51
|
Tishinsky JM, Ma DWL, Robinson LE. Eicosapentaenoic acid and rosiglitazone increase adiponectin in an additive and PPARγ-dependent manner in human adipocytes. Obesity (Silver Spring) 2011; 19:262-8. [PMID: 20814411 DOI: 10.1038/oby.2010.186] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adiponectin, an anti-inflammatory and insulin-sensitizing protein secreted from adipose tissue, may be modulated by dietary fatty acids, although the mechanism is not fully known. Our objective was to investigate the effect of long-chain n-3 polyunsaturated fatty acids (PUFAs) on adiponectin in cultured human adipocytes, and to elucidate the role of peroxisome proliferator-activated receptor-γ (PPARγ) in this regulation. Isolated human adipocytes were cultured for 48 h with 100 µmol/l eicosapentaenoic acid (C20:5n-3, EPA), docosahexaenoic acid (C22:6n-3, DHA), palmitic acid (C16:0), 100 µmol/l EPA plus 100 µmol/l DHA, or bovine serum albumin (control). Additionally, adipocytes were treated for 48 h with a PPARγ antagonist (BADGE) or agonist (rosiglitazone) in isolation or in conjunction with either EPA or DHA. At 48 h, EPA and DHA increased (P < 0.05) adiponectin secretion by 88 and 47%, respectively, while EPA, but not DHA, also increased (136%, P < 0.001) cellular adiponectin protein. Interestingly, PPARγ antagonism completely abolished the DHA-mediated increase in secreted adiponectin, but only partially attenuated the EPA-mediated response. Thus, EPA's effects on adiponectin do not appear to be entirely PPARγ mediated. Rosiglitazone increased (P < 0.001) the secreted and cellular adiponectin protein (90 and 582%, respectively). Finally, the effects of EPA and rosiglitazone on adiponectin secretion were additive (+230% at 48 h combined, compared to 121 and 124% by EPA or rosiglitazone alone, respectively). Overall, our findings emphasize the therapeutic importance of long-chain n-3 PUFA alone, or in combination with a PPARγ agonist, as a stimulator of adiponectin, a key adipokine involved in obesity and related diseases.
Collapse
Affiliation(s)
- Justine M Tishinsky
- Department of Human Health and Nutritional Sciences, Animal Science and Nutrition Building, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
52
|
Abstract
About 60% of adults in the United States do not consume the estimated average requirement for magnesium, but widespread pathological conditions attributed to magnesium deficiency have not been reported. Nevertheless, low magnesium status has been associated with numerous pathological conditions characterized as having a chronic inflammatory stress component. In humans, deficient magnesium intakes are mostly marginal to moderate (approximately 50% to <100% of the recommended dietary allowance). Animal experiments indicate that signs of marginal-to-moderate magnesium deficiency can be compensated or exacerbated by other factors influencing inflammatory and oxidative stress; recent studies suggest a similar happening in humans. This suggestion may have significance in obesity, which is characterized as having a chronic low-grade inflammation component and an increased incidence of a low magnesium status. Marginal-to-moderate magnesium deficiency through exacerbating chronic inflammatory stress may be contributing significantly to the occurrence of chronic diseases such as atherosclerosis, hypertension, osteoporosis, diabetes mellitus, and cancer.
Collapse
Affiliation(s)
- Forrest H Nielsen
- US Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota 58202-9034, USA.
| |
Collapse
|
53
|
Kaarniranta K, Salminen A. NF-κB signaling as a putative target for ω-3 metabolites in the prevention of age-related macular degeneration (AMD). Exp Gerontol 2009; 44:685-8. [DOI: 10.1016/j.exger.2009.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/28/2009] [Accepted: 09/08/2009] [Indexed: 12/24/2022]
|
54
|
Brown M, Storlien L, Huang XF, Tapsell L, Else P, Higgins J, Brown I. Dietary Fat and Carbohydrate Composition. Front Neurosci 2009. [DOI: 10.1201/9781420067767-c21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
55
|
Abstract
Selenoproteins are proteins containing selenium in the form of the 21st amino acid, selenocysteine. Members of this protein family have many diverse functions, but their synthesis is dependent on a common set of cofactors and on dietary selenium. Although the functions of many selenoproteins are unknown, several disorders involving changes in selenoprotein structure, activity or expression have been reported. Selenium deficiency and mutations or polymorphisms in selenoprotein genes and synthesis cofactors are implicated in a variety of diseases, including muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders and endocrine function. Members of this unusual family of proteins have roles in a variety of cell processes and diseases.
