51
|
Wang W, Min Q, Lai N, Csomos K, Wang Y, Liu L, Meng X, Sun J, Hou J, Ying W, Zhou Q, Sun B, Hui X, Ujhazi B, Gordon S, Buchbinder D, Schuetz C, Butte M, Walter JE, Wang X, Wang JY. Cellular Mechanisms Underlying B Cell Abnormalities in Patients With Gain-of-Function Mutations in the PIK3CD Gene. Front Immunol 2022; 13:890073. [PMID: 35799777 PMCID: PMC9253290 DOI: 10.3389/fimmu.2022.890073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background Activated phosphoinositide 3 kinase (PI3K) -delta syndrome (APDS) is an inborn error of immunity with variable clinical phenotype of immunodeficiency and immune dysregulation and caused by gain-of-function mutations in PIK3CD. The hallmark of immune phenotype is increased proportions of transitional B cells and plasmablasts (PB), progressive B cell loss, and elevated levels of serum IgM. Objective To explore unique B cell subsets and the pathomechanisms driving B cell dysregulation beyond the transitional B cell stage in APDS. Methods Clinical and immunological data was collected from 24 patients with APDS. In five cases, we performed an in-depth analysis of B cell phenotypes and cultured purified naïve B cells to evaluate their survival, activation, Ig gene class switch recombination (CSR), PB differentiation and antibody secretion. We also analyzed PB differentiation capacity of sorted CD27-IgD- double-negative B (DNB) cells. Results The patients had increased B cell sizes and higher proportions of IgM+ DNB cells than healthy controls (HC). Their naïve B cells exhibited increased death, impaired CSR but relatively normal PB differentiation. Upon stimulation, patient’s DNB cells secreted a similar level of IgG but a higher level of IgM than DNB cells from HC. Targeted therapy of PI3K inhibition partially restored B cell phenotypes. Conclusions The present study suggests additional mechanistic insight into B cell pathology of APDS: (1) decreased peripheral B cell numbers may be due to the increased death of naïve B cells; (2) larger B cell sizes and expanded DNB population suggest enhanced activation and differentiation of naïve B cells into DNB cells; (3) the impaired CSR yet normal PB differentiation can predominantly generate IgM-secreting cells, resulting in elevated IgM levels.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Qing Min
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Nannan Lai
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai, China
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Ying Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Luyao Liu
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jia Hou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bijun Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Boglarka Ujhazi
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Sumai Gordon
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - David Buchbinder
- Division of Hematology, Children’s Hospital of Orange Country (CHOC), Irvine, CA, United States
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manish Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and Jeffrey Modell Diagnostic and Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- Massachusetts General Hospital, Boston, MA, United States
- *Correspondence: Jolan E. Walter, ; Xiaochuan Wang, ; Ji-Yang Wang,
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
- *Correspondence: Jolan E. Walter, ; Xiaochuan Wang, ; Ji-Yang Wang,
| | - Ji-Yang Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
- *Correspondence: Jolan E. Walter, ; Xiaochuan Wang, ; Ji-Yang Wang,
| |
Collapse
|
52
|
Gadkar K, Friedrich C, Hurez V, Ruiz M, Dickmann L, Kumar Jolly M, Schutt L, Jin J, Ware JA, Ramanujan S. Quantitative systems pharmacology model-based investigation of adverse gastrointestinal events associated with prolonged treatment with PI3-kinase inhibitors. CPT Pharmacometrics Syst Pharmacol 2022; 11:616-627. [PMID: 34850607 PMCID: PMC9124351 DOI: 10.1002/psp4.12749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/06/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Several PI3K inhibitors are in clinical development for the treatment of various forms of cancers, including pan-PI3K inhibitors targeting all four PI3K isoforms (α, β, γ, and δ), and isoform-selective inhibitors. Diarrhea and immune-mediated colitis are among the adverse events observed with PI3K inhibition which limits the maximal tolerated dose. A quantitative systems pharmacology model was developed to investigate PI3K-inhibitor-induced colitis. The effects of individual PI3K isoforms on relevant cellular pathways were incorporated into a mechanistic representation of mucosal inflammation. A virtual clinical population captures the observed clinical variability in the onset timing and rates of diarrhea and colitis for seven clinically tested PI3K inhibitors. Model-based analysis suggests that colitis development is governed by both the inhibition of PI3Kδ, which drives T cell differentiation and proliferation, and PI3Kα, which regulates epithelial barrier integrity. Specifically, when PI3Kα is inhibited below a given threshold, epithelial barrier dysfunction precipitates an exaggerated T effector response due to PI3Kδ-inhibition, leading to risk of diarrhea and colitis. This synergy explains why the lowest diarrhea and colitis rates are seen with the weakest PI3Kδ inhibition (alpelisib), and higher rates are seen with strong PI3Kδ inhibition if PI3Kα is even mildly inhibited (e.g., idelalisib), whereas strong PI3Kδ inhibition in the absence of PI3Kα inhibition does not result in high colitis rates (umbralisib). Thus, the model-based analysis suggests that PI3Kα and δ inhibition play unique but synergistic roles in driving colitis. Finally, we explore if and how dose-regimen might influence colitis rates for molecules that inhibit both PI3Kα and PI3Kδ.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin Jin
- GenentechSouth San FranciscoCaliforniaUSA
| | | | | |
Collapse
|
53
|
Phosphoinositide 3-Kinases as Potential Targets for Thrombosis Prevention. Int J Mol Sci 2022; 23:ijms23094840. [PMID: 35563228 PMCID: PMC9105564 DOI: 10.3390/ijms23094840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
As integral parts of pathological arterial thrombi, platelets are the targets of pharmacological regimens designed to treat and prevent thrombosis. A detailed understanding of platelet biology and function is thus key to design treatments that prevent thrombotic cardiovascular disease without significant disruption of the haemostatic balance. Phosphoinositide 3-kinases (PI3Ks) are a group of lipid kinases critical to various aspects of platelet biology. There are eight PI3K isoforms, grouped into three classes. Our understanding of PI3K biology has recently progressed with the targeting of specific isoforms emerging as an attractive therapeutic strategy in various human diseases, including for thrombosis. This review will focus on the role of PI3K subtypes in platelet function and subsequent thrombus formation. Understanding the mechanisms by which platelet function is regulated by the various PI3Ks edges us closer toward targeting specific PI3K isoforms for anti-thrombotic therapy.
Collapse
|
54
|
Nguyen KA, Keith MJ, Keysar SB, Hall SC, Bimali A, Jimeno A, Wang XJ, Young CD. Epidermal growth factor receptor signaling in precancerous keratinocytes promotes neighboring head and neck cancer squamous cell carcinoma cancer stem cell-like properties and phosphoinositide 3-kinase inhibitor insensitivity. Mol Carcinog 2022; 61:664-676. [PMID: 35417043 DOI: 10.1002/mc.23409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is commonly associated with tobacco and alcohol consumption that induce a "precancerous field," with phosphoinositide 3-kinase (PI3K) signaling being a common driver. However, the preclinical effectiveness of PI3K inhibitors has not necessarily translated to remarkable benefit in HNSCC patients. Thus, we sought to determine how precancerous keratinocytes influence HNSCC proliferation, cancer stem cell (CSC) maintenance, and response to PI3K inhibitors. We used the NOK keratinocyte cell line as a model of preneoplastic keratinocytes because it harbors two frequent genetic events in HNSCC, CDKN2A promoter methylation and TP53 mutation, but does not form tumors. NOK cell coculture or NOK cell-conditioned media promoted HNSCC proliferation, PI3K inhibitor resistance, and CSC phenotypes. SOMAscan-targeted proteomics determined the relative levels of >1300 analytes in the media conditioned by NOK cells and HNSCC cells ± PI3K inhibitor. These results demonstrated that NOK cells release abundant levels of ligands that activate epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR), two receptor tyrosine kinases with oncogenic activity. Inhibition of EGFR, but not FGFR, blunted PI3K inhibitor resistance and CSC phenotypes induced by NOK cells. Our results demonstrate that precancerous keratinocytes can directly support neighboring HNSCC by activating EGFR. Importantly, PI3K inhibitor sensitivity was not necessarily a cancer cell-intrinsic property, and the tumor microenvironment impacts therapeutic response and supports CSCs. Additionally, combined inhibition of EGFR with PI3K inhibitor diminished EGFR activation induced by PI3K inhibitor and potently inhibited cancer cell proliferation and CSC maintenance.
Collapse
Affiliation(s)
- Khoa A Nguyen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Madison J Keith
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Spencer C Hall
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anamol Bimali
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| | - Christian D Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
55
|
Lim HJ, Han JM, Byun EH. Evaluation of the Immunological Activity of Gryllus bimaculatus Water Extract. Prev Nutr Food Sci 2022; 27:99-107. [PMID: 35465112 PMCID: PMC9007703 DOI: 10.3746/pnf.2022.27.1.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/06/2022] Open
Abstract
Edible insects are commonly consumed across the world because of their size, availability, and nutritional benefits. They have also been recommended as a potential solution to food shortage because of their high nutritional value. In this study, we demonstrated the immunological effects of Gryllus bimaculatus on RAW 264.7 cells and splenocytes obtained from mouse. This is the first study to evaluate the immunological effects of G. bimaculatus water extract. Innate and adaptive immunity were evaluated and measured in RAW 264.7 cells and/or mouse splenocytes using a cell viability assay; changes in cytokine abundance, nitric oxide production, and cell surface molecule abundance were determined using flow cytometry; and western blotting analysis was performed for various immune signaling pathways. G. bimaculatus water extract showed no cytotoxicity in cells, and the results suggest that treatment with G. bimaculatus water extract can induce macrophage activation through mitogen-activated protein kinase and nuclear factor-κB signaling, induction of proinflammatory cytokines [interleukin (IL)-6, IL-1β, and tumor necrosis factor-α] and activation of the expression of cell surface molecules [cluster of differentiation (CD)80, CD86, major histocompatibility complex (MHC) class I, and MHC class II]. Treatment with G. bimaculatus water extract increased the production of cytokines (IL-2, IL-4, and interferon-γ) in splenocytes. The results indicate that G. bimaculatus water extract can regulate innate and adaptive immunity via modulation macrophages and splenocytes activation and can serve as an immunological agent. We inferred that G. bimaculatus is a safe and efficient natural material that enhances immunological activity.
