51
|
Barnabas V, Kashyap A, Raja R, Newar K, Rai D, Dixit NM, Mehra S. The Extent of Antimicrobial Resistance Due to Efflux Pump Regulation. ACS Infect Dis 2022; 8:2374-2388. [PMID: 36264222 DOI: 10.1021/acsinfecdis.2c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A key mechanism driving antimicrobial resistance (AMR) stems from the ability of bacteria to up-regulate efflux pumps upon exposure to drugs. The resistance gained by this up-regulation is pliable because of the tight regulation of efflux pump levels. This leads to temporary enhancement in survivability of bacteria due to higher efflux pump levels in the presence of antibiotics, which can be reversed when the cells are no longer exposed to the drug. Knowledge of the extent of resistance thus gained would inform intervention strategies aimed at mitigating AMR. Here, we combine mathematical modeling and experiments to quantify the maximum extent of resistance that efflux pump up-regulation can confer via phenotypic induction in the presence of drugs and genotypic abrogation of regulation. Our model describes the dynamics of drug transport in and out of cells coupled with the associated regulation of efflux pump levels and predicts the increase in the minimum inhibitory concentration (MIC) of drugs due to such regulation. To test the model, we measured the uptake and efflux as well as the MIC of the compound ethidium bromide (EtBr), a substrate of the efflux pump LfrA, in wild-type Mycobacterium smegmatis mc2155, as well as in two laboratory-generated strains. Our model captured the observed EtBr levels and MIC fold-changes quantitatively. Further, the model identified key parameters associated with the resulting resistance, variations in which could underlie the extent to which such resistance arises across different drug-bacteria combinations, potentially offering tunable handles to optimize interventions aimed at minimizing AMR.
Collapse
Affiliation(s)
- Vinay Barnabas
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| | - Akanksha Kashyap
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Kapil Newar
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Deepika Rai
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore560012, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology, Mumbai400076, India
| |
Collapse
|
52
|
Jones RM, Adams KN, Eldesouky HE, Sherman DR. The evolving biology of Mycobacterium tuberculosis drug resistance. Front Cell Infect Microbiol 2022; 12:1027394. [PMID: 36275024 PMCID: PMC9579286 DOI: 10.3389/fcimb.2022.1027394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb) is an ancient disease that has remained a leading cause of infectious death. Mtb has evolved drug resistance to every antibiotic regimen ever introduced, greatly complicating treatment, lowering rates of cure and menacing TB control in parts of the world. As technology has advanced, our understanding of antimicrobial resistance has improved, and our models of the phenomenon have evolved. In this review, we focus on recent research progress that supports an updated model for the evolution of drug resistance in Mtb. We highlight the contribution of drug tolerance on the path to resistance, and the influence of heterogeneity on tolerance. Resistance is likely to remain an issue for as long as drugs are needed to treat TB. However, with technology driving new insights and careful management of newly developed resources, antimicrobial resistance need not continue to threaten global progress against TB, as it has done for decades.
Collapse
Affiliation(s)
| | | | | | - David R. Sherman
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
53
|
Balbuena-Alonso MG, Cortés-Cortés G, Kim JW, Lozano-Zarain P, Camps M, Del Carmen Rocha-Gracia R. Genomic analysis of plasmid content in food isolates of E. coli strongly supports its role as a reservoir for the horizontal transfer of virulence and antibiotic resistance genes. Plasmid 2022; 123-124:102650. [PMID: 36130651 PMCID: PMC10896638 DOI: 10.1016/j.plasmid.2022.102650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
The link between E. coli strains contaminating foods and human disease is unclear, with some reports supporting a direct transmission of pathogenic strains via food and others highlighting their role as reservoirs for resistance and virulence genes. Here we take a genomics approach, analyzing a large set of fully-assembled genomic sequences from E. coli available in GenBank. Most of the strains isolated in food are more closely related to each other than to clinical strains, arguing against a frequent direct transmission of pathogenic strains from food to the clinic. We also provide strong evidence of genetic exchanges between food and clinical strains that are facilitated by plasmids. This is based on an overlapped representation of virulence and resistance genes in plasmids isolated from these two sources. We identify clusters of phylogenetically-related plasmids that are largely responsible for the observed overlap and see evidence of specialization, with some food plasmid clusters preferentially transferring virulence factors over resistance genes. Consistent with these observations, food plasmids have a high mobilization potential based on their plasmid taxonomic unit classification and on an analysis of mobilization gene content. We report antibiotic resistance genes of high clinical relevance and their specific incompatibility group associations. Finally, we also report a striking enrichment for adhesins in food plasmids and their association with specific IncF replicon subtypes. The identification of food plasmids with specific markers (Inc and PTU combinations) as mediators of horizontal transfer between food and clinical strains opens new research avenues and should assist with the design of surveillance strategies.
