51
|
Szabó E, Záhonyi P, Gyürkés M, Nagy B, Galata DL, Madarász L, Hirsch E, Farkas A, Andersen SK, Vígh T, Verreck G, Csontos I, Marosi G, Nagy ZK. Continuous downstream processing of milled electrospun fibers to tablets monitored by near-infrared and Raman spectroscopy. Eur J Pharm Sci 2021; 164:105907. [PMID: 34118411 DOI: 10.1016/j.ejps.2021.105907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Electrospinning is a technology for manufacture of nano- and micro-sized fibers, which can enhance the dissolution properties of poorly water-soluble drugs. Tableting of electrospun fibers have been demonstrated in several studies, however, continuous manufacturing of tablets have not been realized yet. This research presents the first integrated continuous processing of milled drug-loaded electrospun materials to tablet form supplemented by process analytical tools for monitoring the active pharmaceutical ingredient (API) content. Electrospun fibers of an amorphous solid dispersion (ASD) of itraconazole and poly(vinylpyrrolidone-co-vinyl acetate) were produced using high speed electrospinning and afterwards milled. The milled fibers with an average fiber diameter of 1.6 ± 0.9 µm were continuously fed with a vibratory feeder into a twin-screw blender, which was integrated with a tableting machine to prepare tablets with ~ 10 kN compression force. The blend of fibers and excipients leaving the continuous blender was characterized with a bulk density of 0.43 g/cm3 and proved to be suitable for direct tablet compression. The ASD content, and thus the API content was determined in-line before tableting and at-line after tableting using near-infrared and Raman spectroscopy. The prepared tablets fulfilled the USP <905> content uniformity requirement based on the API content of ten randomly selected tablets. This work highlights that combining the advantages of electrospinning (e.g. less solvent, fast and gentle drying, low energy consumption, and amorphous products with high specific surface area) and the continuous technologies opens a new and effective way in the field of manufacturing of the poorly water-soluble APIs.
Collapse
Affiliation(s)
- Edina Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Petra Záhonyi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Martin Gyürkés
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Dorián L Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Lajos Madarász
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Sune K Andersen
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Tamás Vígh
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Geert Verreck
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - István Csontos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary.
| |
Collapse
|
52
|
Wahlich J. Review: Continuous Manufacturing of Small Molecule Solid Oral Dosage Forms. Pharmaceutics 2021; 13:1311. [PMID: 34452272 PMCID: PMC8400279 DOI: 10.3390/pharmaceutics13081311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Continuous manufacturing (CM) is defined as a process in which the input material(s) are continuously fed into and transformed, and the processed output materials are continuously removed from the system. CM can be considered as matching the FDA's so-called 'Desired State' of pharmaceutical manufacturing in the twenty-first century as discussed in their 2004 publication on 'Innovation and Continuous Improvement in Pharmaceutical Manufacturing'. Yet, focused attention on CM did not really start until 2014, and the first product manufactured by CM was only approved in 2015. This review describes some of the benefits and challenges of introducing a CM process with a particular focus on small molecule solid oral dosage forms. The review is a useful introduction for individuals wishing to learn more about CM.
