51
|
De Middeleer G, Leys N, Sas B, De Saeger S. Fungi and Mycotoxins in Space-A Review. ASTROBIOLOGY 2019; 19:915-926. [PMID: 30973270 DOI: 10.1089/ast.2018.1854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fungi are not only present on Earth but colonize spacecraft and space stations as well. This review provides an extensive overview of the large and diverse group of fungal species that have been found in space, as well as those corresponding detection methods used and the existing and potential future prevention and control strategies. Many of the identified fungal species in space, such as Aspergillus flavus and Alternaria sp., are mycotoxigenic; thus, they are potential mycotoxin producers. This indicates that, although the fungal load in space stations tends to be non-alarming, the effects should not be underestimated, since the effect of the space environment on mycotoxin production should be sufficiently studied as well. However, research focused on mycotoxin production under conditions found on space stations is essentially nonexistent, since these kinds of spaceflight experiments are rare. Consequently, it is recommended that detection and monitoring systems for fungi and mycotoxins in space are at some point prioritized such that investigations into the impact of the space environment on mycotoxin production is addressed.
Collapse
Affiliation(s)
- Gilke De Middeleer
- 1Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Natalie Leys
- 2Microbiology Unit, Interdisciplinary BioSciences Expert Group, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Benedikt Sas
- 3Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- 1Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
52
|
Blachowicz A, Chiang AJ, Elsaesser A, Kalkum M, Ehrenfreund P, Stajich JE, Torok T, Wang CCC, Venkateswaran K. Proteomic and Metabolomic Characteristics of Extremophilic Fungi Under Simulated Mars Conditions. Front Microbiol 2019; 10:1013. [PMID: 31156574 PMCID: PMC6529585 DOI: 10.3389/fmicb.2019.01013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Filamentous fungi have been associated with extreme habitats, including nuclear power plant accident sites and the International Space Station (ISS). Due to their immense adaptation and phenotypic plasticity capacities, fungi may thrive in what seems like uninhabitable niches. This study is the first report of fungal survival after exposure of monolayers of conidia to simulated Mars conditions (SMC). Conidia of several Chernobyl nuclear accident-associated and ISS-isolated strains were tested for UV-C and SMC sensitivity, which resulted in strain-dependent survival. Strains surviving exposure to SMC for 30 min, ISSFT-021-30 and IMV 00236-30, were further characterized for proteomic, and metabolomic changes. Differential expression of proteins involved in ribosome biogenesis, translation, and carbohydrate metabolic processes was observed. No significant metabolome alterations were revealed. Lastly, ISSFT-021-30 conidia re-exposed to UV-C exhibited enhanced UV-C resistance when compared to the conidia of unexposed ISSFT-021.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Abby J Chiang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Tamas Torok
- Department of Ecology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
53
|
Ries LNA, Steenwyk JL, de Castro PA, de Lima PBA, Almeida F, de Assis LJ, Manfiolli AO, Takahashi-Nakaguchi A, Kusuya Y, Hagiwara D, Takahashi H, Wang X, Obar JJ, Rokas A, Goldman GH. Nutritional Heterogeneity Among Aspergillus fumigatus Strains Has Consequences for Virulence in a Strain- and Host-Dependent Manner. Front Microbiol 2019; 10:854. [PMID: 31105662 PMCID: PMC6492530 DOI: 10.3389/fmicb.2019.00854] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/03/2019] [Indexed: 01/09/2023] Open
Abstract
Acquisition and subsequent metabolism of different carbon and nitrogen sources have been shown to play an important role in virulence attributes of the fungal pathogen Aspergillus fumigatus, such as the secretion of host tissue-damaging proteases and fungal cell wall integrity. We examined the relationship between the metabolic processes of carbon catabolite repression (CCR), nitrogen catabolite repression (NCR) and virulence in a variety of A. fumigatus clinical isolates. A considerable amount of heterogeneity with respect to the degree of CCR and NCR was observed and a positive correlation between NCR and virulence in a neutropenic mouse model of pulmonary aspergillosis (PA) was found. Isolate Afs35 was selected for further analysis and compared to the reference strain A1163, with both strains presenting the same degree of virulence in a neutropenic mouse model of PA. Afs35 metabolome analysis in physiological-relevant carbon sources indicated an accumulation of intracellular sugars that also serve as cell wall polysaccharide precursors. Genome analysis showed an accumulation of missense substitutions in the regulator of protease secretion and in genes encoding enzymes required for cell wall sugar metabolism. Based on these results, the virulence of strains Afs35 and A1163 was assessed in a triamcinolone murine model of PA and found to be significantly different, confirming the known importance of using different mouse models to assess strain-specific pathogenicity. These results highlight the importance of nitrogen metabolism for virulence and provide a detailed example of the heterogeneity that exists between A. fumigatus isolates with consequences for virulence in a strain-specific and host-dependent manner.