Collapse
Affiliation(s)
- María G Balbuena-Alonso
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - Gerardo Cortés-Cortés
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, San Manuel, Puebla 72570, Mexico; Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jay W Kim
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Rosa Del Carmen Rocha-Gracia
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, San Manuel, Puebla 72570, Mexico.
| |
Collapse
|
54
|
Molecular Evolution of the Pseudomonas aeruginosa DNA Gyrase gyrA Gene. Microorganisms 2022; 10:microorganisms10081660. [PMID: 36014079 PMCID: PMC9415716 DOI: 10.3390/microorganisms10081660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
DNA gyrase plays important roles in genome replication in various bacteria, including Pseudomonasaeruginosa. The gyrA gene encodes the gyrase subunit A protein (GyrA). Mutations in GyrA are associated with resistance to quinolone-based antibiotics. We performed a detailed molecular evolutionary analyses of the gyrA gene and associated resistance to the quinolone drug, ciprofloxacin, using bioinformatics techniques. We produced an evolutionary phylogenetic tree using the Bayesian Markov Chain Monte Carlo (MCMC) method. This tree indicated that a common ancestor of the gene was present over 760 years ago, and the offspring formed multiple clusters. Quinolone drug-resistance-associated amino-acid substitutions in GyrA, including T83I and D87N, emerged after the drug was used clinically. These substitutions appeared to be positive selection sites. The molecular affinity between ciprofloxacin and the GyrA protein containing T83I and/or D87N decreased significantly compared to that between the drug and GyrA protein, with no substitutions. The rate of evolution of the gene before quinolone drugs were first used in the clinic, in 1962, was significantly lower than that after the drug was used. These results suggest that the gyrA gene evolved to permit the bacterium to overcome quinolone treatment.
Collapse
|
55
|
Metagenomic Characterization of Resistance Genes in Deception Island and Their Association with Mobile Genetic Elements. Microorganisms 2022; 10:microorganisms10071432. [PMID: 35889151 PMCID: PMC9320737 DOI: 10.3390/microorganisms10071432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are undergoing a remarkably rapid geographic expansion in various ecosystems, including pristine environments such as Antarctica. The study of ARGs and environmental resistance genes (ERGs) mechanisms could provide a better understanding of their origin, evolution, and dissemination in these pristine environments. Here, we describe the diversity of ARGs and ERGs and the importance of mobile genetic elements as a possible mechanism for the dissemination of resistance genes in Antarctica. We analyzed five soil metagenomes from Deception Island in Antarctica. Results showed that detected ARGs are associated with mechanisms such as antibiotic efflux, antibiotic inactivation, and target alteration. On the other hand, resistance to metals, surfactants, and aromatic hydrocarbons were the dominant ERGs. The taxonomy of ARGs showed that Pseudomonas, Psychrobacter, and Staphylococcus could be key taxa for studying antibiotic resistance and environmental resistance to stress in Deception Island. In addition, results showed that ARGs are mainly associated with phage-type mobile elements suggesting a potential role in their dissemination and prevalence. Finally, these results provide valuable information regarding the ARGs and ERGs in Deception Island including the potential contribution of mobile genetic elements to the spread of ARGs and ERGs in one of the least studied Antarctic ecosystems to date.
Collapse
|
56
|
Evolutionary Instability of Collateral Susceptibility Networks in Ciprofloxacin-Resistant Clinical Escherichia coli Strains. mBio 2022; 13:e0044122. [PMID: 35862779 PMCID: PMC9426462 DOI: 10.1128/mbio.00441-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Collateral sensitivity and resistance occur when resistance development toward one antimicrobial either potentiates or deteriorates the effect of others. Previous reports on collateral effects on susceptibility focus on newly acquired resistance determinants and propose that novel treatment guidelines informed by collateral networks may reduce the evolution, selection, and spread of antimicrobial resistance. In this study, we investigate the evolutionary stability of collateral networks in five ciprofloxacin-resistant, clinical Escherichia coli strains. After 300 generations of experimental evolution without antimicrobials, we show complete fitness restoration in four of five genetic backgrounds and demonstrate evolutionary instability in collateral networks of newly acquired resistance determinants. We show that compensatory mutations reducing efflux expression are the main drivers destabilizing initial collateral networks and identify rpoS as a putative target for compensatory evolution. Our results add another layer of complexity to future predictions and clinical application of collateral networks.
Collapse
|
57
|
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that usually causes difficult-to-treat infections due to its low intrinsic antibiotic susceptibility and outstanding capacity for becoming resistant to antibiotics. In addition, it has a remarkable metabolic versatility, being able to grow in different habitats, from natural niches to different and changing inpatient environments. Study of the environmental conditions that shape genetic and phenotypic changes of P. aeruginosa toward antibiotic resistance supposes a novelty, since experimental evolution assays are usually performed with well-defined antibiotics in regular laboratory growth media. Therefore, in this work we address the extent to which the nutrients’ availability may constrain the evolution of antibiotic resistance. We determined that P. aeruginosa genetic trajectories toward resistance to tobramycin, ceftazidime, and ceftazidime-avibactam are different when evolving in laboratory rich medium, urine, or synthetic sputum. Furthermore, our study, linking genotype with phenotype, showed a clear impact of each analyzed environment on both the fitness and resistance level associated with particular resistance mutations. This indicates that the phenotype associated with specific resistance mutations is variable and dependent on the bacterial metabolic state in each particular habitat. Our results support that the design of evolution-based strategies to tackle P. aeruginosa infections should be based on robust patterns of evolution identified within each particular infection and body location. IMPORTANCE Predicting evolution toward antibiotic resistance (AR) and its associated trade-offs, such as collateral sensitivity, is important to design evolution-based strategies to tackle AR. However, the effect of nutrients' availability on such evolution, particularly those that can be found under in vivo infection conditions, has been barely addressed. We analyzed the evolutionary patterns of P. aeruginosa in the presence of antibiotics in different media, including urine and synthetic sputum, whose compositions are similar to the ones in infections, finding that AR evolution differs, depending on growth conditions. Furthermore, the representative mutants isolated under each condition tested render different AR levels and fitness costs, depending on nutrients’ availability, supporting the idea that environmental constraints shape the phenotypes associated with specific AR mutations. Consequently, the selection of AR mutations that render similar phenotypes is environment dependent. The analysis of evolution patterns toward AR requires studying growth conditions mimicking those that bacteria face during in vivo evolution.
