51
|
Schwartz JJ, Jakob DS, Centrone A. A guide to nanoscale IR spectroscopy: resonance enhanced transduction in contact and tapping mode AFM-IR. Chem Soc Rev 2022; 51:5248-5267. [PMID: 35616225 DOI: 10.1039/d2cs00095d] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infrared (IR) spectroscopy is a broadly applicable, composition sensitive analytical technique. By leveraging the high spatial resolution of atomic force microscopy (AFM), the photothermal effect, and wavelength-tunable lasers, AFM-IR enables IR spectroscopy and imaging with nanoscale (< 10 nm) resolution. The transduction of a sample's photothermal expansion by an AFM probe tip ensures the proportionality between the AFM-IR signal and the sample absorption coefficient, producing images and spectra that are comparable to far-field IR databases and easily interpreted. This convergence of characteristics has spurred robust research efforts to extend AFM-IR capabilities and, in parallel, has enabled AFM-IR to impact numerous fields. In this tutorial review, we present the latest technical breakthroughs in AFM-IR spectroscopy and imaging and discuss its working principles, distinctive characteristics, and best practices for different AFM-IR measurement paradigms. Central to this review, appealing to both expert practitioners and novices alike, is the meticulous understanding of AFM-IR signal transduction, which is essential to take full advantage of AFM-IR capabilities. Here, we critically compile key information and discuss instructive experiments detailing AFM-IR signal transduction and provide guidelines linking experimental parameters to the measurement sensitivity, lateral resolution, and probed depth. Additionally, we provide in-depth tutorials on the most employed AFM-IR variants (resonance-enhanced and tapping mode AFM-IR), discussing technical details and representative applications. Finally, we briefly review recently developed AFM-IR modalities (peak force tapping IR and surface sensitivity mode) and provide insights on the next exciting opportunities and prospects for this fast-growing and evolving field.
Collapse
Affiliation(s)
- Jeffrey J Schwartz
- Laboratory for Physical Sciences, College Park, MD 20740, USA.,Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| | - Devon S Jakob
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St., NW Washington D.C., 20057, USA
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
52
|
Nakagawa K, Shimura Y, Fukazawa Y, Nishizaki R, Matano S, Oya S, Maki H. Microemitter-Based IR Spectroscopy and Imaging with Multilayer Graphene Thermal Emission. NANO LETTERS 2022; 22:3236-3244. [PMID: 35435683 DOI: 10.1021/acs.nanolett.1c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
IR analyses such as Fourier transform infrared spectroscopy (FTIR) are widely used in many fields; however, the performance of FTIR is limited by the slow speed (∼10 Hz), large footprint (∼ millimeter), and glass bulb structure of IR light sources. Herein, we present IR spectroscopy and imaging based on multilayer-graphene microemitters, which have distinct features: a planar structure, bright intensity, a small footprint (sub-μm2), and high modulation speed of >50 kHz. We developed an IR analysis system based on the multilayer-graphene microemitter and performed IR absorption spectroscopy. We show two-dimensional IR chemical imaging that visualizes the distribution of the chemical information. In addition, we present high-spatial-resolution IR imaging with a spatial resolution of ∼1 μm, far higher than the diffraction limit. The graphene-based IR spectroscopy and imaging can open new routes for IR applications in chemistry, material science, medicine, biology, electronics, and physics.
Collapse
Affiliation(s)
- Kenta Nakagawa
- Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Yui Shimura
- Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yusuke Fukazawa
- Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ryosuke Nishizaki
- Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shinichiro Matano
- Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shuma Oya
- Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hideyuki Maki
- Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- Center for Spintronics Research Network, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
53
|
Ami D, Mereghetti P, Natalello A. Contribution of Infrared Spectroscopy to the Understanding of Amyloid Protein Aggregation in Complex Systems. Front Mol Biosci 2022; 9:822852. [PMID: 35463965 PMCID: PMC9023755 DOI: 10.3389/fmolb.2022.822852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Infrared (IR) spectroscopy is a label-free and non-invasive technique that probes the vibrational modes of molecules, thus providing a structure-specific spectrum. The development of infrared spectroscopic approaches that enable the collection of the IR spectrum from a selected sample area, from micro- to nano-scale lateral resolutions, allowed to extend their application to more complex biological systems, such as intact cells and tissues, thus exerting an enormous attraction in biology and medicine. Here, we will present recent works that illustrate in particular the applications of IR spectroscopy to the in situ characterization of the conformational properties of protein aggregates and to the investigation of the other biomolecules surrounding the amyloids. Moreover, we will discuss the potential of IR spectroscopy to the monitoring of cell perturbations induced by protein aggregates. The essential support of multivariate analyses to objectively pull out the significant and non-redundant information from the spectra of highly complex systems will be also outlined.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- *Correspondence: Diletta Ami, ; Antonino Natalello,
| | | | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- *Correspondence: Diletta Ami, ; Antonino Natalello,
| |
Collapse
|
54
|
Experimental characterization techniques for plasmon-assisted chemistry. Nat Rev Chem 2022; 6:259-274. [PMID: 37117871 DOI: 10.1038/s41570-022-00368-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/19/2022]
Abstract
Plasmon-assisted chemistry is the result of a complex interplay between electromagnetic near fields, heat and charge transfer on the nanoscale. The disentanglement of their roles is non-trivial. Therefore, a thorough knowledge of the chemical, structural and spectral properties of the plasmonic/molecular system being used is required. Specific techniques are needed to fully characterize optical near fields, temperature and hot carriers with spatial, energetic and/or temporal resolution. The timescales for all relevant physical and chemical processes can range from a few femtoseconds to milliseconds, which necessitates the use of time-resolved techniques for monitoring the underlying dynamics. In this Review, we focus on experimental techniques to tackle these challenges. We further outline the difficulties when going from the ensemble level to single-particle measurements. Finally, a thorough understanding of plasmon-assisted chemistry also requires a substantial joint experimental and theoretical effort.
Collapse
|
55
|
Chen X, Yao Z, Sun Z, Stanciu SG, Basov DN, Hillenbrand R, Liu M. Rapid simulations of hyperspectral near-field images of three-dimensional heterogeneous surfaces - part II. OPTICS EXPRESS 2022; 30:11228-11242. [PMID: 35473071 DOI: 10.1364/oe.452949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The modeling of the near-field interaction in the scattering-type scanning near-field optical microscope (s-SNOM) is rapidly advancing, although an accurate yet versatile modeling framework that can be easily adapted to various complex situations is still lacking. In this work, we propose a time-efficient numerical scheme in the quasi-electrostatic limit to capture the tip-sample interaction in the near field. This method considers an extended tip geometry, which is a significant advantage compared to the previously reported method based on the point-dipole approximation. Using this formalism, we investigate, among others, nontrivial questions such as uniaxial and biaxial anisotropy in the near-field interaction, the relationship between various experimental parameters (e.g. tip radius, tapping amplitude, etc.), and the tip-dependent spatial resolution. The demonstrated method further sheds light on the understanding of the contrast mechanism in s-SNOM imaging and spectroscopy, while also representing a valuable platform for future quantitative analysis of the experimental observations.
Collapse
|
56
|
Yuan J, Su W, Hu X, Li X, Fei C. Application of Raman imaging and scanning electron microscopy techniques for the advanced characterization of geological samples. Microsc Res Tech 2022; 85:2729-2739. [PMID: 35238423 DOI: 10.1002/jemt.24093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/18/2022] [Accepted: 02/12/2022] [Indexed: 12/29/2022]
Abstract
Raman is an important tool for diagnosing minerals in geoscience. However, smaller magnification of optical microscope assembled in conventional Raman spectroscopy limits the application of Raman in sub-micro and nano scale. Raman imaging and scanning electron microscopy (RISE) combine the advantage of scanning electron microscope and Raman spectroscopy, which can collect the morphology, composition, and structure information in the same micro region of the geological sample in situ. In this paper, we introduce the development and working mechanism of RISE, and carried out some typical applications in different research of geoscience. The purpose of this review is to allow readers to understand the basic principles and application potential of RISE in geoscience. Finally, we briefly point out current challenges faced by this technology and some research directions in the future.
Collapse
Affiliation(s)
- Jiangyan Yuan
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Wen Su
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Xinmeng Hu
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoguang Li
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Chenhui Fei
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
57
|
Rizevsky S, Zhaliazka K, Dou T, Matveyenka M, Kurouski D. Characterization of Substrates and Surface-Enhancement in Atomic Force Microscopy Infrared Analysis of Amyloid Aggregates. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:4157-4162. [PMID: 35719853 PMCID: PMC9205157 DOI: 10.1021/acs.jpcc.1c09643] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic force microscopy infrared (AFM-IR) spectroscopy is an emerging analytical technique that can be used to probe the structural organization of specimens with nanometer spatial resolution. A growing body of evidence suggests that nanoscale structural analysis of very small (<10 nm) biological objects, such as viruses and amyloid aggregates, requires substrates that must fit strict criteria of low surface roughness and low IR background, simultaneously. In this study, we examine the suitability of a broad range of substrates commonly used in AFM and IR fields, and we determined that silicon, zinc sulfide, and calcium fluoride are the most ideal substrates for nanoscale imaging of amyloid oligomers, protein aggregates that are directly linked to the onset and progression of neurodegenerative diseases. Our data show that these substrates provide the lowest roughness and the lowest background in the 800-1800 cm-1 spectral window from all examined AFM and IR substrates. We also investigate a contribution of surface enhancement in AFM-IR by the direct comparison of signal intensities from oligomers located on silicon and gold-coated silicon surfaces. We found that metallization of such substrates provides a factor of ~7 enhancements to the IR signal and induces an equivalent enhancement of the sample background in the 950-1250 cm-1 spectral region.