Collapse
Affiliation(s)
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Fausto Almeida
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Yoko Kusuya
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Xi Wang
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Lebanon, NH, United States
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Lebanon, NH, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
54
|
Checinska Sielaff A, Urbaniak C, Mohan GBM, Stepanov VG, Tran Q, Wood JM, Minich J, McDonald D, Mayer T, Knight R, Karouia F, Fox GE, Venkateswaran K. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. MICROBIOME 2019; 7:50. [PMID: 30955503 PMCID: PMC6452512 DOI: 10.1186/s40168-019-0666-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/14/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The International Space Station (ISS) is a closed system inhabited by microorganisms originating from life support systems, cargo, and crew that are exposed to unique selective pressures such as microgravity. To date, mandatory microbial monitoring and observational studies of spacecraft and space stations have been conducted by traditional culture methods, although it is known that many microbes cannot be cultured with standard techniques. To fully appreciate the true number and diversity of microbes that survive in the ISS, molecular and culture-based methods were used to assess microbial communities on ISS surfaces. Samples were taken at eight pre-defined locations during three flight missions spanning 14 months and analyzed upon return to Earth. RESULTS The cultivable bacterial and fungal population ranged from 104 to 109 CFU/m2 depending on location and consisted of various bacterial (Actinobacteria, Firmicutes, and Proteobacteria) and fungal (Ascomycota and Basidiomycota) phyla. Amplicon sequencing detected more bacterial phyla when compared to the culture-based analyses, but both methods identified similar numbers of fungal phyla. Changes in bacterial and fungal load (by culture and qPCR) were observed over time but not across locations. Bacterial community composition changed over time, but not across locations, while fungal community remained the same between samplings and locations. There were no significant differences in community composition and richness after propidium monoazide sample treatment, suggesting that the analyzed DNA was extracted from intact/viable organisms. Moreover, approximately 46% of intact/viable bacteria and 40% of intact/viable fungi could be cultured. CONCLUSIONS The results reveal a diverse population of bacteria and fungi on ISS environmental surfaces that changed over time but remained similar between locations. The dominant organisms are associated with the human microbiome and may include opportunistic pathogens. This study provides the first comprehensive catalog of both total and intact/viable bacteria and fungi found on surfaces in closed space systems and can be used to help develop safety measures that meet NASA requirements for deep space human habitation. The results of this study can have significant impact on our understanding of other confined built environments on the Earth such as clean rooms used in the pharmaceutical and medical industries.
Collapse
Affiliation(s)
- Aleksandra Checinska Sielaff
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
- Washington State University Extension - Youth and Families Program Unit, Washington State University, Pullman, WA, USA
| | - Camilla Urbaniak
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Ganesh Babu Malli Mohan
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Victor G Stepanov
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Jason M Wood
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Jeremiah Minich
- Marine Biology Research Division, Scripps Institute of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Teresa Mayer
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Fathi Karouia
- NASA Ames Research Center, Space Bioscience Division, Moffett Field, Mountain View, CA, USA
- Research Center, Moffett Field, Mountain View, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA.
