium buffered to pH 7.0 or above or in medium supplemented with the cation Zn(2+). They were completely resistant to inhibition by concanamycin C, supporting our hypothesis that the V-ATPase is the in vivo target of this antibiotic. Inactivation of the vma-1 gene had a pronounced effect on morphology and development of the organism. In the mutants tip growth was inhibited, and multiple branching was induced. The vma-1 mutant strains could not differentiate conidia or perithecia. They could grow slowly as mycelia and could donate nuclei in a sexual cross. A mutation in the plasma membrane ATPase, which suppressed the sensitivity of wild type N. crassa to concanamycin, also proved effective in suppressing the sensitivity of a vma-1 null mutant to basic pH but did not correct the morphological defects.
Collapse
Affiliation(s)
- E J Bowman
- Department of Biology, University of California, Santa Cruz, California 95064, USA.
| | | | | |
Collapse
|
61
|
Schwerdtfeger C, Linden H. Localization and light-dependent phosphorylation of white collar 1 and 2, the two central components of blue light signaling in Neurospora crassa. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:414-22. [PMID: 10632711 DOI: 10.1046/j.1432-1327.2000.01016.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Neurospora crassa only two white collar (wc) mutants, wc-1 and wc-2, have been described that seem to be insensitive to light. The pleiotropic phenotypes of these mutants suggest that they represent two central components of blue light signal transduction. The WC proteins have several characteristics of transcription factors consistent with an involvement in transcriptional control of light-regulated genes. Here, we present a biochemical analysis of WC1 and WC2 polypeptides in N. crassa. Using specific antisera against WC1 and WC2, respectively, the subcellular localization of the WC polypeptides was investigated. The WC1 protein was localized exclusively in the nucleus, whereas WC2 was detected in both the nuclear and cytoplasmic fractions. The nuclear localization of WC1 and WC2 was shown to be independent of light and dimerization between the two proteins. In addition, WC1 and WC2 are phosphorylated in response to light. The phosphorylation of WC1 and WC2 was dependent on functional WC1 and WC2 proteins, respectively, which clearly indicated a correlation between the light-dependent phosphorylation and the function of WC1 and WC2 in blue light signaling. However, the light-specific phosphorylation of the WC proteins revealed different kinetics. The phosphorylation of WC1 was transient whereas the WC2 phosphorylation was shown to be stable under constant light conditions. The analysis of the light-dependent phosphorylation of WC1 and WC2 in wc-2 and wc-1 mutants revealed an epistatic relationship for WC1 and WC2 with WC2 acting downstream of WC1 in the signal transduction pathway of blue light.
Collapse
Affiliation(s)
- C Schwerdtfeger
- Lehrstuhl für Physiologie und Biochemie er Pflanzen, Universität Konstanz, Germany
| | | |
Collapse
|
62
|
Sone T, Griffiths AJ. The frost gene of Neurospora crassa is a homolog of yeast cdc1 and affects hyphal branching via manganese homeostasis. Fungal Genet Biol 1999; 28:227-37. [PMID: 10669587 DOI: 10.1006/fgbi.1999.1169] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Neurospora crassa mutant frost has a hyperbranching phenotype that can be corrected by adding Ca(2+), suggesting that characterization of this gene might clarify the mechanism of Ca(2+)-dependent tip growth. The wild-type allele was cloned by sib selection using protoplasts from arthroconidia. RFLP analysis revealed that the cloned DNA fragment mapped to the fr locus. The nucleotide sequence of genomic and cDNA was determined. The deduced amino acid sequence showed homology to the Saccharomyces cerevisiae CDC1 protein, implicated in manganese homeostasis. The fr mutant was sensitive to Mn(2+), and a revertant allele whose product differs by one amino acid was tolerant to Mn(2+). Mn(2+) depletion induced the wild-type strain to hyperbranch, resulting in a morphology similar to that of fr. The fr mutant was also sensitive to calcineurin inhibitors. These results suggest that fr is involved in Mn(2+) homeostasis and point to a role for Mn(2+) in Neurospora branching.
Collapse
Affiliation(s)
- T Sone
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | | |
Collapse
|
63
|
Gorovits R, Propheta O, Kolot M, Dombradi V, Yarden O. A mutation within the catalytic domain of COT1 kinase confers changes in the presence of two COT1 isoforms and in Ser/Thr protein kinase and phosphatase activities in Neurospora crassa. Fungal Genet Biol 1999; 27:264-74. [PMID: 10441452 DOI: 10.1006/fgbi.1999.1152] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurospora crassa grows by forming spreading colonies. cot-1 belongs to a class of N. crassa colonial temperature-sensitive (cot) mutants and encodes a Ser/Thr protein kinase. We have mapped the cot-1 mutation to a single base change resulting in a His to Arg substitution at amino acid 351, which resides within the catalytic domain. Antibodies raised against COT1 detected and immunoprecipitated a predominant 73-kDa polypeptide in N. crassa extracts, whose abundance was constant under all growth conditions tested. An additional, lower MW COT1 isoform (67-kDa) present in the wild-type was not detected in cot-1 grown at the restrictive temperature. Similarly, this isoform was not detected in cot-3 or cot-5 strains, when grown at restrictive temperatures. Reduced levels of Ser/Thr kinase activity and an increase in type 1 and type 2B phosphatase (calcineurin) activities were measured in a cot-1 background. Apparent changes in the phosphorylation state of the p150(Glued) subunit of the dynactin cytoskeletal motor component (encoded by ro-3, a suppressor of cot-1) and evidence of in vitro physical interactions between COT1 and calcineurin indicate a functional linkage among COT1 kinase, type 2B phosphatase, and dynactin.
Collapse
Affiliation(s)
- R Gorovits
- Otto Warburg Center for Agricultural Biotechnology, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | | | | | | | |
Collapse
|
64
|
Ivey FD, Yang Q, Borkovich KA. Positive regulation of adenylyl cyclase activity by a galphai homolog in Neurospora crassa. Fungal Genet Biol 1999; 26:48-61. [PMID: 10072319 DOI: 10.1006/fgbi.1998.1101] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GNA-1 and GNA-2 are two G protein alpha subunits from the filamentous fungus Neurospora crassa. Loss of gna-1 leads to multiple phenotypes, while Deltagna-2 strains do not exhibit visible defects. However, Deltagna-1Deltagna-2 mutants are more affected in Deltagna-1 phenotypes. Here we report a biochemical investigation of the roles of GNA-1 and GNA-2 in cAMP metabolism. Assays of Mg2+ ATP-dependent adenylyl cyclase activity (+/-GppNHp) in extracts from submerged cultures indicated that Deltagna-2 strains were normal, whereas Deltagna-1 and Deltagna-1Deltagna-2 strains had only 10-15% the activity of the wild-type control. Levels of the Gbeta protein, GNB-1, were normal in Deltagna-1 strains, excluding altered GNB-1 production as a factor in loss of adenylyl cyclase activity. Steady-state cAMP levels in Deltagna-1 and Deltagna-1Deltagna-2 mutants were reduced relative to wild-type under conditions that result in morphological abnormalities (solid medium), while levels in submerged culture were normal. cAMP phosphodiesterase activities in submerged cultures of Deltagna-1 and/or Deltagna-2 strains were lower than in wild-type; the individual deletions were additive in decreasing activity. These results suggest that in submerged culture, N. crassa, like mammalian systems, possesses compensatory mechanisms that maintain cAMP at relatively constant levels. Furthermore, the finding that Mg2+ATP-dependent adenylyl cyclase activity in wild-type cell extracts could be inhibited using anti-GNA-1 IgG suggests that GNA-1 directly interacts with adenylyl cyclase in N. crassa.
