51
|
Wu J, Wang X, Xu H, Tian J, Ji H, Zhu J, Guo H, Chen Z. Bioinformatics analysis of the correlation between m6A RNA methylation regulators and the immune infiltration and prognosis of bladder cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1386. [PMID: 36660722 PMCID: PMC9843386 DOI: 10.21037/atm-22-5993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Background To analyze the effect of N6-methyladenosine (m6A) RNA methylation regulators on the immune infiltration and prognosis of bladder cancer (BC). We explored the related signaling pathways and prognosis-related genes to provide candidate targets for the treatment and prognostic evaluation of BC. Methods After downloading BC data from The Cancer Genome Atlas (TCGA) database, the expressions of m6A-related genes were obtained. We then performed correlation and sample cluster analysis of the m6A methylation regulator genes as well as difference comparison and survival analysis for the clustered patients using R software. Gene set enrichment analysis (GSEA) was carried out on cluster-grouped samples. Finally, the prognosis-related genes of BC among the m6A methylation regulators were screened. Results Genomic alterations in the m6A regulators were linked to a poor BC prognosis. HNRNPA2B1, HNRNPC, IGF2BP2, RBM15, YTHDF1, and YTHDF2 were found to be associated with advanced clinical stages of BC. Furthermore, the current study revealed that the levels of the m6A regulators were related to the expression levels and immune infiltration levels of immune regulators [immunosuppressive factors, immunostimulators, and major histocompatibility complex (MHC) molecules] in BC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that in addition to the relevant immune responses, m6A regulators were involved in the poor prognosis of BC via their participation in blood vessels through regulatory RNA binding, telomeric DNA binding, microRNA (miRNA) binding, negative regulation of messenger RNA (mRNA) processing, negative regulation of DNA biosynthesis, branches of morphogenesis, positive regulation of the Notch receptor target gene transcription, etc. Conclusions The expression of m6A RNA methylation regulators is closely linked to immune infiltration and prognosis in BC. Thus, it can be utilized as a potential molecular target for the treatment and prognostic assessment of BC.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Xiaolin Wang
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Haifei Xu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Jiale Tian
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Hao Ji
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Jinfeng Zhu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Haifeng Guo
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Zhigang Chen
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, Nantong, China
| |
Collapse
|
52
|
Yan X, Zhang X, Wu HH, Wu SJ, Tang XY, Liu TZ, Li S. Novel T-cell signature based on cell pair algorithm predicts survival and immunotherapy response for patients with bladder urothelial carcinoma. Front Immunol 2022; 13:994594. [PMID: 36466869 PMCID: PMC9712189 DOI: 10.3389/fimmu.2022.994594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Background T-cell-T-cell interactions play important roles in the regulation of T-cells' cytotoxic function, further impacting the anti-tumor efficacy of immunotherapy. There is a lack of comprehensive studies of T-cell types in bladder urothelial carcinoma (BLCA) and T-cell-related signatures for predicting prognosis and monitoring immunotherapy efficacy. Methods More than 3,400 BLCA patients were collected and used in the present study. The ssGSEA algorithm was applied to calculate the infiltration level of 19 T-cell types. A cell pair algorithm was applied to construct a T-cell-related prognostic index (TCRPI). Survival analysis was performed to measure the survival difference across TCRPI-risk groups. Spearman's correlation analysis was used for relevance assessment. The Wilcox test was used to measure the expression level difference. Results Nineteen T-cell types were collected; 171 T-cell pairs (TCPs) were established, of which 26 were picked out by the least absolute shrinkage and selection operator (LASSO) analysis. Based on these TCPs, the TCRPI was constructed and validated to play crucial roles in survival stratification and the dynamic monitoring of immunotherapy effects. We also explored several candidate drugs targeting TCRPI. A composite TCRPI and clinical prognostic index (CTCPI) was then constructed, which achieved a more accurate estimation of BLCA's survival and was therefore a better choice for prognosis prediction in BLCA. Conclusions All in all, we constructed and validated TCRPI based on cell pair algorithms in this study, which might put forward some new insights to increase the survival estimation and clinical response to immune therapy for individual BLCA patients and contribute to the personalized precision immunotherapy strategy of BLCA.
Collapse
Affiliation(s)
- Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hua-Hui Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shao-Jie Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Yu Tang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tong-Zu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
53
|
Wu S, Ballah AK, Che W, Wang X. M7G-related LncRNAs: A comprehensive analysis of the prognosis and immunity in glioma. Front Genet 2022; 13:961278. [DOI: 10.3389/fgene.2022.961278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Today, numerous international researchers have demonstrated that N7-methylguanosine (m7G) related long non-coding RNAs (m7G-related lncRNAs) are closely linked to the happenings and developments of various human beings’ cancers. However, the connection between m7G-related lncRNAs and glioma prognosis has not been investigated. We did this study to look for new potential biomarkers and construct an m7G-related lncRNA prognostic signature for glioma. We identified those lncRNAs associated with DEGs from glioma tissue sequences as m7G-related lncRNAs. First, we used Pearson’s correlation analysis to identify 28 DEGs by glioma and normal brain tissue gene sequences and predicated 657 m7G-related lncRNAs. Then, eight lncRNAs associated with prognosis were obtained and used to construct the m7G risk score model by lasso and Cox regression analysis methods. Furthermore, we used Kaplan-Meier analysis, time-dependent ROC, principal component analysis, clinical variables, independent prognostic analysis, nomograms, calibration curves, and expression levels of lncRNAs to determine the model’s accuracy. Importantly, we validated the model with external and internal validation methods and found it has strong predictive power. Finally, we performed functional enrichment analysis (GSEA, aaGSEA enrichment analyses) and analyzed immune checkpoints, associated pathways, and drug sensitivity based on predictors. In conclusion, we successfully constructed the formula of m7G-related lncRNAs with powerful predictive functions. Our study provides instructional value for analyzing glioma pathogenesis and offers potential research targets for glioma treatment and scientific research.
Collapse
|
54
|
Wang J, Xie Y, Qin D, Zhong S, Hu X. CXCL12, a potential modulator of tumor immune microenvironment (TIME) of bladder cancer: From a comprehensive analysis of TCGA database. Front Oncol 2022; 12:1031706. [PMID: 36419891 PMCID: PMC9676933 DOI: 10.3389/fonc.2022.1031706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Tumor immune microenvironment (TIME) plays a significant role in the initiation and progression of bladder urothelial carcinoma (BLCA). However, there are only a few researches regarding the association between immune-related genes and tumor-infiltrating immune cells (TICs) in TIME of BLCA. METHODS We calculated the proportion of immune/stromal component and TICs of 414 BLCA samples and 19 normal samples downloaded from TCGA database with the help of ESTIMATE and CIBERSORT algorithms. Differentially expressed genes (DEGs) were obtained from the comparison between Stromal and Immune Score and further analyzed by GO and KEGG enrichment analysis, as well as PPI network and COX regression analysis. CXCL12 was overlapping among the above analyses. Single gene analysis of CXCL12 was carried out through difference analysis, paired analysis and GSEA. The association between CXCL12 and TICs was assessed by difference analysis and correlation analysis. RESULTS Immune and stromal component in TIME of BLCA were associated with patients' clinicopathological characteristics. 284 DEGs were primarily enriched in immune-associated activities, among which CXCL12 was the most significant gene sharing the leading nodes in PPI network and being closely related with patients' survival. Single gene analysis and immunohistochemistry revealed that CXCL12 was down-regulated in BLCA samples and significantly related with the clinicopathological characteristics of patients. Further analysis suggested that CXCL12 was involved in the immune-associated activities probably through its close cross-talk with TICs. CONCLUSIONS CXCL12 down-regulation could be a potential biomarker to predict the unbalanced immune status of TIME of BLCA, which might provide an extra insight for the immunotherapy of BLCA.
Collapse
Affiliation(s)
- Jinyan Wang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizhao Xie
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongmei Qin
- Department of Pathology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xichun Hu
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
55
|
Post-Intervention Plasma IL-10 Level Predicts Early Tumor Response in Hepatocellular Carcinoma Treated with Transarterial Chemoembolization. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-129104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Cytokines play an important role in tumor progression, but studies have shown mixed results regarding the role of cytokines in predicting the early response to transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC). Objectives: This study aimed to explore the correlation between plasma levels of cytokines and early tumor response in HCC patients undergoing TACE. Methods: Thirty HCC patients enrolled in this study from the department of liver disease of a general hospital from June 2020 to January 2021. Plasma samples were sampled at baseline and 7 days after TACE for cytokine detection by cytometric bead array (CBA). At 4 - 6 weeks after TACE, the objective response of HCC patients was confirmed according to response evaluation criteria in solid tumors (RECIST). Potential factors such as various cytokines and some clinical parameters were analyzed by univariate and multivariate analysis. The predictive effects of different factors in HCC patients undergoing TACE were analyzed by the receiver operating characteristic (ROC) curve. Results: Plasma levels of post-TACE interleukin-10 (IL-10) were statistically significantly higher than baseline IL-10 levels. The level of plasma IL-10 after TACE was an independent risk factor for early tumor response. The patients with low plasma IL-10 levels after TACE had a favorable prognosis. Receiver operating characteristic curve analysis showed that post-TACE IL-10 had a high predictive value (area under the curve = 0.769, 95% confidence interval (CI): 0.598 - 0.939). A high level of plasma IL-10 after TACE was correlated with alpha-fetoprotein (AFP) level (P = 0.037) and post-TACE alanine aminotransferase (ALT) (r = 0.368, P = 0.045). Post-TACE plasma IL-10 did not correlate with age or tumor metastasis. Conclusions: Our findings demonstrated that post-intervention plasma IL-10 levels could predict short-term outcomes independently after TACE. These findings were helpful in identifying the patients who might benefit from TACE.
Collapse
|
56
|
Yang F, Lin L, Li X, Wen R, Zhang X. Silencing of COL3A1 represses proliferation, migration, invasion, and immune escape of triple negative breast cancer cells via down-regulating PD-L1 expression. Cell Biol Int 2022; 46:1959-1969. [PMID: 35930601 DOI: 10.1002/cbin.11875] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022]
Abstract
This study is designed to illuminate the specific role and underlying mechanism of collagen type III alpha 1 chain (COL3A1) in triple negative breast cancer (TNBC). Quantitative real-time polymerase chain reaction was applied to examine mRNA expression of COL3A1. Western blot analysis was employed to determine protein levels of COL3A1, programmed death ligand 1 (PD-L1), Bcl-2, and cleaved caspase-3. Immunohistochemistry staining was utilized for assessing protein expression of Ki67 and COL3A1 in tissues. The proliferous capacity of cells was assessed through CCK-8 assay and 5-Ethynyl-2'-deoxyuridine assay. Cell apoptosis and the percentage of CD8+ T cells were measured using flow cytometry. Migration and invasion of TNBC cells were examined via transwell assay. Lactate dehydrogenase (LDH) release was measured via a LDH assay kit. For establishing a xenograft tumor model, MDA-MB-231 cells were injected into the flank of mice through subcutaneous injection. COL3A1 expression was raised in TNBC tissues and cells, and it was inversely associated with overall survival data of TNBC patients. COL3A1 downregulation repressed proliferation, invasion, migration, and immune escape of TNBC cells along with tumor growth of xenograft mice. In TNBC cells and tumor tissues of mice, protein expression of PD-L1 was reduced by COL3A1 knockdown. COL3A1 knockdown-mediated inhibitory effects on cell proliferation, migration, invasion, and immune escape were reversed by PD-L1 upregulation in vitro. Silencing of COL3A1 exerted an antitumor role in TNBC, implying its potential as a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Fan Yang
- Department of Breast Surgery, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Ling Lin
- Institute of Basic Medical Sciences, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Xiaohua Li
- Department of Breast Surgery, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Ronglan Wen
- Department of Breast Surgery, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Xin Zhang
- Department of Breast Surgery, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| |
Collapse
|
57
|
Whole Transcriptome Sequencing Reveals Cancer-Related, Prognostically Significant Transcripts and Tumor-Infiltrating Immunocytes in Mantle Cell Lymphoma. Cells 2022; 11:cells11213394. [PMID: 36359790 PMCID: PMC9654955 DOI: 10.3390/cells11213394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma (NHL) subtype characterized by overexpression of CCND1 and SOX11 genes. It is generally associated with clinically poor outcomes despite recent improvements in therapeutic approaches. The genes associated with the development and prognosis of MCL are still largely unknown. Through whole transcriptome sequencing (WTS), we identified mRNAs, lncRNAs, and alternative transcripts differentially expressed in MCL cases compared with reactive tonsil B-cell subsets. CCND1, VCAM1, and VWF mRNAs, as well as MIR100HG and ROR1-AS1 lncRNAs, were among the top 10 most significantly overexpressed, oncogenesis-related transcripts. Survival analyses with each of the top upregulated transcripts showed that MCL cases with high expression of VWF mRNA and low expression of FTX lncRNA were associated with poor overall survival. Similarly, high expression of MSTRG.153013.3, an overexpressed alternative transcript, was associated with shortened MCL survival. Known tumor suppressor candidates (e.g., PI3KIP1, UBXN) were significantly downregulated in MCL cases. Top differentially expressed protein-coding genes were enriched in signaling pathways related to invasion and metastasis. Survival analyses based on the abundance of tumor-infiltrating immunocytes estimated with CIBERSORTx showed that high ratios of CD8+ T-cells or resting NK cells and low ratios of eosinophils are associated with poor overall survival in diagnostic MCL cases. Integrative analysis of tumor-infiltrating CD8+ T-cell abundance and overexpressed oncogene candidates showed that MCL cases with high ratio CD8+ T-cells and low expression of FTX or PCA3 can potentially predict high-risk MCL patients. WTS results were cross-validated with qRT-PCR of selected transcripts as well as linear correlation analyses. In conclusion, expression levels of oncogenesis-associated transcripts and/or the ratios of microenvironmental immunocytes in MCL tumors may be used to improve prognostication, thereby leading to better patient management and outcomes.