Collapse
Affiliation(s)
- Stanislav Rizevsky
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States; Department of Biotechnology, Binh Duong University, Thu Dau Mot 820000, Vietnam
| | - Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Tianyi Dou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
58
|
Ma X, Pavlidis G, Dillon E, Beltran V, Schwartz JJ, Thoury M, Borondics F, Sandt C, Kjoller K, Berrie BH, Centrone A. Micro to Nano: Multiscale IR Analyses Reveal Zinc Soap Heterogeneity in a 19th-Century Painting by Corot. Anal Chem 2022; 94:3103-3110. [PMID: 35138807 DOI: 10.1021/acs.analchem.1c04182] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (μ-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with ≈500 and ≈10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (μ-FTIR ≈ 102 μm3, O-PTIR ≈ 10-1 μm3, PTIR ≈ 10-5 μm3). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often ≪ 0.1 μm3) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (≈1530-1558 cm-1) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at ≈1596 cm-1. We show that the high signal-to-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices.
Collapse
Affiliation(s)
- Xiao Ma
- Institute for the Conservation of Cultural Heritage, Shanghai University, No. 333 Nanchen Road, Shanghai 200444, China
| | - Georges Pavlidis
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Eoghan Dillon
- Photothermal Spectroscopy Corporation, 325 Chapala Street, Santa Barbara, California 93101, United States
| | - Victoria Beltran
- IPANEMA, CNRS, Ministère de la Culture et de la Communication Université de Versailles Saint-Quentin-en-Yvelines, USR 3461, Université Paris-Saclay, 91128 Gif-sur-Yvette, France
| | - Jeffrey J Schwartz
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States.,Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Mathieu Thoury
- IPANEMA, CNRS, Ministère de la Culture et de la Communication Université de Versailles Saint-Quentin-en-Yvelines, USR 3461, Université Paris-Saclay, 91128 Gif-sur-Yvette, France
| | - Ferenc Borondics
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Christophe Sandt
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Kevin Kjoller
- Photothermal Spectroscopy Corporation, 325 Chapala Street, Santa Barbara, California 93101, United States
| | - Barbara H Berrie
- Scientific Research Department, National Gallery of Art, 2000B South Club Drive, Landover, Maryland 20785, United States
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
59
|
Broadband Near-Field Near-Infrared Spectroscopy and Imaging with a Laser-Driven Light Source. PHOTONICS 2022. [DOI: 10.3390/photonics9020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The scattering-type scanning near-field optical microscope (s-SNOM) has become a powerful imaging and nano-spectroscopy tool, which is widely used in the characterization of electronic and photonic devices, two-dimensional materials and biomolecules. However, in the published literature, nano-spectroscopy is mainly employed in the mid-infrared band, and the near-infrared (NIR) nano-spectroscopy with broadband spectral range has not been well discussed. In the present paper, we introduce a home-built near-field NIR spectroscopy and imaging set-up that is based on a laser-driven light source (LDLS). By mapping the Ge-Au periodic grating sample and the photonic topology device, a ~30 nm spatial resolution and the excellent capability of characterizing complex samples are demonstrated. Spectra obtained by experiment reveal the optical band-gap of Ge with a spectral resolution of 25 cm−1, and a spectral range from 900 to 2000 nm. This technology is expected to provide a novel and unique approach for near-field NIR spectroscopy and imaging.
Collapse
|
60
|
Wang H, Xie Q, Xu XG. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope. Adv Drug Deliv Rev 2022; 180:114080. [PMID: 34906646 DOI: 10.1016/j.addr.2021.114080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Small biomolecules at the subcellular level are building blocks for the manifestation of complex biological activities. However, non-intrusive in situ investigation of biological systems has been long daunted by the low spatial resolution and poor sensitivity of conventional light microscopies. Traditional infrared (IR) spectro-microscopy can enable label-free visualization of chemical bonds without extrinsic labeling but is still bound by Abbe's diffraction limit. This review article introduces a way to bypass the optical diffraction limit and improve the sensitivity for mid-IR methods - using tip-enhanced light nearfield in atomic force microscopy (AFM) operated in tapping and peak force tapping modes. Working principles of well-established scattering-type scanning near-field optical microscopy (s-SNOM) and two relatively new techniques, namely, photo-induced force microscopy (PiFM) and peak force infrared (PFIR) microscopy, will be briefly presented. With ∼ 10-20 nm spatial resolution and monolayer sensitivity, their recent applications in revealing nanoscale chemical heterogeneities in a wide range of biological systems, including biomolecules, cells, tissues, and biomaterials, will be reviewed and discussed. We also envision several future improvements of AFM-based tapping and peak force tapping mode nano-IR methods that permit them to better serve as a versatile platform for uncovering biological mechanisms at the fundamental level.
Collapse
Affiliation(s)
- Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qing Xie
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
61
|
Raussens V, Waeytens J. Characterization of Bacterial Amyloids by Nano-infrared Spectroscopy. Methods Mol Biol 2022; 2538:117-129. [PMID: 35951297 DOI: 10.1007/978-1-0716-2529-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic force microscopy has been used for decades to study the topography of proteins during aggregation but with a lack of information on the secondary structure. On the contrary, infrared spectroscopy was able to study structural changes during the aggregation, but this analysis is complicated due to the presence of different species in mixtures and the poor spatial (~μm) resolution of the FTIR microscopy. Recently, Professor Alexandre Dazzi combined those techniques in the so-called AFM-IR. This method allows acquiring IR spectra at the nanometric scale and becomes a new standard method for the characterization of amyloid fibrils and, more generally, for the aggregation of proteins.
Collapse
Affiliation(s)
- Vincent Raussens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium.
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Sud, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
62
|
Bilkey N, Li H, Borodinov N, Ievlev AV, Ovchinnikova OS, Dixit R, Foston M. Correlated mechanochemical maps of Arabidopsis thaliana primary cell walls using atomic force microscope infrared spectroscopy. QUANTITATIVE PLANT BIOLOGY 2022; 3:e31. [PMID: 37077971 PMCID: PMC10095902 DOI: 10.1017/qpb.2022.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 10/07/2022] [Indexed: 05/03/2023]
Abstract
Spatial heterogeneity in composition and organisation of the primary cell wall affects the mechanics of cellular morphogenesis. However, directly correlating cell wall composition, organisation and mechanics has been challenging. To overcome this barrier, we applied atomic force microscopy coupled with infrared (AFM-IR) spectroscopy to generate spatially correlated maps of chemical and mechanical properties for paraformaldehyde-fixed, intact Arabidopsis thaliana epidermal cell walls. AFM-IR spectra were deconvoluted by non-negative matrix factorisation (NMF) into a linear combination of IR spectral factors representing sets of chemical groups comprising different cell wall components. This approach enables quantification of chemical composition from IR spectral signatures and visualisation of chemical heterogeneity at nanometer resolution. Cross-correlation analysis of the spatial distribution of NMFs and mechanical properties suggests that the carbohydrate composition of cell wall junctions correlates with increased local stiffness. Together, our work establishes new methodology to use AFM-IR for the mechanochemical analysis of intact plant primary cell walls.
Collapse
Affiliation(s)
- Natasha Bilkey
- Department of Biology, Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri63130, USA
| | - Huiyong Li
- Department of Energy, Environmental and Chemical Engineering, Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri63130, USA
| | - Nikolay Borodinov
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, USA
| | - Anton V. Ievlev
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, USA
| | - Olga S. Ovchinnikova
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, USA
| | - Ram Dixit
- Department of Biology, Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri63130, USA
| | - Marcus Foston
- Department of Energy, Environmental and Chemical Engineering, Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri63130, USA
- Author for correspondence: M. Foston, E-mail:
| |
Collapse
|
63
|
Rao VJ, Qi H, Berger FJ, Grieger S, Kaiser U, Backes C, Zaumseil J. Liquid Phase Exfoliation of Rubrene Single Crystals into Nanorods and Nanobelts. ACS NANO 2021; 15:20466-20477. [PMID: 34813291 DOI: 10.1021/acsnano.1c08965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid phase exfoliation (LPE) is a popular method to create dispersions of two-dimensional nanosheets from layered inorganic van der Waals crystals. Here, it is applied to orthorhombic and triclinic single crystals of the organic semiconductor rubrene with only noncovalent interactions (mainly π-π) between the molecules. Distinct nanorods and nanobelts of rubrene are formed, stabilized against aggregation in aqueous sodium cholate solution, and isolated by liquid cascade centrifugation. Selected-area electron diffraction and Raman spectroscopy confirm the crystallinity of the rubrene nanorods and nanobelts while the optical properties (absorbance, photoluminescence) of the dispersions are similar to rubrene solutions due to their randomized orientations. The formation of these stable crystalline rubrene nanostructures with only a few molecular layers by LPE confirms that noncovalent interactions in molecular crystals can be strong enough to enable mechanical exfoliation similar to inorganic layered materials.