| |
Collapse
|
55
|
Raffa N, Keller NP. A call to arms: Mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog 2019; 15:e1007606. [PMID: 30947302 PMCID: PMC6448812 DOI: 10.1371/journal.ppat.1007606] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Nicholas Raffa
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
56
|
Urbaniak C, van Dam P, Zaborin A, Zaborina O, Gilbert JA, Torok T, Wang CCC, Venkateswaran K. Genomic Characterization and Virulence Potential of Two Fusarium oxysporum Isolates Cultured from the International Space Station. mSystems 2019; 4:e00345-18. [PMID: 30944876 PMCID: PMC6426649 DOI: 10.1128/msystems.00345-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 12/31/2022] Open
Abstract
Two isolates of Fusarium oxysporum, ISS-F3 and ISS-F4, were cultured from the dining table on the International Space Station (ISS). Genomic analyses using EF-1α sequences, presence/absence of effector proteins, k-mer comparisons, and single nucleotide polymorphisms indicate that these two strains are genomically different from 65 known sequenced strains. Functional analysis revealed that ISS-F3/F4 had higher relative abundances of polyketide synthase domains than a non-plant-pathogenic soil isolate, used for biocontrol properties (Fo47), and a clinical isolate (FOSC-3a). Putative secondary metabolite analysis indicates that ISS-F3/F4 may produce yet-unreported polyketides and nonribosomal peptides. While genomic analysis showed that these ISS strains are unlikely to be plant pathogens, a virulence assay using an immunocompromised Caenorhabditis elegans model of fusariosis revealed that they were virulent and may represent opportunistic pathogens in animals, including humans. However, its effects on the health of immunocompromised humans warrant further study. IMPORTANCE This is the first study to isolate and characterize F. oxysporum isolates from a built environment, as well as one that has been exposed to space. The characterization and analysis of these two genomes may have important implications for the medical, agricultural, and food industries as well as for the health of the crew who coinhabit the ISS with these strains.
Collapse
Affiliation(s)
- Camilla Urbaniak
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Peter van Dam
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | - Tamas Torok
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Clay C. C. Wang
- University of Southern California, Los Angeles, California, USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
57
|
Abstract
The concept of the species ‘pan-genome’, the union of ‘core’ conserved genes and all ‘accessory’ non-conserved genes across all strains of a species, was first proposed in prokaryotes to account for intraspecific variability. Species pan-genomes have been extensively studied in prokaryotes, but evidence of species pan-genomes has also been demonstrated in eukaryotes such as plants and fungi. Using a previously published methodology based on sequence homology and conserved microsynteny, in addition to bespoke pipelines, we have investigated the pan-genomes of four model fungal species: Saccharomyces cerevisiae, Candida albicans, Cryptococcus neoformans var. grubii and Aspergillus fumigatus. Between 80 and 90 % of gene models per strain in each of these species are core genes that are highly conserved across all strains of that species, many of which are involved in housekeeping and conserved survival processes. In many of these species, the remaining ‘accessory’ gene models are clustered within subterminal regions and may be involved in pathogenesis and antimicrobial resistance. Analysis of the ancestry of species core and accessory genomes suggests that fungal pan-genomes evolve by strain-level innovations such as gene duplication as opposed to wide-scale horizontal gene transfer. Our findings lend further supporting evidence to the existence of species pan-genomes in eukaryote taxa.