Collapse
Affiliation(s)
- F D Ivey
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, 6431 Fannin Street, Suite 1.765, Houston, Texas 77030, USA
| | | | | |
Collapse
|
65
|
Atkinson IJ, Nargang FE, Cossins EA. Folylpolyglutamate synthesis in Neurospora crassa: primary structure of the folylpolyglutamate synthetase gene and elucidation of the met-6 mutation. PHYTOCHEMISTRY 1998; 49:2221-2232. [PMID: 9887523 DOI: 10.1016/s0031-9422(98)00317-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In Neurospora crassa, the met-6+ gene encodes folylpoly-gamma-glutamate synthetase (FPGS) which catalyzes the formation of polyglutamate forms of folate. Methionine auxotrophy of the Neurospora crassa met-6 mutant is related to a lesion affecting this enzyme. Functional complementation of the mutant strain was achieved by introducing copies of the wild-type met-6+ gene into mutant spheroplasts. The complementing sequences were found to be contained on a 3.5 kb EcoRI-BamHI restriction fragment. The nucleotide sequence of the met-6+ gene was determined and an open reading frame of 1587 bp was identified, interrupted by two introns. This open reading frame contained several AUG codons but translation beginning from either of the first two would theoretically produce a protein of appropriate size and with similarity to five other FPGS proteins. Northern blot analyses of met-6+ transcripts revealed a 2.0 kb product. The position of the transcription stop site and an intron were identified by sequencing partial cDNA clones which were truncated at the 5' end. DNA sequence analysis of the met-6 mutant allele revealed a T to C transition which would result in replacement of a highly conserved serine with a proline.
Collapse
Affiliation(s)
- I J Atkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
66
|
Wu J, Saupe SJ, Glass NL. Evidence for balancing selection operating at the het-c heterokaryon incompatibility locus in a group of filamentous fungi. Proc Natl Acad Sci U S A 1998; 95:12398-403. [PMID: 9770498 PMCID: PMC22843 DOI: 10.1073/pnas.95.21.12398] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In filamentous fungi, het loci (for heterokaryon incompatibility) are believed to regulate self/nonself-recognition during vegetative growth. As filamentous fungi grow, hyphal fusion occurs within an individual colony to form a network. Hyphal fusion can occur also between different individuals to form a heterokaryon, in which genetically distinct nuclei occupy a common cytoplasm. However, heterokaryotic cells are viable only if the individuals involved have identical alleles at all het loci. One het locus, het-c, has been characterized at the molecular level in Neurospora crassa and encodes a glycine-rich protein. In an effort to understand the role of this locus in filamentous fungi, we chose to study its evolution by analyzing het-c sequence variability in species within Neurospora and related genera. We determined that the het-c locus was polymorphic in a field population of N. crassa with close to equal frequency of each of the three allelic types. Different species and even genera within the Sordariaceae shared het-c polymorphisms, indicating that these polymorphisms originated in an ancestral species. Finally, an analysis of the het-c specificity region shows a high occurrence of nonsynonymous substitution. The persistence of allelic lineages, the nearly equal allelic distribution within populations, and the high frequency of nonsynonymous substitutions in the het-c specificity region suggest that balancing selection has operated to maintain allelic diversity at het-c. Het-c shares this particular evolutionary characteristic of departing from neutrality with other self/nonself-recognition systems such as major histocompatibility complex loci in mammals and the S (self-incompatibility) locus in angiosperms.
Collapse
Affiliation(s)
- J Wu
- Biotechnology Laboratory and Botany Department, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | |
Collapse
|
67
|
Alex LA, Korch C, Selitrennikoff CP, Simon MI. COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc Natl Acad Sci U S A 1998; 95:7069-73. [PMID: 9618540 PMCID: PMC22741 DOI: 10.1073/pnas.95.12.7069] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/1998] [Indexed: 02/07/2023] Open
Abstract
Two-component histidine kinases recently have been found in eukaryotic organisms including fungi, slime molds, and plants. We describe the identification of a gene, COS1, from the opportunistic pathogen Candida albicans by using a PCR-based screening strategy. The sequence of COS1 indicates that it encodes a homolog of the histidine kinase Nik-1 from the filamentous fungus Neurospora crassa. COS1 is also identical to a gene called CaNIK1 identified in C. albicans by low stringency hybridization using CaSLN1 as a probe [Nagahashi, S., Mio, T., Yamada-Okabe, T., Arisawa, M., Bussey, H. & Yamada-Okabe, H. (1998) Microbiol. 44, 425-432]. We assess the function of COS1/CaNIK1 by constructing a diploid deletion mutant. Mutants lacking both copies of COS1 appear normal when grown as yeast cells; however, they exhibit defective hyphal formation when placed on solid agar media, either in response to nutrient deprivation or serum. In constrast to the Deltanik-1 mutant, the Deltacos1/Deltacos1 mutant does not demonstrate deleterious effects when grown in media of high osmolarity; however both Deltanik-1 and Deltacos1/Deltacos1 mutants show defective hyphal formation. Thus, as predicted for Nik-1, Cos1p may be involved in some aspect of hyphal morphogenesis and may play a role in virulence properties of the organism.
Collapse
Affiliation(s)
- L A Alex
- Division of Biology 147-75, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
68
|
Wang D, Iezzoni A, Adams G. Genetic heterogeneity of leucostoma species in michigan peach orchards. PHYTOPATHOLOGY 1998; 88:376-381. [PMID: 18944914 DOI: 10.1094/phyto.1998.88.5.376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The pathogens causing perennial canker of peach, Leucostoma spp., were characterized in Michigan orchards to identify which species and subgroups (cryptic species) were prevalent on a highly susceptible peach cultivar, Loring, and a less susceptible cultivar, Redhaven. Four hundred and three strains of Leucostoma were isolated from cankers in three southwest Michigan orchards where 'Loring' occurred adjacent to 'Redhaven' in side-by-side plots. Based on colony morphology and small nuclear rDNA size polymorphisms, three cryptic species were detected; 89% of the isolates were identified as L. persoonii phenetic group 1, 10% were L. cincta group 4, and 1% were L. persoonii group 2. Pathogen profiles differed significantly between cankers on small branches of 'Loring' and 'Redhaven', and between cankers on small branches and trunks. Of 1,232 random pairings among isolates of L. persoonii group 1, 95% were vegetatively incompatible. A minimum of 11 and a maximum of 17 maternal lines were identified based upon mitochondrial DNA restriction fragment length polymorphisms among 69 isolates of L. persoonii group 1 from one split-cultivar block of 72 trees. Vegetative compatibility loci were randomly associated with maternal lines. Evidence of clonality was absent in L. persoonii group 1, as no correlation occurred between these two sets of independent genetic markers and no genotype was over-represented. The number of cryptic species, the number of maternal lines, and the frequency of incompatibility within maternal lines indicate that considerable genetic variation exists within the Leucostoma populations in Michigan peach orchards, and that sexual recombination is common.