Collapse
Affiliation(s)
- Hyun Jung Lim
- Department of Food Science and Technology, Kongju National University, Chungnam 32439, Korea
| | - Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeonbuk 56212, Korea
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Chungnam 32439, Korea
| |
Collapse
|
56
|
Schiavo E, Martini B, Attardi E, Consonni F, Ciullini Mannurita S, Coniglio ML, Tellini M, Chiocca E, Fotzi I, Luti L, D'Alba I, Veltroni M, Favre C, Gambineri E. Autoimmune Cytopenias and Dysregulated Immunophenotype Act as Warning Signs of Inborn Errors of Immunity: Results From a Prospective Study. Front Immunol 2022; 12:790455. [PMID: 35058929 PMCID: PMC8765341 DOI: 10.3389/fimmu.2021.790455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Inborn errors of immunity (IEI) are genetic disorders characterized by a wide spectrum of clinical manifestations, ranging from increased susceptibility to infections to significant immune dysregulation. Among these, primary immune regulatory disorders (PIRDs) are mainly presenting with autoimmune manifestations, and autoimmune cytopenias (AICs) can be the first clinical sign. Significantly, AICs in patients with IEI often fail to respond to first-line therapy. In pediatric patients, autoimmune cytopenias can be red flags for IEI. However, for these cases precise indicators or parameters useful to suspect and screen for a hidden congenital immune defect are lacking. Therefore, we focused on chronic/refractory AIC patients to perform an extensive clinical evaluation and multiparametric flow cytometry analysis to select patients in whom PIRD was strongly suspected as candidates for genetic analysis. Key IEI-associated alterations causative of STAT3 GOF disease, IKAROS haploinsufficiency, activated PI3Kδ syndrome (APDS), Kabuki syndrome and autoimmune lymphoproliferative syndrome (ALPS) were identified. In this scenario, a dysregulated immunophenotype acted as a potential screening tool for an early IEI diagnosis, pivotal for appropriate clinical management and for the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Ebe Schiavo
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Beatrice Martini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Enrico Attardi
- Division of Hematology, Careggi University Hospital, Florence, Italy
| | - Filippo Consonni
- Meyer University Children's Hospital, University of Florence, Florence, Italy
| | - Sara Ciullini Mannurita
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Maria Luisa Coniglio
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Marco Tellini
- Meyer University Children's Hospital, University of Florence, Florence, Italy
| | - Elena Chiocca
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Ilaria Fotzi
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Laura Luti
- Division of Pediatric Oncology/Hematology, University Hospital of Pisa, Pisa, Italy
| | - Irene D'Alba
- Division of Pediatric Oncology/Hematology, University Hospital of Ospedali Riuniti, Ancona, Italy
| | - Marinella Veltroni
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Claudio Favre
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Eleonora Gambineri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
57
|
Ratti S, Mauro R, Rocchi C, Mongiorgi S, Ramazzotti G, Gargiulo M, Manzoli L, Cocco L, Fiume R. Roles of PI3K/AKT/mTOR Axis in Arteriovenous Fistula. Biomolecules 2022; 12:biom12030350. [PMID: 35327539 PMCID: PMC8945685 DOI: 10.3390/biom12030350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Renal failure is a worldwide disease with a continuously increasing prevalence and involving a rising need for long-term treatment, mainly by haemodialysis. Arteriovenous fistula (AVF) is the favourite type of vascular access for haemodialysis; however, the lasting success of this therapy depends on its maturation, which is directly influenced by many concomitant processes such as vein wall thickening or inflammation. Understanding the molecular mechanisms that drive AVF maturation and failure can highlight new or combinatorial drugs for more personalized therapy. In this review we analysed the relevance of critical enzymes such as PI3K, AKT and mTOR in processes such as wall thickening remodelling, immune system activation and inflammation reduction. We focused on these enzymes due to their involvement in the modulation of numerous cellular activities such as proliferation, differentiation and motility, and their impairment is related to many diseases such as cancer, metabolic syndrome and neurodegenerative disorders. In addition, these enzymes are highly druggable targets, with several inhibitors already being used in patient treatment for cancer and with encouraging results for AVF. Finally, we delineate how these enzymes may be targeted to control specific aspects of AVF in an effort to propose a more specialized therapy with fewer side effects.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (S.R.); (S.M.); (G.R.); (L.M.); (R.F.)
| | - Raffaella Mauro
- Vascular Surgery Unit, IRCCS University Hospital, Policlinico S. Orsola-Malpighi, 40126 Bologna, Italy; (R.M.); (C.R.); (M.G.)
| | - Cristina Rocchi
- Vascular Surgery Unit, IRCCS University Hospital, Policlinico S. Orsola-Malpighi, 40126 Bologna, Italy; (R.M.); (C.R.); (M.G.)
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (S.R.); (S.M.); (G.R.); (L.M.); (R.F.)
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (S.R.); (S.M.); (G.R.); (L.M.); (R.F.)
| | - Mauro Gargiulo
- Vascular Surgery Unit, IRCCS University Hospital, Policlinico S. Orsola-Malpighi, 40126 Bologna, Italy; (R.M.); (C.R.); (M.G.)
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (S.R.); (S.M.); (G.R.); (L.M.); (R.F.)
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (S.R.); (S.M.); (G.R.); (L.M.); (R.F.)
- Correspondence: ; Tel.: +39-051-209-1639
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (S.R.); (S.M.); (G.R.); (L.M.); (R.F.)
| |
Collapse
|
58
|
Phosphoinositide 3 Kinase γ Plays a Critical Role in Acute Kidney Injury. Cells 2022; 11:cells11050772. [PMID: 35269396 PMCID: PMC8909888 DOI: 10.3390/cells11050772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory cells contribute to the pathogenesis of renal ischemia-reperfusion injury (IRI). However, the signaling mechanisms underlying the infiltration of inflammatory cells into the kidney are not well understood. In this study, we examined the effects of phosphoinositide 3 kinase γ (PI3Kγ) on inflammatory cells infiltration into the kidney in response to ischemia-reperfusion injury. Compared with wild-type mice, PI3Kγ knockout mice displayed less IRI in the kidney with fewer tubular apoptotic cell. Furthermore, PI3Kγ deficiency decreased the number of infiltrated neutrophils, macrophages, and T cells in the kidney, which was accompanied by a decrease in the expression of pro-inflammatory cytokines in the kidney. Moreover, wild-type mice treated with AS-605240, a selective PI3Kγ inhibitor, displayed less tubular damage, accumulated fewer inflammatory cells, and expressed less proinflammatory molecules in the kidney following IRI. These results demonstrate that PI3Kγ has a critical role in the pathogenesis of kidney damage in IRI, indicating that PI3Kγ inhibition may serve as a potential therapeutic strategy for the prevention of ischemia-reperfusion-induced kidney injury.
Collapse
|
59
|
Qi J, Wang W, Tang Y, Lou S, Wang J, Yuan T, He Q, Yang B, Zhu H, Cui S. Discovery of Novel Indazoles as Potent and Selective PI3Kδ Inhibitors with High Efficacy for Treatment of Hepatocellular Carcinoma. J Med Chem 2022; 65:3849-3865. [PMID: 35191698 DOI: 10.1021/acs.jmedchem.1c01520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PI3Kδ inhibitors have been developed for treatment of B-cell malignancies and inflammatory and autoimmune diseases. However, their therapeutic role in solid tumors like hepatocellular carcinoma (HCC) is rarely reported. Thus, the development of potent and selective PI3Kδ inhibitors with a new chemotype and therapy is highly desirable. Through the scaffold-hopping strategy, indazole was first described as the core structure of propeller-shaped PI3Kδ inhibitors. A total of 26 indazole derivatives were designed and prepared to identify a novel compound 9x with good isoform selectivity, PK profile, and potency. Compared to Idelalisib and Sorafenib, the pharmacodynamic (PD) studies showed that 9x exhibits superior efficacy in HCC cell lines and xenograft models, and the mechanistic study showed that 9x robustly suppresses the downstream AKT pathway to induce subsequent apoptotic cell death in HCC models. Therefore, this work provides a new structural design of PI3Kδ inhibitors for a novel and efficient therapeutic small molecule toward HCC.
Collapse
Affiliation(s)
- Jifeng Qi
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihua Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongmei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaer Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
60
|
Bier J, Deenick EK. The role of dysregulated PI3Kdelta signaling in human autoimmunity*. Immunol Rev 2022; 307:134-144. [DOI: 10.1111/imr.13067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Julia Bier
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- St Vincent’s Clinical School Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
61
|
Harder I, Münchhalfen M, Andrieux G, Boerries M, Grimbacher B, Eibel H, Maccari ME, Ehl S, Wienands J, Jellusova J, Warnatz K, Keller B. Dysregulated PI3K Signaling in B Cells of CVID Patients. Cells 2022; 11:cells11030464. [PMID: 35159274 PMCID: PMC8834633 DOI: 10.3390/cells11030464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
The altered wiring of signaling pathways downstream of antigen receptors of T and B cells contributes to the dysregulation of the adaptive immune system, potentially causing immunodeficiency and autoimmunity. In humans, the investigation of such complex systems benefits from nature’s experiments in patients with genetically defined primary immunodeficiencies. Disturbed B-cell receptor (BCR) signaling in a subgroup of common variable immunodeficiency (CVID) patients with immune dysregulation and expanded T-bethighCD21low B cells in peripheral blood has been previously reported. Here, we investigate PI3K signaling and its targets as crucial regulators of survival, proliferation and metabolism by intracellular flow cytometry, imaging flow cytometry and RNAseq. We observed increased basal but disturbed BCR-induced PI3K signaling, especially in T-bethighCD21low B cells from CVID patients, translating into impaired activation of crucial downstream molecules and affecting proliferation, survival and the metabolic profile. In contrast to CVID, increased basal activity of PI3K in patients with a gain-of-function mutation in PIK3CD and activated PI3K delta syndrome (APDS) did not result in impaired BCR-induced AKT-mTOR-S6 phosphorylation, highlighting that signaling defects in B cells in CVID and APDS patients are fundamentally different and that assessing responses to BCR stimulation is an appropriate confirmative diagnostic test for APDS. The active PI3K signaling in vivo may render autoreactive T-bethighCD21low B cells in CVID at the same time to be more sensitive to mTOR or PI3K inhibition.
Collapse
Affiliation(s)
- Ina Harder
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (I.H.); (H.E.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Münchhalfen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany; (M.M.); (J.W.)
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (G.A.); (M.B.)
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (G.A.); (M.B.)
- German Cancer Consortium (DKTK), Partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; (B.G.); (M.E.M.); (S.E.)
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- DZIF—German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
- RESIST—Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (I.H.); (H.E.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; (B.G.); (M.E.M.); (S.E.)
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; (B.G.); (M.E.M.); (S.E.)
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany; (M.M.); (J.W.)
| | - Julia Jellusova
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (I.H.); (H.E.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Correspondence: (K.W.); (B.K.); Tel.: +49-761-27077640 (K.W.); +49-761-27077691 (B.K.)
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (I.H.); (H.E.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Correspondence: (K.W.); (B.K.); Tel.: +49-761-27077640 (K.W.); +49-761-27077691 (B.K.)
| |
Collapse
|
62
|
Pelanda R, Greaves SA, Alves da Costa T, Cedrone LM, Campbell ML, Torres RM. B-cell intrinsic and extrinsic signals that regulate central tolerance of mouse and human B cells. Immunol Rev 2022; 307:12-26. [PMID: 34997597 PMCID: PMC8986553 DOI: 10.1111/imr.13062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022]
Abstract
The random recombination of immunoglobulin V(D)J gene segments produces unique IgM antibodies that serve as the antigen receptor for each developing B cell. Hence, the newly formed B cell repertoire is comprised of a variety of specificities that display a range of reactivity with self-antigens. Newly generated IgM+ immature B cells that are non-autoreactive or that bind self-antigen with low avidity are licensed to leave the bone marrow with their intact antigen receptor and to travel via the blood to the peripheral lymphoid tissue for further selection and maturation. In contrast, clones with medium to high avidity for self-antigen remain within the marrow and undergo central tolerance, a process that revises their antigen receptor or eliminates the autoreactive B cell altogether. Thus, central B cell tolerance is critical for reducing the autoreactive capacity and avidity for self-antigen of our circulating B cell repertoire. Bone marrow cultures and mouse models have been instrumental for understanding the mechanisms that regulate the selection of bone marrow B cells. Here, we review recent studies that have shed new light on the contribution of the ERK, PI3K, and CXCR4 signaling pathways in the selection of mouse and human immature B cells that either bind or do not bind self-antigen.
