51
|
Magnani L, Brunelle M, Gévry N, Lupien M. Chromatin landscape and endocrine response in breast cancer. Epigenomics 2013; 4:675-83. [PMID: 23244312 DOI: 10.2217/epi.12.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over two-thirds of breast cancers rely on estrogen receptor α (ERα) for their growth. Endocrine therapies antagonize estrogen-dependent ERα activation but resistance to these treatments occurs and is associated with poor prognosis. Crosstalk between alternative survival pathways and ERα are currently held as the primary cause of resistance. However, blocking these pathways does not cure endocrine therapy resistant breast cancer suggesting the existence of additional mechanisms. While cancer is commonly considered a genetic disease, the importance of epigenetic events in promoting tumor initiation and progression is increasingly recognized. Here, we consider how epigenetic modifications and alterations to the chromatin landscape contribute to endocrine therapy resistance by modulating ERα expression or altering its genomic activity.
Collapse
Affiliation(s)
- Luca Magnani
- Ontario Cancer Institute, Princess Margaret Hospital-University Health Network & the Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
52
|
Zhang X, Diaz MR, Yee D. Fulvestrant regulates epidermal growth factor (EGF) family ligands to activate EGF receptor (EGFR) signaling in breast cancer cells. Breast Cancer Res Treat 2013; 139:351-60. [PMID: 23686416 DOI: 10.1007/s10549-013-2541-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/18/2013] [Indexed: 12/11/2022]
Abstract
Estrogen receptor-α (ER) targeted therapies are routinely used to treat breast cancer. However, patient responses are limited by resistance to endocrine therapy. Breast cancer cells resistant to the pure steroidal ER antagonist fulvestrant (fulv) demonstrate increased activation of epidermal growth factor receptor (EGFR) family members and downstream ERK signaling. In this study, we investigated the effects of fulv on EGFR signaling and ligand regulation in several breast cancer cell lines. EGFR/HER2/HER3 phosphorylation and ERK1,2 activation were seen after 24-48 h after fulvestrant treatment in ER-positive breast cancer cell lines. 4-Hydroxy-tamoxifen and estradiol did not cause EGFR activation. Fulvestrant did not affect EGFR expression. Cycloheximide abolished the ability of fulv to activate EGFR suggesting the autocrine production of EGFR ligands might be responsible for fulvestrant induced EGFR signaling. qRT-PCR results showed fulv differentially regulated EGFR ligands; HB-EGF mRNA was increased, while amphiregulin and epiregulin mRNAs were decreased. Fulvestrant induced EGFR activation and upregulation of EGFR ligands were ER dependent since fulv treatment in C4-12, an ER-negative cell line derivative of MCF-7 cells, did not result in EGFR activation or change in ligand mRNA levels. ER downregulation by siRNA induced similar EGFR activation and regulation of EGFR ligands as fulvestrant. Neutralizing HB-EGF antibody blocked fulv-induced EGFR activation. Combination of fulv and EGFR family tyrosine kinase inhibitors (erlotinib and lapatinib) significantly decreased EGFR signaling and cell survival. In conclusion, fulvestrant-activated EGFR family members accompanied by ER dependent upregulation of HB-EGF within 48 h. EGF receptor or ligand inhibition might enhance or prolong the therapeutic effects of targeting ER by fulvestrant in breast cancer.
Collapse
Affiliation(s)
- Xihong Zhang
- Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
53
|
Yeo HL, Song YS, Ryu JH, Kim HD. Design, synthesis, and biological evaluation of cyclopropyl analogues of stilbene with raloxifene side chain as subtype-selective ligands for estrogen receptor. Arch Pharm Res 2013; 36:1096-103. [PMID: 23613312 DOI: 10.1007/s12272-013-0134-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
We have designed the cyclopropane analog of stilbene as subtype-selective ligands for estrogen receptor based on the bioisosterism that cyclopropane could act as alkene bioisoster. Three cyclopropane analogs were prepared efficiently starting from 4-benzyloxybenzaldehyde, and evaluated for their binding to estrogen receptors ERα and ERβ. These cyclopropane analogs were also found to be full agonists in estrogen receptor-mediated gene transcription assay. Compared to the stilbene analogs such as tamoxifen and raloxifene, the three cyclopropane analogs showed lower binding affinity for estrogen receptor, but higher subtype selectivity for ERα. The structure-activity relationship revealed from this study might provide clues for improving subtype selectivity for ERα.