Collapse
|
69
|
Bailey LA, Ebbole DJ. The fluffy gene of Neurospora crassa encodes a Gal4p-type C6 zinc cluster protein required for conidial development. Genetics 1998; 148:1813-20. [PMID: 9560395 PMCID: PMC1460068 DOI: 10.1093/genetics/148.4.1813] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurospora crassa fluffy (fl) mutants are unable to produce macroconidia. We cloned the fl gene to determine its role in regulating conidiation. A cosmid clone containing fl was identified by complementation. The sequence of fl revealed that it encodes a Gal4p-type C6 zinc cluster protein with greatest similarity to the N. crassa NIT4 protein that regulates genes required for nitrate utilization. Analysis of several fl mutant alleles demonstrated that null mutants are blocked in the budding phase of development required to produce conidiophores. fl mRNA is transiently induced just prior to the developmental commitment to budding growth. This timing of fl expression is consistent with a role for FL protein in activation of the previously characterized conidiation-specific (con) genes, con-6 and con-10. These data suggest that FL acts as a developmentally regulated transcription factor required for conidiophore morphogenesis.
Collapse
Affiliation(s)
- L A Bailey
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, USA
| | | |
Collapse
|
70
|
Lauter FR, Marchfelder U, Russo VE, Yamashiro CT, Yatzkan E, Yarden O. Photoregulation of cot-1, a kinase-encoding gene involved in hyphal growth in Neurospora crassa. Fungal Genet Biol 1998; 23:300-10. [PMID: 9680960 DOI: 10.1006/fgbi.1998.1038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blue light plays a key role as an environmental signal in the regulation of growth and development of fungi and plants. Here we demonstrate that in Neurospora crassa hyphae branch more frequently in cultures grown in light. Previous studies had identified cot-1 as a gene that controls apical hyphal cell elongation. In the cot-1 mutant, cessation of elongation is accompanied by hyperbranching. Here we demonstrate that the cot-1 gene encodes two transcript species of about 2100 nt (cot-1 (s)) and about 2400 nt (cot-1 (l)) in length and that the ratio of both transcript species abundance is photoregulated. The origin of the difference between cot-1 (l) and cot-1 (s) was localized to the 5' end of the cot-1 transcripts, suggesting that two COT1 isoforms with different activities may be formed. Both light effects, on branching and on cot-1 expression, were dependent on functional wc-1 and wc-2 gene products. In addition to light, L-sorbose comprises another environmental cue that controls hyphal branching in N. crassa. In the presence of L-sorbose, photoregulation of cot-1 was blocked, suggesting the involvement of alternative and potentially interdependent signaling pathways for the regulation of hyphal elongation/branching.
Collapse
Affiliation(s)
- F R Lauter
- BioInside GmbH, Teltow bei Berlin, Germany
| | | | | | | | | | | |
Collapse
|
71
|
Lee K, Ebbole DJ. Analysis of two transcription activation elements in the promoter of the developmentally regulated con-10 gene of Neurospora crassa. Fungal Genet Biol 1998; 23:259-68. [PMID: 9680956 DOI: 10.1006/fgbi.1998.1043] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The con-10 gene of Neurospora crassa is activated during conidiation. CRS-B (conidiation response sequence-B) and CGE (con-10 general enhancer) elements have been proposed to function as sites of transcriptional activation and as possible elements that confer developmental regulation to con-10. In a specific analysis of the roles of these elements we found that two CRS-B elements are necessary for full activation of con-10 during macroconidiation, whereas two CGE elements are functionally redundant, such that a single CGE is sufficient for maximal expression. However, CRS-B and CGE elements are not sufficient for developmental activation of a reporter gene. The CRS-B element was further dissected and one of the CRS-B elements appears to function in repression as well as activation. con-10 is also highly expressed during microconidiation, a different form of asexual sporulation, but we show here that CRS-B elements do not play a significant role in con-10 expression during microconidiation. Both CRS-B elements contribute to basal con-10 expression during mycelial growth. con-10 is also regulated by light, and CRS-B and CGE elements may play minor roles in controlling con-10 expression in response to light.
Collapse
Affiliation(s)
- K Lee
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, USA
| | | |
Collapse
|
72
|
Shen WC, Wieser J, Adams TH, Ebbole DJ. The Neurospora rca-1 gene complements an Aspergillus flbD sporulation mutant but has no identifiable role in Neurospora sporulation. Genetics 1998; 148:1031-41. [PMID: 9539422 PMCID: PMC1460021 DOI: 10.1093/genetics/148.3.1031] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Aspergillus nidulans flbD gene encodes a protein with a Myb-like DNA-binding domain that is proposed to act in concert with other developmental regulators to control initiation of conidiophore development. We have identified a Neurospora crassa gene called rca-1 (regulator of conidiation in Aspergillus) based on its sequence similarity to flbD. We found that N. crassa rca-1 can complement the conidiation defect of an A. nidulans flbD mutant and that induced expression of rca-1 caused conidiation in submerged A. nidulans cultures just as was previously observed for overexpression of flbD. Thus, the N. crassa gene appears to be a functional homologue of A. nidulans flbD and this is the first demonstration of functional complementation of an A. nidulans sporulation defect using a gene from an evolutionarily distant fungus. However, deletion of the rca-1 gene in N. crassa had no major effect on growth rate, macroconidiation, microconidiation, or ascospore formation. The only phenotype displayed by the rca-1 mutant was straight or counterclockwise hyphal growth rather than the clockwise spiral growth observed for wild type. Thus, if rca-1 is involved in N. crassa development, its role is subtle or redundant.