Collapse
Affiliation(s)
- Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Sarah A Greaves
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thiago Alves da Costa
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lena M Cedrone
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Margaret L Campbell
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
63
|
Deenick EK, Bier J, Lau A. PI3K Isoforms in B Cells. Curr Top Microbiol Immunol 2022; 436:235-254. [PMID: 36243847 DOI: 10.1007/978-3-031-06566-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phosphatidylinositol-3-kinases (PI3K) control many aspects of cellular activation and differentiation and play an important role in B cells biology. Three different classes of PI3K have been described, all of which are expressed in B cells. However, it is the class IA PI3Ks, and the p110δ catalytic subunit in particular, which seem to play the most critical role in B cells. Here we discuss the important role that class IA PI3K plays in B cell development, activation and differentiation, as well as examine what is known about the other classes of PI3Ks in B cells.
Collapse
Affiliation(s)
- Elissa K Deenick
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- Faculty of Medicine and Health, UNSW, Sydney, Australia.
| | - Julia Bier
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Anthony Lau
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW, Sydney, Australia
| |
Collapse
|
64
|
Gaur P, Mkrtichyan M, Verma V, Jafarzadeh N, Hattar M, Gupta S, Khleif SN. PI3K Isoforms in CD8 + T Cell Development and Function. Curr Top Microbiol Immunol 2022; 436:217-234. [PMID: 36243846 DOI: 10.1007/978-3-031-06566-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
CD8+ T cells are an essential part of the immune system and play a vital role in defending against tumors and infections. The phosphoinositide-3-kinase (PI3K), especially class I, is involved in numerous interrelated signaling pathways which control CD8+ T cell development, maturation, migration, activation, and differentiation. While CD8+ T lymphocytes express all class I PI3K isoforms (PI3Kα, PI3Kβ, PI3Kδ, and PI3Kγ), isoform-specific functions, especially for PI3Kα and PI3Kβ have not been fully elucidated. A few studies suggest the important role of p110δ and p110γ in CD8+ T cell activation, signaling, chemotaxis and function and several clinical trials are currently testing the effect of isoform-specific inhibitors in various types of cancers, including Indolent Non-Hodgkin Lymphoma, Peripheral T cell Lymphoma, Chronic Lymphocytic Leukemia, Small Lymphocytic Lymphoma, non-small cell lung carcinoma (NSCLC), head & neck cancer, and breast cancer. This chapter summarizes current knowledge of the roles of various PI3K isoforms and downstream signaling pathways in regulating CD8+ T cell fate, including cell proliferation, migration, and memory generation. We also discuss certain clinical trials employing PI3K inhibitors for cancer therapy, their limitations, and future perspectives.
Collapse
Affiliation(s)
- Pankaj Gaur
- The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mikayel Mkrtichyan
- The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Vivek Verma
- The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Nazli Jafarzadeh
- The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mariana Hattar
- The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Seema Gupta
- The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Samir N Khleif
- The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
65
|
Cameron B, Zaheer SA, Dominguez-Villar M. Control of CD4+ T Cell Differentiation and Function by PI3K Isoforms. Curr Top Microbiol Immunol 2022; 436:197-216. [DOI: 10.1007/978-3-031-06566-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
66
|
He W, Yang Y, Cai L, Lei Q, Wang Z, Che X. MicroRNA expression profiles in peri-miniscrew implant crevicular fluid in orthodontics: a pilot study. BMC Oral Health 2021; 21:656. [PMID: 34922523 PMCID: PMC8684662 DOI: 10.1186/s12903-021-02009-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background This study systematically evaluated microRNA (miRNA) expression patterns in peri-miniscrew implant crevicular fluid (PMICF) in orthodontic patients. Methods Next-generation sequencing (NGS) was performed to obtain miRNA profiles in PMICF or gingival crevicular fluid (GCF) collected from 3 healthy volunteers (H), 3 peri-implantitis patients (PMSII) and 5 periodontitis patients (P). MiRNA expression patterns were compared between normal and orthodontic PMICF and GCF. Differentially expressed miRNAs were estimated by quantitative real-time PCR (qRT-PCR). Enrichment analyses of the gene targets controlled by these miRNAs were conducted by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Results Compared with healthy donors, in PMSII patients, a total of 206 upregulated miRNAs and 152 downregulated miRNAs were detected in PMICF, while periodontitis patients had 333 upregulated miRNAs and 318 downregulated miRNAs. MiR-544a, miR-1245b-3p, miR-1825, miR-4291, miR-3689e, and miR-4477a were chosen randomly for further examination. qRT-PCR examination confirmed that the expression levels of miR-1245b-3p and miR-4291 were higher in PMSII than in H samples and that the expression levels of miR-1825 were higher in PMSII than in P samples. However, contrary to the NGS results, qRT-PCR analysis showed decreased expression of miR544a in PMSII. MiR3689e and miR4477a expression did not differ significantly among all samples. According to GO and KEGG pathway analyses of miR-1825, miR-4291, and miR-1245b-3p high enrichment of target genes involved in the PI3K-AKT signalling pathway was observed. Conclusions The NGS analysis of normal and orthodontic PMICF/CGF showed different miRNA profiles, which may lay the foundation for future research on the molecular mechanism of PMSII. miR-4291, miR-1245b-3p and miR-1825 may be used as diagnostic markers and potential therapeutic targets for PMSII.
Collapse
Affiliation(s)
- Wendan He
- Capital Medical University School of Stomatology, Beijing, 100006, China.,Department of Stomatology, Shenzhen Hospital, Southern Medical University, Studenthen, Guangzhou, 518033, China
| | - Yanru Yang
- Chi-Biotech Co. Ltd., Shenzhen, 518023, China
| | - Longgan Cai
- Department of Stomatology, Shenzhen Hospital, Southern Medical University, Studenthen, Guangzhou, 518033, China
| | - Qiaoling Lei
- Department of Stomatology, Shenzhen Hospital, Southern Medical University, Studenthen, Guangzhou, 518033, China
| | - Zhongdong Wang
- Department of Stomatology, Shenzhen Hospital, Southern Medical University, Studenthen, Guangzhou, 518033, China
| | - Xiaoxia Che
- Capital Medical University School of Stomatology, Beijing, 100006, China. .,Beijing Stomatological Hospital, Capital Medical University, Beijing, 100006, China. .,Capital Medical University School of Stomatology, Temple of Heaven Xili 4, Dongcheng District, Beijing, 100000, China.
| |
Collapse
|
67
|
Fan G, Lou L, Song Z, Zhang X, Xiong XF. Targeting mutated GTPase KRAS in tumor therapies. Eur J Med Chem 2021; 226:113816. [PMID: 34520956 DOI: 10.1016/j.ejmech.2021.113816] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022]
Abstract
Kirsten rat sarcoma virus oncogene (KRAS) mutation accounts for approximately 85% of RAS-driven cancers, and participates in multiple signaling pathways and mediates cell proliferation, differentiation and metabolism. KRAS has been considered as an "undruggable" target due to the lack of effective direct inhibitors, although high frequency of KRAS mutations have been identified in multiple carcinomas in the past decades. Encouragingly, the KRASG12C inhibitor AMG510 (sotorasib), which has been approved for treating NSCLC and CRC recently, makes directly targeting KRAS the most promising strategy for cancer therapy. To better understand the current state of KRAS inhibitors, this review summarizes the biological functions of KRAS, the structure-activity relationship studies of the small-molecule inhibitors that directly target KRAS, and highlights the therapeutic agents with improved selectivity, bioavailability and physicochemical properties. Furthermore, the combined medication that can enhance efficacy and overcome drug resistance of KRAS covalent inhibitors is also reviewed.
Collapse
Affiliation(s)
- Guangjin Fan
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Linlin Lou
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhendong Song
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Xiaolei Zhang
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
68
|
Ogawa T, Kan-O K, Shiota A, Fujita A, Ishii Y, Fukuyama S, Matsumoto K. Inhibition of PI3Kδ Differentially Regulates Poly I:C- and Human Metapneumovirus-Induced PD-L1 and PD-L2 Expression in Human Bronchial Epithelial Cells. Front Immunol 2021; 12:767666. [PMID: 34899719 PMCID: PMC8656419 DOI: 10.3389/fimmu.2021.767666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
Bronchial epithelial cells are front sentinels eliciting innate and adaptive immunity to respiratory viral pathogens. Recognition of viral double-stranded RNA induces antiviral interferon (IFN) responses in bronchial epithelial cells. Co-inhibitory molecules programmed cell death 1 ligand 1 (PD-L1) and ligand 2 (PD-L2) were also induced on bronchial epithelial cells, which bind programmed cell death 1 on T cell and inhibit the function of virus-specific cytotoxic T lymphocyte. A previous study showed that antiviral type I IFN increased PD-L1 and PD-L2 expression in cultured melanoma cells. However, it remains unknown whether antiviral IFNs affect PD-L1 and PD-L2 expression in bronchial epithelial cells. In addition, we previously reported that inhibition of PI3Kδ signaling enhanced antiviral IFN responses in human primary bronchial epithelial cells (PBECs). Here we assessed the effect of exogenous IFNs or a selective PI3Kδ inhibitor IC87114 on PD-L1 and PD-L2 in PBECs stimulated with a synthetic double-stranded RNA poly I:C or human metapneumovirus. Treatment with IFNβ or IFNλ increased PD-L1 and PD-L2, and IFNβ or IFNλ treatment plus poly I:C further increased both expressions. Treatment with IC87114 or transfection with siRNA targeting PI3K p110δ enhanced poly I:C–induced gene and protein expression of PD-L2, whereas IC87114 suppressed poly I:C–induced PD-L1. IC87114 enhanced poly I:C–induced gene expression of IFNβ, IFNλ, and IFN-regulated genes via increased TBK1 and IRF3 phosphorylation. Transfection with siIRF3 counteracted the enhancement of poly I:C–induced PD-L2 by IC87114, whereas IC87114 suppressed poly I:C–induced PD-L1 regardless of transfection with siNC or siIRF3. Similar effects of IC87114 on PD-L1 and PD-L2 expression were observed in human metapneumovirus–infected PBECs. We showed for the first time that type I and type III IFNs induced the expression of PD-L1 and PD-L2 in PBECs. Our findings suggest that during viral infections, inhibition of PI3Kδ differentially regulates PD-L1 and PD-L2 expression in bronchial epithelial cells.