Collapse
|
58
|
Zhong Z, Xu M, Tan J. Identification of an Oxidative Stress-Related LncRNA Signature for Predicting Prognosis and Chemotherapy in Patients With Hepatocellular Carcinoma. Pathol Oncol Res 2022; 28:1610670. [PMID: 36277962 PMCID: PMC9579291 DOI: 10.3389/pore.2022.1610670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 12/16/2022]
Abstract
Background: Oxidative stress plays a critical role in oncogenesis and tumor progression. However, the prognostic role of oxidative stress-related lncRNA in hepatocellular carcinomas (HCC) has not been fully explored. Methods: We used the gene expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify oxidative stress-related differentially expressed lncRNAs (DElncRNAs) by pearson correlation analysis. A four-oxidative stress-related DElncRNA signature was constructed by LASSO regression and Cox regression analyses. The predictive signature was further validated by Kaplan-Meier (K-M) survival analysis, receiver operating characteristic (ROC) curves, nomogram and calibration plots, and principal component analysis (PCA). Single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between the signature and immune status. Finally, the correlation between the signature and chemotherapeutic response of HCC patients was analyzed. Results: In our study, the four-DElncRNA signature was not only proved to be a robust independent prognostic factor for overall survival (OS) prediction, but also played a crucial role in the regulation of progression and chemotherapeutic response of HCC. ssGSEA showed that the signature was correlated with the infiltration level of immune cells. HCC patients in high-risk group were more sensitive to the conventional chemotherapeutic drugs including Sorafenib, lapatinib, Nilotinib, Gefitinib, Erlotinib and Dasatinib, which pave the way for targeting DElncRNA-associated treatments for HCC patients. Conclusion: Our study has originated a prognostic signature for HCC based on oxidative stress-related DElncRNAs, deepened the understanding of the biological role of four key DElncRNAs in HCC and laid a theoretical foundation for the choice of chemotherapy.
Collapse
Affiliation(s)
- Zixuan Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
- Department of Experimental Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| |
Collapse
|
59
|
Gui Z, Ying X, Liu C. NXPH4 Used as a New Prognostic and Immunotherapeutic Marker for Muscle-Invasive Bladder Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4271409. [PMID: 36245981 PMCID: PMC9553512 DOI: 10.1155/2022/4271409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Background One of the most common malignant tumors of the urinary system is muscle-invasive bladder cancer (MIBC). With the increased use of immunotherapy, its importance in the field of cancer is becoming abundantly evident. This study classifies MIBC according to GSVA score from the perspective of the GSEA immune gene set. Methods This study integrated the sequencing and clinical data of MIBC patients in TCGA and GEO databases, then scored the data using the GSVA algorithm, the CNMF algorithm was implemented to divide the subtypes of GEO and TCGA datasets, respectively, and finally screened and determined the key pathways in combination with clinical data. Simultaneously, LASSO Cox regression model was constructed based on key pathway genes to assess the model's predictive ability (ROC) and describe the immune landscape differences between high- and low-risk groups; key genes were further analyzed and verified in patient tissues. Results 404 TCGA and 297 GEO datasets were divided into C1-3 groups (TCGA-C1:120/C2:152/C3:132; GEO- C1:112/C2:101/C3:84), of which TCGA-C2 (n = 152) subtype and GEO-C1 (n = 112) subtype had the worst prognosis. LASSO Cox regression model with ROC (train set = 0.718, test set = 0.667) could be constructed. When combined with the Cancer Immunome Atlas database, it was found that patients with high-risk scores were more sensitive to PD-1 inhibitor and PD-1 inhibitor combined with CTLA-4. NXPH4, as a key gene, plays a role in MIBC with tissue validation results show that nxph4 is highly expressed in tumor. Conclusion The immune gene score of MIBC data in TCGA and GEO databases was successfully evaluated using GSVA in this research. The lasso Cox expression model was successfully constructed by screening immune genes, the high-risk group had a worse prognosis and higher sensitivity to immunotherapy, PD-1 inhibitors or PD-1 combined with CTLA-4 inhibitors can be preferentially used in high-risk patients who are sensitive to immunotherapy, and NXPH4 may be a molecular target to adjust the effect of immunotherapy.
Collapse
Affiliation(s)
- Zhiming Gui
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Xiaoling Ying
- Laboratory of Translational Medicine, The First Affiliated Hospital of Sun Yat sen University, 510000, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
60
|
Hou J, Wen X, Lu Z, Wu G, Yang G, Tang C, Qu G, Xu Y. A novel T-cell proliferation-associated regulator signature pre-operatively predicted the prognostic of bladder cancer. Front Immunol 2022; 13:970949. [PMID: 36211359 PMCID: PMC9539738 DOI: 10.3389/fimmu.2022.970949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/09/2022] [Indexed: 12/09/2022] Open
Abstract
Background Bladder cancer (BCa) is a remarkably malignant and heterogeneous neoplastic disease, and its prognosis prediction is still challenging. Even with the mounting researches on the mechanisms of tumor immunotherapy, the prognostic value of T-cell proliferation regulators in bladder cancer remains elusive. Methods Herein, we collected mRNA expression profiles and relevant clinical information of bladder cancer sufferers from a publicly available data base. Then, the LASSO Cox regression model was utilized to establish a multi-gene signature for the TCGA cohort to predict the prognosis and staging of bladder cancer. Eventually, the predictive power of the model was validated by randomized grouping. Results The outcomes revealed that most genes related to T-cell proliferation in the TCGA cohort exhibited different expressions between BCa cells and neighboring healthy tissues. Univariable Cox regressive analyses showed that four DEGs were related to OS in bladder cancer patients (p<0.05). We constructed a histogram containing four clinical characteristics and separated sufferers into high- and low-risk groups. High-risk sufferers had remarkably lower OS compared with low-risk sufferers (P<0.001). Eventually, the predictive power of the signature was verified by ROC curve analyses, and similar results were obtained in the validation cohort. Functional analyses were also completed, which showed the enrichment of immune-related pathways and different immune status in the two groups. Moreover, by single-cell sequencing, our team verified that CXCL12, a T-lymphocyte proliferation regulator, influenced bladder oncogenesis and progression by depleting T-lymphocyte proliferation in the tumor microenvironment, thus promoting tumor immune evasion. Conclusion This study establishes a novel T cell proliferation-associated regulator signature which can be used for the prognostic prediction of bladder cancer. The outcomes herein facilitate the studies on T-cell proliferation and its immune micro-environment to ameliorate prognoses and immunotherapeutic responses.
Collapse
Affiliation(s)
- Jian Hou
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, Shenzhen, China
| | - Xiangyang Wen
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, Shenzhen, China
| | - Zhenquan Lu
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, Shenzhen, China
| | - Guoqing Wu
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, Shenzhen, China
| | - Guang Yang
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Cheng Tang
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Genyi Qu
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
- *Correspondence: Genyi Qu,
| | - Yong Xu
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
| |
Collapse
|
61
|
Li S, Li L, Pan T, Li X, Tong Y, Jin Y. Prognostic value of TIGIT in East Asian patients with solid cancers: A systematic review, meta-analysis and pancancer analysis. Front Immunol 2022; 13:977016. [PMID: 36211383 PMCID: PMC9532506 DOI: 10.3389/fimmu.2022.977016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background T-cell immunoreceptor with Ig and ITIM domains (TIGIT) participates in tumor immune escape by delivering inhibitory signals to T cells. The purpose of this article was to assess the prognostic value of TIGIT and its immunological function in solid cancers. Methods Three databases were searched for relevant articles. The main endpoints were overall survival (OS), progression-free survival (PFS), recurrence-free survival (RFS), and disease-free survival (DFS). Hazard ratios (HR) were pooled by using fixed-effects or random-effects models. Pancancer analysis of TIGIT was performed based on public online databases, mainly The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and UCSC Xena. The possible relationships between TIGIT expression and the tumor microenvironment (TME), infiltration of immune cells, immune-related genes, tumor mutation burden (TMB), and microsatellite instability (MSI) were revealed in this article. Results Sixteen studies met the inclusion criteria. High expression of TIGIT was associated with worse OS [HR= 1.73, 95% confidence interval (CI) 1.50, 1.99], PFS (HR = 1.53, 95% CI [1.25, 1.88]), RFS (HR = 2.40, 95% CI [1.97, 2.93]), and DFS (HR= 6.57, 95% CI [0.73, 59.16]) in East Asian patients with solid cancers. TIGIT expression was positively correlated with immune infiltration scores and infiltration of CD8 T lymphocytes in all of the cancers included. TIGIT was found to be coexpressed with the genes encoding immunostimulators, immunoinhibitors, chemokines, chemokine receptors, and major histocompatibility complex (MHC), especially in gastroesophageal cancer. TMB and MSI were also associated with TIGIT upregulation in diverse kinds of cancers. Conclusion High expression of TIGIT is associated with poorer prognosis in East Asian patients with solid cancers. TIGIT is a novel prognostic biomarker and immunotherapeutic target for various solid cancers because of its activity in cancer immunity and tumorigenesis.