Collapse
|
58
|
Kapel N, Caballero JD, MacLean RC. Localized pmrB hypermutation drives the evolution of colistin heteroresistance. Cell Rep 2022; 39:110929. [PMID: 35675785 PMCID: PMC9189680 DOI: 10.1016/j.celrep.2022.110929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Colistin has emerged as an important last line of defense for the treatment of infections caused by antibiotic-resistant gram-negative pathogens, but colistin resistance remains poorly understood. Here, we investigate the responses of ≈1,000 populations of a multi-drug-resistant (MDR) strain of P. aeruginosa to a high dose of colistin. Colistin exposure causes rapid cell death, but some populations eventually recover due to the growth of sub-populations of heteroresistant cells. Heteroresistance is unstable, and resistance is rapidly lost under culture in colistin-free medium. The evolution of heteroresistance is primarily driven by selection for heteroresistance at two hotspot sites in the PmrAB regulatory system. Localized hypermutation of pmrB generates colistin resistance at 103–104 times the background resistance mutation rate (≈2 × 10-5 per cell division). PmrAB provides resistance to antimicrobial peptides that are involved in host immunity, suggesting that this pathogen may have evolved a highly mutable pmrB as an adaptation to host immunity. Pseudomonas populations recover from colistin due to the growth of heteroresistant cells Heteroresistance is driven by pre-existing mutations in the PmrAB regulatory system pmrB mutations arise at 103–104 times the background mutation rate Heteroresistance is unstable and is rapidly lost in the absence of colistin
Collapse
Affiliation(s)
- Natalia Kapel
- University of Oxford, Department of Zoology, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Julio Diaz Caballero
- University of Oxford, Department of Zoology, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - R Craig MacLean
- University of Oxford, Department of Zoology, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| |
Collapse
|
59
|
Boezen D, Ali G, Wang M, Wang X, van der Werf W, Vlak JM, Zwart MP. Empirical estimates of the mutation rate for an alphabaculovirus. PLoS Genet 2022; 18:e1009806. [PMID: 35666722 PMCID: PMC9203023 DOI: 10.1371/journal.pgen.1009806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/16/2022] [Accepted: 04/27/2022] [Indexed: 01/02/2023] Open
Abstract
Mutation rates are of key importance for understanding evolutionary processes and predicting their outcomes. Empirical mutation rate estimates are available for a number of RNA viruses, but few are available for DNA viruses, which tend to have larger genomes. Whilst some viruses have very high mutation rates, lower mutation rates are expected for viruses with large genomes to ensure genome integrity. Alphabaculoviruses are insect viruses with large genomes and often have high levels of polymorphism, suggesting high mutation rates despite evidence of proofreading activity by the replication machinery. Here, we report an empirical estimate of the mutation rate per base per strand copying (s/n/r) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To avoid biases due to selection, we analyzed mutations that occurred in a stable, non-functional genomic insert after five serial passages in Spodoptera exigua larvae. Our results highlight that viral demography and the stringency of mutation calling affect mutation rate estimates, and that using a population genetic simulation model to make inferences can mitigate the impact of these processes on estimates of mutation rate. We estimated a mutation rate of μ = 1×10−7 s/n/r when applying the most stringent criteria for mutation calling, and estimates of up to μ = 5×10−7 s/n/r when relaxing these criteria. The rates at which different classes of mutations accumulate provide good evidence for neutrality of mutations occurring within the inserted region. We therefore present a robust approach for mutation rate estimation for viruses with stable genomes, and strong evidence of a much lower alphabaculovirus mutation rate than supposed based on the high levels of polymorphism observed. Virus populations can evolve rapidly, driven by the large number of mutations that occur during virus replication. It is challenging to measure mutation rates because selection will affect which mutations are observed: beneficial mutations are overrepresented in virus populations, while deleterious mutations are selected against and therefore underrepresented. Few mutation rates have been estimated for viruses with large DNA genomes, and there are no estimates for any insect virus. Here, we estimate the mutation rate for an alphabaculovirus, a virus that infects caterpillars and has a large, 134 kilobase pair DNA genome. To ensure that selection did not bias our estimate of mutation rate, we studied which mutations occurred in a large artificial region inserted into the virus genome, where mutations did not affect viral fitness. We deep sequenced evolved virus populations, and compared the distribution of observed mutants to predictions from a simulation model to estimate mutation rate. We found evidence for a relatively low mutation rate, of one mutation in every 10 million bases replicated. This estimate is in line with expectations for a DNA virus with self-correcting replication machinery and a large genome.