Collapse
Affiliation(s)
- Tomohiro Ogawa
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kyushu University Hospital, Fukuoka, Japan
| | - Ayaka Shiota
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akitaka Fujita
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Ishii
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
69
|
Hamila SA, Ooms LM, Rodgers SJ, Mitchell CA. The INPP4B paradox: Like PTEN, but different. Adv Biol Regul 2021; 82:100817. [PMID: 34216856 DOI: 10.1016/j.jbior.2021.100817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Cancer is a complex and heterogeneous disease marked by the dysregulation of cancer driver genes historically classified as oncogenes or tumour suppressors according to their ability to promote or inhibit tumour development and growth, respectively. Certain genes display both oncogenic and tumour suppressor functions depending on the biological context, and as such have been termed dual-role cancer driver genes. However, because of their context-dependent behaviour, the tumourigenic mechanism of many dual-role genes is elusive and remains a significant knowledge gap in our effort to understand and treat cancer. Inositol polyphosphate 4-phosphatase type II (INPP4B) is an emerging dual-role cancer driver gene, primarily known for its role as a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT signalling pathway. In response to growth factor stimulation, class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane. PtdIns(3,4,5)P3 can be hydrolysed by inositol polyphosphate 5-phosphatases to generate PtdIns(3,4)P2, which, together with PtdIns(3,4,5)P3, facilitates the activation of AKT to promote cell proliferation, survival, migration, and metabolism. Phosphatase and tensin homology on chromosome 10 (PTEN) and INPP4B are dual-specificity phosphatases that hydrolyse PtdIns(3,4,5)P3 and PtdIns(3,4)P2, respectively, and thus negatively regulate PI3K/AKT signalling. PTEN is a bona fide tumour suppressor that is frequently lost in human tumours. INPP4B was initially characterised as a tumour suppressor akin to PTEN, and has been implicated as such in a number of cancers, including prostate, thyroid, and basal-like breast cancers. However, evidence has since emerged revealing INPP4B as a paradoxical oncogene in several malignancies, with increased INPP4B expression reported in AML, melanoma and colon cancers among others. Although the tumour suppressive function of INPP4B has been mostly ascribed to its ability to negatively regulate PI3K/AKT signalling, its oncogenic function remains less clear, with proposed mechanisms including promotion of PtdIns(3)P-dependent SGK3 signalling, inhibition of PTEN-dependent AKT activation, and enhancing DNA repair mechanisms to confer chemoresistance. Nevertheless, research is ongoing to identify the factors that dictate the tumourigenic output of INPP4B in different human cancers. In this review we discuss the dualistic role that INPP4B plays in the context of cancer development, progression and treatment, drawing comparisons to PTEN to explore how their similarities and, importantly, their differences may account for their diverging roles in tumourigenesis.
Collapse
Affiliation(s)
- Sabryn A Hamila
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Samuel J Rodgers
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
70
|
Hu DX, Patel S, Chen H, Wang S, Staben ST, Dimitrova YN, Wallweber HA, Lee JY, Chan GKY, Sneeringer CJ, Prangley MS, Moffat JG, Wu KC, Schutt LK, Salphati L, Pang J, McNamara E, Huang H, Chen Y, Wang Y, Zhao W, Lim J, Murthy A, Siu M. Structure-Based Design of Potent, Selective, and Orally Bioavailable VPS34 Kinase Inhibitors. J Med Chem 2021; 65:11500-11512. [PMID: 34779204 DOI: 10.1021/acs.jmedchem.1c01180] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
VPS34 is a class III phosphoinositide 3-kinase involved in endosomal trafficking and autophagosome formation. Inhibitors of VPS34 were believed to have value as anticancer agents, but genetic and pharmacological data suggest that sustained inhibition of VPS34 kinase activity may not be well tolerated. Here we disclose the identification of a novel series of dihydropyrazolopyrazinone compounds represented by compound 5 as potent, selective, and orally bioavailable VPS34 inhibitors through a structure-based design strategy. A water-interacting hydrogen bond acceptor within an appropriate distance to a hinge-binding element was found to afford significant VPS34 potency across chemical scaffolds. The selectivity of compound 5 over PIK family kinases arises from interactions between the hinge-binding element and the pseudo-gatekeeper residue Met682. As recent in vivo pharmacology data suggests that sustained inhibition of VPS34 kinase activity may not be tolerated, structure-activity relationships leading to VPS34 inhibition may be helpful for avoiding this target in other ATP-competitive kinase programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yong Chen
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Yunli Wang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Wensheng Zhao
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | | | | | | |
Collapse
|
71
|
Yeoh Y, Low TY, Abu N, Lee PY. Regulation of signal transduction pathways in colorectal cancer: implications for therapeutic resistance. PeerJ 2021; 9:e12338. [PMID: 34733591 PMCID: PMC8544255 DOI: 10.7717/peerj.12338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Resistance to anti-cancer treatments is a critical and widespread health issue that has brought serious impacts on lives, the economy and public policies. Mounting research has suggested that a selected spectrum of patients with advanced colorectal cancer (CRC) tend to respond poorly to both chemotherapeutic and targeted therapeutic regimens. Drug resistance in tumours can occur in an intrinsic or acquired manner, rendering cancer cells insensitive to the treatment of anti-cancer therapies. Multiple factors have been associated with drug resistance. The most well-established factors are the emergence of cancer stem cell-like properties and overexpression of ABC transporters that mediate drug efflux. Besides, there is emerging evidence that signalling pathways that modulate cell survival and drug metabolism play major roles in the maintenance of multidrug resistance in CRC. This article reviews drug resistance in CRC as a result of alterations in the MAPK, PI3K/PKB, Wnt/β-catenin and Notch pathways.
Collapse
Affiliation(s)
- Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
72
|
Chen L, Hou J, You B, Song F, Tu X, Cheng X. An Analysis Regarding the Prognostic Significance of MAVS and Its Underlying Biological Mechanism in Ovarian Cancer. Front Cell Dev Biol 2021; 9:728061. [PMID: 34722508 PMCID: PMC8551630 DOI: 10.3389/fcell.2021.728061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
The present study evaluates the value of mitochondrial antiviral signaling (MAVS) expression as a potential diagnostic biomarker and therapeutic target for ovarian cancer (OC) and analyses the underlying biological mechanism in this pathology. First, the association between MAVS expression determined by immunohistochemical (IHC) and clinical characteristics was systematically investigated. Overexpression of MAVS was associated with advanced clinical factors and poor survival of OC patients. Second, bioinformatics analyses, namely, gene expression, mutation analysis, gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and weighted gene co-expression network analysis (WGCNA), were performed to evaluate the potential biological functions of MAVS in OC. The results showed that MAVS may play a critical role in immune cell infiltration. CIBERSORT was applied to assess the infiltration of immune cells in OC. CD8+ T cells, γδT cells, and eosinophils had significantly negative correlations with MAVS expression. Finally, sensitivity analysis found that patients with high MAVS expression were predicted to be significantly less responsive to cisplatin and paclitaxel. In conclusion, these findings suggested that MAVS influences biological behavior by regulating the immune response and that it can be used as a predictive marker for poor prognosis in OC.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Gynecology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Jing Hou
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bingbing You
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feifei Song
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Tu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
73
|
Cannons JL, Villarino AV, Kapnick SM, Preite S, Shih HY, Gomez-Rodriguez J, Kaul Z, Shibata H, Reilley JM, Huang B, Handon R, McBain IT, Gossa S, Wu T, Su HC, McGavern DB, O'Shea JJ, McGuire PJ, Uzel G, Schwartzberg PL. PI3Kδ coordinates transcriptional, chromatin, and metabolic changes to promote effector CD8 + T cells at the expense of central memory. Cell Rep 2021; 37:109804. [PMID: 34644563 PMCID: PMC8582080 DOI: 10.1016/j.celrep.2021.109804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 01/05/2023] Open
Abstract
Patients with activated phosphatidylinositol 3-kinase delta (PI3Kδ) syndrome (APDS) present with sinopulmonary infections, lymphadenopathy, and cytomegalvirus (CMV) and/or Epstein-Barr virus (EBV) viremia, yet why patients fail to clear certain chronic viral infections remains incompletely understood. Using patient samples and a mouse model (Pik3cdE1020K/+ mice), we demonstrate that, upon activation, Pik3cdE1020K/+ CD8+ T cells exhibit exaggerated features of effector populations both in vitro and after viral infection that are associated with increased Fas-mediated apoptosis due to sustained FoxO1 phosphorylation and Fasl derepression, enhanced mTORC1 and c-Myc signatures, metabolic perturbations, and an altered chromatin landscape. Conversely, Pik3cdE1020K/+ CD8+ cells fail to sustain expression of proteins critical for central memory, including TCF1. Strikingly, activated Pik3cdE1020K/+ CD8+ cells exhibit altered transcriptional and epigenetic circuits characterized by pronounced interleukin-2 (IL-2)/STAT5 signatures and heightened IL-2 responses that prevent differentiation to memory-like cells in IL-15. Our data position PI3Kδ as integrating multiple signaling nodes that promote CD8+ T cell effector differentiation, providing insight into phenotypes of patients with APDS.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
| | - Alejandro V Villarino
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA; Department of Microbiology & Immunology and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Senta M Kapnick
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Silvia Preite
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Han-Yu Shih
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA; National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Julio Gomez-Rodriguez
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; TCR2 Therapeutics, Cambridge, MA 02142, USA
| | - Zenia Kaul
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hirofumi Shibata
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie M Reilley
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Bonnie Huang
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Robin Handon
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ian T McBain
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Selamawit Gossa
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Tuoqi Wu
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; University of Colorado, Department of Immunology, Denver, CO 80204, USA; Department of Immunology and Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390
| | - Helen C Su
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - John J O'Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Peter J McGuire
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Gulbu Uzel
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
74
|
Kang H, Lee JB, Khatri I, Na Y, D’Souza C, Arruda A, Minden MD, Zhang L. Enhancing Therapeutic Efficacy of Double Negative T Cells against Acute Myeloid Leukemia Using Idelalisib. Cancers (Basel) 2021; 13:cancers13205039. [PMID: 34680188 PMCID: PMC8533698 DOI: 10.3390/cancers13205039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Persistence of infused cells is an important factor that dictates the outcome of adoptive cellular therapy (ACT). DNT therapy is a novel form of ACT with promising result in treating relapsed or refractory AML in preclinical and early clinical studies. However, in vivo kinetics of human DNTs in cancer-bearing host have not been previously investigated. This study was the first to investigate the persistence of DNTs and ways to improve it in patient-derived xenograft models. DNTs persistence was observed up to 50 days in various organs of leukemia-bearing hosts. However, the detected DNT level was low while significant level of persisting AMLs was observed. To improve the in vivo persistence and therapeutic efficacy of DNTs, we expanded DNTs in the presence of an PI3Kδ inhibitor, idelalisib (Ide). Ide treatment of healthy donor-derived DNTs promoted early memory subsets and improved overall fitness, reducing exhaustion while improving viability. These Ide-induced attributes led to prolonged persistence of DNTs, resulting in superior anti-leukemic activity in vivo. Further, Ide-treated DNTs improved the durability of the treatment response. Collectively, our study highlights the importance of DNT persistence and Ide-mediated improvements in the overall fitness of DNTs, which promote longer persistence in vivo and better treatment outcome. Abstract The double negative T cell (DNT) is a unique subset of T cells with potent anti-leukemic potential. Previously, DNT therapy has been shown to effectively target AML cells in patient-derived xenograft (PDX) models. Further, a recently completed phase I/IIa clinical study demonstrated the safety, feasibility, and potential efficacy in AML patients that relapsed after allogeneic hematopoietic stem cell transplantation. However, the persistence and durability of DNT-mediated anti-leukemic response is less well understood. In this study, we characterized the in vivo persistence of DNTs in PDX models. Further, we improved the efficacy and durability of DNT-mediated activity with phosphoinositide 3-kinase delta (PI3Kδ) inhibition. Mechanistically, DNTs treated with the PI3Kδ inhibitor, Idelalisib (Ide), exhibited early memory phenotype with superior viability and proliferative capacity but less cell exhaustion. Collectively, the findings from this study support the use of Ide-treated DNTs to improve its therapeutic outcome.