Collapse
Affiliation(s)
- Vaishnavi J Rao
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Haoyuan Qi
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Felix J Berger
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Grieger
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ute Kaiser
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
| | - Claudia Backes
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
64
|
Deniset-Besseau A, Coat R, Moutel B, Rebois R, Mathurin J, Grizeau D, Dazzi A, Gonçalves O. Revealing Lipid Body Formation and its Subcellular Reorganization in Oleaginous Microalgae Using Correlative Optical Microscopy and Infrared Nanospectroscopy. APPLIED SPECTROSCOPY 2021; 75:1538-1547. [PMID: 34608808 DOI: 10.1177/00037028211050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purpose of this work is to develop an integrated imaging approach to characterize without labeling at the sub-cellular level the formation of lipid body droplets (LBs) in microalgae undergoing nitrogen starvation. First conventional optical microscopy approaches, gas chromatography, and turbidimetry measurements allowed to monitor the biomass and the total lipid content in the oleaginous microalgae Parachlorella kesslerii during the starvation process. Then a local analysis of the LBs was proposed using an innovative infrared nanospectroscopy technique called atomic force microscopy-based infrared spectroscopy (AFM-IR). This label-free technique assessed the formation of LBs and allowed to look into the LB composition thanks to the acquisition of local infrared spectra. Last correlative measurements using fluorescence microscopy and AFM-IR were performed to investigate the subcellular reorganization of LB and the chloroplasts.
Collapse
Affiliation(s)
| | - Rémy Coat
- LUNAM Université, Université de Nantes, GEPEA, UMR CNRS-6144, Saint-Nazaire Cedex, France
| | - Benjamin Moutel
- LUNAM Université, Université de Nantes, GEPEA, UMR CNRS-6144, Saint-Nazaire Cedex, France
| | - Rolando Rebois
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, Orsay, France
| | - Jérémie Mathurin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, Orsay, France
| | - Dominique Grizeau
- LUNAM Université, Université de Nantes, GEPEA, UMR CNRS-6144, Saint-Nazaire Cedex, France
| | - Alexandre Dazzi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, Orsay, France
| | - Olivier Gonçalves
- LUNAM Université, Université de Nantes, GEPEA, UMR CNRS-6144, Saint-Nazaire Cedex, France
| |
Collapse
|
65
|
Rikanati L, Dery S, Gross E. AFM-IR and s-SNOM-IR measurements of chemically addressable monolayers on Au nanoparticles. J Chem Phys 2021; 155:204704. [PMID: 34852499 DOI: 10.1063/5.0072079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The performance of catalysts depends on their nanoscale properties, and local variations in structure and composition can have a dramatic impact on the catalytic reactivity. Therefore, probing the localized reactivity of catalytic surfaces using high spatial resolution vibrational spectroscopy, such as infrared (IR) nanospectroscopy and tip-enhanced Raman spectroscopy, is essential for mapping their reactivity pattern. Two fundamentally different scanning probe IR nanospectroscopy techniques, namely, scattering-type scanning near-field optical microscopy (s-SNOM) and atomic force microscopy-infrared spectroscopy (AFM-IR), provide the capabilities for mapping the reactivity pattern of catalytic surfaces with a spatial resolution of ∼20 nm. Herein, we compare these two techniques with regard to their applicability for probing the vibrational signature of reactive molecules on catalytic nanoparticles. For this purpose, we use chemically addressable self-assembled molecules on Au nanoparticles as model systems. We identified significant spectral differences depending on the measurement technique, which originate from the fundamentally different working principles of the applied methods. While AFM-IR spectra provided information from all the molecules that were positioned underneath the tip, the s-SNOM spectra were more orientation-sensitive. Due to its field-enhancement factor, the s-SNOM spectra showed higher vibrational signals for dipoles that were perpendicularly oriented to the surface. The s-SNOM sensitivity to the molecular orientation influenced the amplitude, position, and signal-to-noise ratio of the collected spectra. Ensemble-based IR measurements verified that differences in the localized IR spectra stem from the enhanced sensitivity of s-SNOM measurements to the adsorption geometry of the probed molecules.
Collapse
Affiliation(s)
- Lihi Rikanati
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shahar Dery
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
66
|
Schlich M, Musazzi UM, Campani V, Biondi M, Franzé S, Lai F, De Rosa G, Sinico C, Cilurzo F. Design and development of topical liposomal formulations in a regulatory perspective. Drug Deliv Transl Res 2021; 12:1811-1828. [PMID: 34755281 PMCID: PMC8577404 DOI: 10.1007/s13346-021-01089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/29/2023]
Abstract
The skin is the absorption site for drug substances intended to treat loco-regional diseases, although its barrier properties limit the permeation of drug molecules. The growing knowledge of the skin structure and its physiology have supported the design of innovative nanosystems (e.g. liposomal systems) to improve the absorption of poorly skin-permeable drugs. However, despite the dozens of clinical trials started, few topically applied liposomal systems have been authorized both in the EU and the USA. Indeed, the intrinsic complexity of the topically applied liposomal systems, the higher production costs, the lack of standardized methods and the more stringent guidelines for assessing their benefit/risk balance can be seen as causes of such inefficient translation. The present work aimed to provide an overview of the physicochemical and biopharmaceutical characterization methods that can be applied to topical liposomal systems intended to be marketed as medicinal products, and the current regulatory provisions. The discussion highlights how such methodologies can be relevant for defining the critical quality attributes of the final product, and they can be usefully applied based on the phase of the life cycle of a liposomal product: to guide the formulation studies in the early stages of development, to rationally design preclinical and clinical trials, to support the pharmaceutical quality control system and to sustain post-marketing variations. The provided information can help define harmonized quality standards able to overcome the case-by-case approach currently applied by regulatory agencies in assessing the benefit/risk of the topically applied liposomal systems.
Collapse
Affiliation(s)
- Michele Schlich
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy.,Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Virginia Campani
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Marco Biondi
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Silvia Franzé
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Francesco Lai
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Giuseppe De Rosa
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Chiara Sinico
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy.
| |
Collapse
|
67
|
Pavlidis G, Schwartz JJ, Matson J, Folland T, Liu S, Edgar JH, Caldwell JD, Centrone A. Experimental confirmation of long hyperbolic polariton lifetimes in monoisotopic ( 10B) hexagonal boron nitride at room temperature. APL MATERIALS 2021; 9:10.1063/5.0061941. [PMID: 37720466 PMCID: PMC10502608 DOI: 10.1063/5.0061941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Hyperbolic phonon polaritons (HPhPs) enable strong confinements, low losses, and intrinsic beam steering capabilities determined by the refractive index anisotropy-providing opportunities from hyperlensing to flat optics and other applications. Here, two scanning-probe techniques, photothermal induced resonance (PTIR) and scattering-type scanning near-field optical microscopy (s-SNOM), are used to map infrared ( 6.4 - 7.4 μ m ) HPhPs in large (up to 120 × 250 μ m 2 near-monoisotopic > 99 % B 10 ) hexagonal boron nitride (hBN) flakes. Wide ( ≈ 40 μ m ) PTIR and s-SNOM scans on such large flakes avoid interference from polaritons launched from different asperities (edges, folds, surface defects, etc.) and together with Fourier analyses 0.05 μ m - 1 resolution) enable precise measurements of HPhP lifetimes (up to ≈ 4.2 p s and propagation lengths (up to ≈ 25 and ≈ 17 μ m for the first- and second-order branches, respectively). With respect to naturally abundant hBN, we report an eightfold improved, record-high (for hBN) propagating figure of merit (i.e., with both high confinement and long lifetime) in ≈ 99 % B 10 hBN, achieving, finally, theoretically predicted values. We show that wide near-field scans critically enable accurate estimates of the polaritons' lifetimes and propagation lengths and that the incidence angle of light, with respect to both the sample plane and the flake edge, needs to be considered to extract correctly the dispersion relation from the near-field polaritons maps. Overall, the measurements and data analyses employed here elucidate details pertaining to polaritons' propagation in isotopically enriched hBN and pave the way for developing high-performance HPhP-based devices.
Collapse
Affiliation(s)
- Georges Pavlidis
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
| | - Jeffrey J. Schwartz
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Joseph Matson
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Thomas Folland
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Song Liu
- Tim Taylor Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - James H. Edgar
- Tim Taylor Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - Josh D. Caldwell
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Andrea Centrone
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
68
|
Radtke M, Hess C. Operando Raman Shift Replaces Current in Electrochemical Analysis of Li-ion Batteries: A Comparative Study. Molecules 2021; 26:molecules26154667. [PMID: 34361820 PMCID: PMC8439359 DOI: 10.3390/molecules26154667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
Li-rich and catalytically active γ-LixV2O5 (x = 1.48) was investigated as a cathode for its heterogeneous charge transfer kinetics. Using a specially designed two-electrode system lithium half cell, Butler–Volmer analysis was performed, and Raman spectra were acquired in 18 mV intervals. A direct correlation was observed between the Raman shift of the active modes Ag,Bg, Au, and Bu, and the development of the Faraday current at the working electrode. The Raman intensity and the Raman shift were implemented to replace the current in a Tafel plot used for the analysis of Butler–Volmer kinetics. Striking similarities in the charge transfer proportionality constants α were found for current and Raman-based analysis. The potential of this new method of Raman-aided electrochemical detection at the diffraction limit is discussed.