Collapse
Affiliation(s)
- Dieke Boezen
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ghulam Ali
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Manli Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Mark P. Zwart
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
60
|
Santos-Lopez A, Fritz MJ, Lombardo JB, Burr AHP, Heinrich VA, Marshall CW, Cooper VS. Evolved resistance to a novel cationic peptide antibiotic requires high mutation supply. Evol Med Public Health 2022; 10:266-276. [PMID: 35712084 PMCID: PMC9198447 DOI: 10.1093/emph/eoac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/21/2022] [Indexed: 01/30/2023] Open
Abstract
Background and Objectives A key strategy for resolving the antibiotic resistance crisis is the development of new drugs with antimicrobial properties. The engineered cationic antimicrobial peptide WLBU2 (also known as PLG0206) is a promising broad-spectrum antimicrobial compound that has completed Phase I clinical studies. It has activity against Gram-negative and Gram-positive bacteria including infections associated with biofilm. No definitive mechanisms of resistance to WLBU2 have been identified. Methodology Here, we used experimental evolution under different levels of mutation supply and whole genome sequencing (WGS) to detect the genetic pathways and probable mechanisms of resistance to this peptide. We propagated populations of wild-type and hypermutator Pseudomonas aeruginosa in the presence of WLBU2 and performed WGS of evolved populations and clones. Results Populations that survived WLBU2 treatment acquired a minimum of two mutations, making the acquisition of resistance more difficult than for most antibiotics, which can be tolerated by mutation of a single target. Major targets of resistance to WLBU2 included the orfN and pmrB genes, previously described to confer resistance to other cationic peptides. More surprisingly, mutations that increase aggregation such as the wsp pathway were also selected despite the ability of WLBU2 to kill cells growing in a biofilm. Conclusions and implications The results show how experimental evolution and WGS can identify genetic targets and actions of new antimicrobial compounds and predict pathways to resistance of new antibiotics in clinical practice.
Collapse
Affiliation(s)
- Alfonso Santos-Lopez
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
- Present address: Department of Microbiology, Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Present address: Department of Microbial Biology, National Center of Biotechnology (CNB), Madrid, Spain
| | - Melissa J Fritz
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
| | - Jeffrey B Lombardo
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
| | - Ansen H P Burr
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
| | - Victoria A Heinrich
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
| | - Christopher W Marshall
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Present address: Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
61
|
Tang PC, Eriksson O, Sjögren J, Fatsis-Kavalopoulos N, Kreuger J, Andersson DI. A Microfluidic Chip for Studies of the Dynamics of Antibiotic Resistance Selection in Bacterial Biofilms. Front Cell Infect Microbiol 2022; 12:896149. [PMID: 35619647 PMCID: PMC9128571 DOI: 10.3389/fcimb.2022.896149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
Biofilms are arguably the most important mode of growth of bacteria, but how antibiotic resistance emerges and is selected in biofilms remains poorly understood. Several models to study evolution of antibiotic resistance have been developed, however, their usability varies depending on the nature of the biological question. Here, we developed and validated a microfluidic chip (Brimor) for studying the dynamics of enrichment of antibiotic-resistant bacteria in biofilms using real-time monitoring with confocal microscopy. In situ extracellular cellulose staining and physical disruption of the biomass confirmed Escherichia coli growth as biofilms in the chip. We showed that seven generations of growth occur in 16 h when biofilms were established in the growth chambers of Brimor, and that bacterial death and growth rates could be estimated under these conditions using a plasmid with a conditional replication origin. Additionally, competition experiments between antibiotic-susceptible and -resistant bacteria at sub-inhibitory concentrations demonstrated that the antibiotic ciprofloxacin selected for antibiotic resistance in bacterial biofilms at concentrations 17-fold below the minimal inhibitory concentration of susceptible planktonic bacteria. Overall, the microfluidic chip is easy to use and a relevant model for studying the dynamics of selection of antibiotic resistance in bacterial biofilms and we anticipate that the Brimor chip will facilitate basic research in this area.
Collapse
Affiliation(s)
- Po-Cheng Tang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Olle Eriksson
- U-Print, Uppsala University 3D-Printing Facility, Uppsala University, Uppsala, Sweden
| | | | | | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- *Correspondence: Dan I. Andersson, ; Johan Kreuger,
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Dan I. Andersson, ; Johan Kreuger,
| |
Collapse
|
62
|
Mehta HH, Ibarra D, Marx CJ, Miller CR, Shamoo Y. Mutational Switch-Backs Can Accelerate Evolution of Francisella to a Combination of Ciprofloxacin and Doxycycline. Front Microbiol 2022; 13:904822. [PMID: 35615518 PMCID: PMC9125183 DOI: 10.3389/fmicb.2022.904822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Combination antimicrobial therapy has been considered a promising strategy to combat the evolution of antimicrobial resistance. Francisella tularensis is the causative agent of tularemia and in addition to being found in the nature, is recognized as a threat agent that requires vigilance. We investigated the evolutionary outcome of adapting the Live Vaccine Strain (LVS) of F. tularensis subsp. holarctica to two non-interacting drugs, ciprofloxacin and doxycycline, individually, sequentially, and in combination. Despite their individual efficacies and independence of mechanisms, evolution to the combination arose on a shorter time scale than evolution to the two drugs sequentially. We conducted a longitudinal mutational analysis of the populations evolving to the drug combination, genetically reconstructed the identified evolutionary pathway, and carried out biochemical validation. We discovered that, after the appearance of an initial weak generalist mutation (FupA/B), each successive mutation alternated between adaptation to one drug or the other. In combination, these mutations allowed the population to more efficiently ascend the fitness peak through a series of evolutionary switch-backs. Clonal interference, weak pleiotropy, and positive epistasis also contributed to combinatorial evolution. This finding suggests that the use of this non-interacting drug pair against F. tularensis may render both drugs ineffective because of mutational switch-backs that accelerate evolution of dual resistance.