Collapse
Affiliation(s)
- Hyeonjeong Kang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (H.K.); (J.B.L.); (I.K.); (Y.N.); (C.D.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jong Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (H.K.); (J.B.L.); (I.K.); (Y.N.); (C.D.)
| | - Ismat Khatri
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (H.K.); (J.B.L.); (I.K.); (Y.N.); (C.D.)
| | - Yoosu Na
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (H.K.); (J.B.L.); (I.K.); (Y.N.); (C.D.)
| | - Cheryl D’Souza
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (H.K.); (J.B.L.); (I.K.); (Y.N.); (C.D.)
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada; (A.A.); (M.D.M.)
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada; (A.A.); (M.D.M.)
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; (H.K.); (J.B.L.); (I.K.); (Y.N.); (C.D.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence: ; Tel.: +1-(416)-581-7521; Fax: +1-(416)-581-7515
| |
Collapse
|
75
|
Valizadeh A, Asghari S, Mansouri P, Alemi F, Majidinia M, Mahmoodpoor A, Yousefi B. The roles of signaling pathways in cardiac regeneration. Curr Med Chem 2021; 29:2142-2166. [PMID: 34521319 DOI: 10.2174/0929867328666210914115411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
In recent years, knowledge of cardiac regeneration mechanisms has dramatically expanded. Regeneration can replace lost parts of organs, common among animal species. The heart is commonly considered an organ with terminal development, which has no reparability potential during post-natal life; however, some intrinsic regeneration capacity has been reported for cardiac muscle, which opens novel avenues in cardiovascular disease treatment. Different endogenous mechanisms were studied for cardiac repairing and regeneration in recent decades. Survival, proliferation, inflammation, angiogenesis, cell-cell communication, cardiomyogenesis, and anti-aging pathways are the most important mechanisms that have been studied in this regard. Several in vitro and animal model studies focused on proliferation induction for cardiac regeneration reported promising results. These studies have mainly focused on promoting proliferation signaling pathways and demonstrated various signaling pathways such as Wnt, PI3K/Akt, IGF-1, TGF-β, Hippo, and VEGF signaling cardiac regeneration. Therefore, in this review, we intended to discuss the connection between different critical signaling pathways in cardiac repair and regeneration.
Collapse
Affiliation(s)
- Amir Valizadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Samira Asghari
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Parinaz Mansouri
- Students Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia. Iran
| | - Ata Mahmoodpoor
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| |
Collapse
|
76
|
Sun J, Tang Q, Zhang J, Chen G, Peng J, Chen L. Possible Immunotherapeutic Strategies Based on Carcinogen-Dependent Subgroup Classification for Oral Cancer. Front Mol Biosci 2021; 8:717038. [PMID: 34497832 PMCID: PMC8419237 DOI: 10.3389/fmolb.2021.717038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The oral cavity serves as an open local organ of the human body, exposed to multiple external factors from the outside environment. Coincidentally, initiation and development of oral cancer are attributed to many external factors, such as smoking and drinking, to a great extent. This phenomenon was partly explained by the genetic abnormalities traditionally induced by carcinogens. However, more and more attention has been attracted to the influence of carcinogens on the local immune status. On the other hand, immune heterogeneity of cancer patients is a huge obstacle for enhancing the clinical efficacy of tumor immunotherapy. Thus, in this review, we try to summarize the current opinions about variant genetic changes and multiple immune alterations induced by different oral cancer carcinogens and discuss the prospects of targeted immunotherapeutic strategies based on specific immune abnormalities caused by different carcinogens, as a predictive way to improve clinical outcomes of immunotherapy-treated oral cancer patients.
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Junyuan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
77
|
Johansen KH, Golec DP, Thomsen JH, Schwartzberg PL, Okkenhaug K. PI3K in T Cell Adhesion and Trafficking. Front Immunol 2021; 12:708908. [PMID: 34421914 PMCID: PMC8377255 DOI: 10.3389/fimmu.2021.708908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
PI3K signalling is required for activation, differentiation, and trafficking of T cells. PI3Kδ, the dominant PI3K isoform in T cells, has been extensively characterised using PI3Kδ mutant mouse models and PI3K inhibitors. Furthermore, characterisation of patients with Activated PI3K Delta Syndrome (APDS) and mouse models with hyperactive PI3Kδ have shed light on how increased PI3Kδ activity affects T cell functions. An important function of PI3Kδ is that it acts downstream of TCR stimulation to activate the major T cell integrin, LFA-1, which controls transendothelial migration of T cells as well as their interaction with antigen-presenting cells. PI3Kδ also suppresses the cell surface expression of CD62L and CCR7 which controls the migration of T cells across high endothelial venules in the lymph nodes and S1PR1 which controls lymph node egress. Therefore, PI3Kδ can control both entry and exit of T cells from lymph nodes as well as the recruitment to and retention of T cells within inflamed tissues. This review will focus on the regulation of adhesion receptors by PI3Kδ and how this contributes to T cell trafficking and localisation. These findings are relevant for our understanding of how PI3Kδ inhibitors may affect T cell redistribution and function.
Collapse
Affiliation(s)
- Kristoffer H Johansen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.,Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, United States
| | - Dominic P Golec
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, United States
| | - Julie H Thomsen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
78
|
Jana B, Kaczmarek MM, Romaniewicz M, Brzozowska M. Profile for mRNA transcript abundances in the pig endometrium where inflammation was induced by Escherichia coli. Anim Reprod Sci 2021; 232:106824. [PMID: 34403834 DOI: 10.1016/j.anireprosci.2021.106824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
Uterine inflammation is a common reproductive disorder in domestic animals, leading to disturbances in many reproductive processes and economic losses. More information on inflammatory pathways, however, is needed to understand mechanisms of uterine inflammation. The aim of the study was to investigate transcriptomic profiles of the pig endometrium affected by inflammation. On day 3 of the estrous cycle (day 0 = initial day of study), saline or Escherichia coli suspension were injected into uterine horns. In endometrial tissues collected 8 days later, microarray analysis results indicated there were 189 differentially abundant mRNA transcripts (DEGs, 95 in relatively greater and 94 in lesser abundance) after saline injections compared with samples where there was severe acute inflammation. Relative abundance of mRNA transcripts for proteins assigned to inflammatory response, movement of phagocytes, quantity of phagocytes, leukocyte migration and adhesion of immune cells and many other functions related to inflammation were different in the Escherichia coli-treated endometrium than in samples from gilts treated with saline. Among others, S100A9, SLC11A1, CCL15, CCL3L3, CCR1, CD48, CD163, THBS1, KIT, ITGB3, JAK3 and NFKB2 mRNA transcripts were in relatively greater abundance and there were those in relatively lesser abundance including IL24, FGG, SST, CXCL16 and CREB. In this study, for the first time, there was detection of alterations in the transcriptome of the inflamed pig endometrium which may be an important finding for maintaining uterine homeostasis and functions. Results form the basis for future studies focusing on regulation of uterine inflammation in animals and women.
Collapse
Affiliation(s)
- Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Monika M Kaczmarek
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Marta Romaniewicz
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Marta Brzozowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
| |
Collapse
|
79
|
Rathinaswamy MK, Dalwadi U, Fleming KD, Adams C, Stariha JTB, Pardon E, Baek M, Vadas O, DiMaio F, Steyaert J, Hansen SD, Yip CK, Burke JE. Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation. SCIENCE ADVANCES 2021; 7:7/35/eabj4282. [PMID: 34452907 PMCID: PMC8397274 DOI: 10.1126/sciadv.abj4282] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/06/2021] [Indexed: 05/04/2023]
Abstract
The class IB phosphoinositide 3-kinase (PI3K), PI3Kγ, is a master regulator of immune cell function and a promising drug target for both cancer and inflammatory diseases. Critical to PI3Kγ function is the association of the p110γ catalytic subunit to either a p101 or p84 regulatory subunit, which mediates activation by G protein-coupled receptors. Here, we report the cryo-electron microscopy structure of a heterodimeric PI3Kγ complex, p110γ-p101. This structure reveals a unique assembly of catalytic and regulatory subunits that is distinct from other class I PI3K complexes. p101 mediates activation through its Gβγ-binding domain, recruiting the heterodimer to the membrane and allowing for engagement of a secondary Gβγ-binding site in p110γ. Mutations at the p110γ-p101 and p110γ-adaptor binding domain interfaces enhanced Gβγ activation. A nanobody that specifically binds to the p101-Gβγ interface blocks activation, providing a novel tool to study and target p110γ-p101-specific signaling events in vivo.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Udit Dalwadi
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Carson Adams
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jordan T B Stariha
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Calvin K Yip
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
80
|
Khalil M, Wang D, Hashemi E, Terhune SS, Malarkannan S. Implications of a 'Third Signal' in NK Cells. Cells 2021; 10:cells10081955. [PMID: 34440725 PMCID: PMC8393955 DOI: 10.3390/cells10081955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Innate and adaptive immune systems are evolutionarily divergent. Primary signaling in T and B cells depends on somatically rearranged clonotypic receptors. In contrast, NK cells use germline-encoded non-clonotypic receptors such as NCRs, NKG2D, and Ly49H. Proliferation and effector functions of T and B cells are dictated by unique peptide epitopes presented on MHC or soluble humoral antigens. However, in NK cells, the primary signals are mediated by self or viral proteins. Secondary signaling mediated by various cytokines is involved in metabolic reprogramming, proliferation, terminal maturation, or memory formation in both innate and adaptive lymphocytes. The family of common gamma (γc) cytokine receptors, including IL-2Rα/β/γ, IL-7Rα/γ, IL-15Rα/β/γ, and IL-21Rα/γ are the prime examples of these secondary signals. A distinct set of cytokine receptors mediate a ‘third’ set of signaling. These include IL-12Rβ1/β2, IL-18Rα/β, IL-23R, IL-27R (WSX-1/gp130), IL-35R (IL-12Rβ2/gp130), and IL-39R (IL-23Rα/gp130) that can prime, activate, and mediate effector functions in lymphocytes. The existence of the ‘third’ signal is known in both innate and adaptive lymphocytes. However, the necessity, context, and functional relevance of this ‘third signal’ in NK cells are elusive. Here, we define the current paradigm of the ‘third’ signal in NK cells and enumerate its clinical implications.
Collapse
Affiliation(s)
- Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| |
Collapse
|
81
|
Human Placental Transcriptome Reveals Critical Alterations in Inflammation and Energy Metabolism with Fetal Sex Differences in Spontaneous Preterm Birth. Int J Mol Sci 2021; 22:ijms22157899. [PMID: 34360662 PMCID: PMC8347496 DOI: 10.3390/ijms22157899] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/29/2023] Open
Abstract
A well-functioning placenta is crucial for normal gestation and regulates the nutrient, gas, and waste exchanges between the maternal and fetal circulations and is an important endocrine organ producing hormones that regulate both the maternal and fetal physiologies during pregnancy. Placental insufficiency is implicated in spontaneous preterm birth (SPTB). We proposed that deficits in the capacity of the placenta to maintain bioenergetic and metabolic stability during pregnancy may ultimately result in SPTB. To explore our hypothesis, we performed a RNA-seq study in male and female placentas from women with SPTB (<36 weeks gestation) compared to normal pregnancies (≥38 weeks gestation) to assess the alterations in the gene expression profiles. We focused exclusively on Black women (cases and controls), who are at the highest risk of SPTB. Six hundred and seventy differentially expressed genes were identified in male SPTB placentas. Among them, 313 and 357 transcripts were increased and decreased, respectively. In contrast, only 61 differentially expressed genes were identified in female SPTB placenta. The ingenuity pathway analysis showed alterations in the genes and canonical pathways critical for regulating inflammation, oxidative stress, detoxification, mitochondrial function, energy metabolism, and the extracellular matrix. Many upstream regulators and master regulators important for nutrient-sensing and metabolism were also altered in SPTB placentas, including the PI3K complex, TGFB1/SMADs, SMARCA4, TP63, CDKN2A, BRCA1, and NFAT. The transcriptome was integrated with published human placental metabolome to assess the interactions of altered genes and metabolites. Collectively, significant and biologically relevant alterations in the transcriptome were identified in SPTB placentas with fetal sex disparities. Altered energy metabolism, mitochondrial function, inflammation, and detoxification may underly the mechanisms of placental dysfunction in SPTB.