Collapse
Affiliation(s)
- W C Shen
- Program for the Biology of Filamentous Fungi, Texas A&M University, College Station 77843-2132, USA
| | | | | | | |
Collapse
|
73
|
Häfker T, Techel D, Steier G, Rensing L. Differential expression of glucose-regulated (grp78) and heat-shock-inducible (hsp70) genes during asexual development of Neurospora crassa. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 1):37-43. [PMID: 9467899 DOI: 10.1099/00221287-144-1-37] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The expression of a glucose-regulated gene (grp78) changes significantly during the vegetative life cycle of Neurospora crassa: the amounts of grp78 mRNA are low in dormant conidia, increase during germination and exponential growth, decline in young aerial hyphae and reach a maximum in late (15-18 h) aerial hyphae. Heat shock (30 min at 45 degrees C) elevated the mRNA level of this gene especially in early aerial hyphae, whereas no increase above the high constitutive amount was found after heat treatment of late aerial hyphae. The expression of the inducible hsp70 gene after heat shock also varied with the state of development and showed the highest inducibility in late aerial hyphae. Surface mycelium, from which aerial hyphae emerge, showed a similar increase in the amounts of both mRNA species. A developmental mutant (acon-2), which is defective in minor constriction budding of aerial hyphae, showed lower levels of con-2 mRNA as well as of grp78 and hsp70 mRNA (after heat shock) in late aerial hyphae. The acon-2 mutant did not form conidia at this stage. It is concluded that the high constitutive and inducible expression of stress genes in late aerial hyphae is due to a developmental activation of their transcription or, alternatively, to a lower degradation rate of their mRNA during this stage.
Collapse
Affiliation(s)
- Thomas Häfker
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Dieter Techel
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Gaby Steier
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Ludger Rensing
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| |
Collapse
|
74
|
Abstract
The fungus Neurospora crassa has been shown to be a paradigm for photobiological, biochemical, and genetic studies of blue light perception and signal transduction. Several different developmental and morphological processes of Neurospora are regulated by blue light and can be divided into early and late blue light responses. The characterization of two central regulator proteins of blue light signal transduction in Neurospora crassa, WC1 and WC2, and the isolation of light-regulated genes, indicate transcriptional control as a central step in blue light signalling.
Collapse
Affiliation(s)
- H Linden
- Dipartimento di Biopatologia Umana, Sezione Biologia Cellulare, Università di Roma "La Sapienza,", Viale Regina Elena, 324, Roma, 00161, Italy
| | | | | |
Collapse
|
75
|
Perkins DD, Margolin BS, Selker EU, Haedo SD. Occurrence of repeat induced point mutation in long segmental duplications of Neurospora. Genetics 1997; 147:125-36. [PMID: 9286673 PMCID: PMC1208096 DOI: 10.1093/genetics/147.1.125] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies of repeat induced point mutation (RIP) have typically involved gene-size duplications resulting from insertion of transforming DNA at ectopic chromosomal positions. To ascertain whether genes in larger duplications are subject to RIP, progeny were examined from crosses heterozygous for long segmental duplications obtained using insertional or quasiterminal translocations. Of 17 distinct mutations from crossing 11 different duplications, 13 mapped within the segment that was duplicated in the parent, one was closely linked, and three were unlinked. Half of the mutations in duplicated segments were at previously unknown loci. The mutations were recessive and were expressed both in haploid and in duplication progeny from Duplication x Normal, suggesting that both copies of the wild-type gene had undergone RIP. Seven transition mutations characteristic of RIP were found in 395 base pairs (bp) examined in one ro-11 allele from these crosses and three were found in approximately 750 bp of another. A single chain-terminating C to T mutation was found in 800 bp of arg-6. RIP is thus responsible. These results are consistent with the idea that the impaired fertility that is characteristic of segmental duplications is due to inactivation by RIP of genes needed for progression through the sexual cycle.
Collapse
Affiliation(s)
- D D Perkins
- Department of Biological Sciences, Stanford University, California 94305-5020, USA.
| | | | | | | |
Collapse
|
76
|
Bowman EJ, O'Neill FJ, Bowman BJ. Mutations of pma-1, the gene encoding the plasma membrane H+-ATPase of Neurospora crassa, suppress inhibition of growth by concanamycin A, a specific inhibitor of vacuolar ATPases. J Biol Chem 1997; 272:14776-86. [PMID: 9169444 DOI: 10.1074/jbc.272.23.14776] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Concanamycin A (CCA), a specific inhibitor of vacuolar ATPases, inhibited growth of Neurospora crassa in medium adjusted to pH 7 or above. Mutant strains were selected for growth on medium containing 1.0 microM CCA. Sixty-four (of 66) mutations mapped in the region of the pma1 locus, which encodes the plasma membrane H+-ATPase. Analysis of V-ATPase activity in isolated vacuolar membranes from the mutant strains showed wild-type activity and sensitivity to CCA. In contrast, plasma membrane H+-ATPase activity in isolated plasma membranes from the mutants was reduced as compared with wild-type, and in four strains the activity showed increased resistance to vanadate. The most interesting change in the plasma membrane H+-ATPase was in kinetic behavior. The wild-type enzyme showed sigmoid dependence on MgATP concentration with a Hill number of 2.0, while the seven mutants tested exhibited hyperbolic kinetics with a Hill number of 1.0. One interpretation of these data was that the enzyme had changed from a functional dimer to a functional monomer. Mutation of the plasma membrane H+-ATPase did not confer resistance by preventing uptake of CCA. In the presence of CCA both wild-type and mutant strains were unable to accumulate arginine, failed to concentrate chloroquine in acidic vesicles, and exhibited gross alterations in hyphal morphology, indicating that the CCA had entered the cells and inactivated the V-ATPase. Instead, we hypothesize that the mutations conferred resistance because the altered plasma membrane H+-ATPase could more efficiently rid the cell of toxic levels of Ca2+ or protons or other ions accumulated in the cytoplasm following inactivation of the V-ATPase by CCA.
Collapse
Affiliation(s)
- E J Bowman
- Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz, California 95064, USA.
| | | | | |
Collapse
|
77
|
Schmidhauser TJ, Liu YZ, Liu H, Zhou S. Genome analysis in Neurospora crassa; cloning of four loci arginine-1 (arg-1), methionine-6 (met-6), unknown-7 (un-7), and ribosome production-1 (rip-1) and associated chromosome walking. Fungal Genet Biol 1997; 21:323-8. [PMID: 9290245 DOI: 10.1006/fgbi.1997.0974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have cloned four Neurospora crassa genes by complementation analysis. Cloned genes include the arginine-1 (arg-1), methionine-6 (met-6), unknown-7 (un-7), and ribosome production-1 (rip-1) loci. Chromosome walks were initiated in ordered cosmid libraries from the cloned loci. A total of about 700 kb of the Neurospora genome is covered in these walks.
Collapse
Affiliation(s)
- T J Schmidhauser
- Department of Biology, University of Southwestern Louisiana, Lafayette 70504-2451, USA
| | | | | | | |
Collapse
|
78
|
Morgan LW, Feldman JF. Isolation and characterization of a temperature-sensitive circadian clock mutant of Neurospora crassa. Genetics 1997; 146:525-30. [PMID: 9178003 PMCID: PMC1207994 DOI: 10.1093/genetics/146.2.525] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A new circadian clock mutant has been isolated in Neurospora crassa. This new mutation, called period-6 (prd-6), has two features novel to known clock mutations. First, the mutation is temperature sensitive. At restrictive temperatures (above 21 degrees) the mutation shortens circadian period length from a wild-type value of 21.5 hr to 18 hr. At permissive temperatures (below 21 degrees) the mutant has a 20.5-hr period length close to that of the wild-type strain. Second, the prd-6 mutation is epistatic to the previously isolated clock mutation period-2 (prd-2). This epistasis is unusual in that the prd-2 prd-6 double mutant strain has an 18-hr period length at both the restrictive and permissive temperatures. That is, the temperature-sensitive aspect of the phenotype of the prd-6 strain is lost in the prd-2 prd-6 double mutant strain. This suggests that the gene products of the prd-2 and prd-6 loci may interact physically and that the presence of a normal prd-2+ protein is required for low temperature to "rescue" the prd-6 mutant phenotype. These results, combined with our recent finding that prd-2 and some alleles of the frq gene show genetic synergy, suggest that it may be possible to establish a more comprehensive model of the Neurospora circadian clock.