Collapse
Affiliation(s)
- Hye Lim Yeo
- College of Pharmacy, Sookmyung Women's University, Seoul, 141-742, Korea
| | | | | | | |
Collapse
|
54
|
Genome-wide reprogramming of the chromatin landscape underlies endocrine therapy resistance in breast cancer. Proc Natl Acad Sci U S A 2013; 110:E1490-9. [PMID: 23576735 DOI: 10.1073/pnas.1219992110] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The estrogen receptor (ER)α drives growth in two-thirds of all breast cancers. Several targeted therapies, collectively termed endocrine therapy, impinge on estrogen-induced ERα activation to block tumor growth. However, half of ERα-positive breast cancers are tolerant or acquire resistance to endocrine therapy. We demonstrate that genome-wide reprogramming of the chromatin landscape, defined by epigenomic maps for regulatory elements or transcriptional activation and chromatin openness, underlies resistance to endocrine therapy. This annotation reveals endocrine therapy-response specific regulatory networks where NOTCH pathway is overactivated in resistant breast cancer cells, whereas classical ERα signaling is epigenetically disengaged. Blocking NOTCH signaling abrogates growth of resistant breast cancer cells. Its activation state in primary breast tumors is a prognostic factor of resistance in endocrine treated patients. Overall, our work demonstrates that chromatin landscape reprogramming underlies changes in regulatory networks driving endocrine therapy resistance in breast cancer.
Collapse
|
55
|
Pender-Cudlip MC, Krag KJ, Martini D, Yu J, Guidi A, Skinner SS, Zhang Y, Qu X, He C, Xu Y, Qian SY, Kang JX. Delta-6-desaturase activity and arachidonic acid synthesis are increased in human breast cancer tissue. Cancer Sci 2013; 104:760-4. [PMID: 23414387 DOI: 10.1111/cas.12129] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/09/2013] [Accepted: 02/14/2013] [Indexed: 11/27/2022] Open
Abstract
Omega-6 (n-6) arachidonic acid (AA) and its pro-inflammatory metabolites, including prostaglandin E2 (PGE(2)), are known to promote tumorigenesis. Delta-6 desaturase (D6D) is the rate-limiting enzyme for converting n-6 linoleic acid (LA) to AA. Our objective was to determine if AA synthesis, specifically D6D activity, and PGE(2) levels are increased in cancerous breast tissue, and whether these variables differ between estrogen receptor positive (ER+) and negative (ER-) breast cancers. Gas chromatography was performed on surgical breast tissue samples collected from 69 women with breast cancer. Fifty-four had ER+ breast cancer, and 15 had ER- breast cancer. Liquid chromatography-mass spectrometry was used to determine PGE(2) levels. Lipid analysis revealed higher levels of LA metabolites (C18:3 n-6, C20:3 n-6, and AA) in cancerous tissue than in adjacent noncancerous tissue (P < 0.01). The ratio of LA metabolites to LA, a measure of D6D activity, was increased in cancerous tissue, suggesting greater conversion of LA to AA (P < 0.001), and was higher in ER- than in ER+ patients, indicating genotype-related trends. Similarly, PGE(2) levels were increased in cancerous tissue, particularly in ER- patients. The results showed that the endogenous AA synthetic pathway, D6D activity, and PGE(2) levels are increased in breast tumors, particularly those of the ER- genotype. These findings suggest that the AA synthetic pathway and the D6D enzyme in particular may be involved in the pathogenesis of breast cancer. The development of drugs and nutritional interventions to alter this pathway may provide new strategies for breast cancer prevention and treatment.