Collapse
Affiliation(s)
- Sicong Li
- School of Pharmacy, Peking University Health Science Centre, Beijing, China
| | - Lanxing Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianyan Pan
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqun Li
- Center of Disease Prevention Treatment, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yujia Tong
- Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yongdong Jin
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
62
|
Pan S, Li S, Zhan Y, Chen X, Sun M, Liu X, Wu B, Li Z, Liu B. Immune status for monitoring and treatment of bladder cancer. Front Immunol 2022; 13:963877. [PMID: 36159866 PMCID: PMC9492838 DOI: 10.3389/fimmu.2022.963877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
The high recurrence rate of non-muscle invasive bladder cancer (BC) and poor prognosis of advanced BC are therapeutic challenges that need to be solved. Bacillus Calmette-Guerin (BCG) perfusion was the pioneer immunotherapy for early BC, and the discovery of immune checkpoint inhibitors has created a new chapter in the treatment of advanced BC. The benefit of immunotherapy is highly anticipated, but its effectiveness still needs to be improved. In this review, we collated and analysed the currently available information and explored the mechaisms by which the internal immune imbalance of BC leads to tumour progression. The relationship between immunity and progression and the prognosis of BC has been explored through tests using body fluids such as blood and urine. These analytical tests have attempted to identify specific immuyne cells and cytokines to predict treatment outcomes and recurrence. The diversity and proportion of immune and matrix cells in BC determine the heterogeneity and immune status of tumours. The role and classification of immune cells have also been redefined, e.g., CD4 cells having recognised cytotoxicity in BC. Type 2 immunity, including that mediated by M2 macrophages, Th2 cells, and interleukin (IL)-13, plays an important role in the recurrence and progression of BC. Pathological fibrosis, activated by type 2 immunity and cancer cells, enhances the rate of cancer progression and irreversibility. Elucidating the immune status of BC and clarifying the mechanisms of action of different cells in the tumour microenvironment is the research direction to be explored in the future.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenhua Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Bitian Liu, ;
| |
Collapse
|
63
|
Liu JP, Fang YT, Jiang YF, Lin H. HYAL3 as a potential novel marker of BLCA patient prognosis. BMC Genom Data 2022; 23:63. [PMID: 35945500 PMCID: PMC9361633 DOI: 10.1186/s12863-022-01070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND It has been previously demonstrated that hyaluronan (HA) potentially regulates the initiation and propagation of bladder cancer (BLCA). HYAL3 encodes hyaluronidase and is a potential therapeutic target for BLCA. We aimed to explore the role that HYAL3 plays in BLCA pathogenesis. METHODS HYAL3 expression in BLCA specimens was analyzed using The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) cohort as well as confirmed in cell lines and The Human Protein Atlas. Then, associations between HYAL3 expression and clinicopathological data were analyzed using survival curves and receiver-operating characteristic (ROC) curves. The functions of HYAL3 were further dissected using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the protein-protein interaction network. Finally, we harnessed the Tumor IMmune Estimation Resource and Gene Expression Profiling Interactive Analysis to obtain correlations between HYAL3 expression, infiltrating immunocytes, and the corresponding immune marker sets. RESULTS HYAL3 expression varied greatly between many types of cancers. In addition, a higher HYAL3 expression level predicted a poor overall survival (OS) in both TCGA-BLCA and GEO gene chips (P < 0.05). HYAL3 also exhibited an acceptable diagnostic ability for the pathological stage of BLCA (area under the receiver-operating characteristic curve = 0.769). Furthermore, HYAL3 acted as an independent prognostic factor in BLCA patients and correlated with the infiltration of various types of immunocytes, including B cells, CD8+ T cells, cytotoxic cells, T follicular helper cells, and T helper (Th) 2 cells. CONCLUSION HYAL3 might serve as a potential biomarker for predicting poor OS in BLCA patients and correlated with immunocyte infiltration in BLCA.
Collapse
Affiliation(s)
- Jun-Peng Liu
- Department of Urology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Yu-Tong Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Yi-Fan Jiang
- Department of Urology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Hao Lin
- Department of Urology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| |
Collapse
|
64
|
Sarafidis M, Lambrou GI, Zoumpourlis V, Koutsouris D. An Integrated Bioinformatics Analysis towards the Identification of Diagnostic, Prognostic, and Predictive Key Biomarkers for Urinary Bladder Cancer. Cancers (Basel) 2022; 14:cancers14143358. [PMID: 35884419 PMCID: PMC9319344 DOI: 10.3390/cancers14143358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Bladder cancer is evidently a challenge as far as its prognosis and treatment are concerned. The investigation of potential biomarkers and therapeutic targets is indispensable and still in progress. Most studies attempt to identify differential signatures between distinct molecular tumor subtypes. Therefore, keeping in mind the heterogeneity of urinary bladder tumors, we attempted to identify a consensus gene-related signature between the common expression profile of bladder cancer and control samples. In the quest for substantive features, we were able to identify key hub genes, whose signatures could hold diagnostic, prognostic, or therapeutic significance, but, primarily, could contribute to a better understanding of urinary bladder cancer biology. Abstract Bladder cancer (BCa) is one of the most prevalent cancers worldwide and accounts for high morbidity and mortality. This study intended to elucidate potential key biomarkers related to the occurrence, development, and prognosis of BCa through an integrated bioinformatics analysis. In this context, a systematic meta-analysis, integrating 18 microarray gene expression datasets from the GEO repository into a merged meta-dataset, identified 815 robust differentially expressed genes (DEGs). The key hub genes resulted from DEG-based protein–protein interaction and weighted gene co-expression network analyses were screened for their differential expression in urine and blood plasma samples of BCa patients. Subsequently, they were tested for their prognostic value, and a three-gene signature model, including COL3A1, FOXM1, and PLK4, was built. In addition, they were tested for their predictive value regarding muscle-invasive BCa patients’ response to neoadjuvant chemotherapy. A six-gene signature model, including ANXA5, CD44, NCAM1, SPP1, CDCA8, and KIF14, was developed. In conclusion, this study identified nine key biomarker genes, namely ANXA5, CDT1, COL3A1, SPP1, VEGFA, CDCA8, HJURP, TOP2A, and COL6A1, which were differentially expressed in urine or blood of BCa patients, held a prognostic or predictive value, and were immunohistochemically validated. These biomarkers may be of significance as prognostic and therapeutic targets for BCa.
Collapse
Affiliation(s)
- Michail Sarafidis
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece;
- Correspondence: ; Tel.: +30-210-772-2430
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 8 Thivon & Levadeias Str., 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 8 Thivon & Levadeias Str., 11527 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Konstantinou Ave., 11635 Athens, Greece;
| | - Dimitrios Koutsouris
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece;
| |
Collapse
|
65
|
Lopes R, Caetano J, Barahona F, Pestana C, Ferreira BV, Lourenço D, Queirós AC, Bilreiro C, Shemesh N, Beck HC, Carvalho AS, Matthiesen R, Bogen B, Costa-Silva B, Serre K, Carneiro EA, João C. Multiple Myeloma-Derived Extracellular Vesicles Modulate the Bone Marrow Immune Microenvironment. Front Immunol 2022; 13:909880. [PMID: 35874665 PMCID: PMC9302002 DOI: 10.3389/fimmu.2022.909880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Multiple myeloma (MM), the third most frequent hematological cancer worldwide, is characterized by the proliferation of neoplastic plasma cells in the bone marrow (BM). One of the hallmarks of MM is a permissive BM microenvironment. Increasing evidence suggests that cell-to-cell communication between myeloma and immune cells via tumor cell-derived extracellular vesicles (EV) plays a key role in the pathogenesis of MM. Hence, we aimed to explore BM immune alterations induced by MM-derived EV. For this, we inoculated immunocompetent BALB/cByJ mice with a myeloma cell line, MOPC315.BM, inducing a MM phenotype. Upon tumor establishment, characterization of the BM microenvironment revealed the expression of both activation and suppressive markers by lymphocytes, such as granzyme B and PD-1, respectively. In addition, conditioning of the animals with MOPC315.BM-derived EV, before transplantation of the MOPC315.BM tumor cells, did not anticipate the disease phenotype. However, it induced features of suppression in the BM milieu, such as an increase in PD-1 expression by CD4+ T cells. Overall, our findings reveal the involvement of MOPC315.BM-derived EV protein content as promoters of immune niche remodeling, strengthening the importance of assessing the mechanisms by which MM may impact the immune microenvironment.
Collapse
Affiliation(s)
- Raquel Lopes
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Joana Caetano
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
| | - Filipa Barahona
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
| | - Carolina Pestana
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Centre of Statistics and Its Applications, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Bruna Velosa Ferreira
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
| | - Diana Lourenço
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana C. Queirós
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Carlos Bilreiro
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
- Neural Plasticity and Neural Activity Laboratory, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
| | - Noam Shemesh
- Neural Plasticity and Neural Activity Laboratory, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Ana Sofia Carvalho
- Computational and Experimental Biology, Chronic Diseases Research Centre (CEDOC); NOVA Medical School (NMS), Lisbon, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology, Chronic Diseases Research Centre (CEDOC); NOVA Medical School (NMS), Lisbon, Portugal
| | - Bjarne Bogen
- Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bruno Costa-Silva
- Systems Oncology, Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Karine Serre
- Molecular Medicine Institute-Laço Hub, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Emilie Arnault Carneiro
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Cristina João
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
- *Correspondence: Cristina João,
| |
Collapse
|
66
|
Liu H, Wu J, Xu X, Wang H, Zhang C, Yin S, He Y. Peritumoral TIGIT+CD20+ B cell infiltration indicates poor prognosis but favorable adjuvant chemotherapeutic response in gastric cancer. Int Immunopharmacol 2022; 108:108735. [DOI: 10.1016/j.intimp.2022.108735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023]
|
67
|
Liu Z, Jin K, Zeng H, Shao F, Chang Y, Wang Y, Xu L, Wang Z, Cui X, Zhu Y, Xu J. B7-H4 correlates with clinical outcome and immunotherapeutic benefit in muscle-invasive bladder cancer. Eur J Cancer 2022; 171:133-142. [PMID: 35717821 DOI: 10.1016/j.ejca.2022.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/03/2022]
Abstract
AIM B7-H4, a sibling to PD-L1 in B7 family, has been reported to be a novel immune checkpoint that is prevalent among non-inflamed tumors. Herein, we attempt to explore the potential of B7-H4 in survival prediction and therapeutic guidance in muscle-invasive bladder cancer (MIBC) patients. METHODS This study included 391 patients from The Cancer Genome Atlas (TCGA) database and 122 patients from Zhongshan (ZS) Hospital. The evaluation of response to PD-L1 inhibitors was based on 270 patients in IMvigor210 cohort. Kaplan-Meier survival and multivariate analyses were performed to assess clinical outcomes in three cohorts. The correlation of B7-H4 expression with immune contexture and genomic alterations was analyzed based on immunohistochemistry, Microenvironment Cell Populations-counter (MCP-counter) tool, and whole-exome sequencing. RESULTS MIBC patients with the high level of B7-H4 expression (B7-H4high) were found to possess an inferior overall and recurrence-free survival. Nonetheless, substantial clinical benefits of cisplatin-based chemotherapy and anti-PD-L1 immunotherapy were observed in these patients. After identifying a positive correlation between B7-H4 and tumor mutation burden (TMB), clinical benefits in B7-H4high TMBhigh subgroup were found to be the most upon PD-L1 blockade. Further studies revealed that B7-H4high subgroup was featured by non-inflamed immune contexture and cell cycle-related gene alterations. CONCLUSIONS Despite adverse clinical outcomes, B7-H4high patients possessed superior responsiveness to chemotherapy and immunotherapy. B7-H4 stratification could also synergize with TMB to pinpoint the patients who benefited most from immunotherapy. The clinical exploration of B7-H4 as a companion predictor could allow clinicians to direct proper therapeutic agents to patients.