Collapse
Affiliation(s)
- John Wahlich
- Academy of Pharmaceutical Sciences, c/o Bionow, Greenheys Business Centre, Manchester Science Park, Pencroft Way, Manchester M15 6JJ, UK
| |
Collapse
|
53
|
Domokos A, Pusztai É, Madarász L, Nagy B, Gyürkés M, Farkas A, Fülöp G, Casian T, Szilágyi B, Nagy ZK. Combination of PAT and mechanistic modeling tools in a fully continuous powder to granule line: Rapid and deep process understanding. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
54
|
Narkhede R, Athawale R, Patil N, Baburaj M. Formulation, Evaluation, and Clinical Assessment of Novel Solid Lipid Microparticles of Tetracycline Hydrochloride for the Treatment of Periodontitis. AAPS PharmSciTech 2021; 22:162. [PMID: 34031773 DOI: 10.1208/s12249-021-02037-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
The novel solvent-free process to formulate long-acting microparticles of tetracycline hydrochloride (TH) using hot melt extrusion granulation process coupled with size reduction using comil for the treatment of periodontitis was investigated using hydrogenated castor oil (HCO) as hydrophobic matrix former. The microparticles were characterized for micromeritics, drug diffusion, SEM studies, and stability analysis by DSC, FTIR, and proton NMR. Xanthan gum gel was used as delivery vehicles to administer microparticles inside periodontal pockets. The microparticles were sterilized using gamma radiation; delivery vehicle was sterilized using gamma radiation and autoclave process. Microparticles were evaluated for microbial load as per compendial guidelines. Optimized composition was evaluated for clinical parameters such as plaque index, gingival index, probing pocket depth, and clinical attachment level. Based on the statistical analysis of the data, the micromeritic properties and drug diffusion profiles vary based on the concentration of HCO in the formulation. SEM images reflect the surface properties prior and post drug diffusion studies, which indicates that release takes place predominantly by diffusion of TH through HCO matrix. DSC studies indicate no change in the respective spectra of initial and stability samples. FTIR studies indicate possibility of hydrogen bonding. Proton NMR data suggests characteristic peaks of TH being retained in the stability samples, indicating stable composition. Gamma radiation has led to significant reduction in viscosity of xanthan gum solution over autoclave. Clinical studies indicated statistical improvements in the formulation compared to baseline results, indicating the efficacy of the formulation in the treatment of periodontitis.
Collapse
|
55
|
Hu C. Reactor design and selection for effective continuous manufacturing of pharmaceuticals. J Flow Chem 2021; 11:243-263. [PMID: 34026279 PMCID: PMC8130218 DOI: 10.1007/s41981-021-00164-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022]
Abstract
Pharmaceutical production remains one of the last industries that predominantly uses batch processes, which are inefficient and can cause drug shortages due to the long lead times or quality defects. Consequently, pharmaceutical companies are transitioning away from outdated batch lines, in large part motivated by the many advantages of continuous manufacturing (e.g., low cost, quality assurance, shortened lead time). As chemical reactions are fundamental to any drug production process, the selection of reactor and its design are critical to enhanced performance such as improved selectivity and yield. In this article, relevant theories, and models, as well as their required input data are summarized to assist the reader in these tasks, focusing on continuous reactions. Selected examples that describe the application of plug flow reactors (PFRs) and continuous-stirred tank reactors (CSTRs)-in-series within the pharmaceutical industry are provided. Process analytical technologies (PATs), which are important tools that provide real-time in-line continuous monitoring of reactions, are recommended to be considered during the reactor design process (e.g., port design for the PAT probe). Finally, other important points, such as density change caused by thermal expansion or solid precipitation, clogging/fouling, and scaling-up, are discussed. Graphical abstract
Collapse
Affiliation(s)
- Chuntian Hu
- CONTINUUS Pharmaceuticals, Woburn, MA 01801 USA
| |
Collapse
|
56
|
Johnson MD, Burcham CL, May SA, Calvin JR, McClary Groh J, Myers SS, Webster LP, Roberts JC, Reddy VR, Luciani CV, Corrigan AP, Spencer RD, Moylan R, Boyse R, Murphy JD, Stout JR. API Continuous Cooling and Antisolvent Crystallization for Kinetic Impurity Rejection in cGMP Manufacturing. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Martin D. Johnson
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | | | - Scott A. May
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Joel R. Calvin
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Jennifer McClary Groh
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Steven S. Myers
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Luke P. Webster
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Jeffrey C. Roberts
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Venkata Ramana Reddy
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Carla V. Luciani