Collapse
|
69
|
Baden N. Novel Method for High-Spatial-Resolution Chemical Analysis of Buried Polymer-Metal Interface: Atomic Force Microscopy-Infrared (AFM-IR) Spectroscopy with Low-Angle Microtomy. APPLIED SPECTROSCOPY 2021; 75:901-910. [PMID: 33739171 DOI: 10.1177/00037028211007187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is a great need for the analysis of the chemical composition, structure, functional groups, and interactions at polymer-metal interfaces in terms of adhesion, corrosion, and insulation. Although atomic force microscopy-based infrared (AFM-IR) spectroscopy can provide chemical analysis with nanoscale spatial resolution, it generally requires to thin a sample to be placed on a substrate that has low absorption of infrared light and high thermal conductivity, which is often difficult for samples that contain hard materials such as metals. This study demonstrates that the combination of AFM-IR with low-angle microtomy (LAM) sample preparation can analyze buried polymer-metal interfaces with higher spatial resolution than that with the conventional sample preparation of a thick vertical cross-section. In the LAM of a polymer layer on a metal substrate, the polymer layer is tapered to be thin in the vicinity of the interface, and thus, sample thinning is not required. An interface between an epoxyacrylate layer and copper wire in a flexible printed circuit cable was measured using this method. A carboxylate interphase layer with a thickness of ∼130 nm was clearly visualized at the interface, and its spectrum was obtained without any signal contamination from the neighboring epoxyacrylate, which was difficult to achieve on a thick vertical cross-section. The combination of AFM-IR with LAM is a simple and useful method for high-spatial-resolution chemical analysis of buried polymer-metal interfaces.
Collapse
Affiliation(s)
- Naoki Baden
- Nihon Thermal Consulting, Co., Ltd., 1-5-11 Nishishinjuku, Sinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
70
|
Dou T, Zhou L, Kurouski D. Unravelling the Structural Organization of Individual α-Synuclein Oligomers Grown in the Presence of Phospholipids. J Phys Chem Lett 2021; 12:4407-4414. [PMID: 33945282 DOI: 10.1021/acs.jpclett.1c00820] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is a severe neurological disorder that affects more than 1 million people in the U.S. alone. A hallmark of PD is the formation of intracellular α-synuclein (α-Syn) protein aggregates called Lewy bodies (LBs). Although this protein does not have a particular localization in the central neural system, α-Syn aggregates are primarily found in certain areas of the midbrain, hypothalamus, and thalamus. Microscopic analysis of LBs reveals fragments of lipid-rich membranes, organelles, and vesicles. These and other pieces of experimental evidence suggest that α-Syn aggregation can be triggered by lipids. In this study, we used atomic force microscope infrared spectroscopy (AFM-IR) to investigate the structural organization of individual α-Syn oligomers grown in the presence of two different phospholipids vesicles. AFM-IR is a modern optical nanoscopy technique that has single-molecule sensitivity and subdiffraction spatial resolution. Our results show that α-Syn oligomers grown in the presence of phosphatidylcholine have a distinctly different structure than oligomers grown in the presence of phosphatidylserine. We infer that this occurs because of specific charges adopted by lipids, which in turn governs protein aggregation. We also found that the protein to phospholipid ratio has a substantial impact on the structure of α-Syn oligomers. These findings demonstrate that α-Syn is far more complex than expected from the perspective of the structural organization of oligomeric species.
Collapse
|
71
|
Spadea A, Denbigh J, Lawrence MJ, Kansiz M, Gardner P. Analysis of Fixed and Live Single Cells Using Optical Photothermal Infrared with Concomitant Raman Spectroscopy. Anal Chem 2021; 93:3938-3950. [PMID: 33595297 PMCID: PMC8018697 DOI: 10.1021/acs.analchem.0c04846] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022]
Abstract
This paper reports the first use of a novel completely optically based photothermal method (O-PTIR) for obtaining infrared spectra of both fixed and living cells using a quantum cascade laser (QCL) and optical parametric oscillator (OPO) laser as excitation sources, thus enabling all biologically relevant vibrations to be analyzed at submicron spatial resolution. In addition, infrared data acquisition is combined with concomitant Raman spectra from exactly the same excitation location, meaning the full vibrational profile of the cell can be obtained. The pancreatic cancer cell line MIA PaCa-2 and the breast cancer cell line MDA-MB-231 are used as model cells to demonstrate the capabilities of the new instrumentation. These combined modalities can be used to analyze subcellular structures in both fixed and, more importantly, live cells under aqueous conditions. We show that the protein secondary structure and lipid-rich bodies can be identified on the submicron scale.
Collapse
Affiliation(s)
- Alice Spadea
- NorthWest
Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre Oxford
Road, Manchester M13 9PL, U.K.
| | - Joanna Denbigh
- Seda
Pharmaceutical Development Services, Alderley Park, Alderley
Edge, Cheshire SK10 4TG, U.K.
- School
of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, U.K.
| | - M. Jayne Lawrence
- NorthWest
Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre Oxford
Road, Manchester M13 9PL, U.K.
| | - Mustafa Kansiz
- Photothermal
Spectroscopy Corp. 325
Chapala Street, Santa Barbara, California 93101, United States
| | - Peter Gardner
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
- Department
of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
72
|
Wang H, González-Fialkowski JM, Li W, Xie Q, Yu Y, Xu XG. Liquid-Phase Peak Force Infrared Microscopy for Chemical Nanoimaging and Spectroscopy. Anal Chem 2021; 93:3567-3575. [PMID: 33573375 PMCID: PMC7988711 DOI: 10.1021/acs.analchem.0c05075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peak force infrared (PFIR) microscopy is an emerging atomic force microscopy that bypasses Abbe's diffraction limit in achieving chemical nanoimaging and spectroscopy. The PFIR microscopy mechanically detects the infrared photothermal responses in the dynamic tip-sample contact of peak force tapping mode and has been applied for a variety of samples, ranging from soft matters, photovoltaic heterojunctions, to polaritonic materials under the air conditions. In this article, we develop and demonstrate the PFIR microscopy in the liquid phase for soft matters and biological samples. With the capability of controlling fluid compositions on demand, the liquid-phase peak force infrared (LiPFIR) microscopy enables in situ tracking of the polymer surface reorganization in fluids and detecting the product of click chemical reaction in the aqueous phase. Both broadband spectroscopy and infrared imaging with ∼10 nm spatial resolution are benchmarked in the fluid phase, together with complementary mechanical information. We also demonstrate the LiPFIR microscopy on revealing the chemical composition of a budding site of yeast cell wall particles in water as an application on biological structures. The label-free, nondestructive chemical nanoimaging and spectroscopic capabilities of the LiPFIR microscopy will facilitate the investigations of soft matters and their transformations at the solid/liquid interface.
Collapse
Affiliation(s)
- Haomin Wang
- Department of Chemistry, Lehigh University, 6 E Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | | | - Wenqian Li
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Qing Xie
- Department of Chemistry, Lehigh University, 6 E Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, 6 E Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
73
|
Schwartz JJ, Le ST, Krylyuk S, Richter CA, Davydov AV, Centrone A. Substrate-mediated hyperbolic phonon polaritons in MoO 3. NANOPHOTONICS 2021; 10:10.1515/nanoph-2020-0640. [PMID: 36451975 PMCID: PMC9706547 DOI: 10.1515/nanoph-2020-0640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hyperbolic phonon polaritons (HPhPs) are hybrid excitations of light and coherent lattice vibrations that exist in strongly optically anisotropic media, including two-dimensional materials (e.g., MoO3). These polaritons propagate through the material's volume with long lifetimes, enabling novel mid-infrared nanophotonic applications by compressing light to sub-diffractional dimensions. Here, the dispersion relations and HPhP lifetimes (up to ≈12 ps) in single-crystalline α-MoO3 are determined by Fourier analysis of real-space, nanoscale-resolution polariton images obtained with the photothermal induced resonance (PTIR) technique. Measurements of MoO3 crystals deposited on periodic gratings show longer HPhPs propagation lengths and lifetimes (≈2×), and lower optical compressions, in suspended regions compared with regions in direct contact with the substrate. Additionally, PTIR data reveal MoO3 subsurface defects, which have a negligible effect on HPhP propagation, as well as polymeric contaminants localized under parts of the MoO3 crystals, which are derived from sample preparation. This work highlights the ability to engineer substrate-defined nanophotonic structures from layered anisotropic materials.
Collapse
Affiliation(s)
- Jeffrey J. Schwartz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Son T. Le
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Theiss Research, La Jolla, CA 92037, USA
| | - Sergiy Krylyuk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Curt A. Richter
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Albert V. Davydov
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | |
Collapse
|
74
|
Infrared nanospectroscopy reveals the molecular interaction fingerprint of an aggregation inhibitor with single Aβ42 oligomers. Nat Commun 2021; 12:688. [PMID: 33514697 PMCID: PMC7846799 DOI: 10.1038/s41467-020-20782-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Significant efforts have been devoted in the last twenty years to developing compounds that can interfere with the aggregation pathways of proteins related to misfolding disorders, including Alzheimer’s and Parkinson’s diseases. However, no disease-modifying drug has become available for clinical use to date for these conditions. One of the main reasons for this failure is the incomplete knowledge of the molecular mechanisms underlying the process by which small molecules interact with protein aggregates and interfere with their aggregation pathways. Here, we leverage the single molecule morphological and chemical sensitivity of infrared nanospectroscopy to provide the first direct measurement of the structure and interaction between single Aβ42 oligomeric and fibrillar species and an aggregation inhibitor, bexarotene, which is able to prevent Aβ42 aggregation in vitro and reverses its neurotoxicity in cell and animal models of Alzheimer’s disease. Our results demonstrate that the carboxyl group of this compound interacts with Aβ42 aggregates through a single hydrogen bond. These results establish infrared nanospectroscopy as a powerful tool in structure-based drug discovery for protein misfolding diseases. Our understanding of the molecular mechanisms underlying pathological protein aggregation remains incomplete. Here, single molecule infrared nanospectroscopy (AFM-IR) offers insight into the structure of Aβ42 oligomeric and fibrillar species and their interaction with an aggregation inhibitor, paving the way for single molecule drug discovery studies.