Collapse
|
82
|
Huang J, Nong X, Chen Y, Zhang A, Chen L. 3-O-trans-caffeoyloleanolic acid improves acute lung injury via anti-inflammation and antioxidative stress-involved PI3K/AKT pathway. Chem Biol Drug Des 2021; 98:114-126. [PMID: 33961336 DOI: 10.1111/cbdd.13856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
3-O-trans-caffeoyloleanolic acid (COA) is a pentacyclic triterpenoid compound, with significant anti-inflammatory effects. In this study, we report the protective effects of COA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explored its mechanism of action. LPS was used to construct in vivo mouse ALI models to observe the effects of COA pretreatment on lung pathology, inflammation, and oxidative stress. In vitro, mouse alveolar macrophages MH-S cells were cultured and stimulated with LPS to investigate the effects of COA pretreatment on inflammation and oxidative stress. Western blotting was used to investigate the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K from in vivo and in vitro samples. The results showed that COA significantly improved lung injury, inhibited neutrophil infiltration, prevented macrophage infiltration, inhibited the release of inflammatory factors, reduced oxidative stress, and down-regulated the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K in ALI mice caused by LPS. In vitro, COA inhibited the release of inflammatory factors, reduced oxidative stress, and down-regulated the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K in MH-S cells stimulated with LPS. Of interest, the protective effects of COA were significantly attenuated in MH-S cells pretreated with the PI3K phosphopeptide activator 740Y-P with no effect on TLR4 expression observed. Taken together, these findings confirm the protective effects of COA on ALI. We further demonstrate that the anti-inflammation and antioxidant effects of COA are mediated through its effects on PI3K/AKT and potentially TLR4.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Respiratory and Critical Care Medicine, Jiangxi Chest (Third people) Hospital, Nanchang, China
| | - Xueping Nong
- Pathology Department, Jiangxi Chest (Third people) Hospital, Nanchang, China
| | - Yanling Chen
- Department of Respiratory and Critical Care Medicine, Jiangxi Chest (Third people) Hospital, Nanchang, China
| | - Aimei Zhang
- Department of Respiratory and Critical Care Medicine, Jiangxi Chest (Third people) Hospital, Nanchang, China
| | - Lerong Chen
- Department of Respiratory and Critical Care Medicine, Jiangxi Chest (Third people) Hospital, Nanchang, China
| |
Collapse
|
83
|
Juarez M, Diaz N, Johnston GI, Nayar S, Payne A, Helmer E, Cain D, Williams P, Devauchelle-Pensec V, Fisher BA, Giacomelli R, Gottenberg JE, Guggino G, Kvarnström M, Mariette X, Ng WF, Rosas J, Sánchez Bursón J, Triolo G, Barone F, Bowman SJ. A phase 2 randomized, double-blind, placebo-controlled, proof-of-concept study of oral seletalisib in primary Sjögren's syndrome. Rheumatology (Oxford) 2021; 60:1364-1375. [PMID: 32949140 DOI: 10.1093/rheumatology/keaa410] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES This phase 2 proof-of-concept study (NCT02610543) assessed efficacy, safety and effects on salivary gland inflammation of seletalisib, a potent and selective PI3Kδ inhibitor, in patients with moderate-to-severe primary Sjögren's syndrome (PSS). METHODS Adults with PSS were randomized 1:1 to seletalisib 45 mg/day or placebo, in addition to current PSS therapy. Primary end points were safety and tolerability and change from baseline in EULAR Sjögren's Syndrome Disease Activity Index (ESSDAI) score at week 12. Secondary end points included change from baseline at week 12 in EULAR Sjögren's Syndrome Patient Reported Index (ESSPRI) score and histological features in salivary gland biopsies. RESULTS Twenty-seven patients were randomized (seletalisib n = 13, placebo n = 14); 20 completed the study. Enrolment challenges led to early study termination with loss of statistical power (36% vs 80% planned). Nonetheless, a trend for improvement in ESSDAI and ESSPRI [difference vs placebo: -2.59 (95% CI: -7.30, 2.11; P=0.266) and -1.55 (95% CI: -3.39, 0.28), respectively] was observed at week 12. No significant changes were seen in saliva and tear flow. Serious adverse events (AEs) were reported in 3/13 of patients receiving seletalisib vs 1/14 for placebo and 5/13 vs 1/14 discontinued due to AEs, respectively. Serum IgM and IgG concentrations decreased in the seletalisib group vs placebo. Seletalisib demonstrated efficacy in reducing size and organisation of salivary gland inflammatory foci and in target engagement, thus reducing PI3K-mTOR signalling compared with placebo. CONCLUSION Despite enrolment challenges, seletalisib demonstrated a trend towards clinical improvement in patients with PSS. Histological analyses demonstrated encouraging effects of seletalisib on salivary gland inflammation and organisation. TRIAL REGISTRATION https://clinicaltrials.gov, NCT02610543.
Collapse
Affiliation(s)
| | - Nieves Diaz
- Translational Medicine, UCB Pharma, Slough, UK
| | | | - Saba Nayar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Eric Helmer
- Quantitative Clinical Pharmacology, Slough, UK
| | - Dionne Cain
- Global Clinical Sciences and Operations, UCB Pharma, Slough, UK
| | | | | | - Benjamin A Fisher
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Roberto Giacomelli
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jacques-Eric Gottenberg
- Department of Rheumatology, National Reference Centre For Rare Systemic Auto-Immune Diseases, Strasbourg University Hospital, University of Strasbourg, IBMC, CNRS UPR 3572, Strasbourg, France
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Palermo, Italy
| | - Marika Kvarnström
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Xavier Mariette
- Université Paris-Saclay, INSERM, CEA, Centre de recherche en Immunologie des Infections Virales et des Maladies auto-Immunes, AP-HP.Université Paris-Saclay, Hôpital Bicêtre, Rheumatology Department, Le Kremlin Bicêtre, France
| | - Wan Fai Ng
- Translational and Clinical Research Institute, Newcastle University & NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - José Rosas
- Department of Rheumatology, Hospital Marina Baixa, Villajoyosa, Spain
| | | | - Giovanni Triolo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Palermo, Italy
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Simon J Bowman
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
84
|
Xu JJ, Li HD, Du XS, Li JJ, Meng XM, Huang C, Li J. Role of the F-BAR Family Member PSTPIP2 in Autoinflammatory Diseases. Front Immunol 2021; 12:585412. [PMID: 34262554 PMCID: PMC8273435 DOI: 10.3389/fimmu.2021.585412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain family. It exhibits lipid-binding, membrane deformation, and F-actin binding activity, suggesting broader roles at the membrane–cytoskeleton interface. PSTPIP2 is known to participate in macrophage activation, neutrophil migration, cytokine production, and osteoclast differentiation. In recent years, it has been observed to play important roles in innate immune diseases and autoinflammatory diseases (AIDs). Current research indicates that the protein tyrosine phosphatase PTP-PEST, Src homology domain-containing inositol 5’-phosphatase 1 (SHIP1), and C‐terminal Src kinase (CSK) can bind to PSTPIP2 and inhibit the development of AIDs. However, the mechanisms underlying the function of PSTPIP2 have not been fully elucidated. This article reviews the research progress and mechanisms of PSTPIP2 in AIDs. PSTPIP2 also provides a new therapeutic target for the treatment of AIDs.
Collapse
Affiliation(s)
- Jie-Jie Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Sa Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
85
|
Fan C, Lu W, Li K, Zhao C, Wang F, Ding G, Wang J. Identification of immune cell infiltration pattern and related critical genes in metastatic castration-resistant prostate cancer by bioinformatics analysis. Cancer Biomark 2021; 32:363-377. [PMID: 34151837 DOI: 10.3233/cbm-203222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) is the lethal stage of prostate cancer and the main cause of morbidity and mortality, which is also a potential target for immunotherapy. METHOD In this study, using the Approximate Relative Subset of RNA Transcripts (CIBERSORT) online method, we analysed the immune cell abundance ratio of each sample in the mCRPC dataset. The EdgeR (an R package) was used to classify differentially expressed genes (DEGs). Using the Database for annotation, visualisation and interactive exploration (DAVID) online method, we performed functional enrichment analyses. STRING online database and Cytoscape tools have been used to analyse protein-protein interaction (PPI) and classify hub genes. RESULTS The profiles of immune infiltration in mCRPC showed that Macrophages M2, Macrophages M0, T cells CD4 memory resting, T cells CD8 and Plasma cells were the main infiltration cell types in mCRPC samples. Macrophage M0 and T cell CD4 memory resting abundance ratios were correlated with clinical outcomes. We identified 1102 differentially expressed genes (DEGs) associated with the above two immune cells to further explore the underlying mechanisms. Enrichment analysis found that DEGs were substantially enriched in immune response, cell metastasis, and metabolism related categories. We identified 20 hub genes by the protein-protein interaction network analysis. Further analysis showed that three critical hub genes, CCR5, COL1A1 and CXCR3, were significantly associated with prostate cancer prognosis. CONCLUSION Our findings revealed the pattern of immune cell infiltration in mCRPC, and identified the types and genes of immune cells correlated with clinical outcomes. A new theoretical basis for immunotherapy may be given by our results.
Collapse
Affiliation(s)
- Caibin Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Lu
- School of Nursing, Suzhou Vocational Health and Technical College, Suzhou, Jiangsu, China.,Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Li
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunchun Zhao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guanxiong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
86
|
Liu K, Li D, Zheng W, Shi M, Chen Y, Tang M, Yang T, Zhao M, Deng D, Zhang C, Liu J, Yuan X, Yang Z, Chen L. Discovery, Optimization, and Evaluation of Quinazolinone Derivatives with Novel Linkers as Orally Efficacious Phosphoinositide-3-Kinase Delta Inhibitors for Treatment of Inflammatory Diseases. J Med Chem 2021; 64:8951-8970. [PMID: 34138567 DOI: 10.1021/acs.jmedchem.1c00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Guided by molecular docking, a commonly used open-chain linker was cyclized into a five-membered pyrrolidine to lock the overall conformation of the propeller-shaped molecule. Different substituents were introduced into the pyrrolidine moiety to block oxidative metabolism. Surprisingly, it was found that a small methyl substituent could be used to alleviate the oxidative metabolism of pyrrolidine while maintaining or enhancing potency, which could be described as a "magic methyl". Further optimization around the "3rd blade" of the propeller led to identification of a series of potent and selective PI3Kδ inhibitors. Among them, compound 50 afforded an optimum balance of PK profiles and potency. Oral administration of 50 attenuated the arthritis severity in a dose-dependent manner in a collagen-induced arthritis model without obvious toxicity. Furthermore, 50 demonstrated excellent pharmacokinetic properties with high bioavailability, suggesting that 50 might be an acceptable candidate for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kongjun Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Dan Li
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wei Zheng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Mingsong Shi
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yong Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Dexin Deng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Chufeng Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jiang Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xue Yuan
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhuang Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
87
|
Lampson BL, Brown JR. The Evolving Use of Phosphatidylinositol 3-Kinase Inhibitors for the Treatment of Chronic Lymphocytic Leukemia. Hematol Oncol Clin North Am 2021; 35:807-826. [PMID: 34174987 DOI: 10.1016/j.hoc.2021.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
B cells express 4 phosphatidylinositol 3-kinase (PI3K) isoforms and have a dependence on p110δ for survival. The design of isoform-selective inhibitors is possible, and pharmacologic inhibition of p110δ is toxic to neoplastic chronic lymphocytic leukemia (CLL) cells for both cell-intrinsic and cell-extrinsic reasons. Idelalisib is a first-in-class p110δ inhibitor that exhibits efficacy for the treatment of relapsed CLL irrespective of adverse prognostic features. Duvelisib is a p110γ/δ inhibitor with a similar efficacy and safety profile to idelalisib. Recent data indicate that umbralisib, a p110δ/CK-1ε dual inhibitor, is safe and effective when administered to patients with CLL.