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | | | | | - Robert Moylan
- Eli Lilly Kinsale, Manufacturing, Dunderrow, Kinsale, Cork, Ireland
| | - Raymond Boyse
- Eli Lilly Kinsale, Manufacturing, Dunderrow, Kinsale, Cork, Ireland
| | - John D. Murphy
- Eli Lilly Kinsale, Manufacturing, Dunderrow, Kinsale, Cork, Ireland
| | - James R. Stout
- D&M Continuous Solutions, LLC, Greenwood, Indiana 46113, United States
| |
Collapse
|
57
|
Jaspers M, de Wit MT, Kulkarni SS, Meir B, Janssen PH, van Haandel MM, Dickhoff BH. Impact of excipients on batch and continuous powder blending. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
58
|
Leslie A, Moody TS, Smyth M, Wharry S, Baumann M. Coupling biocatalysis with high-energy flow reactions for the synthesis of carbamates and β-amino acid derivatives. Beilstein J Org Chem 2021; 17:379-384. [PMID: 33828617 PMCID: PMC7871027 DOI: 10.3762/bjoc.17.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/27/2021] [Indexed: 11/23/2022] Open
Abstract
A continuous flow process is presented that couples a Curtius rearrangement step with a biocatalytic impurity tagging strategy to produce a series of valuable Cbz-carbamate products. Immobilized CALB was exploited as a robust hydrolase to transform residual benzyl alcohol into easily separable benzyl butyrate. The resulting telescoped flow process was effectively applied across a series of acid substrates rendering the desired carbamate structures in high yield and purity. The derivatization of these products via complementary flow-based Michael addition reactions furthermore demonstrated the creation of β-amino acid species. This strategy thus highlights the applicability of this work towards the creation of important chemical building blocks for the pharmaceutical and speciality chemical industries.
Collapse
Affiliation(s)
- Alexander Leslie
- School of Chemistry, University College Dublin, D04 N2E2, Ireland
| | - Thomas S Moody
- Almac Group Ltd., Craigavon BT63 5QD, United Kingdom.,Arran Chemical Company, Athlone, Co. Roscommon N37 DN24, Ireland
| | - Megan Smyth
- Almac Group Ltd., Craigavon BT63 5QD, United Kingdom
| | - Scott Wharry
- Almac Group Ltd., Craigavon BT63 5QD, United Kingdom
| | - Marcus Baumann
- School of Chemistry, University College Dublin, D04 N2E2, Ireland
| |
Collapse
|
59
|
Zettl M, Aigner I, Mannschott T, van der Wel P, Schröttner H, Khinast J, Krumme M. Characterization of a Novel Drying Technology for Continuous Processing of Cohesive Materials: An Ibuprofen Case Study. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manuel Zettl
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
| | - Isabella Aigner
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
| | | | | | - Hartmuth Schröttner
- Graz University of Technology, Institute for Electron Microscopy and Nanoanalysis, 8010 Graz, Austria
- Austrian Centre for Electron Microscopy and Nanoanalysis (FELMI-ZFE), 8010 Graz, Austria
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
- Graz University of Technology, Institute for Process and Particle Engineering, 8010 Graz, Austria
| | | |
Collapse
|
60
|
Domokos A, Nagy B, Szilágyi B, Marosi G, Nagy ZK. Integrated Continuous Pharmaceutical Technologies—A Review. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- András Domokos
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Botond Szilágyi
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, H-1111 Budapest, Hungary
| | - György Marosi
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| |
Collapse
|
61
|
Vo AQ, Kutz G, He H, Narala S, Bandari S, Repka MA. Continuous Manufacturing of Ketoprofen Delayed Release Pellets Using Melt Extrusion Technology: Application of QbD Design Space, Inline Near Infrared, and Inline Pellet Size Analysis. J Pharm Sci 2020; 109:3598-3607. [PMID: 32916139 PMCID: PMC7680423 DOI: 10.1016/j.xphs.2020.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022]
Abstract
Delayed-release dosage forms are mainly manufactured as batch processes and include coated tablets, pellets, or particles with gastric resistant polymers. Authors propose a novel approach using the hot-melt extrusion technique to prepare delayed release dosage forms via a continuous manufacturing process, a new trend in the pharmaceutical industry. A full factorial design was employed to correlate input variables, including stearic acid (SA) content, drug content, and pellet size with drug release properties of the pellets. PLS fit method suitably elaborated the relationship between input and output variables with reasonably good fit and goodness of prediction. All three input factors influenced drug release in enzyme-free simulated gastric fluid (SGF) after 120 min; however, SA content did not significantly affect drug dissolution in the enzyme-free simulated intestinal fluid (SIF). An optimized formulation and design space were determined by overlaying multiple contours established from regression equations. The continuous manufacturing process was successfully monitored using inline near-infrared (NIR) and inline particle size analysis, with drug load and pellet size being well-controlled within the design space. The obtained pellets released less than 5% after 120 min in SGF and more than 85% and 95% after 30 min and 45 min, respectively, after switching to SIF.