Collapse
Affiliation(s)
- Charley G P McCarthy
- 1Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,2Human Health Research Institute, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - David A Fitzpatrick
- 1Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,2Human Health Research Institute, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
58
|
Blachowicz A, Chiang AJ, Romsdahl J, Kalkum M, Wang CCC, Venkateswaran K. Proteomic characterization of Aspergillus fumigatus isolated from air and surfaces of the International Space Station. Fungal Genet Biol 2019; 124:39-46. [PMID: 30611835 DOI: 10.1016/j.fgb.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
The on-going Microbial Observatory Experiments on the International Space Station (ISS) revealed the presence of various microorganisms that may be affected by the distinct environment of the ISS. The low-nutrient environment combined with enhanced irradiation and microgravity may trigger changes in the molecular suite of microorganisms leading to increased virulence and resistance of microbes. Proteomic characterization of two Aspergillus fumigatus strains, ISSFT-021 and IF1SW-F4, isolated from HEPA filter debris and cupola surface of the ISS, respectively, is presented, along with a comparison to well-studied clinical isolates Af293 and CEA10. In-depth analysis highlights variations in the proteome of both ISS-isolated strains when compared to the clinical strains. Proteins that showed increased abundance in ISS isolates were overall involved in stress responses, and carbohydrate and secondary metabolism. Among the most abundant proteins were Pst2 and ArtA involved in oxidative stress response, PdcA and AcuE responsible for ethanol fermentation and glyoxylate cycle, respectively, TpcA, TpcF, and TpcK that are part of trypacidin biosynthetic pathway, and a toxin Asp-hemolysin. This report provides insight into possible molecular adaptation of filamentous fungi to the unique ISS environment.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Abby J Chiang
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jillian Romsdahl
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Markus Kalkum
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
59
|
Rosowski EE, Knox BP, Archambault LS, Huttenlocher A, Keller NP, Wheeler RT, Davis JM. The Zebrafish as a Model Host for Invasive Fungal Infections. J Fungi (Basel) 2018; 4:jof4040136. [PMID: 30551557 PMCID: PMC6308935 DOI: 10.3390/jof4040136] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
The zebrafish has become a widely accepted model host for studies of infectious disease, including fungal infections. The species is genetically tractable, and the larvae are transparent and amenable to prolonged in vivo imaging and small molecule screening. The aim of this review is to provide a thorough introduction into the published studies of fungal infection in the zebrafish and the specific ways in which this model has benefited the field. In doing so, we hope to provide potential new zebrafish researchers with a snapshot of the current toolbox and prior results, while illustrating how the model has been used well and where the unfulfilled potential of this model can be found.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Linda S Archambault
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| | - J Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
60
|
International Space Station conditions alter genomics, proteomics, and metabolomics in Aspergillus nidulans. Appl Microbiol Biotechnol 2018; 103:1363-1377. [PMID: 30539259 DOI: 10.1007/s00253-018-9525-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022]
Abstract
The first global genomic, proteomic, and secondary metabolomic characterization of the filamentous fungus Aspergillus nidulans following growth onboard the International Space Station (ISS) is reported. The investigation included the A. nidulans wild-type and three mutant strains, two of which were genetically engineered to enhance secondary metabolite production. Whole genome sequencing revealed that ISS conditions altered the A. nidulans genome in specific regions. In strain CW12001, which features overexpression of the secondary metabolite global regulator laeA, ISS conditions induced the loss of the laeA stop codon. Differential expression of proteins involved in stress response, carbohydrate metabolic processes, and secondary metabolite biosynthesis was also observed. ISS conditions significantly decreased prenyl xanthone production in the wild-type strain and increased asperthecin production in LO1362 and CW12001, which are deficient in a major DNA repair mechanism. These data provide valuable insights into the adaptation mechanism of A. nidulans to spacecraft environments.