Collapse
Affiliation(s)
- Benjamin L Lampson
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, CLL Center, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
88
|
Ratti S, Evangelisti C, Mongiorgi S, De Stefano A, Fazio A, Bonomini F, Follo MY, Faenza I, Manzoli L, Sheth B, Vidalle MC, Kimber ST, Divecha N, Cocco L, Fiume R. "Modulating Phosphoinositide Profiles as a Roadmap for Treatment in Acute Myeloid Leukemia". Front Oncol 2021; 11:678824. [PMID: 34109125 PMCID: PMC8181149 DOI: 10.3389/fonc.2021.678824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Polyphosphoinositides (PPIns) and their modulating enzymes are involved in regulating many important cellular functions including proliferation, differentiation or gene expression, and their deregulation is involved in human diseases such as metabolic syndromes, neurodegenerative disorders and cancer, including Acute Myeloid Leukemia (AML). Given that PPIns regulating enzymes are highly druggable targets, several studies have recently highlighted the potential of targeting them in AML. For instance many inhibitors targeting the PI3K pathway are in various stages of clinical development and more recently other novel enzymes such as PIP4K2A have been implicated as AML targets. PPIns have distinct subcellular organelle profiles, in part driven by the specific localisation of enzymes that metabolise them. In particular, in the nucleus, PPIns are regulated in response to various extracellular and intracellular pathways and interact with specific nuclear proteins to control epigenetic cell state. While AML does not normally manifest with as many mutations as other cancers, it does appear in large part to be a disease of dysregulation of epigenetic signalling and many novel therapeutics are aimed at reprogramming AML cells toward a differentiated cell state or to one that is responsive to alternative successful but limited AML therapies such as ATRA. Here, we propose that by combining bioinformatic analysis with inhibition of PPIns pathways, especially within the nucleus, we might discover new combination therapies aimed at reprogramming transcriptional output to attenuate uncontrolled AML cell growth. Furthermore, we outline how different part of a PPIns signalling unit might be targeted to control selective outputs that might engender more specific and therefore less toxic inhibitory outcomes.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Alessia De Stefano
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Bonomini
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Magdalena C Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Scott T Kimber
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
89
|
Wang S, Wang W, Zhang X, Gui J, Zhang J, Guo Y, Liu Y, Han L, Liu Q, Li Y, Sun N, Liu Z, Du J, Tai J, Ni X. A somatic mutation in PIK3CD unravels a novel candidate gene for lymphatic malformation. Orphanet J Rare Dis 2021; 16:208. [PMID: 33964933 PMCID: PMC8106842 DOI: 10.1186/s13023-021-01782-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Background Lymphatic malformations (LMs) are benign congenital malformations that stem from the abnormal development of the lymphatic vessels during early embryogenesis. Somatic PIK3CA gene mutations are conventional cause leading to LMs. Both macrocystic and microcystic LMs arise due to lymphatic endothelial cell-autonomous defects, depending on the time in development at which PIK3CA gene mutation occurs. Recent study finds a PIK3CA mutation in 79% of LMs. However, discovering new genetic events in this disease is crucial to identify the molecular mechanism of the pathogenesis and further develop new targeted therapies. Results Here, we initially performed whole-exome sequencing in six children with LMs to find a new causal gene. Somatic mutations in PIK3CA (c.1633G > A [p. E545K] and PIK3CD (c.1997T > C [p.L666P]) were discovered in two different individuals. In vitro functional studies were conducted to demonstrate the pathogenicity of the novel mutation c.1997T > C in PIK3CD. We found that L666P promoted the cell proliferation and migration of human umbilical vein endothelial cells (HUVECs) and induced hyperactivation of the mTOR pathway. These findings indicate that the PIK3CD mutation affects downstream signalling in endothelial cells, which may impair normal lymphangiogenesis. Conclusions This study reveals a novel candidate gene associated with the development of LMs, which is consistent with previous researches. These findings in our study may offer a novel gene target for developing therapies, which acts in tight interaction with the previously known PIK3CA. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01782-9.
Collapse
Affiliation(s)
- Shengcai Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xuexi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jie Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yuanhu Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Lin Han
- Running-Gene Inc., Health Valley 602, Beijing, China
| | - Qiaoyin Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yanzhen Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Nian Sun
- Department of Otolaryngology-Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhiyong Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jiangnan Du
- Department of Otolaryngology-Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jun Tai
- Department of Otolaryngology-Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Xin Ni
- Department of Otolaryngology-Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
90
|
Guo Y, Jin Y, Qu B, Zhang Y, Che J, Dong X. An updated patent review of Akt inhibitors (2016-present). Expert Opin Ther Pat 2021; 31:837-849. [PMID: 33834942 DOI: 10.1080/13543776.2021.1915291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Akt is a widely known serine threonine kinase involved in a series of critical cellular pathways like cell survival and proliferation. With the development of small-molecule Akt inhibitors, new strategies such as covalent, peptide-based, and PROTAC (Proteolysis Targeting Chimera) strategies have also been used the design of Akt inhibitors. On the other hand, due to the specificity of the Akt pathway, the use of Akt modulators in combination therapy and immunotherapy has been disclosed in the past 5 years.Areas covered: This review focuses on the patent literature covering small-molecule inhibitors of Akt kinase and their applications from 2016-present.Expert opinion: Although Akt inhibitors' progress has been somewhat slow over the past five years, new strategies still provide new opportunities for the development of Akt inhibitors. Combination with Akt pathway inhibitors for tumor therapy has also been widely disclosed in patents in the last 5 years. Notably, combination strategies of Akt inhibitors and immunotherapy have started to emerge in recent years. While the clinical indications of Akt modulators should not be limited to anti-cancer, it is still worth trying the treatment of other diseases. Within the next years, current drug development around Akt inhibitors should be fascinating.
Collapse
Affiliation(s)
- Yu Guo
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yizhen Jin
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Bingxue Qu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Zhang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, P.R. China.,Cancer Center, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
91
|
Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021; 83:110003. [PMID: 33836260 DOI: 10.1016/j.cellsig.2021.110003] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.
Collapse
|
92
|
Rohrbacher L, Brauchle B, Ogrinc Wagner A, von Bergwelt-Baildon M, Bücklein VL, Subklewe M. The PI3K∂-Selective Inhibitor Idelalisib Induces T- and NK-Cell Dysfunction Independently of B-Cell Malignancy-Associated Immunosuppression. Front Immunol 2021; 12:608625. [PMID: 33790890 PMCID: PMC8005712 DOI: 10.3389/fimmu.2021.608625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
B-cell receptors, multiple receptor tyrosine kinases, and downstream effectors are constitutively active in chronic lymphocytic leukemia (CLL) B cells. Activation of these pathways results in resistance to apoptosis and enhanced survival of the leukemic cells. Idelalisib is a highly selective inhibitor of the PI3K p110∂ isoform and is approved for the treatment of CLL in patients with relapsed/refractory disease or in those harboring 17p deletions or tp53 mutations. Despite the initial excitement centered around high response rates in clinical trials of idelalisib, its therapeutic success has been hindered by the incidence of severe opportunistic infections. To examine the potential contribution of idelalisib to the increased risk of infection, we investigated the effects of idelalisib on the immune cell compartments of healthy donors (HDs) and CLL patients. PI3K∂ blockade by idelalisib reduced the expression levels of inhibitory checkpoint molecules in T cells isolated from both HDs and CLL patients. In addition, the presence of idelalisib in cultures significantly decreased T-cell-mediated cytotoxicity and granzyme B secretion, as well as cytokine secretion levels in both cohorts. Furthermore, idelalisib reduced the proliferation and cytotoxicity of HD NK cells. Collectively, our data demonstrate that both human T and NK cells are highly sensitive to PI3K∂ inhibition. Idelalisib interfered with the functions of T and NK cell cells from both HDs and CLL patients. Therefore, idelalisib might contribute to an increased risk of infections regardless of the underlying B-cell malignancy.
Collapse
Affiliation(s)
- Lisa Rohrbacher
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bettina Brauchle
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ana Ogrinc Wagner
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Veit L Bücklein
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marion Subklewe
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
93
|
Rathinaswamy MK, Gaieb Z, Fleming KD, Borsari C, Harris NJ, Moeller BE, Wymann MP, Amaro RE, Burke JE. Disease-related mutations in PI3Kγ disrupt regulatory C-terminal dynamics and reveal a path to selective inhibitors. eLife 2021; 10:e64691. [PMID: 33661099 PMCID: PMC7955810 DOI: 10.7554/elife.64691] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Class I Phosphoinositide 3-kinases (PI3Ks) are master regulators of cellular functions, with the class IB PI3K catalytic subunit (p110γ) playing key roles in immune signalling. p110γ is a key factor in inflammatory diseases and has been identified as a therapeutic target for cancers due to its immunomodulatory role. Using a combined biochemical/biophysical approach, we have revealed insight into regulation of kinase activity, specifically defining how immunodeficiency and oncogenic mutations of R1021 in the C-terminus can inactivate or activate enzyme activity. Screening of inhibitors using HDX-MS revealed that activation loop-binding inhibitors induce allosteric conformational changes that mimic those in the R1021C mutant. Structural analysis of advanced PI3K inhibitors in clinical development revealed novel binding pockets that can be exploited for further therapeutic development. Overall, this work provides unique insights into regulatory mechanisms that control PI3Kγ kinase activity and shows a framework for the design of PI3K isoform and mutant selective inhibitors.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Zied Gaieb
- Department of Chemistry and Biochemistry, University of California San DiegoSan DiegoUnited States
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Chiara Borsari
- University of Basel, Department of BiomedicineBaselSwitzerland
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Brandon E Moeller
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | | | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San DiegoSan DiegoUnited States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| |
Collapse
|
94
|
Lefèvre PLC, Nardelli TC, Son WY, Sadler AR, Rawn DFK, Goodyer C, Robaire B, Hales BF. Polybrominated Diphenyl Ethers in Human Follicular Fluid Dysregulate Mural and Cumulus Granulosa Cell Gene Expression. Endocrinology 2021; 162:6128707. [PMID: 33543239 PMCID: PMC7853176 DOI: 10.1210/endocr/bqab003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 01/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a major class of flame retardants incorporated into numerous consumer products, leach out into dust resulting in widespread exposure. There is evidence from in vitro and in vivo animal studies that PBDEs affect ovarian granulosa cell function and follicular development, yet human studies of their association with female infertility are inconclusive. Here, we tested the hypothesis that exposure to the PBDEs in follicular fluid is associated with dysregulation of gene expression in the mural and cumulus granulosa cells collected from women undergoing in vitro fertilization by intracytoplasmic sperm injection. The median concentration of the ∑ 10PBDEs detected in the follicular fluid samples (n = 37) was 15.04 pg/g wet weight. RNA microarray analyses revealed that many genes were differentially expressed in mural and cumulus granulosa cells. Highest vs lowest quartile exposure to the Σ 10PBDEs or to 2 predominant PBDE congeners, BDE-47 or BDE-153, was associated with significant effects on gene expression in both cell types. Mural granulosa cells were generally more sensitive to PBDE exposure compared to cumulus cells. Overall, gene expression changes associated with BDE-47 exposure were similar to those for ∑ 10PBDEs but distinct from those associated with BDE-153 exposure. Interestingly, exposure to BDE-47 and ∑ 10PBDEs activated the expression of genes in pathways that are important in innate immunity and inflammation. To the best of our knowledge, this is the first demonstration that exposure to these environmental chemicals is associated with the dysregulation of pathways that play an essential role in ovulation.