Collapse
|
75
|
Lu YH, Morales C, Zhao X, van Spronsen MA, Baskin A, Prendergast D, Yang P, Bechtel HA, Barnard ES, Ogletree DF, Altoe V, Soriano L, Schwartzberg AM, Salmeron M. Ultrathin Free-Standing Oxide Membranes for Electron and Photon Spectroscopy Studies of Solid-Gas and Solid-Liquid Interfaces. NANO LETTERS 2020; 20:6364-6371. [PMID: 32786946 DOI: 10.1021/acs.nanolett.0c01801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Free-standing ultrathin (∼2 nm) films of several oxides (Al2O3,TiO2, and others) have been developed, which are mechanically robust and transparent to electrons with Ekin ≥ 200 eV and to photons. We demonstrate their applicability in environmental X-ray photoelectron and infrared spectroscopy for molecular level studies of solid-gas (≥1 bar) and solid-liquid interfaces. These films act as membranes closing a reaction cell and as substrates and electrodes for electrochemical reactions. The remarkable properties of such ultrathin oxides membranes enable atomic/molecular level studies of interfacial phenomena, such as corrosion, catalysis, electrochemical reactions, energy storage, geochemistry, and biology, in a broad range of environmental conditions.
Collapse
Affiliation(s)
- Yi-Hsien Lu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Carlos Morales
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Departamento de Física Aplicada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Xiao Zhao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Matthijs A van Spronsen
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Artem Baskin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Hans A Bechtel
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Edward S Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - D Frank Ogletree
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Virginia Altoe
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Leonardo Soriano
- Departamento de Física Aplicada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Adam M Schwartzberg
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
76
|
Zhao D, Li S. Regulating the Performance of Lithium-Ion Battery Focus on the Electrode-Electrolyte Interface. Front Chem 2020; 8:821. [PMID: 33088806 PMCID: PMC7500179 DOI: 10.3389/fchem.2020.00821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022] Open
Abstract
The development of lithium-ion battery (LIB) has gone through nearly 40 year of research. The solid electrolyte interface film in LIBs is one of most vital research topics, its behavior affects the cycle life and safety of LIBs significantly. Progress in understanding the interfacial layer on the negative and positive electrodes in LIBs has been the focus of considerable research in the past few decades, but there remains a number of problem to be understood at the fundamental level, and there is still a great deal of controversy regarding the composition and formation mechanism of the interfacial film. In this article, we summarize recent research conducted on the interfacial film in LIBs, including the film formation mechanism, the composition, and stability of the interfacial film on the positive electrodes (in both diluted and high-concentration electrolytes). And the methodologies and advanced techniques implemented for the characterization of the interfacial film. Finally, we put forward some of the future development direction for the interfacial film and urgent problems that need to be solved.
Collapse
Affiliation(s)
- Dongni Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, China
| | - Shiyou Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, China
- Gansu Engineering Laboratory of Electrolyte Material for Lithium-Ion Battery, Lanzhou, China
| |
Collapse
|
77
|
Bildstein L, Deniset-Besseau A, Pasini I, Mazilier C, Keuong YW, Dazzi A, Baghdadli N. Discrete Nanoscale Distribution of Hair Lipids Fails to Provide Humidity Resistance. Anal Chem 2020; 92:11498-11504. [DOI: 10.1021/acs.analchem.0c01043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucien Bildstein
- L’Oréal Research & Innovation, 11 rue Dora Maar, F93400 Saint-Ouen, France
| | - Ariane Deniset-Besseau
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Isabelle Pasini
- L’Oréal Research & Innovation, 1 av. Eugène Schueller, F93600 Aulnay-sous-Bois, France
| | - Christian Mazilier
- L’Oréal Research & Innovation, 11 rue Dora Maar, F93400 Saint-Ouen, France
| | - Yann Waye Keuong
- L’Oréal Research & Innovation, 11 rue Dora Maar, F93400 Saint-Ouen, France
| | - Alexandre Dazzi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Nawel Baghdadli
- L’Oréal Research & Innovation, 1 av. Eugène Schueller, F93600 Aulnay-sous-Bois, France
| |
Collapse
|
78
|
Contreras F, Ermolenkov A, Kurouski D. Infrared analysis of hair dyeing and bleaching history. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3741-3747. [PMID: 32729856 DOI: 10.1039/d0ay01068e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Forensic examination of hair is commonly performed to trace its origin and make a connection between a suspect and a crime scene. Such examination is based on subjective microscopic analysis of hair. During the last decade, several spectroscopic approaches have been proposed to make forensic analysis of hair more robust and reliable. Surface-enhanced Raman and attenuated total internal reflection infrared spectroscopies allowed for detection and identification of dyes directly on hair and even differentiation between commercial brands of those colorants. However, these is a question that remains unanswered: can artificial dyes be detected on bleached hair or bleaching can be used to fully erase information about hair coloring? In this study, we report experimental results that provide a clear answer to this question. We show that infrared analysis can be used to differentiate between undyed bleached hair and hair that was colored with both permanent and semi-permanent dyes prior to bleaching. We also show that IR analysis can be used to distinguish between undyed unbleached and undyed bleached hair. We demonstrate that in combination with multivariate statistical analysis, IR analysis can be used to distinguish with 96-100% accuracy between those hair classes.
Collapse
Affiliation(s)
- Fernando Contreras
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.
| | | | | |
Collapse
|
79
|
Dou T, Li Z, Zhang J, Evilevitch A, Kurouski D. Nanoscale Structural Characterization of Individual Viral Particles Using Atomic Force Microscopy Infrared Spectroscopy (AFM-IR) and Tip-Enhanced Raman Spectroscopy (TERS). Anal Chem 2020; 92:11297-11304. [PMID: 32683857 DOI: 10.1021/acs.analchem.0c01971] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Viruses are infections species that infect a large spectrum of living systems. Although displaying a wide variety of shapes and sizes, they are all composed of nucleic acid encapsulated into a protein capsid. After virions enter the host cell, they replicate to produce multiple copies of themselves. They then lyse the host, releasing virions to infect new cells. The high proliferation rate of viruses is the underlying cause of their fast transmission among living species. Although many viruses are harmless, some of them are responsible for severe diseases such as AIDS, viral hepatitis, and flu. Traditionally, electron microscopy is used to identify and characterize viruses. This approach is time- and labor-consuming, which is problematic upon pandemic proliferation of previously unknown viruses, such as H1N1 and COVID-19. Herein, we demonstrate a novel diagnosis approach for label-free identification and structural characterization of individual viruses that is based on a combination of nanoscale Raman and infrared spectroscopy. Using atomic force microscopy-infrared (AFM-IR) spectroscopy, we were able to probe structural organization of the virions of Herpes Simplex Type 1 viruses and bacteriophage MS2. We also showed that tip-enhanced Raman spectroscopy (TERS) could be used to reveal protein secondary structure and amino acid composition of the virus surface. Our results show that AFM-IR and TERS provide different but complementary information about the structure of complex biological specimens. This structural information can be used for fast and reliable identification of viruses. This nanoscale bimodal imaging approach can be also used to investigate the origin of viral polymorphism and study mechanisms of virion assembly.
Collapse
Affiliation(s)
- Tianyi Dou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Zhandong Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.,Center for Phage Technology, Texas A&M University, College Station, Texas 77843, United States
| | - Alex Evilevitch
- Department of Experimental Medical Science, Virus Biophysics Group, BMC Biomedical Center, Lund University, Lund, SE-221 00S, Sweden
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
80
|
Gallacher K, Millar RW, Paul DJ, Frigerio J, Ballabio A, Isella G, Rusconi F, Biagioni P, Giliberti V, Sorgi A, Baldassarre L, Ortolani M. Characterization of integrated waveguides by atomic-force-microscopy-assisted mid-infrared imaging and spectroscopy. OPTICS EXPRESS 2020; 28:22186-22199. [PMID: 32752485 DOI: 10.1364/oe.393748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
A novel spectroscopy technique to enable the rapid characterization of discrete mid-infrared integrated photonic waveguides is demonstrated. The technique utilizes lithography patterned polymer blocks that absorb light strongly within the molecular fingerprint region. These act as integrated waveguide detectors when combined with an atomic force microscope that measures the photothermal expansion when infrared light is guided to the block. As a proof of concept, the technique is used to experimentally characterize propagation loss and grating coupler response of Ge-on-Si waveguides at wavelengths from 6 to 10 µm. In addition, when the microscope is operated in scanning mode at fixed wavelength, the guided mode exiting the output facet is imaged with a lateral resolution better than 500 nm i.e. below the diffraction limit. The characterization technique can be applied to any mid-infrared waveguide platform and can provide non-destructive in-situ testing of discrete waveguide components.