Collapse
Affiliation(s)
- L W Morgan
- Department of Biology, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
79
|
Abstract
Neurospora crassa is an organism with a 7-decade contribution to genetic research. in a genome of 42.9 Mb and just over 1000 map units, to date over 800 different genes have been identified by phenotype and/or map location, and 222 genes have been characterized by sequencing. Methods by which analysis of the genome has been carried out are discussed, including linkage, RFLP, and chromosome walking. Characterized centomeres, telomeres, the nucleolar organizer and the dispersed 5S rRNA genes are discussed. Analysis of the protein-encoding genes is undertaken, using new software for the querying of standard sequence databases. Gene analysis includes consensus sequences for transcription and RNA splicing and new insights into codon usage.
Collapse
Affiliation(s)
- A Radford
- Department of Biology, University of Leeds, United Kingdom
| | | |
Collapse
|
80
|
Wan Y, Liu H, Li C, Schmidhauser TJ. Genome analysis on linkage group VI of Neurospora crassa. Fungal Genet Biol 1997; 21:329-36. [PMID: 9290246 DOI: 10.1006/fgbi.1997.0988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two chromosome walks covering 420 and 110 kb on the left arm of linkage group VI (LGVIL) of Neurospora crassa were purscrooued with the goal of cloning carotenogenic loci. Complementation analysis with clones isolated in the 420-kb walk allowed identification of the yellow-1 (ylo-1) gene which is essential for Neurospora carotenogenesis. We have physically located a second gene, unknown-13 (un-13), between the cross-pathway control-1, (cpc-1) and ylo-1 loci. Cloning of a second potential carotenogenic locus, vivid (vvd), from our walks was attempted using screening of Northern blots with radiolabeled DNA fragments from walk clones to identify gene transcripts. The radiolabeled DNA fragments were used to clone complementary DNA isolates representing an additional four genes in the two walks.
Collapse
Affiliation(s)
- Y Wan
- University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
81
|
Nelson MA, Kang S, Braun EL, Crawford ME, Dolan PL, Leonard PM, Mitchell J, Armijo AM, Bean L, Blueyes E, Cushing T, Errett A, Fleharty M, Gorman M, Judson K, Miller R, Ortega J, Pavlova I, Perea J, Todisco S, Trujillo R, Valentine J, Wells A, Werner-Washburne M, Natvig DO. Expressed sequences from conidial, mycelial, and sexual stages of Neurospora crassa. Fungal Genet Biol 1997; 21:348-63. [PMID: 9290248 DOI: 10.1006/fgbi.1997.0986] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the Neurospora Genome Project at the University of New Mexico, expressed sequence tags (ESTs) corresponding to three stages of the life cycle of the filamentous fungus Neurospora crassa are being analyzed. The results of a pilot project to identify expressed genes and determine their patterns of expression are presented. 1,865 partial complementary DNA (cDNA) sequences for 1,409 clones were determined using single-pass sequencing. Contig analysis allowed the identification of 838 unique ESTs and 156 ESTs present in multiple cDNA clones. For about 34% of the sequences, highly or moderately significant matches to sequences (of known and unknown function) in the NCBI database were detected. Approximately 56% of the ESTs showed no similarity to previously identified genes. Among genes with assigned function, about 43.3% were involved in metabolism, 32.9% in protein synthesis and 8.4% in RNA synthesis. Fewer were involved in defense (6%), cell signalling (3.4%), cell structure (3.4%) and cell division (2.6%).
Collapse
Affiliation(s)
- M A Nelson
- Department of Biology, University of New Mexico, Albuquerque 87131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Onai K, Nakashima H. Mutation of the cys-9 gene, which encodes thioredoxin reductase, affects the circadian conidiation rhythm in Neurospora crassa. Genetics 1997; 146:101-10. [PMID: 9136004 PMCID: PMC1207929 DOI: 10.1093/genetics/146.1.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ten cysteine auxotrophs of Neurospora crassa were examined with regard to the period lengths of their circadian conidiation rhythms. One of the these cysteine auxotrophs, cys-9, showed dramatic changes in the circadian conidiation rhythm. At 10 microM methionine, the cys-9 mutant had a period length that was 5 hr shorter than that of the wild-type strain during the first 3 days after transfer to continuous darkness. At this concentration of methionine, the period length was unstable after the fourth day and varied widely from 11 to 31 hr. In contrast, other cysteine auxotrophs did not show such instability of the period length at any of the concentrations of methionine tested. Furthermore, only the cys-9 mutant exhibited partial loss of the capacity for temperature compensation of the period length. With regard to cold-induced phase-shifting of the circadian conidiation rhythm, the cys-9 mutant was more sensitive than the wild-type strain to low temperature. The cys-9+ gene was cloned and was found to encode NADPH-dependent thioredoxin reductase. These results indicate that mutation of the gene for thioredoxin reductase results in abnormal expression of the circadian conidiation rhythm in N. crassa.
Collapse
Affiliation(s)
- K Onai
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | |
Collapse
|
83
|
|
84
|
Li C, Sachs MS, Schmidhauser TJ. Developmental and Photoregulation of ThreeNeurospora crassaCarotenogenic Genes during Conidiation Induced by Desiccation. Fungal Genet Biol 1997. [DOI: 10.1006/fgbi.1996.0948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
85
|
Lauter FR, Yamashiro CT, Yanofsky C. Light stimulation of conidiation in Neurospora crassa: Studies with the wild-type strain and mutants wc-1, wc-2 and acon-2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1997. [DOI: 10.1016/s1011-1344(96)07405-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
86
|
Barra JL, Mautino MR, Rosa AL. A dominant negative effect of eth-1r, a mutant allele of the Neurospora crassa S-adenosylmethionine synthetase-encoding gene conferring resistance to the methionine toxic analogue ethionine. Genetics 1996; 144:1455-62. [PMID: 8978034 PMCID: PMC1207698 DOI: 10.1093/genetics/144.4.1455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
eth-1r, a thermosensitive allele of the Neurospora crassa S-adenosylmethionine (AdoMet) synthetase gene that confers ethionine resistance, has been cloned and sequenced. Replacement of an aspartic amino acid residue (D48-->N48), perfectly conserved in prokaryotic, fungal and higher eukaryotic AdoMet synthetases, was found responsible for both thermosensitivity and ethionine resistance conferred by eth-1r. Gene fusion constructs, designed to overexpress eth-1r in vivo, render transformant cells resistant to ethionine. Dominance of ethionine resistance was further demonstrated in eth-1+/eth-1r partial diploids carrying identical gene doses of both alleles. Heterozygous eth-1+/eth-1r cells have, at the same time, both the thermotolerance conferred by eth-1+ and the ethionine-resistant phenotype conferred by eth-1r. AdoMet levels and AdoMet synthetase activities were dramatically decreased in heterozygous eth-1+/ eth-1r cells. We propose that this negative effect exerted by eth-1r results from the in vivo formation of heteromeric eth-1+/eth-1r AdoMet synthetase molecules.