Collapse
Affiliation(s)
- Heer H. Mehta
- Department of Biosciences, Rice University, Houston, TX, United States
| | - David Ibarra
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Craig R. Miller
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, TX, United States
- *Correspondence: Yousif Shamoo,
| |
Collapse
|
63
|
Allele-specific collateral and fitness effects determine the dynamics of fluoroquinolone resistance evolution. Proc Natl Acad Sci U S A 2022; 119:e2121768119. [PMID: 35476512 PMCID: PMC9170170 DOI: 10.1073/pnas.2121768119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A promising strategy to overcome the evolution of antibiotic-resistant bacteria is to use collateral sensitivity-informed antibiotic treatments that rely on cycling or mixing of antibiotics, such that that resistance toward one antibiotic confers increased sensitivity to the other. Here, focusing on multistep fluoroquinolone resistance in Streptococcus pneumoniae, we show that antibiotic resistance induces diverse collateral responses whose magnitude and direction are determined by allelic identity. Using mathematical simulations, we show that these effects can be exploited via combination treatment regimens to suppress the de novo emergence of resistance during treatment. Collateral sensitivity (CS), which arises when resistance to one antibiotic increases sensitivity toward other antibiotics, offers treatment opportunities to constrain or reverse the evolution of antibiotic resistance. The applicability of CS-informed treatments remains uncertain, in part because we lack an understanding of the generality of CS effects for different resistance mutations, singly or in combination. Here, we address this issue in the gram-positive pathogen Streptococcus pneumoniae by measuring collateral and fitness effects of clinically relevant gyrA and parC alleles and their combinations that confer resistance to fluoroquinolones. We integrated these results in a mathematical model that allowed us to evaluate how different in silico combination treatments impact the dynamics of resistance evolution. We identified common and conserved CS effects of different gyrA and parC alleles; however, the spectrum of collateral effects was unique for each allele or allelic pair. This indicated that allelic identity can impact the evolutionary dynamics of resistance evolution during monotreatment and combination treatment. Our model simulations, which included the experimentally derived antibiotic susceptibilities and fitness effects, and antibiotic-specific pharmacodynamics revealed that both collateral and fitness effects impact the population dynamics of resistance evolution. Overall, we provide evidence that allelic identity and interactions can have a pronounced impact on collateral effects to different antibiotics and suggest that these need to be considered in models examining CS-based therapies.
Collapse
|
64
|
Emergence of Colistin Resistance Gene mcr- 10 in Enterobacterales Isolates Recovered from Fecal Samples of Chickens, Slaughterhouse Workers, and a Nearby Resident. Microbiol Spectr 2022; 10:e0041822. [PMID: 35412362 PMCID: PMC9045214 DOI: 10.1128/spectrum.00418-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The wide spread of plasmid-borne mobilized colistin resistance (mcr) genes from animals to humans broadly challenges the clinical use of polymyxins. Here, we evaluated the incidence of a recently reported mcr variant, mcr-10, in animals and humans in the same area. Our results revealed the presence of novel mcr-10-carrying plasmids in two Klebsiella pneumoniae isolates from chickens, one Escherichia coli isolate from slaughterhouse workers, and a chromosome-borne mcr-10 gene in Enterobacter kobei from a healthy resident in the same region. It is worth mentioning that the multidrug-resistant ST11 K. pneumoniae isolates coharboring mcr-10 and mcr-8 genes in two separate plasmids not only were resistant to polymyxins (MIC = 8 mg/L) but also showed reduced susceptibility to tigecycline (MIC ≥ 2 mg/L) due to the tet(A) mutation or the tmexCD1-toprJ1 gene cluster. The structure xerC-mcr10-insCinsD-like was found in genetic environments of both the plasmid and chromosome carrying mcr-10. We compared genomic epidemiological characteristics of mcr-10-harboring bacteria available in 941,449 genomes in the NCBI database (including strains of K. pneumoniae, E. coli, and E. kobei) with isolates in this study. The results indicated a sporadic distribution of mcr-10 all around the world and in a variety of sources, including humans, environments, and animals, which confirms that mcr-10 has spread among various hosts and warrants close monitoring and further future studies. IMPORTANCE We discovered mcr-10-harboring isolates in the "one health" approach and reported for the first time multidrug-resistant clinically threatening ST11 K. pneumoniae isolates coharboring mcr-10 and mcr-8 genes that are resistant to polymyxins and show reduced susceptibility to tigecycline. The exhaustive screening of 941,449 bacterial genomes in the GenBank database discovered a sporadic distribution of mcr-10-harboring isolates all around the world in a variety of sources, especially humans, which warrants close monitoring and a particular concern in clinical settings.