Collapse
|
81
|
Kenkel S, Mittal S, Bhargava R. Closed-loop atomic force microscopy-infrared spectroscopic imaging for nanoscale molecular characterization. Nat Commun 2020; 11:3225. [PMID: 32591515 PMCID: PMC7320136 DOI: 10.1038/s41467-020-17043-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/28/2020] [Indexed: 01/15/2023] Open
Abstract
Atomic force microscopy-infrared (AFM-IR) spectroscopic imaging offers non-perturbative, molecular contrast for nanoscale characterization. The need to mitigate measurement artifacts and enhance sensitivity, however, requires narrowly-defined and strict sample preparation protocols. This limits reliable and facile characterization; for example, when using common substrates such as Silicon or glass. Here, we demonstrate a closed-loop (CL) piezo controller design for responsivity-corrected AFM-IR imaging. Instead of the usual mode of recording cantilever deflection driven by sample expansion, the principle of our approach is to maintain a zero amplitude harmonic cantilever deflection by CL control of a subsample piezo. We show that the piezo voltage used to maintain a null deflection provides a reliable measure of the local IR absorption with significantly reduced noise. A complete analytical description of the CL operation and characterization of the controller for achieving robust performance are presented. Accurate measurement of IR absorption of nanothin PMMA films on glass and Silicon validates the robust capability of CL AFM-IR in routine mapping of nanoscale molecular information.
Collapse
Affiliation(s)
- Seth Kenkel
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA.,Department of Mechanical Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Shachi Mittal
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA. .,Department of Mechanical Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA. .,Cancer Center at Illinois and the Departments Chemical and Biomolecular Engineering, Bioengineering, Electrical and Computer Engineering, and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
82
|
Ruggeri FS, Mannini B, Schmid R, Vendruscolo M, Knowles TPJ. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat Commun 2020; 11:2945. [PMID: 32522983 PMCID: PMC7287102 DOI: 10.1038/s41467-020-16728-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
The chemical and structural properties of biomolecules determine their interactions, and thus their functions, in a wide variety of biochemical processes. Innovative imaging methods have been developed to characterise biomolecular structures down to the angstrom level. However, acquiring vibrational absorption spectra at the single molecule level, a benchmark for bulk sample characterization, has remained elusive. Here, we introduce off-resonance, low power and short pulse infrared nanospectroscopy (ORS-nanoIR) to allow the acquisition of infrared absorption spectra and chemical maps at the single molecule level, at high throughput on a second timescale and with a high signal-to-noise ratio (~10-20). This high sensitivity enables the accurate determination of the secondary structure of single protein molecules with over a million-fold lower mass than conventional bulk vibrational spectroscopy. These results pave the way to probe directly the chemical and structural properties of individual biomolecules, as well as their interactions, in a broad range of chemical and biological systems.
Collapse
Affiliation(s)
| | - Benedetta Mannini
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Roman Schmid
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
83
|
Kurouski D, Dazzi A, Zenobi R, Centrone A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem Soc Rev 2020; 49:3315-3347. [PMID: 32424384 PMCID: PMC7675782 DOI: 10.1039/c8cs00916c] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of nanotechnology, and the need to understand the chemical composition at the nanoscale, has stimulated the convergence of IR and Raman spectroscopy with scanning probe methods, resulting in new nanospectroscopy paradigms. Here we review two such methods, namely photothermal induced resonance (PTIR), also known as AFM-IR and tip-enhanced Raman spectroscopy (TERS). AFM-IR and TERS fundamentals will be reviewed in detail together with their recent crucial advances. The most recent applications, now spanning across materials science, nanotechnology, biology, medicine, geology, optics, catalysis, art conservation and other fields are also discussed. Even though AFM-IR and TERS have developed independently and have initially targeted different applications, rapid innovation in the last 5 years has pushed the performance of these, in principle spectroscopically complimentary, techniques well beyond initial expectations, thus opening new opportunities for their convergence. Therefore, subtle differences and complementarity will be highlighted together with emerging trends and opportunities.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
84
|
Esteve E, Luque Y, Waeytens J, Bazin D, Mesnard L, Jouanneau C, Ronco P, Dazzi A, Daudon M, Deniset-Besseau A. Nanometric Chemical Speciation of Abnormal Deposits in Kidney Biopsy: Infrared-Nanospectroscopy Reveals Heterogeneities within Vancomycin Casts. Anal Chem 2020; 92:7388-7392. [PMID: 32406230 DOI: 10.1021/acs.analchem.0c00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infrared (IR) spectromicroscopy allows chemical mapping of a kidney biopsy. It is particularly interesting for chemical speciation of abnormal tubular deposits and calcification. In 2017, using IR spectromicroscopy, we described a new entity called vancomycin cast nephropathy. However, despite recent progresses, the IR microspectrometer spatial resolution is intrinsically limited by diffraction (a few micrometers). Combining atomic force microscopy and IR lasers (AFMIR) allows acquisition of infrared absorption spectra with a resolution and sensitivity in between 10 and 100 nm. Here we show that AFMIR can be used on standard paraffin embedded kidney biopsies. Vancomycin cast could be identified in a damaged tubule. Interestingly unlike standard IR spectromicroscopy, AFMIR revealed heterogeneity of the deposits and established that vancomycin coprecipitated with phosphate containing molecules. These findings highlight the high potential of this approach with nanometric spatial resolution which opens new perspectives for studies on drug-induced nephritis, nanocrystals, and local lipid or carbohydrates alterations.
Collapse
Affiliation(s)
- Emmanuel Esteve
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Nephrology and Dialysis Department, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Yosu Luque
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Jehan Waeytens
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France.,Structure et Fonction des Membranes Biologiques, Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/02, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| | - Dominique Bazin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Laurent Mesnard
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Chantal Jouanneau
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Pierre Ronco
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Nephrology and Dialysis Department, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Alexandre Dazzi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Michel Daudon
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Explorations Fonctionnelles Multidisciplinaires, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Ariane Deniset-Besseau
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| |
Collapse
|
85
|
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers (Basel) 2020; 12:E1142. [PMID: 32429499 PMCID: PMC7284686 DOI: 10.3390/polym12051142] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Payman Ghassemi
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Pascal Carriere
- Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France;
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Aymen Amine Assadi
- ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France;
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
86
|
Tarpoudi Baheri F, Schutzius TM, Poulikakos D, Poulikakos LD. Bitumen surface microstructure evolution in subzero environments. J Microsc 2020; 279:3-15. [PMID: 32187382 DOI: 10.1111/jmi.12890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Bitumen is a widely used material employed as a binder in pavement engineering and as a surface sealant in construction. Its surface microstructure and microscale properties have been shown to be temperature-dependent, with effects manifesting themselves on surface composition and texture, including the formation of the visually striking catana 'bee'-like structures. Despite the importance of a good performance of bitumen in subzero environments (<0°C), the behaviour of bitumen surface texture and composition at cold temperatures, affecting cracking, degradation and road icing, has received practically no attention. In particular, such knowledge is relevant to world regions experiencing long periods of subzero temperatures during the year. Employing advanced atomic force microscopy combined with infrared spectroscopy (AFM-IR) and an environmental chamber, we demonstrate the ability to characterise surface structure and composition with nanoscale precision for a broad range of temperatures. We show that cooling bitumen to subzero temperatures can have several interesting effects on its surface microtexture, nanotexture and composition, especially on its three surface domains, catana, peri and para. We found that the para domain coarsens and extends to form an interfacial transition domain (characterised by increasing surface roughness with peri domain composition) between the para and peri domains. We show that the catana and peri domains have a similar composition, but have different mechanical and chemical properties compared to the para domain. The essential findings of this work improve our understanding of the behaviour of bitumen in subzero environments, aiding us in our quest towards attaining better road and sealant performance.
Collapse
Affiliation(s)
- F Tarpoudi Baheri
- Laboratory for Road Engineering/Sealing Components, Empa, Dübendorf, Switzerland.,Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - T M Schutzius
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - D Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - L D Poulikakos
- Laboratory for Road Engineering/Sealing Components, Empa, Dübendorf, Switzerland
| |
Collapse
|
87
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
88
|
Beebe JM, Swatowski BW, Weidner WK, Shepherd DA, Reinhardt CW, Rickard MA, Meyers GF. Semiquantitative Atomic Force Microscopy-Infrared Spectroscopy Analysis of Chemical Gradients in Silicone Optical Waveguides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11287-11295. [PMID: 32049488 DOI: 10.1021/acsami.0c00350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Crossing losses in silicone optical waveguides are related to the magnitude and spatial extent of the waveguide refractive index gradient. When processing conditions are altered, the refractive index gradient can vary substantially, even when the formulation remains constant. Controlling the refractive index gradient requires control of the concentration of small molecules present within the core and clad layers. Developing a fundamental understanding of how small molecule migration drives changes in crossing loss requires the ability to examine chemical functionality over small length scales, which is a natural fit for atomic force microscopy-infrared spectroscopy (AFM-IR). In this work, AFM-IR spectra from model bilayer stacks are initially examined to understand molecular migration that occurs from heating the core and clad layers. The results of these model studies are then applied to photopatterned waveguide builds, where structure-function relationships are constructed between values of crossing loss and the concentration of C-H and O-H functionalities present in the core and clad layers. Results show that small molecule evaporation and migration are competing processes that need to be controlled to minimize crossing loss.