Collapse
Affiliation(s)
- Anh Q Vo
- School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of Physical Chemistry and Physics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Gerd Kutz
- OWL University of Applied Sciences and Arts, Pharmaceutical Engineering, Lemgo, Germany
| | - Herman He
- Thermo Fisher Scientific, Tewksbury, MA 01876, USA
| | - Sagar Narala
- School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- School of Pharmacy, University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
62
|
Duan S, Feng X, Gonzalez M, Bader S, Hayward C, Ljubicic T, Lu J, Mustakis J, Maloney M, Rainville J, Zhang X. Developing a Multistep Continuous Manufacturing Process for (1R,2R)-2-Amino-1-methylcyclopentan-1-ol. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengquan Duan
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Xichun Feng
- Asymchem Life Science (Tianjin) Co., Ltd., No. 71, 7th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Miguel Gonzalez
- Asymchem Inc., 600 Airport Blvd. Suite 1000, Morrisville, North Carolina 27516, United States
| | - Scott Bader
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cheryl Hayward
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Tomislav Ljubicic
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jiangping Lu
- Asymchem Life Science (Tianjin) Co., Ltd., No. 71, 7th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Jason Mustakis
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark Maloney
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph Rainville
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Xin Zhang
- Asymchem Life Science (Tianjin) Co., Ltd., No. 71, 7th Avenue, TEDA, Tianjin 300457, P. R. China
| |
Collapse
|
63
|
Baumann M, Moody TS, Smyth M, Wharry S. Overcoming the Hurdles and Challenges Associated with Developing Continuous Industrial Processes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Marcus Baumann
- School of Chemistry Science Centre University College Dublin South Belfield D04 N2E2 Ireland
| | - Thomas S. Moody
- Almac Group Ltd. 20 Seagoe Industrial Estate Craigavon BT63 5QD United Kingdom
- Arran Chemical Company Unit 1 Monksland Industrial Estate Athlone, Co. Roscommon Ireland
| | - Megan Smyth
- Almac Group Ltd. 20 Seagoe Industrial Estate Craigavon BT63 5QD United Kingdom
| | - Scott Wharry
- Almac Group Ltd. 20 Seagoe Industrial Estate Craigavon BT63 5QD United Kingdom
| |
Collapse
|
64
|
Quantum mechanical NMR full spin analysis in pharmaceutical identity testing and quality control. J Pharm Biomed Anal 2020; 192:113601. [PMID: 33049645 DOI: 10.1016/j.jpba.2020.113601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/03/2023]
Abstract
Issues related to pharmaceutical quality are arising at an alarming rate. Pharmaceutical quality concerns both the Active Pharmaceutical Ingredients (APIs) and the Finished Drug Product/ Formulation. Recently, there has been a significant increase in the number of reports of harmful impurities in marketed drug formulations. Impurities range from solvents, reactants, adulterants, and catalysts to synthetic byproducts. Quality concerns in commercial preparations may also arise due to shelf life stability. Furthermore, a number of falsified and substandard drug cases have been reported. Most of the techniques which are currently in place can, at best, detect the impurities, but cannot identify them unless they are already known and can be compared to a standard. On the other hand, 1H NMR spectroscopy detects all the hydrogen containing species, typically provides information to elucidate structures partially or even completely, and through its absolute quantitative capabilities even can detect the presence hydrogen-free species indirectly. The structural properties that produce 1H NMR signals as characteristic representations of a given molecule are the chemical shifts (δ in ppm) and coupling constants (J in Hz). Along with the line widths (ω1/2 in Hz), these parameters are bound to both the molecule and the NMR experimental conditions by quantum mechanical (QM) principles. This means that the 1H NMR spectra of APIs can be precisely calculated and compared to the experimental data. This review explains how 1H NMR spectroscopy coupled with Full Spin Analysis can contribute towards the quality control of pharmaceuticals by improving structural dereplication and achieving simultaneous quantification of both APIs and their contaminants.