Collapse
|
65
|
Mutational background influences P. aeruginosa ciprofloxacin resistance evolution but preserves collateral sensitivity robustness. Proc Natl Acad Sci U S A 2022; 119:e2109370119. [PMID: 35385351 PMCID: PMC9169633 DOI: 10.1073/pnas.2109370119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacterial adaptation to the presence of an antibiotic often involves evolutionary trade-offs, such as increased susceptibility to other drugs (collateral sensitivity). Its exploitation to design improved therapeutic strategies is only feasible if collateral sensitivity is robust, reproducible, and emerges in resistant mutants; these issues are rarely addressed in available publications. We describe a robust collateral sensitivity phenotype that emerges in different antibiotic-resistance mutational backgrounds, due to different genetic events, and propose therapeutic strategies effective for treating infections caused by Pseudomonas aeruginosa antibiotic-resistant mutants. Since conserved collateral sensitivity phenotypes do not confer adaptation to the presence of antibiotics, our results are also relevant for understanding convergent evolution processes in which the force selecting the emerging phenotype remains unclear. Collateral sensitivity is an evolutionary trade-off whereby acquisition of the adaptive phenotype of resistance to an antibiotic leads to the nonadaptive increased susceptibility to another. The feasibility of harnessing such a trade-off to design evolutionary-based approaches for treating bacterial infections has been studied using model strains. However, clinical application of collateral sensitivity requires its conservation among strains presenting different mutational backgrounds. Particularly relevant is studying collateral sensitivity robustness of already-antibiotic-resistant mutants when challenged with a new antimicrobial, a common situation in clinics that has hardly been addressed. We submitted a set of diverse Pseudomonas aeruginosa antibiotic-resistant mutants to short-term evolution in the presence of different antimicrobials. Ciprofloxacin selects different clinically relevant resistance mutations in the preexisting resistant mutants, which gave rise to the same, robust, collateral sensitivity to aztreonam and tobramycin. We then experimentally determined that alternation of ciprofloxacin with aztreonam is more efficient than ciprofloxacin–tobramycin alternation in driving the extinction of the analyzed antibiotic-resistant mutants. Also, we show that the combinations ciprofloxacin–aztreonam or ciprofloxacin–tobramycin are the most effective strategies for eliminating the tested P. aeruginosa antibiotic-resistant mutants. These findings support that the identification of conserved collateral sensitivity patterns may guide the design of evolution-based strategies to treat bacterial infections, including those due to antibiotic-resistant mutants. Besides, this is an example of phenotypic convergence in the absence of parallel evolution that, beyond the antibiotic-resistance field, could facilitate the understanding of evolution processes, where the selective forces giving rise to new, not clearly adaptive phenotypes remain unclear.
Collapse
|
66
|
Multiplex Digital Quantification of β-Lactamase Genes in Antibiotic-Resistant Bacteria by Counting Gold Nanoparticle Labels on Silicon Microchips. BIOSENSORS 2022; 12:bios12040226. [PMID: 35448287 PMCID: PMC9024738 DOI: 10.3390/bios12040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
Abstract
Digital quantification based on counting of individual molecules is a promising approach for different biomedical applications due to its enhanced sensitivity. Here, we present a method for the digital detection of nucleic acids (DNA and RNA) on silicon microchips based on the counting of gold nanoparticles (GNPs) in DNA duplexes by scanning electron microscopy (SEM). Biotin-labeled DNA is hybridized with capture oligonucleotide probes immobilized on the microchips. Then biotin is revealed by a streptavidin–GNP conjugate followed by the detection of GNPs. Sharp images of each nanoparticle allow the visualization of hybridization results on a single-molecule level. The technique was shown to provide highly sensitive quantification of both short oligonucleotide and long double-strand DNA sequences up to 800 bp. The lowest limit of detection of 0.04 pM was determined for short 19-mer oligonucleotide. The method’s applicability was demonstrated for the multiplex quantification of several β-lactamase genes responsible for the development of bacterial resistance against β-lactam antibiotics. Determination of nucleic acids is effective for both specific DNA in lysates and mRNA in transcripts. The method is also characterized by high selectivity for single-nucleotide polymorphism discrimination. The proposed principle of digital quantification is a perspective for studying the mechanisms of bacterial antibiotic resistance and bacterial response to drugs.
Collapse
|
67
|
Fatsis-Kavalopoulos N, Roelofs L, Andersson DI. Potential risks of treating bacterial infections with a combination of β-lactam and aminoglycoside antibiotics: A systematic quantification of antibiotic interactions in E. coli blood stream infection isolates. EBioMedicine 2022; 78:103979. [PMID: 35367773 PMCID: PMC8983351 DOI: 10.1016/j.ebiom.2022.103979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Treatment of Blood Stream Infections (BSIs) with a combination of a β-lactam and an aminoglycoside antibiotic is widely used in intensive care units (ICUs) around the world. However, no studies have systematically examined how these drugs interact and potentially influence the antimicrobial efficacy of the overall treatment. METHODS We collected 500 E. coli isolates from the Uppsala University hospital that were isolated from blood of patients with suspicion of infection. Of those we tested the efficacy of combinations of 2 common β-lactam antibiotics (Ampicillin and Cefotaxime) combined with 2 common aminoglycosides (Gentamicin and Tobramycin) on 254 isolates. The efficacy of all 4 pairwise combinations in inhibiting bacterial growth was then examined on all susceptible strains. That was done by quantifying the Fractional Inhibitory index (FICi), a robust metric for antibiotic combinatorial behaviour, of all possible treatments on every strain. When non additive interactions were identified, results of the original screen were verified with time kill assays. Finally, combination behaviours were analysed for potential cross correlations. FINDINGS Out of the 4 antibiotic combinations screened none exhibited synergistic effects on any of the 254 strains. On the contrary all 4 exhibited important antagonistic effects on several isolates. Specifically, the combinations of AMP-GEN and CTX-GEN were antagonistic in 1.97% and 1.18% of strains respectively. Similarly, the combinations of AMP-TOB were antagonistic on 0.78% of all strains. PCA analysis revealed that an important factor on the responses to the combination treatments was the choice of a specific aminoglycoside over another. Subsequent cross correlation analysis revealed that the interaction profiles of combinations including the same aminoglycoside are significantly correlated (Spearman's cross correlation test p<0.001). INTERPRETATION The findings of this study elucidate potential risks of the common combination treatment for blood stream infections. They also demonstrate, previously unquantified metrics on how antibiotics in combination therapies are not interchangeable with others of the same class. Finally, they reiterate the need for case-by-case testing of antibiotic interactions in a clinical setting. FUNDING This work was funded by grants to DIA from the Swedish Research Council, the Wallenberg foundation and the Swedish Strategic Research Foundation.