Collapse
Affiliation(s)
- Jeremy M Beebe
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | | | - W Ken Weidner
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Debra A Shepherd
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Carl W Reinhardt
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Mark A Rickard
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Gregory F Meyers
- The Dow Chemical Company, Midland, Michigan 48674, United States
| |
Collapse
|
89
|
Song Y, Cong Y, Wang B, Zhang N. Applications of Fourier transform infrared spectroscopy to pharmaceutical preparations. Expert Opin Drug Deliv 2020; 17:551-571. [PMID: 32116058 DOI: 10.1080/17425247.2020.1737671] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Various pharmaceutical preparations are widely used for clinical treatment. Elucidation of the mechanisms of drug release and evaluation of drug efficacy in biological samples are important in drug design and drug quality control.Areas covered: This review classifies recent applications of Fourier transform infrared (FTIR) spectroscopy in the field of medicine to comprehend drug release and diffusion. Drug release is affected by many factors of preparations, such as drug delivery system and microstructure polymorphism. The applications of FTIR imaging and nano-FTIR technique in biological samples lay a foundation for studying drug mechanism in vivo.Expert opinion: FTIR spectroscopy meets the research needs on preparations to understand the processes and mechanisms underlying drug release. The combination of attenuated total reflectance-FTIR imaging and nano-FTIR accompanied by chemometrics is a potent tool to overcome the deficiency of conventional infrared detection. FTIR shows an enormous potential in drug characterization, drug quality control, and bio-sample detection.
Collapse
Affiliation(s)
- Yijie Song
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanhua Cong
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
90
|
Quaroni L. Understanding and Controlling Spatial Resolution, Sensitivity, and Surface Selectivity in Resonant-Mode Photothermal-Induced Resonance Spectroscopy. Anal Chem 2020; 92:3544-3554. [PMID: 32023046 DOI: 10.1021/acs.analchem.9b03468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photothermal-induced resonance (PTIR) is increasingly used in the measurement of infrared absorption spectra of submicrometer objects. The technique measures IR absorption spectra by relying on the photothermal effect induced by a rapid pulse of light and the excitation of the resonance spectrum of an AFM cantilever in contact with the sample. In this work, we assess the spatial resolution and depth response of PTIR in resonant mode while systematically varying the pulsing parameters of the excitation laser. We show that resolution is always much better than predicted by existing theoretical models. Higher frequency, longer pulse length, and shorter interval between pulses improve resolution, eventually providing values that are comparable to or even better than tip size. Pulsing parameters also affect the intensity of the signal and the surface selectivity in PTIR images, with higher frequencies providing increased surface selectivity. The observations confirm a difference in signal generation between resonant PTIR and other photothermal techniques that we ascribe to nonlinearity in the PTIR signal. In analogy with optical imaging, we show that PTIR takes advantage of such nonlinearity to perform photothermal measurements that are super-resolved when compared to the resolution allowed by the thermal wavelength. Finally, we show that by controlling the pulsing parameters of the laser we can devise high resolution surface sensitive measurements that do not rely on the use of optical enhancement effects.
Collapse
Affiliation(s)
- Luca Quaroni
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
91
|
Xu Q, Zhang R, Sheng M, Tian S, Li W, Wang T, Zhang Y. Nanoscale mechanical property of marine and continental organic kerogen in shale. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
92
|
Yang J, Mayyas M, Tang J, Ghasemian MB, Yang H, Watanabe K, Taniguchi T, Ou Q, Li LH, Bao Q, Kalantar-Zadeh K. Boundary-Induced Auxiliary Features in Scattering-Type Near-Field Fourier Transform Infrared Spectroscopy. ACS NANO 2020; 14:1123-1132. [PMID: 31854973 DOI: 10.1021/acsnano.9b08895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phonon-polaritons (PhPs) in layered crystals, including hexagonal boron nitride (hBN), have been investigated by combined scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared (FTIR) spectroscopy. Nevertheless, many of such s-SNOM-based FTIR spectra features remain unexplored, especially those originated from the impact of boundaries. Here we observe real-space PhP propagations in thin-layer hBN sheets either supported or suspended by s-SNOM imaging. Then with a high-power broadband IR laser source, we identify two major peaks and multiple auxiliary peaks in the near-field amplitude spectra, obtained using scattering-type near-field FTIR spectroscopy, from both supported and suspended hBN. The major PhP propagation interference peak moves toward the major in-plane phonon peak when the IR illumination moves away from the hBN edge. Specific differences between the auxiliary peaks in the near-field amplitude spectra from supported and suspended hBN sheets are investigated regarding different boundary conditions, associated with edges and substrate interfaces. The outcomes may be explored in heterostructures for advanced nanophotonic applications.
Collapse
Affiliation(s)
- Jiong Yang
- School of Chemical Engineering , University of New South Wales (UNSW) , Sydney Campus, NSW 2052 Australia
| | - Mohannad Mayyas
- School of Chemical Engineering , University of New South Wales (UNSW) , Sydney Campus, NSW 2052 Australia
| | - Jianbo Tang
- School of Chemical Engineering , University of New South Wales (UNSW) , Sydney Campus, NSW 2052 Australia
| | - Mohammad B Ghasemian
- School of Chemical Engineering , University of New South Wales (UNSW) , Sydney Campus, NSW 2052 Australia
| | - Honghua Yang
- Bruker Nano , 112 Robin Hill Road , Santa Barbara , California 93117 United States
| | - Kenji Watanabe
- National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan
| | - Takashi Taniguchi
- National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan
| | - Qingdong Ou
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET) , Monash University , Clayton , Victoria 3800 Australia
| | - Lu Hua Li
- Institute for Frontier Materials , Deakin University , Waurn Ponds , Victoria 3216 Australia
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET) , Monash University , Clayton , Victoria 3800 Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering , University of New South Wales (UNSW) , Sydney Campus, NSW 2052 Australia
| |
Collapse
|
93
|
Depond M, Henry B, Buffet P, Ndour PA. Methods to Investigate the Deformability of RBC During Malaria. Front Physiol 2020; 10:1613. [PMID: 32038293 PMCID: PMC6990122 DOI: 10.3389/fphys.2019.01613] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022] Open
Abstract
Despite a 30% decline in mortality since 2000, malaria still affected 219 million subjects and caused 435,000 deaths in 2017. Red blood cells (RBC) host Plasmodium parasites that cause malaria, of which Plasmodium falciparum is the most pathogenic. The deformability of RBC is markedly modified by invasion and development of P. falciparum. Surface membrane area is potentially impacted by parasite entry and development, the cytoskeleton is modified by parasite proteins and cytosol viscosity is altered by parasite metabolism. RBC hosting mature parasites (second half of the asexual erythrocytic cycle) are abnormally stiff but the main reason for their absence from the circulation is their adherence to endothelial cells, mediated by parasite proteins exposed at the infected-RBC surface. By contrast, the circulation of non-adherent rings and gametocytes, depends predominantly on deformability. Altered deformability of rings and of uninfected-RBC altered by malaria infection is an important determinant of malaria pathogenesis. It also impacts the response to antimalarial therapy. Unlike conventional antimalarials that target mature stages, currently recommended first-line artemisinin derivatives and the emerging spiroindolones act on circulating rings. Methods to investigate the deformability of RBC are therefore critical to understand the clearance of infected- and uninfected-RBC in malaria. Herein, we review the main methods to assess the deformability of P. falciparum infected-RBC, and their contribution to the understanding of how P. falciparum infection causes disease, how the parasite is transmitted and how antimalarial drugs induce parasite clearance.
Collapse
Affiliation(s)
- Mallorie Depond
- UMR_S1134, BIGR, Inserm, Universit de Paris, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Benoit Henry
- UMR_S1134, BIGR, Inserm, Universit de Paris, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Pierre Buffet
- UMR_S1134, BIGR, Inserm, Universit de Paris, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Papa Alioune Ndour
- UMR_S1134, BIGR, Inserm, Universit de Paris, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
94
|
Ramer G, Tuteja M, Matson JR, Davanco M, Folland TG, Kretinin A, Taniguchi T, Watanabe K, Novoselov KS, Caldwell JD, Centrone A. High- Q dark hyperbolic phonon-polaritons in hexagonal boron nitride nanostructures. NANOPHOTONICS 2020; 9:10.1515/nanoph-2020-0048. [PMID: 33365225 PMCID: PMC7754710 DOI: 10.1515/nanoph-2020-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The anisotropy of hexagonal boron nitride (hBN) gives rise to hyperbolic phonon-polaritons (HPhPs), notable for their volumetric frequency-dependent propagation and strong confinement. For frustum (truncated nanocone) structures, theory predicts five, high-order HPhPs, sets, but only one set was observed previously with far-field reflectance and scattering-type scanning near-field optical microscopy. In contrast, the photothermal induced resonance (PTIR) technique has recently permitted sampling of the full HPhP dispersion and observing such elusive predicted modes; however, the mechanism underlying PTIR sensitivity to these weakly-scattering modes, while critical to their understanding, has not yet been clarified. Here, by comparing conventional contact- and newly developed tapping-mode PTIR, we show that the PTIR sensitivity to those weakly-scattering, high-Q (up to ≈280) modes is, contrary to a previous hypothesis, unrelated to the probe operation (contact or tapping) and is instead linked to PTIR ability to detect tip-launched dark, volumetrically-confined polaritons, rather than nanostructure-launched HPhPs modes observed by other techniques. Furthermore, we show that in contrast with plasmons and surface phonon-polaritons, whose Q-factors and optical cross-sections are typically degraded by the proximity of other nanostructures, the high-Q HPhP resonances are preserved even in high-density hBN frustum arrays, which is useful in sensing and quantum emission applications.