Collapse
Affiliation(s)
- J L Barra
- Departamento de Química Biológica (CIQUIBIC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | |
Collapse
|
87
|
Yamashiro CT, Ebbole DJ, Lee BU, Brown RE, Bourland C, Madi L, Yanofsky C. Characterization of rco-1 of Neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homolog of Tup1 of Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:6218-28. [PMID: 8887652 PMCID: PMC231625 DOI: 10.1128/mcb.16.11.6218] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The filamentous fungus Neurospora crassa undergoes a well-defined developmental program, conidiation, that culminates in the production of numerous asexual spores, conidia. Several cloned genes, including con-10, are expressed during conidiation but not during mycelial growth. Using a previously described selection strategy, we isolated mutants that express con-10 during mycelial growth. Selection was based on expression of an integrated DNA fragment containing the con-10 promoter-regulatory region followed by the initial segment of the con-10 open reading frame fused in frame with the bacterial hygromycin B phosphotransferase structural gene (con10'-'hph). Resistance to hygromycin results from mutational alterations that allow mycelial expression of the con-10'-'hph gene fusion. A set of drug-resistant mutants were isolated; several of these had abnormal conidiation phenotypes and were trans-acting, i.e., they allowed mycelial expression of the endogenous con-10 gene. Four of these had alterations at a single locus, designated rco-1 (regulation of conidiation). Strains with the rco-1 mutant alleles were aconidial, female sterile, had reduced growth rates, and formed hyphae that coiled in a counterclockwise direction, opposite that of the wild type. The four rco-1 mutants had distinct conidiation morphologies, suggesting that conidiation was blocked at different stages. Wild-type rco-1 was cloned by a novel procedure employing heterokaryon-assisted transformation and ligation-mediated PCR. The predicted RCO1 polypeptide is a homolog of Tup1 of Saccharomyces cerevisiae, a multidomain protein that mediates transcriptional repression of genes concerned with a variety of processes. Like tup1 mutants, null mutants of rco-1 are viable and pleiotropic. A promoter element was identified that could be responsible for RCO1-mediated vegetative repression of con-10 and other conidiation genes.
Collapse
Affiliation(s)
- C T Yamashiro
- Department of Biological Sciences, Stanford University, California 94305-5020, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Bruno KS, Aramayo R, Minke PF, Metzenberg RL, Plamann M. Loss of growth polarity and mislocalization of septa in a Neurospora mutant altered in the regulatory subunit of cAMP-dependent protein kinase. EMBO J 1996; 15:5772-82. [PMID: 8918454 PMCID: PMC452324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In filamentous fungi, growth polarity (i.e. hyphal extension) and formation of septa require polarized deposition of new cell wall material. To explore this process, we analyzed a conditional Neurospora crassa mutant, mcb, which showed a complete loss of growth polarity when incubated at the restrictive temperature. Cloning and DNA sequence analysis of the mcb gene revealed that it encodes a regulatory subunit of cAMP-dependent protein kinase (PKA). Unexpectedly, the mcb mutant still formed septa when grown at the restrictive temperature, indicating that polarized deposition of wall material during septation is a process that is, at least in part, independent of polarized deposition during hyphal tip extension. However, septa formed in the mcb mutant growing at the restrictive temperature are mislocalized. Both polarized growth and septation are actin-dependent processes, and a concentration of actin patches is observed at growing hyphal tips and sites where septa are being formed. In the mcb mutant growing at the restrictive temperature, actin patches are uniformly distributed over the cell cortex; however, actin patches are still concentrated at sites of septation. Our results suggest that the PKA pathway regulates hyphal growth polarity, possibly through organizing actin patches at the cell cortex.
Collapse
Affiliation(s)
- K S Bruno
- Department of Biology, Texas A & M University, College Station 77843-3258, USA
| | | | | | | | | |
Collapse
|
89
|
Smith ML, Yang CJ, Metzenberg RL, Glass NL. Escape from het-6 incompatibility in Neurospora crassa partial diploids involves preferential deletion within the ectopic segment. Genetics 1996; 144:523-31. [PMID: 8889517 PMCID: PMC1207547 DOI: 10.1093/genetics/144.2.523] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Self-incompatible het-6OR/het-6PA partial diploids of Neurospora crassa were selected from a cross involving the translocation strain, T(IIL-->IIIR)AR18, and a normal sequence strain. About 25% of the partial diploids exhibited a marked increase in growth rate after 2 weeks, indicating that "escape" from het-6 incompatibility had occurred. Near isogenic tester strains with different alleles (het-6OR and het-6PA) were constructed and used to determine that 80 of 96 escape strains tested were het-6PA, retaining the het-6 allele found in the normal-sequence LGII position; 16 were het-6OR, retaining the allele in the translocated position. Restriction fragment length polymorphisms in 45 escape strains were examined with probes made from cosmids that spanned the translocated region. Along with electrophoretic analysis of chromosomes from three escape strains, RFLPs showed that escape is associated with deletion of part of one or the other of the duplicated DNA segments. Deletions ranged in size from approximately 70 kbp up to putatively the entire 270-kbp translocated region but always included a 35-kbp region wherein we hypothesize het-6 is located. The deletion spectrum at het-6 thus resembles other cases where mitotic deletions occur such as of tumor suppressor genes and of the hprt gene (coding for hypoxanthine-guanine phosphoribosyl-transferase) in humans.
Collapse
Affiliation(s)
- M L Smith
- Biology Department, Carleton University, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
90
|
Saupe SJ, Kuldau GA, Smith ML, Glass NL. The product of the het-C heterokaryon incompatibility gene of Neurospora crassa has characteristics of a glycine-rich cell wall protein. Genetics 1996; 143:1589-600. [PMID: 8844148 PMCID: PMC1207423 DOI: 10.1093/genetics/143.4.1589] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Filamentous fungi are capable of hyphal fusion, but heterokaryon formation between different isolates is controlled by specific loci termed het loci. Heterokaryotic cells formed between strains of different het genotype are rapidly destroyed or strongly inhibited in their growth. In Neurospora crassa, at least 11 loci, including the mating type locus, affect the capacity to form a heterokaryon between different isolates. In this report, we describe the molecular characterization of the vegetative incompatibility locus, het-C. The het-COR allele was cloned by genetically identifying the het-C locus in a chromosome walk, and the activity of clones containing the het-COR allele was tested in a functional transformation assay. The het-COR allele encodes a 966-amino acid polypeptide with a putative signal peptide, a coiled-coil motif and a C-terminal glycine-rich domain, similar to glycine-rich domains detected in various extracellular and structural cell envelope proteins. Both the coiled-coil and one-third of the glycine-rich carboxyl terminal domains were required for full het-COR activity. Mutants of het-COR were obtained by repeat-induced point mutation (RIP); these mutants were indistinguishable from wild type during vegetative growth and sexual reproduction but displayed dual compatibility with both of two mutually incompatible het-COR and het-cPA strains.