Collapse
Affiliation(s)
- Marilla C Pender-Cudlip
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lucchetti C, Caligiuri I, Toffoli G, Giordano A, Rizzolio F. The prolyl isomerase Pin1 acts synergistically with CDK2 to regulate the basal activity of estrogen receptor α in breast cancer. PLoS One 2013; 8:e55355. [PMID: 23390529 PMCID: PMC3563590 DOI: 10.1371/journal.pone.0055355] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/27/2012] [Indexed: 12/22/2022] Open
Abstract
In hormone receptor-positive breast cancers, most tumors in the early stages of development depend on the activity of the estrogen receptor and its ligand, estradiol. Anti-estrogens, such as tamoxifen, have been used as the first line of therapy for over three decades due to the fact that they elicit cell cycle arrest. Unfortunately, after an initial period, most cells become resistant to hormonal therapy. Peptidylprolyl isomerase 1 (Pin1), a protein overexpressed in many tumor types including breast, has been demonstrated to modulate ERalpha activity and is involved in resistance to hormonal therapy. Here we show a new mechanism through which CDK2 drives an ERalpha-Pin1 interaction under hormone- and growth factor-free conditions. The PI3K/AKT pathway is necessary to activate CDK2, which phosphorylates ERalphaSer294, and mediates the binding between Pin1 and ERalpha. Site-directed mutagenesis demonstrated that ERalphaSer294 is essential for Pin1-ERalpha interaction and modulates ERalpha phosphorylation on Ser118 and Ser167, dimerization and activity. These results open up new drug treatment opportunities for breast cancer patients who are resistant to anti-estrogen therapy.
Collapse
Affiliation(s)
- Chiara Lucchetti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Isabella Caligiuri
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
- Human Health Foundation, Terni and Spoleto (PG), Italy
- Department of Human Pathology and Oncology, University of Siena, Siena (SI), Italy
| | - Giuseppe Toffoli
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, Aviano (PN), Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
- Human Health Foundation, Terni and Spoleto (PG), Italy
- Department of Human Pathology and Oncology, University of Siena, Siena (SI), Italy
- * E-mail: (AG); (FR)
| | - Flavio Rizzolio
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, Aviano (PN), Italy
- * E-mail: (AG); (FR)
| |
Collapse
|
57
|
Malinen M, Jääskeläinen T, Pelkonen M, Heikkinen S, Väisänen S, Kosma VM, Nieminen K, Mannermaa A, Palvimo JJ. Proto-oncogene PIM-1 is a novel estrogen receptor target associating with high grade breast tumors. Mol Cell Endocrinol 2013; 365:270-6. [PMID: 23142699 DOI: 10.1016/j.mce.2012.10.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/10/2012] [Accepted: 10/30/2012] [Indexed: 12/12/2022]
Abstract
We searched ERα cistromes of MCF-7 breast cancer cells for previously unrecognized ERα targets and identified proto-oncogene PIM-1 as a novel potential target gene. We show that the expression of PIM-1 is induced in response to estradiol in MCF-7 cells and that the induction is mediated by ERα-regulated enhancers located distally upstream from the gene. In keeping with the growth-promoting role of the PIM-1, depletion of the PIM-1 attenuated the proliferation of the MCF-7 cells, which was paralleled with up-regulation of cyclin-dependent protein kinase inhibitor CDKN1A and CDKN2B expression. Analysis of PIM-1 expression between invasive breast tumors and benign breast tissue samples showed that elevated PIM-1 expression is associated with malignancy and a higher tumor grade. In sum, identification of PIM-1 as an ERα target gene adds a novel potential mechanism by which estrogens can contribute to breast cancer cell proliferation and carcinogenesis.