Collapse
|
61
|
Singh NK, Wood JM, Karouia F, Venkateswaran K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. MICROBIOME 2018; 6:204. [PMID: 30424821 PMCID: PMC6234677 DOI: 10.1186/s40168-018-0585-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/24/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. RESULTS The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii, and Aspergillus lentulus. Even though Rhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3. The AMR signatures associated with β-lactam, cationic antimicrobial peptide, and vancomycin were detected. Prominent virulence factors were cobalt-zinc-cadmium resistance and multidrug-resistance efflux pumps. CONCLUSIONS There was an increase in AMR and virulence gene factors detected over the period sampled, and metagenome sequences of human pathogens persisted over time. Comparative analysis of the microbial compositions of ISS with Earth analogs revealed that the ISS environmental surfaces were different in microbial composition. Metagenomics coupled with PMA treatment would help future space missions to estimate problematic risk group microbial pathogens. Cataloging AMR/virulence characteristics, succession, accumulation, and persistence of microorganisms would facilitate the development of suitable countermeasures to reduce their presence in the closed built environment.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| | - Jason M. Wood
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| | - Fathi Karouia
- Space Bioscience Division, NASA Ames Research Center, Moffett Field, CA USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| |
Collapse
|
62
|
Characterization of Aspergillus niger Isolated from the International Space Station. mSystems 2018; 3:mSystems00112-18. [PMID: 30246146 PMCID: PMC6143729 DOI: 10.1128/msystems.00112-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 11/20/2022] Open
Abstract
The initial characterization of the Aspergillus niger isolate JSC-093350089, collected from U.S. segment surfaces of the International Space Station (ISS), is reported, along with a comparison to the extensively studied strain ATCC 1015. Whole-genome sequencing of the ISS isolate enabled its phylogenetic placement within the A. niger/welwitschiae/lacticoffeatus clade and revealed that the genome of JSC-093350089 is within the observed genetic variance of other sequenced A. niger strains. The ISS isolate exhibited an increased rate of growth and pigment distribution compared to a terrestrial strain. Analysis of the isolate's proteome revealed significant differences in the molecular phenotype of JSC-093350089, including increased abundance of proteins involved in the A. niger starvation response, oxidative stress resistance, cell wall modulation, and nutrient acquisition. Together, these data reveal the existence of a distinct strain of A. niger on board the ISS and provide insight into the characteristics of melanized fungal species inhabiting spacecraft environments. IMPORTANCE A thorough understanding of how fungi respond and adapt to the various stimuli encountered during spaceflight presents many economic benefits and is imperative for the health of crew. As A. niger is a predominant ISS isolate frequently detected in built environments, studies of A. niger strains inhabiting closed systems may reveal information fundamental to the success of long-duration space missions. This investigation provides valuable insights into the adaptive mechanisms of fungi in extreme environments as well as countermeasures to eradicate unfavorable microbes. Further, it enhances understanding of host-microbe interactions in closed systems, which can help NASA's Human Research Program maintain a habitat healthy for crew during long-term manned space missions.
Collapse
|
63
|
Zhao S, Gibbons JG. A population genomic characterization of copy number variation in the opportunistic fungal pathogen Aspergillus fumigatus. PLoS One 2018; 13:e0201611. [PMID: 30071059 PMCID: PMC6072042 DOI: 10.1371/journal.pone.0201611] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Aspergillus fumigatus is a potentially deadly opportunistic fungal pathogen. Molecular studies have shaped our understanding of the genes, proteins, and molecules that contribute to A. fumigatus pathogenicity, but few studies have characterized genome-wide patterns of genetic variation at the population level. Of A. fumigatus genomic studies to-date, most focus mainly on single nucleotide polymorphisms and large structural variants, while overlooking the contribution of copy number variation (CNV). CNV is a class of small structural variation defined as loci that vary in their number of copies between individuals due to duplication, gain, or deletion. CNV can influence phenotype, including fungal virulence. In the present study, we characterized the population genomic patterns of CNV in a diverse collection of 71 A. fumigatus isolates using publicly available sequencing data. We used genome-wide single nucleotide polymorphisms to infer the population structure of these isolates and identified three populations consisting of at least 8 isolates. We then computationally predicted genome-wide CNV profiles for each isolate and conducted analyses at the species-, population-, and individual levels. Our results suggest that CNV contributes to genetic variation in A. fumigatus, with ~10% of the genome being CN variable. Our analysis indicates that CNV is non-randomly distributed across the A. fumigatus genome, and is overrepresented in subtelomeric regions. Analysis of gene ontology categories in genes that overlapped CN variants revealed an enrichment of genes related to transposable element and secondary metabolism functions. We further identified 72 loci containing 33 genes that showed divergent copy number profiles between the three A. fumigatus populations. Many of these genes encode proteins that interact with the cell surface or are involved in pathogenicity. Our results suggest that CNV is an important source of genetic variation that could account for some of the phenotypic differences between A. fumigatus populations and isolates.