Collapse
|
68
|
Hernando-Amado S, Laborda P, Valverde JR, Martínez JL. Rapid decline of ceftazidime resistance in antibiotic-free and sub-lethal environments is contingent on genetic background. Mol Biol Evol 2022; 39:6543660. [PMID: 35291010 PMCID: PMC8935207 DOI: 10.1093/molbev/msac049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trade-offs of antibiotic resistance evolution, such as fitness cost and collateral sensitivity (CS), could be exploited to drive evolution toward antibiotic susceptibility. Decline of resistance may occur when resistance to other drug leads to CS to the first one and when compensatory mutations, or genetic reversion of the original ones, reduce fitness cost. Here we describe the impact of antibiotic-free and sublethal environments on declining ceftazidime resistance in different Pseudomonas aeruginosa resistant mutants. We determined that decline of ceftazidime resistance occurs within 450 generations, which is caused by newly acquired mutations and not by reversion of the original ones, and that the original CS of these mutants is preserved. In addition, we observed that the frequency and degree of this decline is contingent on genetic background. Our results are relevant to implement evolution-based therapeutic approaches, as well as to redefine global policies of antibiotic use, such as drug cycling.
Collapse
Affiliation(s)
| | - Pablo Laborda
- Centro Nacional de Biotecnología. CSIC, Madrid, 28049, Spain
| | | | | |
Collapse
|
69
|
Jordan JA, Lenski RE, Card KJ. Idiosyncratic Fitness Costs of Ampicillin-Resistant Mutants Derived from a Long-Term Experiment with Escherichia coli. Antibiotics (Basel) 2022; 11:antibiotics11030347. [PMID: 35326810 PMCID: PMC8944548 DOI: 10.3390/antibiotics11030347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotic resistance is a growing concern that has prompted a renewed focus on drug discovery, stewardship, and evolutionary studies of the patterns and processes that underlie this phenomenon. A resistant strain’s competitive fitness relative to its sensitive counterparts in the absence of drug can impact its spread and persistence in both clinical and community settings. In a prior study, we examined the fitness of tetracycline-resistant clones that evolved from five different Escherichia coli genotypes, which had diverged during a long-term evolution experiment. In this study, we build on that work to examine whether ampicillin-resistant mutants are also less fit in the absence of the drug than their sensitive parents, and whether the cost of resistance is constant or variable among independently derived lines. Like the tetracycline-resistant lines, the ampicillin-resistant mutants were often less fit than their sensitive parents, with significant variation in the fitness costs among the mutants. This variation was not associated with the level of resistance conferred by the mutations, nor did it vary across the different parental backgrounds. In our earlier study, some of the variation in fitness costs associated with tetracycline resistance was explained by the effects of different mutations affecting the same cellular pathway and even the same gene. In contrast, the variance among the ampicillin-resistant mutants was associated with different sets of target genes. About half of the resistant clones suffered large fitness deficits, and their mutations impacted major outer-membrane proteins or subunits of RNA polymerases. The other mutants experienced little or no fitness costs and with, one exception, they had mutations affecting other genes and functions. Our findings underscore the importance of comparative studies on the evolution of antibiotic resistance, and they highlight the nuanced processes that shape these phenotypes.