Collapse
MESH Headings
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/mortality
- Carcinoma, Lobular/pathology
- Case-Control Studies
- Cyclin-Dependent Kinases/genetics
- Cyclin-Dependent Kinases/metabolism
- Estradiol/physiology
- Estrogen Receptor alpha/physiology
- Female
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- MCF-7 Cells
- Neoplasm Grading
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-pim-1/genetics
- Proto-Oncogene Proteins c-pim-1/metabolism
- RNA, Small Interfering/genetics
Collapse
Affiliation(s)
- Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
|
59
|
Vanheiden S, Pott L, Kienitz MC. Voltage-dependent open-channel block of G protein-gated inward-rectifying K(+) (GIRK) current in rat atrial myocytes by tamoxifen. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:1149-60. [PMID: 23096593 DOI: 10.1007/s00210-012-0801-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/09/2012] [Indexed: 01/15/2023]
Abstract
Tamoxifen (Tmx) is a nonsteroidal selective estrogen receptor antagonist and is frequently used in the treatment and prevention of breast cancer. The compound and its metabolites have been reported to inhibit functions of different classes of membrane proteins, including various ion channels. For members of the inward-rectifying K(+) (Kir) channel family, interference of Tmx with binding of phosphatidylinositol 4,5-bisphosphate (PIP(2)) has been suggested as the mechanism underlying such inhibition. We have studied the inhibition of G protein-activated K(+) (GIRK) current by Tmx in isolated myocytes from hearts of adult rats using whole-cell voltage clamp and experimental conditions for measuring K(+) currents as inward currents (E (K) -50 mV; holding potential -90 mV). Extracellular Tmx reversibly inhibited GIRK current activated by acetylcholine (I (K(ACh))) with an EC(50) of 7.4 × 10(-7) M. This inhibition was composed of two components, a basal reduction in peak current and a block that required opening of channels by ACh. The open-channel block was partially relieved by depolarizing voltage steps in a voltage- and time-dependent fashion. A voltage-dependent open-channel block was not observed when I (K(ACh)) was measured as outward current (E (K) -90 mV; holding potential -40 mV). Intracellular application of Tmx via the patch clamp pipette at a concentration (7 × 10(-6) M) that caused a rapid inhibition of I (K(ACh)) upon extracellular application did not affect the current. Intracellular application of the H(2)O-soluble PIP(2) analog diC(8)-PIP(2) reduced the voltage-independent component of inhibition but had no effect on voltage-dependent open-channel block. The effects of 4-hydroxy-Tmx, a major active metabolite, tested at 2 × 10(-6) M, had effects on I (K(ACh)) analogous to those of Tmx. Inhibition of constitutive inward-rectifying K(+) current (I (K1)) in ventricular myocytes, carried by Kir2 complexes, by Tmx was devoid of a voltage-dependent component. This study suggests the voltage-dependent open-channel block of GIRK inward current as a novel mechanism of Tmx action.
Collapse
Affiliation(s)
- Svenja Vanheiden
- Institute of Physiology, Ruhr-University Bochum, 44780, Bochum, Germany
| | | | | |
Collapse
|
60
|
Rey J, Hu H, Kyle F, Lai CF, Buluwela L, Coombes RC, Ortlund EA, Ali S, Snyder JP, Barrett AGM. Discovery of a new class of liver receptor homolog-1 (LRH-1) antagonists: virtual screening, synthesis and biological evaluation. ChemMedChem 2012; 7:1909-14. [PMID: 22961990 DOI: 10.1002/cmdc.201200307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Indexed: 11/09/2022]
Abstract
Targeting LRH-1: Virtual screening and molecular modeling were used to identify novel antagonists of liver receptor homolog-1 (LRH-1), an emerging therapeutic target for breast cancer. Hit compounds were synthesized and biologically assayed, and the preliminary results suggest that raloxifene-based analogues, substituted at the position C-7 of the benzothiophene ring, might generate an inactive protein conformation through binding and thus antagonize this nuclear receptor.