Collapse
Affiliation(s)
- Shu Zhao
- Biology Department, Clark University, Worcester, Massachusetts, United States of America
| | - John G. Gibbons
- Biology Department, Clark University, Worcester, Massachusetts, United States of America
| |
Collapse
|
64
|
Rosowski EE, Raffa N, Knox BP, Golenberg N, Keller NP, Huttenlocher A. Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathog 2018; 14:e1007229. [PMID: 30071103 PMCID: PMC6091969 DOI: 10.1371/journal.ppat.1007229] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/14/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023] Open
Abstract
In immunocompromised individuals, Aspergillus fumigatus causes invasive fungal disease that is often difficult to treat. Exactly how immune mechanisms control A. fumigatus in immunocompetent individuals remains unclear. Here, we use transparent zebrafish larvae to visualize and quantify neutrophil and macrophage behaviors in response to different A. fumigatus strains. We find that macrophages form dense clusters around spores, establishing a protective niche for fungal survival. Macrophages exert these protective effects by inhibiting fungal germination, thereby inhibiting subsequent neutrophil recruitment and neutrophil-mediated killing. Germination directly drives fungal clearance as faster-growing CEA10-derived strains are killed better in vivo than slower-growing Af293-derived strains. Additionally, a CEA10 pyrG-deficient strain with impaired germination is cleared less effectively by neutrophils. Host inflammatory activation through Myd88 is required for killing of a CEA10-derived strain but not sufficient for killing of an Af293-derived strain, further demonstrating the role of fungal-intrinsic differences in the ability of a host to clear an infection. Altogether, we describe a new role for macrophages in the persistence of A. fumigatus and highlight the ability of different A. fumigatus strains to adopt diverse modes of virulence. Immunocompromised patients are susceptible to invasive fungal infections, including aspergillosis. However, healthy humans inhale spores of the fungus Aspergillus fumigatus from the environment every day without becoming sick, and how the immune system clears this infection is still obscure. Additionally, there are many different strains of A. fumigatus, and whether the pathogenesis of these different strains varies is also largely unknown. To investigate these questions, we infected larval zebrafish with A. fumigatus spores derived from two genetically diverse strains. Larval zebrafish allow for visualization of fungal growth and innate immune cell behavior in live, intact animals. We find that differences in the rate of growth between strains directly affect fungal persistence. In both wild-type and macrophage-deficient zebrafish larvae, a fast-germinating strain is actually cleared better than a slow-germinating strain. This fungal killing is driven primarily by neutrophils while macrophages promote fungal persistence by inhibiting spore germination. Our experiments underline different mechanisms of virulence that pathogens can utilize—rapid growth versus dormancy and persistence—and inform future strategies for fighting fungal infections in susceptible immunocompromised patients.
Collapse
Affiliation(s)
- Emily E. Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Raffa
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin P. Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Netta Golenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
65
|
Huang B, Li DG, Huang Y, Liu CT. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Mil Med Res 2018; 5:18. [PMID: 29807538 PMCID: PMC5971428 DOI: 10.1186/s40779-018-0162-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Spaceflight and ground-based microgravity analog experiments have suggested that microgravity can affect microbial growth and metabolism. Although the effects of microgravity and its analogs on microorganisms have been studied for more than 50 years, plausible conflicting and diverse results have frequently been reported in different experiments, especially regarding microbial growth and secondary metabolism. Until now, only the responses of a few typical microbes to microgravity have been investigated; systematic studies of the genetic and phenotypic responses of these microorganisms to microgravity in space are still insufficient due to technological and logistical hurdles. The use of different test strains and secondary metabolites in these studies appears to have caused diverse and conflicting results. Moreover, subtle changes in the extracellular microenvironments around microbial cells play a key role in the diverse responses of microbial growth and secondary metabolisms. Therefore, "indirect" effects represent a reasonable pathway to explain the occurrence of these phenomena in microorganisms. This review summarizes current knowledge on the changes in microbial growth and secondary metabolism in response to spaceflight and its analogs and discusses the diverse and conflicting results. In addition, recommendations are given for future studies on the effects of microgravity in space on microbial growth and secondary metabolism.