Collapse
Affiliation(s)
- Zhaopei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Shao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
68
|
Annese T, Tamma R, Ribatti D. Update in TIGIT Immune-Checkpoint Role in Cancer. Front Oncol 2022; 12:871085. [PMID: 35656508 PMCID: PMC9152184 DOI: 10.3389/fonc.2022.871085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
The in-depth characterization of cross-talk between tumor cells and T cells in solid and hematological malignancies will have to be considered to develop new therapeutical strategies concerning the reactivation and maintenance of patient-specific antitumor responses within the patient tumor microenvironment. Activation of immune cells depends on a delicate balance between activating and inhibitory signals mediated by different receptors. T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed by regulatory T cells (Tregs), activated T cells, and natural killer (NK) cells. TIGIT pathway regulates T cell-mediated tumor recognition in vivo and in vitro and represents an exciting target for checkpoint blockade immunotherapy. TIGIT blockade as monotherapy or in combination with other inhibitor receptors or drugs is emerging in clinical trials in patients with cancer. The purpose of this review is to update the role of TIGIT in cancer progression, looking at TIGIT pathways that are often upregulated in immune cells and at possible therapeutic strategies to avoid tumor aggressiveness, drug resistance, and treatment side effects. However, in the first part, we overviewed the role of immune checkpoints in immunoediting, the TIGIT structure and ligands, and summarized the key immune cells that express TIGIT.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
69
|
Liang S, Fang K, Li S, Liu D, Yi Q. Immune Microenvironment Terms Signature Robustly Predicts the Prognosis and Immunotherapy Response in Bladder Cancer Based on Large Population Cohorts. Front Genet 2022; 13:872441. [PMID: 35615381 PMCID: PMC9126043 DOI: 10.3389/fgene.2022.872441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Immune microenvironment is implicated in cancer progression. However, the role of immune microenvironment in bladder cancer has not been fully explored. Open-accessed datasets GSE120736, GSE128959, GSE13507, GSE31684, GSE32548, GSE48075, GSE83586, and The Cancer Genome Atlas (TCGA) database were enrolled in our study. Single-sample gene set enrichment analysis (ssGSEA) was used to quantify 53 immune terms in combined BLCA cohorts. The top 10 important immune terms were identified through random forest algorithm for model establishment. Our model showed satisfactory efficacy in prognosis prediction. Furthermore, we explored clinical and genomic feature differences between high- and low-risk groups. The results indicated that the patients in the high-risk group might be associated with worse clinical features. Gene set enrichment analysis showed that epithelial–mesenchymal translational, mTORC1 signaling, mitotic spindle, glycolysis, E2F target, and G2M checkpoint pathways were aberrantly activated in high-risk patients, partially explaining its worse prognosis. Patients in the low-risk group showed better immunotherapy response according to TIDE and TCIA analysis, indicating that our model could effectively predict the immunotherapy response rate. KCNH4, UGT1A1, TPO, SHANK1, PITX3, MYH1, MYH13, KRT3, DEC1, and OBP2A genes were identified as feature genes in the high- and low-risk patients. CMAP analysis was performed to identify potential compounds targeting the riskscore.
Collapse
Affiliation(s)
- Shengjie Liang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Kai Fang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Simin Li
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dong Liu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qingtong Yi
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
70
|
Zhang J, Huang D, Saw PE, Song E. Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol 2022; 43:523-545. [PMID: 35624021 DOI: 10.1016/j.it.2022.04.010] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint blockade (ICB) therapies have achieved clinical benefit, but most 'immune-cold' solid tumors are not responsive. The diversity of immune evasion mechanisms remains a key obstacle in turning nonresponsive 'cold' tumors into responsive 'hot' ones. Therefore, exploring the mechanisms of such transitions and tumor immunotyping can provide significant insights into designing effective therapeutic strategies against cancer. Here, we focus on the latest advances regarding local and systemic regulatory mechanisms of immune responses in cold and hot tumors. We also highlight the necessity for tumor immunotyping through the assessment of multiple immunological variables using various diagnostic techniques and biomarkers. Finally, we discuss the challenges and potential clinical applications of immunophenotyping to turn cold tumors hot, which may further guide combined immunotherapies.
Collapse
Affiliation(s)
- Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
71
|
Zhou X, Ren T, Zan H, Hua C, Guo X. Novel Immune Checkpoints in Esophageal Cancer: From Biomarkers to Therapeutic Targets. Front Immunol 2022; 13:864202. [PMID: 35669786 PMCID: PMC9163322 DOI: 10.3389/fimmu.2022.864202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer ranks as the sixth most common cause of cancer death worldwide. Due to the limited efficacy of conventional therapeutic strategies, including surgery, chemotherapy, and radiotherapy, treatments are still far from satisfactory in terms of survival, prompting the search for novel treatment methods. Immune checkpoints play crucial roles in immune evasion mediated by tumor cells, and successful clinical outcomes have been achieved via blocking these pathways. However, only a small fraction of patients can benefit from current immune checkpoint inhibitors targeting programmed cell death ligand-1 (PD-L1) and cytotoxic T-lymphocyte-associated protein-4. Unfortunately, some patients show primary and/or acquired resistance to immune checkpoint inhibitors. Until now, novel immune checkpoint pathways have rarely been studied in esophageal cancer, and there is a great need for biomarkers to predict who will benefit from existing strategies. Herein, we primarily discuss the roles of new immune checkpoints as predictive biomarkers and therapeutic targets for esophageal cancer. In addition, we summarize the ongoing clinical trials and provide future research directions targeting these pathways.
Collapse
Affiliation(s)
- Xueyin Zhou
- School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ting Ren
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyuan Zan
- School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Chunyan Hua, ; Xufeng Guo,
| | - Xufeng Guo
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Chunyan Hua, ; Xufeng Guo,
| |
Collapse
|
72
|
Liu Z, Zeng H, Jin K, Yu Y, You R, Zhang H, Liu C, Su X, Yan S, Chang Y, Liu L, Xu L, Xu J, Zhu Y, Wang Z. TIGIT and PD-1 expression atlas predicts response to adjuvant chemotherapy and PD-L1 blockade in muscle-invasive bladder cancer. Br J Cancer 2022; 126:1310-1317. [PMID: 35039625 PMCID: PMC9042924 DOI: 10.1038/s41416-022-01703-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/11/2021] [Accepted: 01/06/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND TIGIT and PD-1 are checkpoint receptors that could regulate the functional status of immune cells through independent pathways. However, the clinical significance of immune classification based on TIGIT and PD-1 expression remains unclear in muscle-invasive bladder cancer (MIBC). METHODS Patients with MIBC from four independent cohorts were categorised into three clusters. Survival analysis conducted through Kaplan-Meier curves and Cox regression model. Immune contexture was measured by immunohistochemistry and CIBERSORT algorithm. Twenty-five fresh tumour tissue samples were utilised to evaluate functional state of CD8+ T cells by flow cytometry. RESULTS Cluster I (TIGITlowPD-1low) contained widely poor immune infiltrates with higher FGFR3 mutation, Cluster II (TIGITlowPD-1high) exhibited a highly infiltrated contexture with increased cytolytic CD8+ T cells and had the best prognosis, Cluster III (TIGIThigh) presented a suppressive tumour microenvironment (TME) featured by exhausted CD8+ T cells and basal molecular subtype. Patients of Cluster III had the worst survival but could benefit more from adjuvant chemotherapy and anti-PD-L1 immunotherapy, and also presented limited FGFR3 signalling signature but activated immunotherapeutic and EGFR-associated pathway. CONCLUSIONS TIGIT/PD-1-based risk stratification with distinct immune and molecular features could be served as a predictor for systematic therapeutic response including adjuvant chemotherapy and immunotherapy in MIBC patients.
Collapse
Affiliation(s)
- Zhaopei Liu
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Han Zeng
- grid.8547.e0000 0001 0125 2443Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaifeng Jin
- grid.8547.e0000 0001 0125 2443Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanze Yu
- grid.8547.e0000 0001 0125 2443Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Runze You
- grid.8547.e0000 0001 0125 2443Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyi Zhang
- grid.8547.e0000 0001 0125 2443Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chunnan Liu
- grid.8547.e0000 0001 0125 2443Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaohe Su
- grid.8547.e0000 0001 0125 2443Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Sen Yan
- grid.8547.e0000 0001 0125 2443Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuan Chang
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Li Liu
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Xu
- grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejie Xu
- grid.8547.e0000 0001 0125 2443Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Zhu
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zewei Wang
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
73
|
Yan S, Zeng H, Jin K, Shao F, Liu Z, Chang Y, Wang Y, Zhu Y, Wang Z, Xu L, Xu J. NKG2A and PD-L1 expression panel predicts clinical benefits from adjuvant chemotherapy and PD-L1 blockade in muscle-invasive bladder cancer. J Immunother Cancer 2022; 10:jitc-2022-004569. [PMID: 35523436 PMCID: PMC9073407 DOI: 10.1136/jitc-2022-004569] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Background Programmed cell death ligand-1 (PD-L1) expression as a single biomarker for immune checkpoint blockade (ICB) was controversial. NKG2A was a PD1/PD-L1 axis-related immunity-dependent factor. NKG2A and PD-L1 expression as a combinatorial biomarker might improve the prediction of PD-L1 in patients with muscle-invasive bladder cancer (MIBC). Methods Three independent cohorts were enrolled in our study. 195 patients with bladder-derived metastatic urothelial carcinoma on PD-L1 inhibitor treatment from the IMvigor210 trial were enrolled. 124 MIBC patients from Zhongshan Hospital and 391 patients with MIBC from The Cancer Genome Atlas database were included in this study. The PD-L1/NKG2A-based risk stratification was validated in three independent cohorts, and its association with response to ICB and adjuvant chemotherapy (ACT), immune contexture and molecular features was evaluated. Histologic staining and genomic algorithm were performed to detect characteristics of NKG2A and PD-L1 expression and infiltration of immune cells. Results We identified NKG2AhiPD-L1hi patients could benefit more from cisplatin-based ACT and PD-L1 inhibitor. Further analyses revealed NKG2A and PD-L1 expression panel was linked to an immune-active tumor microenvironment with highly immune effector cells and effector molecules. In addition, NKG2A and PD-L1 expression panel was intrinsically correlated with genomic alterations related to therapeutic response in MIBC. Conclusions NKG2A and PD-L1 expression panel was associated with an immune inflamed microenvironment and acted as a combinatorial biomarker to predict the therapeutic response to ACT and PD-L1 blockade in MIBC.
Collapse
Affiliation(s)
- Sen Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fei Shao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaopei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
74
|
Zhu C, Wu Q, Yang N, Zheng Z, Zhou F, Zhou Y. Immune Infiltration Characteristics and a Gene Prognostic Signature Associated With the Immune Infiltration in Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:848841. [PMID: 35586567 PMCID: PMC9108548 DOI: 10.3389/fgene.2022.848841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Immunotherapy has become the new standard of care for recurrent and metastatic head and neck squamous cell carcinoma (HNSCC), and PD-L1 is a widely used biomarker for immunotherapeutic response. However, PD-L1 expression in most cancer patients is low, and alternative biomarkers used to screen the population benefiting from immunotherapy are still being explored. Tumor microenvironment (TME), especially tumor immune-infiltrating cells, regulates the body’s immunity, affects the tumor growth, and is expected to be a promising biomarker for immunotherapy. Purpose: This article mainly discussed how the immune-infiltrating cell patterns impacted immunity, thereby affecting HNSCC patients’ prognosis. Method: The immune-infiltrating cell profile was generated by the CIBERSORT algorithm based on the transcriptomic data of HNSCC. Consensus clustering was used to divide groups with different immune cell infiltration patterns. Differentially expressed genes (DEGs) obtained from the high and low immune cell infiltration (ICI) groups were subjected to Kaplan–Meier and univariate Cox analysis. Significant prognosis-related DEGs were involved in the construction of a prognostic signature using multivariate Cox analysis. Results: In our study, 408 DEGs were obtained from high- and low-ICI groups, and 59 of them were significantly associated with overall survival (OS). Stepwise multivariate Cox analysis developed a 16-gene prognostic signature, which could distinguish favorable and poor prognosis of HNSCC patients. An ROC curve and nomogram verified the sensitivity and accuracy of the prognostic signature. The AUC values for 1 year, 2 years, and 3 years were 0.712, 0.703, and 0.700, respectively. TCGA-HNSCC cohort, GSE65858 cohort, and an independent GSE41613 cohort proved a similar prognostic significance. Notably, the prognostic signature distinguished the expression of promising immune inhibitory receptors (IRs) well and could predict the response to immunotherapy. Conclusion: We established a tumor immune cell infiltration (TICI)-based 16-gene signature, which could distinguish patients with different prognosis and help predict the response to immunotherapy.