Collapse
Affiliation(s)
- Jullien Rey
- Department of Chemistry, Imperial College London, London, SW7 2AZ (England)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Development of a novel molecular sensor for imaging estrogen receptor-coactivator protein-protein interactions. PLoS One 2012; 7:e44160. [PMID: 22952913 PMCID: PMC3429467 DOI: 10.1371/journal.pone.0044160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/30/2012] [Indexed: 11/21/2022] Open
Abstract
Anti-estrogens, in particular tissue selective anti-estrogens, have been the bedrock of adjuvant therapy for patients with estrogen receptor alpha (ERα) positive breast cancer. Though current therapies have greatly enhanced patient prognosis, there continues to be an impetus for the development of improved anti-estrogens. ERα is a nuclear receptor transcription factor which activates gene expression through the recruitment of transcriptional coactivator proteins. The SRC family of coactivators, which includes AIB1, has been shown to be of particular importance for ERα mediated transcription. ERα-AIB1 interactions are indicative of gene expression and are inhibited by anti-estrogen treatment. We have exploited the interaction between ERα and AIB1 as a novel method for imaging ERα activity using a split luciferase molecular sensor. By producing a range of ERα ligand binding domain (ER-LBD) and AIB1 nuclear receptor interacting domain (AIB-RID) N- and C-terminal firefly luciferase fragment fusion proteins, constructs which exhibited more than a 10-fold increase in luciferase activity with E2 stimulation were identified. The specificity of the E2-stimulated luciferase activity to ERα-AIB1 interaction was validated through Y537S and L539/540A ER-LBD fusion protein mutants. The primed nature of the split luciferase assay allowed changes in ERα activity, with respect to the protein-protein interactions preceding transcription, to be assessed soon after drug treatment. The novel assay split luciferase detailed in this report enabled modulation of ERα activity to be sensitively imaged in vitro and in living subjects and potentially holds much promise for imaging the efficacy of novel ERα specific therapies.
Collapse
|
62
|
Annab LA, Bortner CD, Sifre MI, Collins JM, Shah RR, Dixon D, Karimi Kinyamu H, Archer TK. Differential responses to retinoic acid and endocrine disruptor compounds of subpopulations within human embryonic stem cell lines. Differentiation 2012; 84:330-43. [PMID: 22906706 DOI: 10.1016/j.diff.2012.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/15/2012] [Accepted: 07/05/2012] [Indexed: 11/25/2022]
Abstract
The heterogeneous nature of stem cells is an important issue in both research and therapeutic use in terms of directing cell lineage differentiation pathways, as well as self-renewal properties. Using flow cytometry we have identified two distinct subpopulations by size, large and small, within cultures of human embryonic stem (hES) cell lines. These two cell populations respond differentially to retinoic acid (RA) differentiation and several endocrine disruptor compounds (EDC). The large cell population responds to retinoic acid differentiation with greater than a 50% reduction in cell number and loss of Oct-4 expression, whereas the number of the small cell population does not change and Oct-4 protein expression is maintained. In addition, four estrogenic compounds altered SSEA-3 expression differentially between the two cell subpopulations changing their ratios relative to each other. Both populations express stem cell markers Oct-4, Nanog, Tra-1-60, Tra-1-80 and SSEA-4, but express low levels of differentiation markers common to the three germ layers. Cloning studies indicate that both populations can revive the parental population. Furthermore, whole genome microarray identified approximately 400 genes with significantly different expression between the two populations (p<0.01). We propose the differential response to RA in these populations is due to differential gene expression of Notch signaling members, CoupTF1 and CoupTF2, chromatin remodeling and histone modifying genes that render the small population resistant to RA differentiation. The findings that hES cells exist as heterogeneous populations with distinct responses to differentiation signals and environmental stimuli will be relevant for their use for drug discovery and disease therapy.
Collapse
Affiliation(s)
- Lois A Annab
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Putnik M, Zhao C, Gustafsson JÅ, Dahlman-Wright K. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells. Biochem Biophys Res Commun 2012; 426:26-32. [PMID: 22902638 DOI: 10.1016/j.bbrc.2012.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/02/2012] [Indexed: 01/16/2023]
Abstract
Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2'-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment showed no effect on the methylation status of these promoters. Additionally, we show that the ERα recruitment occurs at the FHL2 promoter in an E2- and DAC-independent fashion. In conclusion, we identified a set of genes regulated by both estrogen signaling and DNA methylation. However, our data does not support a direct molecular interplay of mediators of estrogen and epigenetic signaling at promoters of regulated genes.