Collapse
|
56
|
Okahashi A, Okada T, Saito E, Miyashita M, Kuromori Y, Iwata F, Hara M, Mugishima H, Kitamura Y, Shimizu T. Concentrations of very long-chain fatty acid in whole blood are associated with cardiovascular risk factors in children. Clin Chim Acta 2009; 401:141-3. [DOI: 10.1016/j.cca.2008.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
|
57
|
Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 2009; 8:18-30. [PMID: 18692159 PMCID: PMC3782993 DOI: 10.1016/j.arr.2008.07.002] [Citation(s) in RCA: 859] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/05/2008] [Accepted: 07/08/2008] [Indexed: 12/20/2022]
Abstract
Recent scientific studies have advanced the notion of chronic inflammation as a major risk factor underlying aging and age-related diseases. In this review, low-grade, unresolved, molecular inflammation is described as an underlying mechanism of aging and age-related diseases, which may serve as a bridge between normal aging and age-related pathological processes. Accumulated data strongly suggest that continuous (chronic) upregulation of pro-inflammatory mediators (e.g., TNF-alpha, IL-1beta, IL-6, COX-2, iNOS) are induced during the aging process due to an age-related redox imbalance that activates many pro-inflammatory signaling pathways, including the NF-kappaB signaling pathway. These pro-inflammatory molecular events are discussed in relation to their role as basic mechanisms underlying aging and age-related diseases. Further, the anti-inflammatory actions of aging-retarding caloric restriction and exercise are reviewed. Thus, the purpose of this review is to describe the molecular roles of age-related physiological functional declines and the accompanying chronic diseases associated with aging. This new view on the role of molecular inflammation as a mechanism of aging and age-related pathogenesis can provide insights into potential interventions that may affect the aging process and reduce age-related diseases, thereby promoting healthy longevity.
Collapse
Affiliation(s)
- Hae Young Chung
- Department of Pharmacy, Longevity Science and Technology Institutes, Research Institute for Drug Development, Pusan National University, Geumjeong-gu, Busan 609-735, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Qiu J, Ni YH, Chen RH, Ji CB, Liu F, Zhang CM, Gao CL, Chen XH, Tong ML, Chi X, Zhou XY, Guo XR. Gene expression profiles of adipose tissue of obese rats after central administration of neuropeptide Y-Y5 receptor antisense oligodeoxynucleotides by cDNA microarrays. Peptides 2008; 29:2052-60. [PMID: 18652865 DOI: 10.1016/j.peptides.2008.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 11/24/2022]
Abstract
To investigate the gene expression profiles of adipose tissue of obese rats after central administration of neuropeptide Y-Y5 receptor antisense oligodeoxynucleotides (ODNs), Y5 receptor antisense, mismatched ODNs or vehicle was intracerebroventricularly injected and cDNA microarrays were undertaken. Central administration of NPY-Y5 receptor antisense ODNs decreased food intake, body weight and serum insulin compared with both vehicle and mismatched ODNs. The average area of adipocytes both at retroperitoneal and epididymal adipose tissue were fall in antisense group while only the weight of the retroperitoneal fat pats was reduced in antisense group. cDNA microarrays containing 18,000 genes/Ests were used to investigate gene expression of adipose tissue. Autoradiographic analysis showed that 404, 81, and 34 genes were differently expressed over twofold, threefold, and fivefold, respectively. The analysis of gene expression profiles indicated that 332 genes were up-regulated and 187 genes were down-regulated in response to Y5 receptor antisense ODNs treatment. Different clusters of genes associated with apoptosis, signal transduction, energy metabolism, lipid metabolism, etc., such as FXR1, PHLDA1, MAEA, PIK3R1, ICAM2, PITPN, CALM2, CAMK2D, PKIA, DRD2, SLC25A14, CKB, AADAC, LIPA, ACOX3, FADS1, were concerned. Analysis of differentially expressed genes will help to understand the effects of Y5 receptor antisense ODNs therapy.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Pediatrics, Nanjing Maternity and Child Health Hospital of Nanjing Medical University, 210004 Nanjing, China; Institute of Pediatrics of Nanjing Medical University, 210029 Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Castro-González MI, Méndez-Armenta M. Heavy metals: Implications associated to fish consumption. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:263-271. [PMID: 21791373 DOI: 10.1016/j.etap.2008.06.001] [Citation(s) in RCA: 316] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/30/2008] [Accepted: 06/10/2008] [Indexed: 05/27/2023]
Abstract
Metals are being utilized of ways in industries and agriculture; particularly heavy metals such as mercury, cadmium, lead and arsenic constitute a significant potential threat to human health because they are associated to many adverse effects on health. The consumption of fish is recommended because it is a good source of omega-3 fatty acids, which have been associated with health benefits due to its cardio-protective effects. However, the content of heavy metals discovered in some fish makes it difficult to establish clearly the role of fish consumption on a healthy diet. Therefore the present mini-review accounts for the recent evidence of the effect of these toxic metals on the human health and their possible implications in fish consumption.
Collapse
Affiliation(s)
- M I Castro-González
- Depto. Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico
| | | |
Collapse
|
60
|
Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2008; 41:40-59. [PMID: 18662800 DOI: 10.1016/j.biocel.2008.06.010] [Citation(s) in RCA: 1171] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/16/2008] [Accepted: 06/23/2008] [Indexed: 12/12/2022]
Abstract
Although safe in most cases, ancient treatments are ignored because neither their active component nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. For centuries it has been known that turmeric exhibits anti-inflammatory activity, but extensive research performed within the past two decades has shown that this activity of turmeric is due to curcumin (diferuloylmethane). This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. The process of inflammation has been shown to play a major role in most chronic illnesses, including neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of various proinflammatory chronic diseases. These features, combined with the pharmacological safety and negligible cost, render curcumin an attractive agent to explore further.
Collapse
|