Collapse
|
65
|
Doyle BJ, Elsner P, Gutmann B, Hannaerts O, Aellig C, Macchi A, Roberge DM. Mini-Monoplant Technology for Pharmaceutical Manufacturing. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Brendon J. Doyle
- Centre for Catalysis Research and Innovation, Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Petteri Elsner
- API Development Services, Lonza AG, CH-3930 Visp, Switzerland
| | | | | | - Christof Aellig
- API Development Services, Lonza AG, CH-3930 Visp, Switzerland
| | - Arturo Macchi
- Centre for Catalysis Research and Innovation, Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|
66
|
Rogers L, Briggs N, Achermann R, Adamo A, Azad M, Brancazio D, Capellades G, Hammersmith G, Hart T, Imbrogno J, Kelly LP, Liang G, Neurohr C, Rapp K, Russell MG, Salz C, Thomas DA, Weimann L, Jamison TF, Myerson AS, Jensen KF. Continuous Production of Five Active Pharmaceutical Ingredients in Flexible Plug-and-Play Modules: A Demonstration Campaign. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
67
|
Allenspach C, Timmins P, Sharif S, Minko T. Characterization of a novel hydroxypropyl methylcellulose (HPMC) direct compression grade excipient for pharmaceutical tablets. Int J Pharm 2020; 583:119343. [PMID: 32305364 DOI: 10.1016/j.ijpharm.2020.119343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022]
Abstract
Controlled release tablets are important dosage forms enabling a slower release of the drug and better pharmacokinetics for some drugs and hydrophilic matrix tablets utilizing hydroxypropyl methylcellulose (HPMC) are one of the most common types. One of the main challenges with using HPMC is its poor flow when implemented in a direct compression process or when utilized for continuous manufacturing for which novel grades of direct compression have been developed. In this work, three different direct compression (DC) grades of HPMC (K4M, K15M and K100M) were characterized and compared to their standard grade (CR) counterparts. These materials were compared in terms of density, particle size, morphology, surface area and powder flow using multiple techniques. Results showed that the materials were almost identical in terms of particle shape and although the DC grades had better flow, the particle size was slightly smaller with an unexpectedly higher surface area, which most likely resulted from the inclusion of co-processed silicon dioxide in the DC grades. The bulk, tapped and true densities were slightly higher for all of the DC grades. Of the eleven different parameters used to characterize the flow of the materials the DC grades showed better flow than their standard CR counterparts for nine of the parameters (Carr's Index, Erweka flow, FT4 Flow Rate Index, Mean Avalanche Time, Avalanche Scatter, Number of Avalanches, Shear Cell Uni-axial Compressive Strength and Shear Cell Flow Function Coefficient). Only the FT4 Basic Flowability Energy and Specific Energy showed the opposite trend which can be explained from the testing methodology. It is recommended to evaluate the DC grades of HPMC for processes where better flowing material would have an advantage, such as direct compression, continuous manufacturing, and roller compaction if the powder flow into the rolls is problematic.