Collapse
Affiliation(s)
- Bing Huang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China
| | - Dian-Geng Li
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chang-Ting Liu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China.
| |
Collapse
|
66
|
|
67
|
Lind AL, Wisecaver JH, Lameiras C, Wiemann P, Palmer JM, Keller NP, Rodrigues F, Goldman GH, Rokas A. Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biol 2017; 15:e2003583. [PMID: 29149178 PMCID: PMC5711037 DOI: 10.1371/journal.pbio.2003583] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/01/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022] Open
Abstract
Filamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns. All organisms produce metabolites, which are small molecules important for growth, reproduction, and other essential functions. Some organisms, including fungi, plants, and bacteria, make specialized forms of metabolites known as “secondary” metabolites that are ecologically important and improve their producers’ chances of survival and reproduction. In fungi, the genes in pathways that synthesize secondary metabolites are typically located next to each other in the genome and organized in contiguous gene clusters. These gene clusters, along with the metabolites they produce, are highly distinct, even between otherwise similar fungi, and it is often difficult to reconstruct how these differences evolved. To understand how secondary metabolic pathways evolve in fungi, we compared secondary metabolic gene clusters in 66 strains of one species of filamentous fungus, the human pathogen Aspergillus fumigatus. We show that these gene clusters vary extensively within this species, and describe the genetic processes that cause these differences. We identify 5 types of variants: single nucleotide changes, gene and gene cluster gain and loss, different gene clusters at the same genomic position, and mobile gene clusters that “jump” around the genome. These results provide a road map to the types and frequencies of genomic changes underlying the extensive diversity of fungal secondary metabolites.
Collapse
Affiliation(s)
- Abigail L. Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jennifer H. Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Catarina Lameiras
- Department of Microbiology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Philipp Wiemann
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jonathan M. Palmer
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B′s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
68
|
Be NA, Avila-Herrera A, Allen JE, Singh N, Checinska Sielaff A, Jaing C, Venkateswaran K. Whole metagenome profiles of particulates collected from the International Space Station. MICROBIOME 2017; 5:81. [PMID: 28716113 PMCID: PMC5514531 DOI: 10.1186/s40168-017-0292-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/27/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND The built environment of the International Space Station (ISS) is a highly specialized space in terms of both physical characteristics and habitation requirements. It is unique with respect to conditions of microgravity, exposure to space radiation, and increased carbon dioxide concentrations. Additionally, astronauts inhabit a large proportion of this environment. The microbial composition of ISS particulates has been reported; however, its functional genomics, which are pertinent due to potential impact of its constituents on human health and operational mission success, are not yet characterized. METHODS This study examined the whole metagenome of ISS microbes at both species- and gene-level resolution. Air filter and dust samples from the ISS were analyzed and compared to samples collected in a terrestrial cleanroom environment. Furthermore, metagenome mining was carried out to characterize dominant, virulent, and novel microorganisms. The whole genome sequences of select cultivable strains isolated from these samples were extracted from the metagenome and compared. RESULTS Species-level composition in the ISS was found to be largely dominated by Corynebacterium ihumii GD7, with overall microbial diversity being lower in the ISS relative to the cleanroom samples. When examining detection of microbial genes relevant to human health such as antimicrobial resistance and virulence genes, it was found that a larger number of relevant gene categories were observed in the ISS relative to the cleanroom. Strain-level cross-sample comparisons were made for Corynebacterium, Bacillus, and Aspergillus showing possible distinctions in the dominant strain between samples. CONCLUSION Species-level analyses demonstrated distinct differences between the ISS and cleanroom samples, indicating that the cleanroom population is not necessarily reflective of space habitation environments. The overall population of viable microorganisms and the functional diversity inherent to this unique closed environment are of critical interest with respect to future space habitation. Observations and studies such as these will be important to evaluating the conditions required for long-term health of human occupants in such environments.