Collapse
Affiliation(s)
- Georg Ramer
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA; Maryland Nanocenter, University of Maryland, College Park, MD, 20742, USA
| | - Mohit Tuteja
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA; Maryland Nanocenter, University of Maryland, College Park, MD, 20742, USA
| | - Joseph R. Matson
- Department of Mechanical Engineering, Vanderbilt University, 101 Olin Hall, Nashville, TN, 37212, USA
| | - Marcelo Davanco
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA
| | - Thomas G. Folland
- Department of Mechanical Engineering, Vanderbilt University, 101 Olin Hall, Nashville, TN, 37212, USA
| | - Andrey Kretinin
- School of Physics and Astronomy, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Maniki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Maniki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kostya S. Novoselov
- School of Physics and Astronomy, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK; Chongqing 2D Materials Institute, Liangjiang New Area, Chongqing, 400714, China
| | - Joshua D. Caldwell
- Department of Mechanical Engineering, Vanderbilt University, 101 Olin Hall, Nashville, TN, 37212, USA
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA
| |
Collapse
|
95
|
Dong X, Zhao H, Wang Z, Ouzounian M, Hu TS, Guo Y, Zhang L, Xu Q. Gecko-inspired composite micro-pillars with both robust adhesion and enhanced dry self-cleaning property. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
96
|
Advanced Characterizations of Solid Electrolyte Interphases in Lithium-Ion Batteries. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00058-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
97
|
Zhou J, Sekatskii S, Welc R, Dietler G, Gruszecki WI. The role of xanthophylls in the supramolecular organization of the photosynthetic complex LHCII in lipid membranes studied by high-resolution imaging and nanospectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148117. [PMID: 31734197 DOI: 10.1016/j.bbabio.2019.148117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/01/2022]
Abstract
The xanthophyll cycle is a regulatory mechanism operating in the photosynthetic apparatus of plants. It consists of the conversion of the xanthophyll pigment violaxanthin to zeaxanthin, and vice versa, in response to light intensity. According to the current understanding, one of the modes of regulatory activity of the cycle is associated with the influence on a molecular organization of pigment-protein complexes. In the present work, we analyzed the effect of violaxanthin and zeaxanthin on the molecular organization of the LHCII complex, in the environment of membranes formed with chloroplast lipids. Nanoscale imaging based on atomic force microscopy (AFM) showed that the presence of exogenous xanthophylls promotes the formation of the protein supramolecular structures. Nanoscale infrared (IR) absorption analysis based on AFM-IR nanospectroscopy suggests that zeaxanthin promotes the formation of LHCII supramolecular structures by forming inter-molecular β-structures. Meanwhile, the molecules of violaxanthin act as "molecular spacers" preventing self-aggregation of the protein, potentially leading to uncontrolled dissipation of excitation energy in the complex. This latter mechanism was demonstrated with the application of fluorescence lifetime imaging microscopy. The intensity-averaged chlorophyll a fluorescence lifetime determined in the LHCII samples without exogenous xanthophylls at the level of 0.72 ns was longer in the samples containing exogenous violaxanthin (2.14 ns), but shorter under the presence of zeaxanthin (0.49 ns) thus suggesting a role of this xanthophyll in promotion of the formation of structures characterized by effective excitation quenching. This mechanism can be considered as a representation of the overall photoprotective activity of the xanthophyll cycle.
Collapse
Affiliation(s)
- Jiangtao Zhou
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sergey Sekatskii
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Renata Welc
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
| |
Collapse
|
98
|
Zhou J, Smirnov A, Dietler G, Sekatskii SK. Gap-Plasmon-Enhanced High-Spatial-Resolution Imaging by Photothermal-Induced Resonance in the Visible Range. NANO LETTERS 2019; 19:8278-8286. [PMID: 31650844 DOI: 10.1021/acs.nanolett.9b03844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical characterization at the nanoscale is of significant importance for many applications in physics, analytical chemistry, material science, and biology. Despite the intensive studies in the infrared range, high-spatial-resolution and high-sensitivity imaging for compositional identification in the visible range is rarely exploited. In this work, we present a gap-plasmon-enhanced imaging approach based on photothermal-induced resonance (PTIR) for nanoscale chemical identification. With this approach, we experimentally obtained a high spatial resolution of ∼5 nm for rhodamine nanohill characterization and achieved monolayer sensitivity for mapping the single-layer chlorophyll-a islands with the thickness of only 1.9 nm. We also successfully characterized amyloid fibrils stained with methylene blue dye, indicating that this methodology can be also utilized for identification of the radiation-insensitive macromolecules. We believe that our proposed high-performance visible PTIR system can be used to broaden the applications of nanoscale chemical identification ranging from nanomaterial to life science areas.
Collapse
Affiliation(s)
- Jiangtao Zhou
- Laboratory of Physics of Living Matter , IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Anton Smirnov
- Laboratory of Physics of Living Matter , IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter , IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Sergey K Sekatskii
- Laboratory of Physics of Living Matter , IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
99
|
Abstract
Fourier transform-infrared spectroscopy (FT-IR) represents an attractive molecular diagnostic modality for translation to the clinic, where comprehensive chemical profiling of biological samples may revolutionize a myriad of pathways in clinical settings. Principally, FT-IR provides a rapid, cost-effective platform to obtain a molecular fingerprint of clinical samples based on vibrational transitions of chemical bonds upon interaction with infrared light. To date, considerable research activities have demonstrated competitive to superior performance of FT-IR strategies in comparison to conventional techniques, with particular promise for earlier, accessible disease diagnostics, thereby improving patient outcomes. However, amidst the changing healthcare landscape in times of aging populations and increased prevalence of cancer and chronic disease, routine adoption of FT-IR within clinical laboratories has remained elusive. Hence, this perspective shall outline the significant clinical potential of FT-IR diagnostics and subsequently address current barriers to translation from the perspective of all stakeholders, in the context of biofluid, histopathology, cytology, microbiology, and biomarker discovery frameworks. Thereafter, future perspectives of FT-IR for healthcare will be discussed, with consideration of recent technological advances that may facilitate future clinical translation.
Collapse
Affiliation(s)
- Duncan Finlayson
- Centre for Doctoral Training in Medical Devices and Health Technologies, Department of Biomedical Engineering , University of Strathclyde , Wolfson Centre, 106 Rottenrow , Glasgow G4 0NW , U.K.,WestCHEM , Department of Pure and Applied Chemistry , Technology and Innovation Centre, 99 George Street , Glasgow G1 1RD , U.K
| | - Christopher Rinaldi
- Centre for Doctoral Training in Medical Devices and Health Technologies, Department of Biomedical Engineering , University of Strathclyde , Wolfson Centre, 106 Rottenrow , Glasgow G4 0NW , U.K.,WestCHEM , Department of Pure and Applied Chemistry , Technology and Innovation Centre, 99 George Street , Glasgow G1 1RD , U.K
| | - Matthew J Baker
- WestCHEM , Department of Pure and Applied Chemistry , Technology and Innovation Centre, 99 George Street , Glasgow G1 1RD , U.K.,ClinSpec Diagnostics Ltd. , Technology and Innovation Centre, 99 George Street , Glasgow G11RD , U.K
| |
Collapse
|
100
|
Ma X, Beltran V, Ramer G, Pavlidis G, Parkinson DY, Thoury M, Meldrum T, Centrone A, Berrie BH. Revealing the Distribution of Metal Carboxylates in Oil Paint from the Micro- to Nanoscale. Angew Chem Int Ed Engl 2019; 58:11652-11656. [PMID: 31226237 PMCID: PMC9798385 DOI: 10.1002/anie.201903553] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/24/2019] [Indexed: 12/31/2022]
Abstract
Oil paints comprise pigments, drying oils, and additives that together confer desirable properties, but can react to form metal carboxylates (soaps) that may damage artworks over time. To obtain information on soap formation and aggregation, we introduce a new tapping-mode measurement paradigm for the photothermal induced resonance (PTIR) technique that enables nanoscale IR spectroscopy and imaging on highly heterogenous and rough paint thin sections. PTIR is used in combination with μ-computed tomography and IR microscopy to determine the distribution of metal carboxylates in a 23-year old oil paint of known formulation. Results show that heterogeneous agglomerates of Al-stearate and a Zn-carboxylate complex with Zn-stearate nano-aggregates in proximity are distributed randomly in the paint. The gradients of zinc carboxylates are unrelated to the Al-stearate distribution. These measurements open a new chemically sensitive nanoscale observation window on the distribution of metal soaps that can bring insights for understanding soap formation in oil paint.
Collapse
Affiliation(s)
- Xiao Ma
- Scientific Research Department, Division of Conservation, National Gallery of Art, 2000B South Club Drive, Landover, MD 20785 (USA)
| | | | | | - Georges Pavlidis
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (USA)
| | - Dilworth Y. Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 (USA)
| | - Mathieu Thoury
- IPANEMA, CNRS, ministère de la Culture et de la Communication Université de Versailles Saint-Quentin-en-Yvelines, USR 3461, Université Paris-Saclay, 91128 Gif-sur-Yvette (France)
| | - Tyler Meldrum
- Department of Chemistry, The College of William & Mary, 540 Landrum Drive, Williamsburg, VA 23188 (USA)
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (USA)
| | - Barbara H. Berrie
- Scientific Research Department, Division of Conservation, National Gallery of Art, 2000B South Club Drive, Landover, MD 20785 (USA)
| |
Collapse
|