Collapse
Affiliation(s)
- Carl Allenspach
- Bristol-Myers Squibb, 1 Squibb Dr. New, Brunswick, NJ 08901, United States.
| | - Peter Timmins
- Bristol-Myers Squibb, Reeds Lane, Moreton Merseyside CH46 1QW, UK.
| | - Shasad Sharif
- Bristol-Myers Squibb, 1 Squibb Dr. New, Brunswick, NJ 08901, United States
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, United States
| |
Collapse
|
68
|
Lorenz H, Seidel-Morgenstern A. Separation Processes to Provide Pure Enantiomers and Plant Ingredients. Annu Rev Chem Biomol Eng 2020; 11:469-502. [PMID: 32197049 DOI: 10.1146/annurev-chembioeng-100419-103732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enantiomer separation and the isolation of natural products from plants pose challenging separation problems resulting from the similarity of molecules and the number of compounds present in synthesis or extract mixtures. Furthermore, limited theory is available to predict productivities for possible alternative separation techniques. The application and performance of chromatography- and crystallization-based processes are demonstrated for various case studies devoted to isolating valuable target compounds from complex initial mixtures. In all cases, the first emphasis is set to determine the process-specific phase equilibria to identify feasible process options. For all examples considered, yields and productivities are evaluated and compared for different scenarios. Guidelines to approach and solve similar separation tasks are given.
Collapse
Affiliation(s)
- Heike Lorenz
- Max Planck Institute for Dynamics of Complex Technical Systems, D-39106 Magdeburg, Germany;
| | - Andreas Seidel-Morgenstern
- Max Planck Institute for Dynamics of Complex Technical Systems, D-39106 Magdeburg, Germany; .,Otto von Guericke University Magdeburg, Institute of Process Engineering, D-39106 Magdeburg, Germany
| |
Collapse
|
69
|
Qwist PK, Sander C, Bostijn N, Jessen V, Rantanen J, De Beer T. Continuous Manufacturing of a Polymer Stabilized Emulsion Monitored with Process Analytical Technology. AAPS PharmSciTech 2020; 21:154. [PMID: 32449146 DOI: 10.1208/s12249-020-01704-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/03/2020] [Indexed: 12/24/2022] Open
Abstract
Moving from batch to continuous manufacturing (CM) requires implementation of process analytical technology (PAT), as it is crucial to monitor and control these processes. CM of semi-solids has been demonstrated but implementation of a broader range of PAT tools with in- or on-line process interfacing at the end of the CM line has not been demonstrated. The goal of this work was to continuously manufacture creams and to investigate whether in- and on-line measurement of viscosity, changes in the concentration of active pharmaceutical ingredient (API), and pH could be used to support optimization of a model cream product. Additionally, the torque of the mixers was assessed for determination of the physical properties of the cream. Two Raman probes with different probe optics were compared for characterization of the API concentration. The API concentration, amount of neutralizer, and mixing speed of the CM line were systematically varied. Both the PhAT probe with a larger sampling volume and immersion Raman probe with a smaller sampling volume could detect the step changes in the API concentration. The torque from the mixer was compared with the viscosity measurements, but the torque signal could not be correlated with the viscosity due to the dynamic nature of the polymer conformation and the time-dependency of this property. Adjustment of pH of the cream could be monitored with the current installation. The investigated PAT tools could be implemented into a continuous line and, further, be used to support the optimization of a model cream composition and related process parameters.