Collapse
Affiliation(s)
- Chunmei Zhu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ningning Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhewen Zheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fuxiang Zhou, ; Yunfeng Zhou,
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fuxiang Zhou, ; Yunfeng Zhou,
| |
Collapse
|
75
|
Wang D, Gu Y, Yan X, Huo C, Wang G, Zhao Y, Teng M, Li Y. Role of CD155/TIGIT in Digestive Cancers: Promising Cancer Target for Immunotherapy. Front Oncol 2022; 12:844260. [PMID: 35433470 PMCID: PMC9005749 DOI: 10.3389/fonc.2022.844260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment restricts the function and survival of various immune cells by up-regulating inhibitory immune checkpoints, and participates in the immune escape of tumors. The development of immunotherapies targeting immune checkpoints, such as programmed cell death receptor 1 antibody and anti-cytotoxic T lymphocyte-associated antigen 4 antibody, has provided many options for cancer treatment. The efficacy of other immune checkpoint inhibitors is also under development and research. Among them, T cell immunoreceptor with Ig and ITIM domains (TIGIT) has shown excellent clinical application prospects. Correspondingly, poliovirus receptor (PVR, CD155), one of the main ligands of TIGIT, is mainly expressed in various human malignant tumors and myeloid cells. CD155 interacts with TIGIT on natural killer cells and T cells, mediating inhibitory immunomodulatory regulation. This study summarized the mechanism of CD155/TIGIT in regulating immune cells and its role in the occurrence and development of digestive system tumors, aiming to provide a new perspective for immunotherapy of digestive cancers.
Collapse
Affiliation(s)
- Daijun Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yanmei Gu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Xin Yan
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Chengdong Huo
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Guan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yang Zhao
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Muzhou Teng
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
76
|
Mortezaee K, Majidpoor J. CD8 + T Cells in SARS-CoV-2 Induced Disease and Cancer-Clinical Perspectives. Front Immunol 2022; 13:864298. [PMID: 35432340 PMCID: PMC9010719 DOI: 10.3389/fimmu.2022.864298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Dysregulated innate and adaptive immunity is a sign of SARS-CoV-2-induced disease and cancer. CD8+ T cells are important cells of the immune system. The cells belong to the adaptive immunity and take a front-line defense against viral infections and cancer. Extreme CD8+ T-cell activities in the lung of patients with a SARS-CoV-2-induced disease and within the tumor microenvironment (TME) will change their functionality into exhausted state and undergo apoptosis. Such diminished immunity will put cancer cases at a high-risk group for SARS-CoV-2-induced disease, rendering viral sepsis and a more severe condition which will finally cause a higher rate of mortality. Recovering responses from CD8+ T cells is a purpose of vaccination against SARS-CoV-2. The aim of this review is to discuss the CD8+ T cellular state in SARS-CoV-2-induced disease and in cancer and to present some strategies for recovering the functionality of these critical cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
77
|
Qin H, Lu Y, Du L, Shi J, Yin H, Jiang B, Chen W, Diao W, Ding M, Cao W, Qiu X, Zhao X, Guo H. Pan-cancer analysis identifies LMNB1 as a target to redress Th1/Th2 imbalance and enhance PARP inhibitor response in human cancers. Cancer Cell Int 2022; 22:101. [PMID: 35241075 PMCID: PMC8896121 DOI: 10.1186/s12935-022-02467-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Emerging evidence suggests that LMNB1 is involved in the development of multiple cancer types. However, there is no study reporting the potential role of LMNB1 in a systematic pan-cancer manner. Methods The gene expression level and potential oncogenic roles of LMNB1 in The Cancer Genome Atlas (TCGA) database were analyzed with Tumor Immune Estimation Resource version 2 (TIMER2.0), Gene Expression Profiling Interactive Analysis version 2 (GEPIA2), UALCAN and Sangerbox tools. Pathway enrichment analysis was carried out to explore the possible mechanism of LMNB1 on tumorigenesis and tumor progression. The therapeutic effects of LMNB1 knockdown combined with PARP inhibition on human cancers were further investigated in vitro. Results LMNB1 upregulation is generally observed in the tumor tissues of most TCGA cancer types, and is verified in kidney renal clear cell carcinoma using clinical specimens of our institute. High level of LMNB1 expression usually predicts poor overall survival and disease free survival for patients with tumors. Mechanically, LMNB1 level is positively correlated with CD4+ Th2 cell infiltration and DNA homologous recombination repair gene expression. In vitro experiments reveal that targeting LMNB1 has a synergistic effect on prostate cancer with PARP inhibitor treatment. Conclusions LMNB1 is a biomarker of CD4+ Th2 cell infiltration and DNA homologous recombination repair in human cancers. Blockage of LMNB1 combined with PARP inhibitor treatment could be a promising therapeutic strategy for patients with cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02467-4.
Collapse
Affiliation(s)
- Haixiang Qin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Yingqiang Lu
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Lin Du
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Jingyan Shi
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Haoli Yin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Bo Jiang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Wenli Diao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Meng Ding
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Wenmin Cao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Xuefeng Qiu
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Xiaozhi Zhao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
78
|
Lia T, Shao Y, Regmi P, Li X. Development and validation of pyroptosis-related lncRNAs prediction model for bladder cancer. Biosci Rep 2022; 42:BSR20212253. [PMID: 35024796 PMCID: PMC8799921 DOI: 10.1042/bsr20212253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Bladder cancer (BLCA) is one of the highly heterogeneous disorders accompanied by a poor prognosis. The present study aimed to construct a model based on pyroptosis-related long-stranded non-coding RNA (lncRNA) to evaluate the potential prognostic application in bladder cancer. The mRNA expression profiles of bladder cancer patients and corresponding clinical data were downloaded from the public database from The Cancer Genome Atlas (TCGA). Pyroptosis-related lncRNAs were identified by utilizing a co-expression network of pyroptosis-related genes and lncRNAs. The lncRNA was further screened by univariate Cox regression analysis. Finally, eight pyroptosis-related lncRNA markers were established using least absolute shrinkage and selection operator (Lasso) regression and multivariate Cox regression analyses. Patients were separated into high- and low-risk groups based on the performance value of the median risk score. Patients in the high-risk group had significantly poorer overall survival (OS) than those in the low-risk group (P<0.001). In multivariate Cox regression analysis, the risk score was an independent predictive factor of OS (HR > 1, P<0.01). The areas under the curve (AUCs) of the 3- and 5-year OS in the receiver operating characteristic (ROC) curve were 0.742 and 0.739, respectively. In conclusion, these eight pyroptosis-related lncRNA and their markers may be potential molecular markers and therapeutic targets for bladder cancer patients.
Collapse
Affiliation(s)
- Thongher Lia
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yanxiang Shao
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Parbatraj Regmi
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiang Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
79
|
Mirlekar B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med 2022; 10:20503121211069012. [PMID: 35096390 PMCID: PMC8793114 DOI: 10.1177/20503121211069012] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokines play a critical role in regulating host immune response toward cancer and determining the overall fate of tumorigenesis. The tumor microenvironment is dominated mainly by immune-suppressive cytokines that control effector antitumor immunity and promote survival and the proliferation of cancer cells, which ultimately leads to enhanced tumor growth. In addition to tumor cells, the heterogeneous immune cells present within the tumor milieu are the significant source of immune-suppressive cytokines. These cytokines are classified into a broad range; however, in most tumor types, the interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 are consistently reported as immune-suppressive cytokines that help tumor growth and metastasis. The most emerging concern in cancer treatment is hijacking and restraining the activity of antitumor immune cells in the tumor niche due to a highly immune-suppressive environment. This review summarizes the role and precise functions of interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 in modulating tumor immune contexture and its implication in developing effective immune-therapeutic approaches. CONCISE CONCLUSION Recent effort geared toward developing novel immune-therapeutic approaches faces significant challenges due to sustained mutations in tumor cells and a highly immune-suppressive microenvironment present within the tumor milieu. The cytokines play a crucial role in developing an immune-suppressive environment that ultimately dictates the fate of tumorigenesis. This review critically covers the novel aspects of predominant immune-suppressive cytokines such as interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 in dictating the fate of tumorigenesis and how targeting these cytokines can help the development of better immune-therapeutic drug regimens for the treatment of cancer.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
80
|
Zhang Y, Lin Y, Lv D, Wu X, Li W, Wang X, Jiang D. Identification and validation of a novel signature for prediction the prognosis and immunotherapy benefit in bladder cancer. PeerJ 2022; 10:e12843. [PMID: 35127296 PMCID: PMC8796709 DOI: 10.7717/peerj.12843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bladder cancer (BC) is a common urinary tract system tumor with high recurrence rate and different populations show distinct response to immunotherapy. Novel biomarkers that can accurately predict prognosis and therapeutic responses are urgently needed. Here, we aim to identify a novel prognostic and therapeutic responses immune-related gene signature of BC through a comprehensive bioinformatics analysis. METHODS The robust rank aggregation was conducted to integrate differently expressed genes (DEGs) in datasets of the Cancer Genome Atlas (TCGA) and the gene expression omnibus (GEO). Lasso and Cox regression analyses were performed to formulate a novel mRNA signature that could predict prognosis of BC patients. Subsequently, the prognostic value and predictive value of the signature was validated with two independent cohorts GSE13507 and IMvigor210. Finally, quantitative Real-time PCR (qRT-PCR) analysis was conducted to determine the expression of mRNAs in BC cell lines (UM-UC-3, EJ-1, SW780 and T24). RESULTS We built a signature comprised the eight mRNAs: CNKSR1, COPZ2, CXorf57, FASN, PCOLCE2, RGS1, SPINT1 and TPST1. Our prognostic signature could be used to stratify BC population into two risk groups with distinct immune profile and responsiveness to immunotherapy. The results of qRT-PCR demonstrated that the eight mRNAs exhibited different expression levels in BC cell lines. CONCLUSION Our study constructed a convenient and reliable 8-mRNA gene signature, which might provide prognostic prediction and aid treatment decision making of BC patients in clinical practice.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yifeng Lin
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Urology, Meizhou Hospital of Traditional Chinese Medicine, Meizhou, China
| | - Daojun Lv
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangkun Wu
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjie Li
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xueqing Wang
- Department of Ultrasound, Shantou Central Hospital, Shantou, Guangdong, China
| | - Dongmei Jiang
- Department of Pathology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangzhou, China
| |
Collapse
|
81
|
Preclinical and exploratory human studies of novel 68Ga-labeled D-peptide antagonist for PET imaging of TIGIT expression in cancers. Eur J Nucl Med Mol Imaging 2022; 49:2584-2594. [PMID: 35037984 PMCID: PMC8761874 DOI: 10.1007/s00259-021-05672-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022]
Abstract
Purpose While TIGIT has been propelled as a next-generation target in cancer immunotherapy, anti-TIGIT therapy seems to be promising for a fraction of patients in clinical trials. Therefore, patient stratification is critical for this therapy, which could benefit from a whole-body, non-invasive, and quantitative evaluation of TIGIT expression in cancers. In this study, a 68Ga-labeled D-peptide antagonist, 68Ga-GP12, was developed and validated for PET imaging of TIGIT expression in vitro, in vivo, and in an exploratory human study. Methods The D-enantiomer peptide antagonists were modified and radiolabeled with 68Ga. In vitro binding assays were performed in human peripheral blood mononuclear cells (PBMCs) to assess their affinity and specificity. The imaging capacity, biodistribution, pharmacokinetics, and radiation dosimetry were investigated. Flow cytometry, autoradiography, and immunohistochemical staining were used to confirm the expression of TIGIT. The safety and potential of 68Ga-GP12 for PET/CT imaging of TIGIT expression were evaluated in NSCLC patients. Results 68Ga-labeled D-peptides were conveniently produced with high radiochemical yields, radiochemical purities and molar activities. In vitro binding assays demonstrated 68Ga-GP12 has high affinity and specificity for TIGIT with a KD of 37.28 nM. In vivo and ex vivo studies demonstrated the capacity of 68Ga-GP12 for PET imaging of TIGIT expression with high tumor uptake of 4.22 ± 0.68 %ID/g and the tumor-to-muscle ratio of 12.94 ± 2.64 at 60 min post-injection. In NSCLC patients, primary and metastatic lesions found in 68Ga-GP12 PET images were comparable to that in 18F-FDG PET images. Moreover, tracer uptake in primary and metastatic lesions and intra-tumoral distribution in the large tumor were inhomogenous, indicating the heterogeneity of TIGIT expression. Conclusion 68Ga-GP12 is a promising radiotracer for PET imaging of TIGIT expression in cancers, indicating its potential as a potential companion diagnostic for anti-TIGIT therapies. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05672-x.