Collapse
Affiliation(s)
- S J Saupe
- Botany Department, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
91
|
Ivey FD, Hodge PN, Turner GE, Borkovich KA. The G alpha i homologue gna-1 controls multiple differentiation pathways in Neurospora crassa. Mol Biol Cell 1996; 7:1283-97. [PMID: 8856670 PMCID: PMC275978 DOI: 10.1091/mbc.7.8.1283] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Heterotrimeric G proteins are components of principal signaling pathways in eukaryotes. In higher organisms, alpha subunits of G proteins have been divided into four families, Gi, Gs, Gq, and G12. We previously identified a G alpha i homologue gna-1 in the filamentous fungus Neurospora crassa. Now we report that deletion of gna-1 leads to multiple phenotypes during the vegetative and sexual cycles in N. crassa. On solid medium, delta gna-1 strains have a slower rate of hyphal apical extension than wild type, a rate that is more pronounced under hyperosmotic conditions or in the presence of a cellophane overlay. delta gna-1 mutants accumulate less mass than wild-type strains, and their mass accumulation is not affected in the same way by exposure to light. delta gna-1 strains are defective in macroconidiation, possessing aerial hyphae that are shorter, contain abnormal swellings, and differentiate adherent macroconidia. During the sexual cycle, delta gna-1 strains are fertile as males. However, the mutants are female-sterile, producing small, aberrant female reproductive structures. After fertilization, delta gna-1 female structures do not enlarge and develop normally, and no sexual spores are produced. Thus, mutation of gna-1 results in sex-specific loss of fertility.
Collapse
Affiliation(s)
- F D Ivey
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School 77030, USA
| | | | | | | |
Collapse
|
92
|
Abstract
The Neurospora crassa Asm-1+ (ascospore maturation 1) gene encodes an abundant nucleus-localized protein required for formation of female structures and for ascospore maturation. Deletion mutants of Asm-1+ are "ascus-dominant," i.e., when crossed to wild type, neither Asm-1+ nor Asm-1 delta spores mature. To explain this behavior, we considered three models: an effect of reduced dosage of the gene product, failure of internuclear communication, and failure of transvection (regulation dependent on pairing of alleles). We found that for proper regulation of subsequent sexual sporulation, Asm-1+ must be in proximity, probably paired, to its allelic counterpart in the zygote: i.e., transvection must occur. Disruption of pairing causes failure of ascospore progeny to mature. Transvection in Neurospora, unlike in Drosophila, occurs immediately before meiosis, and can be demonstrated between wild-type alleles.
Collapse
Affiliation(s)
- R Aramayo
- Department of Biomolecular Chemistry, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
93
|
Akiyama M, Nakashima H. Molecular cloning of the acr-2 gene which controls acriflavine sensitivity in Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:187-92. [PMID: 8679704 DOI: 10.1016/0167-4781(96)00042-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The acr-2 gene of Neurospora crassa was cloned by complementation of the wild-type strain by DNA from an acriflavine-resistant strain, acr-2. The transcript of the acr-2 gene is 2.3 kb long and contains two leader open reading frames (ORFs) that precede the acr-2 coding region and, if translated, they would generate sequences of 23 and 43 amino acid residues, respectively. The predicted ACR-2 protein contains 595 amino acids that include a putative Zn(II)Cys6 binuclear domain that is followed by a rather long serine/threonine-rich region near the amino-terminus. The acr-2 mutation, which confers acriflavine resistance, substitutes the amino acid residue at position 303 of the encoded protein from asparagine to lysine. Progeny that were hypersensitive to acriflavine were obtained by disruption of the acr-2 gene by repeat induced point mutation (RIP). The level of expression of the acr-2 gene is significantly higher in the acr-2 strain than in the wild-type strain. These results indicate that the acr-2 gene controls acriflavine sensitivity in N. crassa.
Collapse
Affiliation(s)
- M Akiyama
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | |
Collapse
|
94
|
Merino ST, Nelson MA, Jacobson DJ, Natvig DO. Pseudohomothallism and evolution of the mating-type chromosome in Neurospora tetrasperma. Genetics 1996; 143:789-99. [PMID: 8725227 PMCID: PMC1207337 DOI: 10.1093/genetics/143.2.789] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ascospores of Neurospora tetrasperma normally contain nuclei of both mating-type idiomorphs (a and A), resulting in self-fertile heterokaryons (a type of sexual reproduction termed pseudohomothallism). Occasional homokaryotic self-sterile strains (either a or A) behave as heterothallics and, in principle, provide N. tetrasperma with a means for facultative outcrossing. This study was conceived as an investigation of the population biology of N. tetrasperma to assess levels of intrastrain heterokaryosis (heterozygosity). The unexpected result was that the mating-type chromosome and autosomes exhibited very different patterns of evolution, apparently because of suppressed recombination between mating-type chromosomes. Analysis of sequences on the mating-type chromosomes of wild-collected self-fertile strains revealed high levels of genetic variability between sibling A and a nuclei. In contrast, sequences on autosomes of sibling A and a nuclei exhibited nearly complete homogeneity. Conservation of distinct haplotype combinations on A and a mating-type chromosomes in strains from diverse locations further suggested an absence of recombination over substantial periods of evolutionary time. The suppression of recombination on the N. tetrasperma mating-type chromosome, expected to ensure a high frequency of self fertility, presents an interesting parallel with, and possible model for studying aspects of, the evolution of mammalian sex chromosomes.