Collapse
|
70
|
Marques CM, Moniz S, de Sousa JP, Barbosa-Povoa AP, Reklaitis G. Decision-support challenges in the chemical-pharmaceutical industry: Findings and future research directions. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2019.106672] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
71
|
Demonstration of the Feasibility of Predicting the Flow of Pharmaceutically Relevant Powders from Particle and Bulk Physical Properties. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09433-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
72
|
Ortiz KS, Hernández Espinell JR, Ortiz Torres D, Lopéz-Mejías V, Stelzer T. Polymorphism in Solid Dispersions. CRYSTAL GROWTH & DESIGN 2020; 20:713-722. [PMID: 38107251 PMCID: PMC10723824 DOI: 10.1021/acs.cgd.9b01138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Solid dispersions embed active pharmaceutical ingredients in polymeric carriers to improve their solubility. Three solid dispersion preparation techniques are typically employed: solvent evaporation, solvent-fusion, and fusion methods. Although these are also widely recommended as preparative methods for phase diagram determination, few examples exist concerning their effect on the resulting polymorph, once the solid dispersion is produced. In this study, the influence of these methods on the polymorphic form obtained in crystalline solid dispersions (CSDs) composed of flufenamic acid (FFA) and poly(ethylene glycol) was investigated. The physical mixtures and CSDs were characterized by powder X-ray diffraction, infrared spectroscopy, and differential scanning calorimetry. The results reveal that the fusion method leads to concomitant polymorphs (mainly FFA I and III) in the CSDs. In contrast, the solvent evaporation and solvent-fusion methods lead to FFA III. Collectively, these results demonstrate that preparative methods have a significant influence on the phase diagrams determined (average relative deviation ≤8%), which are often used to justify the design space of manufacturing processes, including those deemed "continuous." Consequently, choosing a preparation method that results in the desired polymorph is crucial to ensure accurate determination of phase diagrams and critical quality attributes of formulations.
Collapse
Affiliation(s)
- Karina Sanabria Ortiz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00931, United States
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - José R. Hernández Espinell
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00931, United States
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - Desire Ortiz Torres
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00931, United States
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - Vilmalí Lopéz-Mejías
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00931, United States
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - Torsten Stelzer
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936, United States
| |
Collapse
|
73
|
Szabó E, Démuth B, Galata DL, Vass P, Hirsch E, Csontos I, Marosi G, Nagy ZK. Continuous Formulation Approaches of Amorphous Solid Dispersions: Significance of Powder Flow Properties and Feeding Performance. Pharmaceutics 2019; 11:E654. [PMID: 31817454 PMCID: PMC6955740 DOI: 10.3390/pharmaceutics11120654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Preparation and formulation of amorphous solid dispersions (ASDs) are becoming more and more popular in the pharmaceutical field because the dissolution of poorly water-soluble drugs can be effectively improved this way, which can lead to increased bioavailability in many cases. During downstream processing of ASDs, technologists need to keep in mind both traditional challenges and the newest trends. In the last decade, the pharmaceutical industry began to display considerable interest in continuous processing, which can be explained with their potential advantages such as smaller footprint, easier scale-up, and more consistent product, better quality and quality assurance. Continuous downstream processing of drug-loaded ASDs opens new ways for automatic operation. Therefore, the formulation of poorly water-soluble drugs may be more effective and safe. However, developments can be challenging due to the poor flowability and feeding properties of ASDs. Consequently, this review pays special attention to these characteristics since the feeding of the components greatly influences the content uniformity in the final dosage form. The main purpose of this paper is to summarize the most important steps of the possible ASD-based continuous downstream processes in order to give a clear overview of current course lines and future perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zsombor K. Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, H-1111 Budapest, Hungary; (E.S.); (B.D.); (D.L.G.); (P.V.); (E.H.); (I.C.); (G.M.)