Collapse
Affiliation(s)
- Pavine L C Lefèvre
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Thomas C Nardelli
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Weon-Young Son
- Research Institute of the McGill University Health Centre (RI-MUHC), Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Amy R Sadler
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Dorothea F K Rawn
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Cindy Goodyer
- Research Institute of the McGill University Health Centre (RI-MUHC), Royal Victoria Hospital, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Correspondence: Barbara F. Hales, PhD, Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
95
|
Ma Y, Qiu M, Guo H, Chen H, Li J, Li X, Yang F. Comprehensive Analysis of the Immune and Prognostic Implication of COL6A6 in Lung Adenocarcinoma. Front Oncol 2021; 11:633420. [PMID: 33747955 PMCID: PMC7968342 DOI: 10.3389/fonc.2021.633420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Collagen type VI alpha 6 chain (COL6A6), a novel collagen, has been considered as a tumor suppressor and therapeutic target in several tumors. However, the functional role of COL6A6 in immune cell infiltration and prognostic value in lung adenocarcinoma (LUAD) remains unknown. Here, we evaluated COL6A6 expression and its impact on survival among LUAD patients from The Cancer Genome Atlas (TCGA) and several other databases. COL6A6 was downregulated in LUAD tissues compared to normal tissues at both mRNA and protein levels. COL6A6 expression was negatively associated with pathological stage, tumor stage, and lymph node metastasis. High COL6A6 expression was a favorable prognostic factor in LUAD. Next, we explored the associations between COL6A6 expression and immune cell infiltration. COL6A6 expression was positively associated with the infiltration of B cells, T cells, neutrophils and dendritic cells. Additionally, the immune cell infiltration levels were associated with COL6A6 gene copy number in LUAD. Consistently, gene set enrichment analysis showed that various immune pathways were enriched in the LUAD samples with high COL6A6 expression, including pathways related to T cell activation and T cell receptor signaling. The impacts of COL6A6 on immune activity were further assessed by enrichment analysis of 50 COL6A6-associated immunomodulators. Thereafter, using Cox regression, we identified a seven-gene risk prediction signature based on the COL6A6-associated immunomodulators. The resulting risk score was an independent prognostic predictor in LUAD. Receiver operating characteristic curve analysis confirmed that the seven-gene signature had good prognostic accuracy in the TCGA-LUAD cohort and a Gene Expression Omnibus dataset. Finally, we constructed a clinical nomogram to predict long-term survival probabilities, and calibration curves verified its accuracy. Our findings highlight that COL6A6 is involved in tumor immunity, suggesting COL6A6 may be a potential immunotherapeutic target in LUAD. The proposed seven-gene signature is a promising prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Yi Ma
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Haifa Guo
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Haiming Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Jiawei Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Xiao Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
96
|
Small molecule approaches to treat autoimmune and inflammatory diseases (Part I): Kinase inhibitors. Bioorg Med Chem Lett 2021; 38:127862. [PMID: 33609659 DOI: 10.1016/j.bmcl.2021.127862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
Autoimmune and inflammatory diseases place a huge burden on the healthcare system. Small molecule (SM) therapeutics provide much needed complementary treatment options for these diseases. This digest series highlights the latest progress in the discovery and development of safe and efficacious SMs to treat autoimmune and inflammatory diseases with each part representing a class of SMs, namely: 1) protein kinases; 2) nucleic acid-sensing pathways; and 3) soluble ligands and receptors on cell surfaces. In this first part of the series, the focus is on kinase inhibitors that emerged between 2018 and 2020, and which exhibit increased target and tissue selectivity with the aim of increasing their therapeutic index.
Collapse
|
97
|
Akbari Dilmaghani N, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: Possibilities for therapeutic interventions either as single agents or in combination with conventional therapies. IUBMB Life 2021; 73:618-642. [PMID: 33476088 DOI: 10.1002/iub.2446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
The latest advances in the sequencing methods in head and neck squamous cell carcinoma (HNSCC) tissues have revolutionized our understanding of the disease by taking off the veil from the most frequent genetic alterations in the components of the oncogenic pathways. Among all the identified alterations, aberrancies in the genes attributed to the phosphoinositide 3-kinases (PI3K) axis have attracted special attention as they were altered in more than 90% of the tissues isolated from HNSCC patients. In fact, the association between these aberrancies and the increased risk of cancer metastasis suggested this axis as an "Achilles Heel" of HNSCC, which may be therapeutically targeted. The results of the clinical trials investigating the therapeutic potential of the inhibitors targeting the components of the PI3K axis in the treatment of HNSCC patients, either alone or in a combined-modal strategy, opened a new chapter in the treatment strategy of this malignancy. The present study aimed to review the importance of the PI3K axis in the pathogenesis of HNSCC and also provide a piece of information about the breakthroughs and challenges of PI3K inhibitors in the therapeutic strategies of the disease.
Collapse
Affiliation(s)
- Nader Akbari Dilmaghani
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Otolaryngology, Head and Neck Surgery, Loghman Hakim Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
98
|
Yuan A, Zeng J, Zhou H, Liu Q, Rao Z, Gao M, Liu R, Zeng N. Anti-type I allergic effects of Jing-Fang powder extracts via PI3K/Akt pathway in vitro and in vivo. Mol Immunol 2021; 135:408-420. [PMID: 33518365 DOI: 10.1016/j.molimm.2021.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 02/05/2023]
Abstract
Jing-Fang powder (Schizonepeta tenuifolia Briq. and Saposhnikovia divaricata (Turcz.) Schischk.) was used to treat chronic bronchitis, asthma and chronic urticaria. Based on the preliminary results of screening research on the antiallergic effective parts of Jing-Fang powder, its ethyl acetate extract fractions (JFEE) and isolate D (JFEE-D) showed the best anti-allergic effect. RBL-2H3 cell activation degranulation model and mice passive cutaneous anaphylaxis (PCA) reaction model were used to investigate the effects and mechanisms of JFEE and JFEE-D on IgE-mediated type I allergic reactions. LC-MS was utilized to determine the composition of JFEE and JFEE-D. We found that JFEE and JFEE-D significantly reduced β-HEX, histamine, IL-4, IL-6 levels in cell supernatants, and improved the degree and morphology of cell degranulation. JFEE and JFEE-D significantly inhibited the increase of ear vascular permeability and abnormal increase of serum IgE, TNF-α, IL-6 levels. JFEE and JFEE-D inhibited mRNA expression of PI3K and Akt and down-regulated protein expression of PI3K, Akt, p-Akt, and PLCγ1 in sensitized RBL-2H3 cells. The combined use of JFEE and JFEE-D with pathway inhibitor Wortmannin revealed synergistic down-regulation of PI3K, Akt, and p-Akt protein expression. The combined use of pathway agonist IGF-1, JFEE and JFEE-D down-regulated increase of p-Akt/Akt protein expression. Moreover, JFEE and JFEE-D significantly inhibited protein expression of PI3K, p-Akt and PLCγ1 in PCA model mice. These results show that JFEE and JFEE-D inhibit type I allergic reactions by inhibiting PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- An Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiuseng Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hongli Zhou
- The Second Affiliated Hospital of Military Medical University, Chongqing, 400037, China
| | - Qi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, 611137, China
| | - Zhili Rao
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, 611137, China
| | - Ming Gao
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, 611137, China
| | - Rong Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Nan Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
99
|
Kiuchi M, Onodera A, Kokubo K, Ichikawa T, Morimoto Y, Kawakami E, Takayama N, Eto K, Koseki H, Hirahara K, Nakayama T. The Cxxc1 subunit of the Trithorax complex directs epigenetic licensing of CD4+ T cell differentiation. J Exp Med 2021; 218:211672. [PMID: 33433611 PMCID: PMC7808308 DOI: 10.1084/jem.20201690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Different dynamics of gene expression are observed during cell differentiation. In T cells, genes that are turned on early or turned off and stay off have been thoroughly studied. However, genes that are initially turned off but then turned on again after stimulation has ceased have not been defined; they are obviously important, especially in the context of acute versus chronic inflammation. Using the Th1/Th2 differentiation paradigm, we found that the Cxxc1 subunit of the Trithorax complex directs transcription of genes initially down-regulated by TCR stimulation but up-regulated again in a later phase. The late up-regulation of these genes was impaired either by prolonged TCR stimulation or Cxxc1 deficiency, which led to decreased expression of Trib3 and Klf2 in Th1 and Th2 cells, respectively. Loss of Cxxc1 resulted in enhanced pathogenicity in allergic airway inflammation in vivo. Thus, Cxxc1 plays essential roles in the establishment of a proper CD4+ T cell immune system via epigenetic control of a specific set of genes.
Collapse
Affiliation(s)
- Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,Institute for Global Prominent Research, Chiba University, Chuo-ku, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Tomomi Ichikawa
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Yuki Morimoto
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Eiryo Kawakami
- Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Sciences Innovation Hub Program, RIKEN, Yokohama, Kanagawa, Japan
| | - Naoya Takayama
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Eto
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Haruhiko Koseki
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Chiba, Japan
| |
Collapse
|
100
|
Xu S, Tang C. The Role of ARID1A in Tumors: Tumor Initiation or Tumor Suppression? Front Oncol 2021; 11:745187. [PMID: 34671561 PMCID: PMC8521028 DOI: 10.3389/fonc.2021.745187] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
Genes encoding subunits of SWItch/Sucrose Non-Fermenting (SWI/SNF) chromatin remodeling complexes are collectively mutated in 20% of all human cancers, among which the AT-rich interacting domain-containing protein 1A (ARID1A, also known as BAF250a, B120, C1orf4, Osa1) that encodes protein ARID1A is the most frequently mutated, and mutations in ARID1A have been found in various types of cancer. ARID1A is thought to play a significant role both in tumor initiation and in tumor suppression, which is highly dependent upon context. Recent molecular mechanistic research has revealed that ARID1A participates in tumor progression through its effects on control of cell cycle, modulation of cellular functions such as EMT, and regulation of various signaling pathways. In this review, we synthesize a mechanistic understanding of the role of ARID1A in human tumor initiation as well as in tumor suppression and further discuss the implications of these new discoveries for potential cancer intervention. We also highlight the mechanisms by which mutations affecting the subunits in SWI/SNF complexes promote cancer.
Collapse
|