Collapse
Affiliation(s)
- S T Merino
- Department of Biology, University of New Mexico, Albuquerque 87131, USA
| | | | | | | |
Collapse
|
95
|
Bruno KS, Tinsley JH, Minke PF, Plamann M. Genetic interactions among cytoplasmic dynein, dynactin, and nuclear distribution mutants of Neurospora crassa. Proc Natl Acad Sci U S A 1996; 93:4775-80. [PMID: 8643479 PMCID: PMC39355 DOI: 10.1073/pnas.93.10.4775] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cytoplasmic dynein is a multisubunit, microtubule-associated, mechanochemical enzyme that has been identified as a retrograde transporter of various membranous organelles. Dynactin, an additional multisubunit complex, is required for efficient dynein-mediated transport of vesicles in vitro. Recently, we showed that three genes defined by a group of phenotypically identical mutants of the filamentous fungus Neurospora crassa encode proteins that are apparent subunits of either cytoplasmic dynein or dynactin. These mutants, designated ropy (ro), display abnormal hyphal growth and are defective in nuclear distribution. We propose that mutations in other genes encoding dynein/dynactin subunits are likely to result in a ropy phenotype and have devised a genetic screen for the isolation of additional ro mutants. Cytoplasmic dynein/dynactin is the largest and most complex of the cytoplasmic motor proteins, and the genetic system described here is unique in its potentiality for identifying mutations in undefined genes encoding dynein/dynactin subunits or regulators. We used this screen to isolate > 1000 ro mutants, which were found to define 23 complementation groups. Unexpectedly, interallelic complementation was observed with some allele pairs of ro-1 and ro-3, which are predicted to encode the largest subunits of cytoplasmic dynein and dynactin, respectively. The results suggest that the Ro1 and Ro3 polypeptides may consist of multiple, functionally independent domains. In addition, approximately 10% of all newly isolated ro mutantsdisplay unlinked noncomplementation with two or more of the mutants that define the 23 complementation groups. The frequent appearance of ro mutants showing noncomplementation with multiple ro mutants having unlinked mutations suggests that nuclear distribution in filamentous fungi is a process that is easily disrupted by affecting either dosage or activity of cytoplasmic dynein, dynactin, and perhaps other cytoskeletal proteins or regulators.
Collapse
Affiliation(s)
- K S Bruno
- Department of Biology, Texas A&M University, College Station 77843-3258, USA
| | | | | | | |
Collapse
|
96
|
Tinsley JH, Minke PF, Bruno KS, Plamann M. p150Glued, the largest subunit of the dynactin complex, is nonessential in Neurospora but required for nuclear distribution. Mol Biol Cell 1996; 7:731-42. [PMID: 8744947 PMCID: PMC275926 DOI: 10.1091/mbc.7.5.731] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dynactin is a multisubunit complex that is required for cytoplasmic dynein, a minus-end-directed, microtubule-associated motor, to efficiently transport vesicles along microtubules in vitro. p150Glued, the largest subunit of dynactin, has been identified in vertebrates and Drosophila and recently has been shown to interact with cytoplasmic dynein intermediate chains in vitro. The mechanism by which dynactin facilitates cytoplasmic dynein-dependent vesicle transport is unknown. We have devised a genetic screen for cytoplasmic dynein/dynactin mutants in the filamentous fungus Neurospora crassa. In this paper, we report that one of these mutants, ro-3, defines a gene encoding an apparent homologue of p150Glued, and we provide genetic evidence that cytoplasmic dynein and dynactin interact in vivo. The major structural features of vertebrate and Drosophila p150Glued, a microtubule-binding site at the N-terminus and two large alpha-helical coiled-coil regions contained within the distal two-thirds of the polypeptide, are conserved in Ro3. Drosophila p150Glued is essential for viability; however, ro-3 null mutants are viable, indicating that dynactin is not an essential complex in N. crassa. We show that N. crassa cytoplasmic dynein and dynactin mutants have abnormal nuclear distribution but retain the ability to organize cytoplasmic microtubules and actin in anucleate hyphae.
Collapse
Affiliation(s)
- J H Tinsley
- Department of Biology, Texas A&M University, College Station 77843-3258, USA
| | | | | | | |
Collapse
|
97
|
Alex LA, Borkovich KA, Simon MI. Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc Natl Acad Sci U S A 1996; 93:3416-21. [PMID: 8622950 PMCID: PMC39623 DOI: 10.1073/pnas.93.8.3416] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two-component signal transduction systems are most often found in prokaryotic organisms where they are responsible for mediating the cellular responses to many environmental stimuli. These systems are composed of an autophosphorylating histidine kinase and a response regulator. We have found evidence for the existence of two-component histidine kinases in the eukaryotic filamentous fungus Neurospora crassa based on screening with degenerate primers to conserved regions of these signaling proteins. Subsequent cloning and sequencing of one member of this newly discovered group, nik-1+, shows that the predicted protein sequence shares homology with both the kinase and response regulator modules of two-component signaling proteins. In addition, the N-terminal region of the protein has a novel repeating 90-amino acid motif. Deletion of the nik-1+ gene in N. crassa results in an organism that displays aberrant hyphal structure, which is enhanced under conditions of high osmostress. Increased osmotic pressure during growth on solid medium leads to restricted colonial growth, loss of aerial hyphae formation, and no subsequent conidiophore development. This finding may have implications for mechanisms of fungal colonization and pathogenicity.
Collapse
Affiliation(s)
- L A Alex
- Division of Biology, California Institute of Technology, Pasadena, 91125, USA
| | | | | |
Collapse
|
98
|
Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 1996; 15:1650-7. [PMID: 8612589 PMCID: PMC450076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Neurospora crassa blind mutant white collar-1 (wc-1) is pleiotropically defective in all blue light-induced phenomena, establishing a role for the wc-1 gene product in the signal transduction pathway. We report the cloning of the wc-1 gene isolated by chromosome walking and mutant complementation. The elucidation of the wc-1 gene product provides a key piece of the blue light signal transduction puzzle. The wc-1 gene encodes a 125 kDa protein whose encoded motifs include a single class four, zinc finger DNA binding domain and a glutamine-rich putative transcription activation domain. We demonstrate that the wc-1 zinc finger domain, expressed in Escherichia coli, is able to bind specifically to the promoter of a blue light-regulated gene of Neurospora using an in vitro gel retardation assay. Furthermore, we show that wc-1 gene expression is autoregulated and is transcriptionally induced by blue light irradiation.
Collapse
Affiliation(s)
- P Ballario
- Dipartimento di Genetica e Biologia Molecolare, Centro di Studio per gli Acidi Nucleici, University of Rome La Sapienza, Italy
| | | | | | | | | | | |
Collapse
|
99
|
Chen B, Kubelik AR, Mohr S, Breitenberger CA. Cloning and Characterization of the Neurospora crassa cyt-5 Gene. J Biol Chem 1996. [DOI: 10.1074/jbc.271.11.6537] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
100
|
Smith ML, Glass NL. Mapping translocation breakpoints by orthogonal field agarose-gel electrophoresis. Curr Genet 1996; 29:301-5. [PMID: 8595678 DOI: 10.1007/bf02221562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Orthogonal field agarose-gel electrophoresis (OFAGE) of chromosomes from translocation-bearing and normal Neurospora crassa strains was utilized, first, to recover cosmids from a translocated region, and second, to map translocation breakpoints. Surprisingly, the right breakpoints in two independently derived, interstitial translocations, T(II-->III) AR18 and T(II-->VI)P2869, are within about 5.6 kbp of each other suggesting that this region of linkage group (LG) II may be fragile or otherwise subject to chromosome breakage. Mapping translocation breakpoints through OFAGE, or other similar methods, should allow for DNA sequencing across breakpoints that are not associated with mutant phenotypes or that are not within walking distance of cloned markers.
Collapse
Affiliation(s)
- M L Smith
- Department of Botany and Biotechnology Laboratory, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada
| | | |
Collapse
|