| |
Collapse
|
74
|
Kopp J, Slouka C, Spadiut O, Herwig C. The Rocky Road From Fed-Batch to Continuous Processing With E. coli. Front Bioeng Biotechnol 2019; 7:328. [PMID: 31824931 PMCID: PMC6880763 DOI: 10.3389/fbioe.2019.00328] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Escherichia coli still serves as a beloved workhorse for the production of many biopharmaceuticals as it fulfills essential criteria, such as having fast doubling times, exhibiting a low risk of contamination, and being easy to upscale. Most industrial processes in E. coli are carried out in fed-batch mode. However, recent trends show that the biotech industry is moving toward time-independent processing, trying to improve the space-time yield, and especially targeting constant quality attributes. In the 1950s, the term "chemostat" was introduced for the first time by Novick and Szilard, who followed up on the previous work performed by Monod. Chemostat processing resulted in a major hype 10 years after its official introduction. However, enthusiasm decreased as experiments suffered from genetic instabilities and physiology issues. Major improvements in strain engineering and the usage of tunable promotor systems facilitated chemostat processes. In addition, critical process parameters have been identified, and the effects they have on diverse quality attributes are understood in much more depth, thereby easing process control. By pooling the knowledge gained throughout the recent years, new applications, such as parallelization, cascade processing, and population controls, are applied nowadays. However, to control the highly heterogeneous cultivation broth to achieve stable productivity throughout long-term cultivations is still tricky. Within this review, we discuss the current state of E. coli fed-batch process understanding and its tech transfer potential within continuous processing. Furthermore, the achievements in the continuous upstream applications of E. coli and the continuous downstream processing of intracellular proteins will be discussed.
Collapse
Affiliation(s)
- Julian Kopp
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna, Austria
| | - Christoph Slouka
- Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna, Austria
| | - Oliver Spadiut
- Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna, Austria
| | - Christoph Herwig
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna, Austria
- Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna, Austria
| |
Collapse
|
75
|
Yu M, Strotman NA, Savage SA, Leung S, Ramirez A. A Practical and Robust Multistep Continuous Process for Manufacturing 5-Bromo- N-( tert-butyl)pyridine-3-sulfonamide. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miao Yu
- Chemical & Synthetic Development, Global Product Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Neil A. Strotman
- Chemical & Synthetic Development, Global Product Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Scott A. Savage
- Chemical & Synthetic Development, Global Product Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Simon Leung
- Research and Development External Manufacturing, Global Product Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Antonio Ramirez
- Chemical & Synthetic Development, Global Product Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
76
|
Macchi A, Plouffe P, Patience GS, Roberge DM. Experimental methods in chemical engineering: Micro‐reactors. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23525] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Arturo Macchi
- Centre for Catalysis Research and Innovation, Department of Chemical and Biological EngineeringUniversity of OttawaOttawa ON K1N 6N5 Canada
| | - Patrick Plouffe
- Centre for Catalysis Research and Innovation, Department of Chemical and Biological EngineeringUniversity of OttawaOttawa ON K1N 6N5 Canada
| | - Gregory S. Patience
- Department of Chemical EngineeringÉcole Polytechnique de Montréal Montréal QC H3C 3A7 Canada
| | | |
Collapse
|
77
|
Integrated continuous manufacturing in pharmaceutical industry: current evolutionary steps toward revolutionary future. Pharm Pat Anal 2019; 8:139-161. [DOI: 10.4155/ppa-2019-0011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Continuous manufacturing (CM) has the potential to provide pharmaceutical products with better quality, improved yield and with reduced cost and time. Moreover, ease of scale-up, small manufacturing footprint and on-line/in-line monitoring and control of the process are other merits for CM. Regulating authorities are supporting the adoption of CM by pharmaceutical manufacturers through issuing proper guidelines. However, implementation of this technology in pharmaceutical industry is encountered by a number of challenges regarding the process development and quality assurance. This article provides a background on the implementation of CM in pharmaceutical industry, literature survey of the most recent state-of-the-art technologies and critically discussing the encountered challenges and its future prospective in pharmaceutical industry.
Collapse
|
78
|
Taipale-Kovalainen K, Karttunen AP, Niinikoski H, Ketolainen J, Korhonen O. The effects of unintentional and intentional process disturbances on tablet quality during long continuous manufacturing runs. Eur J Pharm Sci 2019; 129:10-20. [PMID: 30550973 DOI: 10.1016/j.ejps.2018.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 11/24/2022]
|