Collapse
Affiliation(s)
- Milica Putnik
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183, Sweden.
| | | | | | | |
Collapse
|
64
|
Xu Y, Giamas G. Breast cancer and LMTK3: old disease, new target. BREAST CANCER MANAGEMENT 2012. [DOI: 10.2217/bmt.12.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yichen Xu
- Department of Surgery & Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - Georgios Giamas
- Department of Surgery & Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| |
Collapse
|
65
|
Romero WG, Da Silva FB, Borgo MV, Bissoli NS, Gouvêa SA, Abreu GR. Tamoxifen alters the plasma concentration of molecules associated with cardiovascular risk in women with breast cancer undergoing chemotherapy. Oncologist 2012; 17:499-507. [PMID: 22491005 DOI: 10.1634/theoncologist.2011-0369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The objective of this study was to evaluate the effect of tamoxifen on blood markers that are associated with cardiovascular risk, such as C-reactive protein (CRP), apolipoprotein A-1 (Apo-A), and apolipoprotein B-100 (Apo-B), in women undergoing chemotherapy for breast cancer. METHODS Over a period of 12 months, we followed 60 women with breast cancer. The women were divided into the following groups: a group that received only chemotherapy (n = 23), a group that received chemotherapy plus tamoxifen (n = 21), and a group that received only tamoxifen (n = 16). Plasma CRP levels were assessed at 0, 3, 6, and 12 months, and Apo-A and Apo B levels as well as the Apo-B/Apo-A ratio were assessed at 0 and 12 months. RESULTS We found increases in the plasma concentration of CRP in the chemotherapy alone and chemotherapy plus tamoxifen groups after 3 and 6 months of treatment (before the introduction of tamoxifen). However, after 12 months of treatment, women who used tamoxifen (the chemotherapy plus tamoxifen and tamoxifen alone groups) showed a significant reduction in CRP and Apo-B levels and a decrease in the Apo-B/Apo-A ratio. A significant increase in serum Apo-A levels was observed in the group receiving chemotherapy alone as a treatment for breast cancer. CONCLUSION The use of tamoxifen after chemotherapy for the treatment of breast cancer significantly reduces the levels of cardiovascular disease risk markers (CRP, Apo-B, and the Apo-B/Apo-A ratio).
Collapse
Affiliation(s)
- Walckiria G Romero
- Department Ciências Fisiológicas, Centro de Ciências da Saúde, UFES, Avenida Marechal Campos 1468, 29042-755 Vitória, ES, Brazil
| | | | | | | | | | | |
Collapse
|
66
|
Stratmann A, Haendler B. Histone demethylation and steroid receptor function in cancer. Mol Cell Endocrinol 2012; 348:12-20. [PMID: 21958694 DOI: 10.1016/j.mce.2011.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/05/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
Steroid receptors recruit various cofactors to form multi-protein complexes which locally alter chromatin structure and control DNA accessibility in order to regulate gene transcription. Some of these factors are enzymes that add or remove histone marks in the vicinity of regulatory regions of target genes. Numerous histone modifications added by specific writer enzymes and removed by eraser enzymes have been identified. Histone methylation is a modification with a complex outcome, as it can lead to gene activation or repression, depending on the modified residue and the context. Methylation marks are added by different enzyme families displaying exquisite substrate specificity. Lysine methylation is reversible and two different demethylase families have been identified in humans, the Jumonji C and the lysine-specific demethylase families. A regulatory role of histone demethylases in fine-tuning the function of steroid receptors, especially the androgen receptor and estrogen receptor, has emerged in recent years. This is mostly inferred from in vitro studies, but more recently first in vivo data have further supported this concept. This and the deregulated expression observed for several histone demethylases suggest a role in tumours such as prostate and breast cancer.
Collapse
Affiliation(s)
- Antje Stratmann
- Therapeutic Research Group Oncology/Gynecological Therapies and Global Biomarker, Bayer Pharma AG, Bayer HealthCare, D-13342 Berlin, Germany
| | | |
Collapse
|