Collapse
|
82
|
Qiu Y, Gao Y, Chen C, Xie M, Huang P, Sun Q, Zhou Z, Li B, Zhao J, Wu P. Deciphering the influence of urinary microbiota on FoxP3+ regulatory T cell infiltration and prognosis in Chinese patients with non-muscle-invasive bladder cancer. Hum Cell 2022; 35:511-521. [PMID: 35032011 DOI: 10.1007/s13577-021-00659-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/08/2021] [Indexed: 02/02/2023]
Abstract
Despite increasing evidence that dysbiosis of urinary microbiota is closely correlated with bladder cancer, the influence of the urinary microbiota on immune evasion and tumor growth in bladder cancer is unknown. This study investigated whether the urinary microbiota influences intratumoral infiltration of FoxP3+ regulatory T cells, expression of Ki-67 and clinical prognosis in non-muscle-invasive bladder cancer. Forty male patients, including 12 and 28 with or without recurrence, respectively, were retrospectively enrolled. Midstream urine samples were preoperatively collected. Urinary microbiota composition was analyzed by 16s rDNA sequencing. Alpha and beta diversities were measured. LEfSe analysis was employed to identify specific bacteria associated with recurrence. Intratumoral infiltration of FoxP3+ regulatory T cells and Ki-67 expression were evaluated by immunohistochemistry. Patients with recurrence had higher α-diversity compared to those without (Shannon Index, P = 0.0007, Simpson Index, P = 0.0004). Distinct beta diversity was observed between recurrence and non-recurrence groups (weighted Unifrac P = 0.02; unweighted Unifrac P = 0.001). LEfSe analysis showed that the recurrence group displayed marked enrichment of Pseudomonas, Staphylococcus, Corynebacterium, and Acinetobacter genera. Patients with higher alpha diversity had elevated Ki-67 expression than those with lower alpha diversity (P = 0.0194), although microbial diversity was unassociated with infiltration of FoxP3+ regulatory T cells (P = 0.1653). Patients with lower urinary microbial diversity had prolonged recurrence-free survival compared to those with higher diversity. Perturbation of urinary microbiota may induce immune evasion and tumor growth, eventually contributing to unfavorable outcomes. Additional study is warranted to confirm a causal role of urinary microbiota in modulating antitumor immune response and survival in bladder cancer.
Collapse
Affiliation(s)
- Yifeng Qiu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yubo Gao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiao Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Sun
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhipeng Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Biao Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Clinical Microbiota Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
83
|
Tian T, Han J, Huang J, Li S, Pang H. Hypoxia-Induced Intracellular and Extracellular Heat Shock Protein gp96 Increases Paclitaxel-Resistance and Facilitates Immune Evasion in Breast Cancer. Front Oncol 2022; 11:784777. [PMID: 34988020 PMCID: PMC8722103 DOI: 10.3389/fonc.2021.784777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDS Hypoxia contributes to cancer progression, drug resistance and immune evasion in various cancers, including breast cancer (BC), but the molecular mechanisms have not been fully studied. Thus, the present study aimed to investigate this issue. METHODS The paclitaxel-sensitive BC (PS-BC) cells were administered with continuous low-dose paclitaxel treatment to establish paclitaxel-resistant BC (PR-BC) cells. Exosomes were isolated/purified by using the commercial kit, which were observed by Transmission electron microscopy (TEM). Cell viability was measured by MTT assay, cell apoptosis was determined by flow cytometer (FCM). Gene expressions were respectively measured by Real-Time qPCR, Western Blot and immunofluorescence staining assay. The peripheral mononuclear cells (PBMCs) derived CD8+ T cells were obtained and co-cultured with gp96-containing exosomes, and cell proliferation was evaluated by EdU assay. ELISA was employed to measure cytokine secretion in CD8+ T cells' supernatants. RESULTS HSP gp96 was significantly upregulated in the cancer tissues and plasma exosomes collected from BC patients with paclitaxel-resistant properties. Also, continuous low-dose paclitaxel treatment increased gp96 levels in the descendent PR-BC cells and their exosomes, in contrast with the parental PS-BC cells. Upregulation of gp96 increased paclitaxel-resistance in PS-BC cells via degrading p53, while gp96 silence sensitized PR-BC cells to paclitaxel treatments. Moreover, PR-BC derived gp96 exosomes promoted paclitaxel-resistance in PS-BC cells and induced pyroptotic cell death in the CD8+ T cells isolated from human peripheral blood mononuclear cells (pPBMCs). Furthermore, we noticed that hypoxia promoted gp96 generation and secretion through upregulating hypoxia-inducible factor 1 (HIF-1), and hypoxia increased paclitaxel-resistance and accelerated epithelial-mesenchymal transition (EMT) in PS-BC cells. CONCLUSIONS Hypoxia induced upregulation of intracellular and extracellular gp96, which further degraded p53 to increase paclitaxel-sensitivity in BC cells and activated cell pyroptosis in CD8+ T cells to impair immune surveillance.
Collapse
Affiliation(s)
- Tian Tian
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiguang Han
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Huang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shangziyan Li
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Pang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
84
|
Sakatani T, Kita Y, Fujimoto M, Sano T, Hamada A, Nakamura K, Takada H, Goto T, Sawada A, Akamatsu S, Kobayashi T. IFN-Gamma Expression in the Tumor Microenvironment and CD8-Positive Tumor-Infiltrating Lymphocytes as Prognostic Markers in Urothelial Cancer Patients Receiving Pembrolizumab. Cancers (Basel) 2022; 14:263. [PMID: 35053427 PMCID: PMC8774131 DOI: 10.3390/cancers14020263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Although immune checkpoint inhibitors have shown benefit for advanced urothelial carcinoma (aUC) patients, prognostication of treatment efficacy and response duration remains a clinical challenge. We evaluated the expression of immune markers in the tumor microenvironment and assessed their associations with response to and survival after pembrolizumab treatment in 26 aUC patients. High levels of CD8+ tumor-infiltrating lymphocytes (TILs) were associated with favorable objective responses (23.0% vs. 15.3%, p = 0.0425), progression-free survival (median, 8.8 vs 2.1 months; hazard ratio (HR), 0.24; 95% confidence interval (CI), 0.07-0.66, p = 0.0060), and overall survival (median, >24.0 vs. 5.3 months; HR, 0.17; 95% CI, 0.04-0.56, p = 0.0034) compared with low levels. High interferon-gamma (IFNγ) expression levels were associated with longer post-progression survival (median, 4.9 vs. 1.0 months; HR, 0.18; 95% CI, 0.04-0.59, p = 0.0027) compared with low expression. Multivariate analysis incorporating clinical prognosticators demonstrated that the coincidence of low CD8+ T cells/IFNγ was an independent factor for unfavorable overall survival after pembrolizumab treatment (HR, 4.07; 95% CI, 1.36-12.73; p = 0.0125). The combination of low CD8+ TILs and IFNγ expression was an independent prognostic factor with predictive ability equivalent to previously reported clinical prognosticators.
Collapse
Affiliation(s)
- Toru Sakatani
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.S.); (Y.K.); (T.S.); (A.H.); (K.N.); (H.T.); (T.G.); (A.S.); (S.A.)
| | - Yuki Kita
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.S.); (Y.K.); (T.S.); (A.H.); (K.N.); (H.T.); (T.G.); (A.S.); (S.A.)
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan;
| | - Takeshi Sano
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.S.); (Y.K.); (T.S.); (A.H.); (K.N.); (H.T.); (T.G.); (A.S.); (S.A.)
| | - Akihiro Hamada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.S.); (Y.K.); (T.S.); (A.H.); (K.N.); (H.T.); (T.G.); (A.S.); (S.A.)
| | - Kenji Nakamura
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.S.); (Y.K.); (T.S.); (A.H.); (K.N.); (H.T.); (T.G.); (A.S.); (S.A.)
| | - Hideaki Takada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.S.); (Y.K.); (T.S.); (A.H.); (K.N.); (H.T.); (T.G.); (A.S.); (S.A.)
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.S.); (Y.K.); (T.S.); (A.H.); (K.N.); (H.T.); (T.G.); (A.S.); (S.A.)
| | - Atsuro Sawada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.S.); (Y.K.); (T.S.); (A.H.); (K.N.); (H.T.); (T.G.); (A.S.); (S.A.)
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.S.); (Y.K.); (T.S.); (A.H.); (K.N.); (H.T.); (T.G.); (A.S.); (S.A.)
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.S.); (Y.K.); (T.S.); (A.H.); (K.N.); (H.T.); (T.G.); (A.S.); (S.A.)
| |
Collapse
|
85
|
Bai Y, Hu M, Chen Z, Wei J, Du H. Single-Cell Transcriptome Analysis Reveals RGS1 as a New Marker and Promoting Factor for T-Cell Exhaustion in Multiple Cancers. Front Immunol 2021; 12:767070. [PMID: 34956194 PMCID: PMC8692249 DOI: 10.3389/fimmu.2021.767070] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
T-cell exhaustion is one of the main reasons of tumor immune escape. Using single-cell transcriptome data of CD8+ T cells in multiple cancers, we identified different cell types, in which Pre_exhaust and exhausted T cells participated in negative regulation of immune system process. By analyzing the coexpression network patterns and differentially expressed genes of Pre_exhaust, exhausted, and effector T cells, we identified 35 genes related to T-cell exhaustion, whose high GSVA scores were associated with significantly poor prognosis in various cancers. In the differentially expressed genes, RGS1 showed the greatest fold change in Pre_exhaust and exhausted cells of three cancers compared with effector T cells, and high expression of RGS1 was also associated with poor prognosis in various cancers. Additionally, RGS1 protein was upregulated significantly in tumor tissues in the immunohistochemistry verification. Furthermore, RGS1 displayed positive correlation with the 35 genes, especially highly correlated with PDCD1, CTLA4, HAVCR2, and TNFRSF9 in CD8+ T cells and cancer tissues, indicating the important roles of RGS1 in CD8+ T-cell exhaustion. Considering the GTP-hydrolysis activity of RGS1 and significantly high mRNA and protein expression in cancer tissues, we speculated that RGS1 potentially mediate the T-cell retention to lead to the persistent antigen stimulation, resulting in T-cell exhaustion. In conclusion, our findings suggest that RGS1 is a new marker and promoting factor for CD8+ T-cell exhaustion and provide theoretical basis for research and immunotherapy of exhausted cells.
Collapse
Affiliation(s)
- Yunmeng Bai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital, Shenzhen, China
| | - Meiling Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
86
|
Chen M, Nie Z, Li Y, Gao Y, Wen X, Cao H, Zhang S. A New Ferroptosis-Related lncRNA Signature Predicts the Prognosis of Bladder Cancer Patients. Front Cell Dev Biol 2021; 9:699804. [PMID: 34869304 PMCID: PMC8635160 DOI: 10.3389/fcell.2021.699804] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Ferroptosis is closely related to the occurrence and development of cancer. An increasing number of studies have induced ferroptosis as a treatment strategy for cancer. However, the predictive value of ferroptosis-related lncRNAs in bladder cancer (BC) still need to be further elucidated. The purpose of this study was to construct a predictive signature based on ferroptosis-related long noncoding RNAs (lncRNAs) to predict the prognosis of BC patients. Methods: We downloaded RNA-seq data and the corresponding clinical and prognostic data from The Cancer Genome Atlas (TCGA) database and performed univariate and multivariate Cox regression analyses to obtain ferroptosis-related lncRNAs to construct a predictive signature. The Kaplan-Meier method was used to analyze the overall survival (OS) rate of the high-risk and low-risk groups. Gene set enrichment analysis (GSEA) was performed to explore the functional differences between the high- and low-risk groups. Single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between the predictive signature and immune status. Finally, the correlation between the predictive signature and the treatment response of BC patients was analyzed. Results: We constructed a signature composed of nine ferroptosis-related lncRNAs (AL031775.1, AL162586.1, AC034236.2, LINC01004, OCIAD1-AS1, AL136084.3, AP003352.1, Z84484.1, AC022150.2). Compared with the low-risk group, the high-risk group had a worse prognosis. The ferroptosis-related lncRNA signature could independently predict the prognosis of patients with BC. Compared with clinicopathological variables, the ferroptosis-related lncRNA signature has a higher diagnostic efficiency, and the area under the receiver operating characteristic curve was 0.707. When patients were stratified according to different clinicopathological variables, the OS of patients in the high-risk group was shorter than that of those in the low-risk group. GSEA showed that tumor- and immune-related pathways were mainly enriched in the high-risk group. ssGSEA showed that the predictive signature was significantly related to the immune status of BC patients. High-risk patients were more sensitive to anti-PD-1/L1 immunotherapy and the conventional chemotherapy drugs sunitinib, paclitaxel, cisplatin, and docetaxel. Conclusion: The predictive signature can independently predict the prognosis of BC patients, provides a basis for the mechanism of ferroptosis-related lncRNAs in BC and provides clinical treatment guidance for patients with BC.