Collapse
Affiliation(s)
- Nicholas A Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Aram Avila-Herrera
- Computation Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jonathan E Allen
- Computation Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nitin Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Aleksandra Checinska Sielaff
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
- Present Address: Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Crystal Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA.
| |
Collapse
|
69
|
Blachowicz A, Mayer T, Bashir M, Pieber TR, De León P, Venkateswaran K. Human presence impacts fungal diversity of inflated lunar/Mars analog habitat. MICROBIOME 2017; 5:62. [PMID: 28693587 PMCID: PMC5504618 DOI: 10.1186/s40168-017-0280-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND An inflatable lunar/Mars analog habitat (ILMAH), simulated closed system isolated by HEPA filtration, mimics International Space Station (ISS) conditions and future human habitation on other planets except for the exchange of air between outdoor and indoor environments. The ILMAH was primarily commissioned to measure physiological, psychological, and immunological characteristics of human inhabiting in isolation, but it was also available for other studies such as examining its microbiological aspects. Characterizing and understanding possible changes and succession of fungal species is of high importance since fungi are not only hazardous to inhabitants but also deteriorate the habitats. Observing the mycobiome changes in the presence of human will enable developing appropriate countermeasures with reference to crew health in a future closed habitat. RESULTS Succession of fungi was characterized utilizing both traditional and state-of-the-art molecular techniques during the 30-day human occupation of the ILMAH. Surface samples were collected at various time points and locations to observe both the total and viable fungal populations of common environmental and opportunistic pathogenic species. To estimate the cultivable fungal population, potato dextrose agar plate counts method was utilized. The internal transcribed spacer region-based iTag Illumina sequencing was employed to measure the community structure and fluctuation of the mycobiome over time in various locations. Treatment of samples with propidium monoazide (PMA; a DNA intercalating dye for selective detection of viable microbial populations) had a significant effect on the microbial diversity compared to non-PMA-treated samples. Statistical analysis confirmed that viable fungal community structure changed (increase in diversity and decrease in fungal burden) over the occupation time. Samples collected at day 20 showed distinct fungal profiles from samples collected at any other time point (before or after). Viable fungal families like Davidiellaceae, Teratosphaeriaceae, Pleosporales, and Pleosporaceae were shown to increase during the occupation time. CONCLUSIONS The results of this study revealed that the overall fungal diversity in the closed habitat changed during human presence; therefore, it is crucial to properly maintain a closed habitat to preserve it from deteriorating and keep it safe for its inhabitants. Differences in community profiles were observed when statistically treated, especially of the mycobiome of samples collected at day 20. On a genus level Epiccocum, Alternaria, Pleosporales, Davidiella, and Cryptococcus showed increased abundance over the occupation time.
Collapse
Affiliation(s)
- A Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - T Mayer
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA
| | - M Bashir
- Division of Endocrinology and Metabolism, Medical University Graz, Graz, Austria
| | - T R Pieber
- Division of Endocrinology and Metabolism, Medical University Graz, Graz, Austria
| | - P De León
- Department of Space Studies, University of North Dakota, Grand Forks, ND, 58202, USA
| | - K Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA.
| |
Collapse
|
70
|
Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017; 35:905-932. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Abstract
Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis.
Collapse
Affiliation(s)
- Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA; NASA Ames Research Center, Flight Systems Implementation Branch, Moffett Field, CA 94035, USA.
| | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|
71
|
Abstract
Aspergillus fumigatus is a ubiquitous environmental mold and the leading cause of diverse human diseases ranging from allergenic bronchopulmonary aspergillosis (ABPA) to invasive pulmonary aspergillosis (IPA). Experimental investigations of the biology and virulence of this opportunistic pathogen have historically used a few type strains; however, it is increasingly observed with this fungus that heterogeneity among isolates potentially confounds the use of these reference isolates. Illustrating this point, Kowalski et al. (mBio 7:e01515-16, 2016, https://doi.org/10.1128/mBio.01515-16) demonstrated that variation in 16 environmental and clinical isolates of A. fumigatus correlated virulence with fitness in low oxygen, whereas Fuller et al. (mBio 7:e01517-16, 2016, https://doi.org/10.1128/mBio.01517-16) showed wide variation in light responses at a physiological and protein functionality level in 15 A. fumigatus isolates. In both studies, two commonly used type strains, Af293 and CEA10, displayed significant differences in physiological responses to abiotic stimuli and virulence in a murine model of IPA.
Collapse
|