Collapse
Affiliation(s)
- Mei Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yan Li
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Xiaohong Wen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
87
|
A pan-cancer analysis revealing the role of TIGIT in tumor microenvironment. Sci Rep 2021; 11:22502. [PMID: 34795387 PMCID: PMC8602416 DOI: 10.1038/s41598-021-01933-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT), an immune checkpoint, plays a pivotal role in immune suppression. However its role in tumor immunity and correlation with the genetic and epigenetic alterations remains unknown. Here, we comprehensively analyzed the expression patterns of the TIGIT and its value of prognostic prediction among 33 types of cancers based on the data collected from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression projects (GTEx). Furthermore, the correlations of TIGIT with pathological stages, tumor-infiltrating immune cells (TIICs), signatures of T cells subtypes, immune checkpoint genes, the degree of Estimation of STromal and Immune cells in MAlignant Tumor tissues using the Expression data (ESTIMATE), tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) genes, and DNA methyltransferases (DNMTs) were also explored. Gene functional enrichment was conducted by Gene Set Enrichment Analysis (GSEA). Our results showed that the expression of TIGIT was upregulated in most of the cancer types. Cox regression model showed that high expression of TIGIT in tumor samples correlates with poor prognosis in KIRC, KIRP, LGG, UVM, and with favorable prognosis in BRCA, CECS, HNSC, SKCM. TIGIT expression positively correlated with advanced stages, TIICs, the signatures of effector T cells, exhausted T cells, effector Tregs and the degree of ESTIMATE in KIRC, KIRP and UVM. TIGIT expression also positively correlated with CTLA4, PDCD1 (PD-1), CD274 (PD-L1), ICOS in most of the cancer types. Furthermore, the expression of TIGIT was correlated with TMB, MSI, MMR genes and DNMTs in different types of cancers. GSEA analysis showed that the expression of TIGIT was related to cytokine-cytokine receptor interaction, allograft rejection, oxidative phosphorylation. These findings suggested that TIGIT could serve as a potential biomarker for prognosis and a novel target for immunotherapies in cancers.
Collapse
|
88
|
Xu X, Wang D, Li N, Sheng J, Xie M, Zhou Z, Cheng G, Fan Y. The Novel Tumor Microenvironment-Related Prognostic Gene AIF1 May Influence Immune Infiltrates and is Correlated with TIGIT in Esophageal Cancer. Ann Surg Oncol 2021; 29:2930-2940. [PMID: 34751872 DOI: 10.1245/s10434-021-10928-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Esophageal carcinoma (EC) is the sixth most common cause of cancer-related mortality worldwide. Studying the associations of the tumor microenvironment (TME) with pathology and prognosis would illustrate the underlying mechanism of prognostic prediction and provide novel targets for immunotherapy in the treatment of EC. METHODS Transcriptomic profiles of 159 EC patients were obtained from The Cancer Genome Atlas (TCGA) database. Stromal and immune scores were calculated using the ESTIMATE algorithm. Differentially expressed genes (DEGs) were identified by the optimal score cutoff. Functional enrichments were analyzed by DAVID, while prognostic genes were explored using the Kaplan-Meier method. Validation analysis was performed using immunohistochemistry in tissue microarrays containing samples from 145 EC patients. Multiplex immunofluorescence staining was performed to detect a panel of 6 immune markers, including T-cell immunoreceptor with Ig and ITIM domains (TIGIT), in 90 EC patients. RESULTS Immune scores significantly increased with increasing age, while stromal scores were dramatically elevated with increasing tumor stage. Fifteen TME-related DEGs including allograft inflammatory factor 1 (AIF1) were identified as prognostic factors of EC. Furthermore, the validation cohort indicated that AIF1 was negatively associated with the prognosis of esophageal squamous cell carcinoma patients. Subsequent analyses suggested that AIF1 may affect immune infiltrates, including T cells and natural-killer cells. Moreover, a correlation between AIF1 and TIGIT was identified. CONCLUSIONS These results indicate that the TME-related gene AIF1 is a promising predictor of prognosis and is related to immune infiltrates and TIGIT expression in EC. However, further mechanistic studies are needed.
Collapse
Affiliation(s)
- Xiaoling Xu
- Department of Thoracic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou City, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou City, China.,The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Ding Wang
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Na Li
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Jiamin Sheng
- Department of Thoracic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou City, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou City, China
| | - Mingying Xie
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Zichao Zhou
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Guoping Cheng
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou City, China.,The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yun Fan
- Department of Thoracic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou City, China. .,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou City, China. .,The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China.
| |
Collapse
|
89
|
Kalinin RS, Ukrainskaya VM, Chumakov SP, Moysenovich AM, Tereshchuk VM, Volkov DV, Pershin DS, Maksimov EG, Zhang H, Maschan MA, Rubtsov YP, Stepanov AV. Engineered Removal of PD-1 From the Surface of CD19 CAR-T Cells Results in Increased Activation and Diminished Survival. Front Mol Biosci 2021; 8:745286. [PMID: 34722633 PMCID: PMC8548718 DOI: 10.3389/fmolb.2021.745286] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
CAR-T cell therapy is the most advanced way to treat therapy resistant hematologic cancers, in particular B cell lymphomas and leukemias, with high efficiency. Donor T cells equipped ex vivo with chimeric receptor recognize target tumor cells and kill them using lytic granules. CAR-T cells that recognize CD19 marker of B cells (CD19 CAR-T) are considered the gold standard of CAR-T therapy and are approved by FDA. But in some cases, CD19 CAR-T cell therapy fails due to immune suppressive microenvironment. It is shown that tumor cells upregulate expression of PD-L1 surface molecule that binds and increases level and signal provided by PD-1 receptor on the surface of therapeutic CAR-T cells. Induction of this negative signaling results in functional impairment of cytotoxic program in CAR-T cells. Multiple attempts were made to block PD-1 signaling by reducing binding or surface level of PD-1 in CAR-T cells by various means. In this study we co-expressed CD19-CAR with PD-1-specific VHH domain of anti-PD-1 nanobody to block PD-1/PD-L1 signaling in CD19 CAR-T cells. Unexpectedly, despite increased activation of CAR-T cells with low level of PD-1, these T cells had reduced survival and diminished cytotoxicity. Functional impairment caused by disrupted PD-1 signaling was accompanied by faster maturation and upregulation of exhaustion marker TIGIT in CAR-T cells. We conclude that PD-1 in addition to its direct negative effect on CAR-induced signaling is required for attenuation of strong stimulation leading to cell death and functional exhaustion. These observations suggest that PD-1 downregulation should not be considered as the way to improve the quality of therapeutic CAR-T cells.
Collapse
Affiliation(s)
- R S Kalinin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - V M Ukrainskaya
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - S P Chumakov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - A M Moysenovich
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - V M Tereshchuk
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - D V Volkov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - D S Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - E G Maksimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - H Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - M A Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Y P Rubtsov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - A V Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
90
|
CDKN2A is a prognostic biomarker and correlated with immune infiltrates in hepatocellular carcinoma. Biosci Rep 2021; 41:229594. [PMID: 34405225 PMCID: PMC8495430 DOI: 10.1042/bsr20211103] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Cyclin dependent kinase inhibitor 2A (CDKN2A) is an essential regulator of immune cell functionality, but the mechanisms whereby it drives immune infiltration in hepatocellular carcinoma (HCC) remain unclear. In the present study, we studied the association with CDKN2A expression and immune invasion with the risk of developing HCC. A totally of 2207 different genes were found between HCC and adjacent liver tissues from TCGA and GEO databases. CDKN2A was highly expressed in HCC and associated with poorer overall survival and disease-free survival. Notably, CDKN2A expression was positively correlated with infiltrating levels into purity, B cell, CD+8 T cell, CD+4 T cell, macrophage, neutrophil, and dendritic cells in HCC. CDKN2A expression showed strong correlations between diverse immune marker sets in HCC. These findings suggest that CDKN2A expression potentially contributes to regulation of tumor-associated macrophages and can be used as a prognostic biomarker for determining prognosis and immune infiltration in HCC.
Collapse
|
91
|
Gimeno L, González-Lozano I, Soto-Ramírez MF, Martínez-Sánchez MV, López-Cubillana P, Fuster JL, Martínez-García J, Martínez-Escribano J, Campillo JA, Pons-Fuster E, Ferri B, López-Abad A, Muro M, Minguela A. CD8+ T lymphocytes are sensitive to NKG2A/HLA-E licensing interaction: role in the survival of cancer patients. Oncoimmunology 2021; 10:1986943. [PMID: 34676148 PMCID: PMC8525952 DOI: 10.1080/2162402x.2021.1986943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 10/29/2022] Open
Abstract
NK and CD8+ T cells are the main cytolytic effectors involved in innate and adaptive tumor immune surveillance, respectively. Although their educational pathways differ, similarities in their development and function suggest that CD8+ T lymphocytes could be sensitive to NK cell licensing signals, which might influence their antitumor response. To demonstrate this hypothesis, we retrospectively evaluated the impact that NK cell licensing interactions have on the expression of CD226 on CD8+ T lymphocytes and on the survival of patients with different hematopoietic and solid cancers (n = 1,023). Prospectively, we analyzed by multiparametric flow cytometry the anti-CD3/CD28-induced proliferation and immune-receptor expression of purified CD8+ T lymphocytes from healthy donors (n = 17) with different combinations of NK cell licensing ligands. Results show that methionine/threonine (M/T) dimorphism at position -21 of the HLA-B leader peptide, but not other HLA class-I dimorphisms involved in the education of NK cells (HLA-C1/C2 or HLA-Bw4), is associated with greater survival and expression of CD226 in cancer patients, which was proportional to the number of methionines present in their genotype. CD8+ T lymphocytes from healthy donors with -21 M showed higher proliferation rates and lower expression of TIGIT after in vitro stimulation. Therefore, CD8+ T lymphocytes, like NK cells, appear to be sensitive to the -21 M/T dimorphism of HLA-B leader peptide, which results in the modulation of CD226 in vivo and the proliferation and expression of TIGIT after in vitro stimulation, all of which could be related to their immune-surveillance capacity and the survival of cancer patients.
Collapse
Affiliation(s)
- Lourdes Gimeno
- Immunology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
- Human Anatomy Department, University of Murcia (Um), Murcia, Spain
| | - Isabel González-Lozano
- Immunology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| | - María F. Soto-Ramírez
- Immunology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| | - María V. Martínez-Sánchez
- Immunology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| | - Pedro López-Cubillana
- Urology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| | - José L. Fuster
- Pediatric Oncohematology Department, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| | - Jerónimo Martínez-García
- Oncology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| | - Jorge Martínez-Escribano
- Dermatology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| | - José A. Campillo
- Immunology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| | - Eduardo Pons-Fuster
- Immunology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| | - Belén Ferri
- Pathology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| | - Alicia López-Abad
- Urology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| | - Manuel Muro
- Immunology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen De La Arrrixaca (Hcuva), Biomedical Research Institute of Murcia (Imib), Murcia, Spain
| |
Collapse
|
92
|
Wang P, Chen Y, Long Q, Li Q, Tian J, Liu T, Wu Y, Ding Z. Increased coexpression of PD-L1 and TIM3/TIGIT is associated with poor overall survival of patients with esophageal squamous cell carcinoma. J Immunother Cancer 2021; 9:jitc-2021-002836. [PMID: 34625514 PMCID: PMC8504357 DOI: 10.1136/jitc-2021-002836] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Background Immune checkpoint (IC) blockades (ICBs) significantly improve patients’ clinical outcomes with solid tumors. Because the objective response rate of single-agent ICB is limited, it is meaningful to explore the combination of ICs for immunotherapy. Methods RNA sequencing data of 95 newly diagnosed patients with esophageal squamous cell carcinoma (ESCC) from The Cancer Genome Atlas (TCGA) database were used to explore the prognostic significance of ICs. The results were validated by immunohistochemistry of 58 ESCC tissue samples from our clinical center. Results The results of both TCGA and validation data suggested that high expression of programmed cell death 1 ligand 1 (PD-L1), T-cell immunoglobulin and mucin-domain-containing-3 (TIM3), and T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) was associated with poor overall survival (OS) of patients with ESCC. Importantly, PD-L1/TIM3 or PD-L1/TIGIT was the optimal combination for predicting poor OS and short restricted mean survival time of patients with ESCC and was an independent prognostic factor. Moreover, a nomogram model constructed by PD-L1, TIM3, and TIGIT together with the primary tumor, regional lymph node, distant metastasis stage could provide a concise and precise prediction of 1-year and 2-year OS rates and median survival time. PD-L1/TIM3 or PD-L1/TIGIT had a positive correlation with CD8+ T cells. Notably, PD-1 and TIM3/TIGIT were primarily coexpressed on CD8+ tumor-infiltrating lymphocyte in patients with ESCC by multiplexed immunofluorescence. Conclusion High expression of ICs was associated with poor OS of patients with ESCC. PD-L1/TIM3 and PD-L1/TIGIT were the optimal combinations for predicting OS, which might be potential targets for future ICBs therapy of ESCC.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yueyun Chen
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Qingqin Long
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qing Li
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Jiangfang Tian
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ting Liu
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhenyu Ding
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
93
|
Huang Y, Zhang G, Zhu Q, Wu X, Wu L. Role of Cytokines Released During Pyroptosis in Non-Small Cell Lung Cancer. Cancer Manag Res 2021; 13:7399-7409. [PMID: 34594133 PMCID: PMC8478113 DOI: 10.2147/cmar.s330232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Pyroptosis is a recently discovered highly inflammatory form of programmed cell death, during which the N-terminus of the cleaved Gasdermin protein family forms pores in the cell membrane, leading to cell disintegration and the release of certain intracellular factors, including caspase3, gasdermin E (GSDME), and high mobility group proteins (HMGB1), which trigger a series of secondary inflammatory reactions. Specifically, caspase3 can lyse GSDME and induce pyrolysis, while HMGB1 is released passively after cell membrane destruction. In this study, the roles of these proteins in lung cancer tissues as well as their clinical significance were investigated. Patients and Methods The expression levels of GSDME, caspase3, and HMGB1 proteins in lung cancer and paracancerous tissues were determined via immunohistochemical staining, and their relationship with the clinical stage, pathological grade, and survival prognosis of the patients was analyzed. Further, CD8+ T cell accumulation in the above-mentioned tissues was also determined, and differences between them with respect to CD8+T cell distribution were also investigated. Furthermore, the relationships between CD8+ T cell abundance and the expression levels of the above-mentioned proteins were determined via statistical analyses. Results Lung cancer and paracancerous tissues showed significantly different GSDME, caspase3, and HMGB1 protein expression levels. GSDME expression level and the presence or absence of lymph node invasion were identified as prognostic indicators of survival in patients with lung cancer. Surprisingly, however, HMGB1, which showed a certain level of correlation with the presence or absence of lymph node metastasis, could not be used as a prognostic indicator of survival. Conclusion GSDME may be an important prognostic indicator of survival in patients with lung cancer. However, the effects of HMGB1 expression level and CD8+ T cell abundance on the prognosis of patients with lung cancer still need further investigation.
Collapse
Affiliation(s)
- Yuanli Huang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, People's Republic of China.,Graduate School of Bengbu Medical College, Bengbu City, Anhui Province, People's Republic of China
| | - Guanghui Zhang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, People's Republic of China.,Graduate School of Bengbu Medical College, Bengbu City, Anhui Province, People's Republic of China
| | - Qing Zhu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, People's Republic of China
| | - Xia Wu
- Department of Pathology, Fuyang Tumor Hospital, Fuyang City, Anhui Province, People's Republic of China
| | - Ligao Wu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, People's Republic of China
| |
Collapse
|
94
|
Hosseinkhani N, Shadbad MA, Asghari Jafarabadi M, Karim Ahangar N, Asadzadeh Z, Mohammadi SM, Lotfinejad P, Alizadeh N, Brunetti O, Fasano R, Silvestris N, Baradaran B. A Systematic Review and Meta-Analysis on the Significance of TIGIT in Solid Cancers: Dual TIGIT/PD-1 Blockade to Overcome Immune-Resistance in Solid Cancers. Int J Mol Sci 2021; 22:ijms221910389. [PMID: 34638729 PMCID: PMC8508743 DOI: 10.3390/ijms221910389] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Preclinical studies have indicated that T-cell immunoglobulin and ITIM domain (TIGIT) can substantially attenuate anti-tumoral immune responses. Although multiple clinical studies have evaluated the significance of TIGIT in patients with solid cancers, their results remain inconclusive. Thus, we conducted the current systematic review and meta-analysis based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) to determine its significance in patients with solid cancers. We systematically searched the Web of Science, Embase, PubMed, and Scopus databases to obtain peer-reviewed studies published before September 20, 2020. Our results have shown that increased TIGIT expression has been significantly associated with inferior overall survival (OS) (HR = 1.42, 95% CI: 1.11–1.82, and p-value = 0.01). Besides, the level of tumor-infiltrating TIGIT+CD8+ T-cells have been remarkably associated inferior OS and relapse-free survival (RFS) of affected patients (HR = 2.17, 95% CI: 1.43–3.29, and p-value < 0.001, and HR = 1.89, 95% CI: 1.36–2.63, and p-value < 0.001, respectively). Also, there is a strong positive association between TIGIT expression with programmed cell death-1 (PD-1) expression in these patients (OR = 1.71, 95% CI: 1.10–2.68, and p-value = 0.02). In summary, increased TIGIT expression and increased infiltration of TIGIT+CD8+ T-cells can substantially worsen the prognosis of patients with solid cancers. Besides, concerning the observed strong association between TIGIT and PD-1, ongoing clinical trials, and promising preclinical results, PD-1/TIGIT dual blockade can potentially help overcome the immune-resistance state seen following monotherapy with a single immune checkpoint inhibitor in patients with solid cancers.
Collapse
Affiliation(s)
- Negar Hosseinkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (N.K.A.); (Z.A.); (P.L.); (N.A.)
| | - Mahdi Abdoli Shadbad
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Mohammad Asghari Jafarabadi
- Department of Statistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
- Center for the Development of Interdisciplinary Research in Islamic Sciences and Health Sciences, Tabriz University of Medical Sciences, Tabriz 4513956184, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (N.K.A.); (Z.A.); (P.L.); (N.A.)
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (N.K.A.); (Z.A.); (P.L.); (N.A.)
| | - Seyede Momeneh Mohammadi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (N.K.A.); (Z.A.); (P.L.); (N.A.)
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (N.K.A.); (Z.A.); (P.L.); (N.A.)
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (O.B.); (R.F.)
| | - Rossella Fasano
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (O.B.); (R.F.)
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (O.B.); (R.F.)
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-337-1440 (B.B.); Fax: +98-413-337-1311 (B.B.)
| | - Behzad Baradaran
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-337-1440 (B.B.); Fax: +98-413-337-1311 (B.B.)
| |
Collapse
|
95
|
Ye R, Zeng H, Liu Z, Jin K, Liu C, Yan S, Yu Y, You R, Zhang H, Chang Y, Wang Y, Liu L, Zhu Y, Xu J, Xu L, Wang Z. Latency-associated peptide identifies therapeutically resistant muscle-invasive bladder cancer with poor prognosis. Cancer Immunol Immunother 2021; 71:301-310. [PMID: 34152439 DOI: 10.1007/s00262-021-02987-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Latency-associated peptide (LAP) was identified as crucial immune regulator in tumor microenvironment (TME) in recent researches. In this study, we aimed to estimate the predictive value of LAP expression for clinical survival and therapeutic response in muscle-invasive bladder cancer (MIBC). METHODS Our study encompassed 140 MIBC patients from Zhongshan Hospital (ZSHS cohort), 401 patients from The Cancer Genome Atlas (TCGA cohort) and 195 patients received PDL1 blockade from IMvigor210 trial. Survival analyses were conducted through Kaplan-Meier curve and Cox regression model. LAP expression and its association with immune contexture were evaluated in ZSHS and TCGA cohort. RESULTS We found that high intratumoral LAP+ cells infiltration anticipated inferior survival and adjuvant chemotherapy (ACT) response, and was closely related to an immunoevasive contexture with increased M2 macrophages, neutrophils and conspicuously a cluster of highly exhausted CD8+ T cells. The combinational analysis of LAP+ cells and CD8+ T cells infiltration stratified patients into distinct risk groups with implications for therapeutic sensitivity to PDL1 blockade and refinement of molecular classification in MIBC. CONCLUSIONS LAP expression was correlated with patients' inferior prognosis, ACT-tolerance and an immunoevasive TME with exhausted CD8+ T cell infiltration, suggesting that LAP could serve as a promising therapeutic target in MIBC. Simultaneously, our novel TME classification based on LAP+ cells and CD8+ T cells infiltration and its potential in appraising PDL1 blockade application for MIBC patients deserved further validation.
Collapse
Affiliation(s)
- Ruiting Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chunnan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Sen Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanze Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Runze You
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hongyi Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
96
|
Armitage JD, Newnes HV, McDonnell A, Bosco A, Waithman J. Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells 2021; 10:E56. [PMID: 33401460 PMCID: PMC7823446 DOI: 10.3390/cells10010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the immune system to eradicate malignant tissue. However, it is well recognised that some cancers are highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular components such as the extracellular matrix. While understanding the dynamics of the TME has been instrumental in predicting durable responses to immunotherapy and developing new treatment strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more comprehensive and balanced anti-tumour response.
Collapse
Affiliation(s)
- Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Alison McDonnell
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
- National Centre for Asbestos Related Diseases, QEII Medical Centre, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| |
Collapse
|
97
|
Fidelle M, Yonekura S, Picard M, Cogdill A, Hollebecque A, Roberti MP, Zitvogel L. Resolving the Paradox of Colon Cancer Through the Integration of Genetics, Immunology, and the Microbiota. Front Immunol 2020; 11:600886. [PMID: 33381121 PMCID: PMC7768083 DOI: 10.3389/fimmu.2020.600886] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
While colorectal cancers (CRC) are paradigmatic tumors invaded by effector memory lymphocytes, the mechanisms accounting for the relative resistance of MSI negative CRC to immunogenic cell death mediated by oxaliplatin and immune checkpoint inhibitors has remained an open conundrum. Here, we propose the viewpoint where its microenvironmental contexture could be explained -at least in part- by macroenvironmental cues constituted by the complex interplay between the epithelial barrier, its microbial ecosystem, and the local immune system. Taken together this dynamic ménage-à-trois offers novel coordinated actors of the humoral and cellular immune responses actionable to restore sensitivity to immune checkpoint inhibition. Solving this paradox involves breaking tolerance to crypt stem cells by inducing the immunogenic apoptosis of ileal cells in the context of an ileal microbiome shifted towards immunogenic bacteria using cytotoxicants. This manoeuver results in the elicitation of a productive Tfh and B cell dialogue in mesenteric lymph nodes culminating in tumor-specific memory CD8+ T cell responses sparing the normal epithelium.
Collapse
Affiliation(s)
- Marine Fidelle
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Satoru Yonekura
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Marion Picard
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Unit Biology and Genetics of the Bacterial Cell Wall, Institut Pasteur, Paris, France
| | - Alexandria Cogdill
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
- Department of Genomic Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Antoine Hollebecque
- Gustave Roussy, Villejuif, France
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Maria Paula Roberti
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Villejuif, France
| |
Collapse
|