Collapse
Affiliation(s)
- Jalin A. Jordan
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard E. Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Kyle J. Card
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
70
|
The nutritional environment is sufficient to select coexisting biofilm and quorum-sensing mutants of Pseudomonas aeruginosa. J Bacteriol 2022; 204:e0044421. [PMID: 34978461 DOI: 10.1128/jb.00444-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolution of bacterial populations during infections can be influenced by various factors including available nutrients, the immune system, and competing microbes, rendering it difficult to identify the specific forces that select on evolved traits. The genomes of Pseudomonas aeruginosa isolated from the airway of patients with cystic fibrosis (CF), for example, have revealed commonly mutated genes, but which phenotypes led to their prevalence is often uncertain. Here, we focus on effects of nutritional components of the CF airway on genetic adaptations by P. aeruginosa grown in either well-mixed (planktonic) or biofilm-associated conditions. After only 80 generations of experimental evolution in a simple medium with glucose, lactate, and amino acids, all planktonic populations diversified into lineages with mutated genes common to CF infections: morA, encoding a regulator of biofilm formation, or lasR, encoding a quorum sensing regulator that modulates the expression of virulence factors. Although mutated quorum sensing is often thought to be selected in vivo due to altered virulence phenotypes or social cheating, isolates with lasR mutations demonstrated increased fitness when grown alone and outcompeted the ancestral PA14 strain. Nonsynonymous SNPs in morA increased fitness in a nutrient concentration-dependent manner during planktonic growth and surprisingly also increased biofilm production. Populations propagated in biofilm conditions also acquired mutations in loci associated with chronic infections, including lasR and cyclic-di-GMP regulators roeA and wspF. These findings demonstrate that nutrient conditions and biofilm selection are sufficient to select mutants with problematic clinical phenotypes including increased biofilm and altered quorum sensing. Importance Pseudomonas aeruginosa produces dangerous chronic infections that are known for their rapid diversification and recalcitrance to treatment. We performed evolution experiments to identify adaptations selected by two specific aspects of the CF respiratory environment: nutrient levels and surface attachment. Propagation of P. aeruginosa in nutrients present within the CF airway was sufficient to drive diversification into subpopulations with identical mutations in regulators of biofilm and quorum sensing to those arising during infection. Thus, the adaptation of opportunistic pathogens to nutrients found in the host may select mutants with phenotypes that complicate treatment and clearance of infection.
Collapse
|
71
|
Abbott IJ, van Gorp E, Wyres KL, Wallis SC, Roberts JA, Meletiadis J, Peleg AY. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1324-1333. [PMID: 35211736 PMCID: PMC9047678 DOI: 10.1093/jac/dkac045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction The use of oral fosfomycin for urinary tract infections (UTIs) caused by non-Escherichia coli uropathogens is uncertain, including Klebsiella pneumoniae, the second most common uropathogen. Methods A multicompartment bladder infection in vitro model was used with standard media and synthetic human urine (SHU) to simulate urinary fosfomycin exposure after a single 3 g oral dose (fAUC0–72 16884 mg·h/L, t½ 5.5 h) against 15 K. pneumoniae isolates including ATCC 13883 (MIC 2 to >1024 mg/L) with a constant media inflow (20 mL/h) and 4-hourly voiding of each bladder. The impact of the media (CAMHB + G6P versus SHU) on fosfomycin MIC measurements, drug-free growth kinetics and regrowth after fosfomycin administration was assessed. A low and high starting inoculum (5.5 versus 7.5 log10 cfu/mL) was assessed in the bladder infection model. Results Compared with CAMHB, isolates in SHU had a slower growth rate doubling time (37.7 versus 24.1 min) and reduced growth capacity (9.0 ± 0.3 versus 9.4 ± 0.3 log10 cfu/mL), which was further restricted with increased inflow rate (40 mL/h) and more frequent voids (2-hourly). Regrowth was commonly observed in both media with emergence of fosfomycin resistance promoted by a high starting inoculum in CAMHB (MIC rise to ≥1024 mg/L in 13/14 isolates). Resistance was rarely detected in SHU, even with a high starting inoculum (MIC rise to ≥1024 mg/L in 2/14 isolates). Conclusions Simulated in an in vitro UTI model, the regrowth of K. pneumoniae urinary isolates was inadequately suppressed following oral fosfomycin therapy. Efficacy was further reduced by a high starting inoculum.
Collapse
Affiliation(s)
- Iain J. Abbott
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Corresponding author. E-mail:
| | - Elke van Gorp
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kelly L. Wyres
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Steven C. Wallis
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jason A. Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Intensive Care Medicine and Pharmacy Department, Royal Brisbane and Women’s Hospital, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Athens, Greece
| | - Anton Y. Peleg
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
72
|
Hasan CM, Dutta D, Nguyen ANT. Revisiting Antibiotic Resistance: Mechanistic Foundations to Evolutionary Outlook. Antibiotics (Basel) 2021; 11:antibiotics11010040. [PMID: 35052917 PMCID: PMC8773413 DOI: 10.3390/antibiotics11010040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are the pivotal pillar of contemporary healthcare and have contributed towards its advancement over the decades. Antibiotic resistance emerged as a critical warning to public wellbeing because of unsuccessful management efforts. Resistance is a natural adaptive tool that offers selection pressure to bacteria, and hence cannot be stopped entirely but rather be slowed down. Antibiotic resistance mutations mostly diminish bacterial reproductive fitness in an environment without antibiotics; however, a fraction of resistant populations 'accidentally' emerge as the fittest and thrive in a specific environmental condition, thus favouring the origin of a successful resistant clone. Therefore, despite the time-to-time amendment of treatment regimens, antibiotic resistance has evolved relentlessly. According to the World Health Organization (WHO), we are rapidly approaching a 'post-antibiotic' era. The knowledge gap about antibiotic resistance and room for progress is evident and unified combating strategies to mitigate the inadvertent trends of resistance seem to be lacking. Hence, a comprehensive understanding of the genetic and evolutionary foundations of antibiotic resistance will be efficacious to implement policies to force-stop the emergence of resistant bacteria and treat already emerged ones. Prediction of possible evolutionary lineages of resistant bacteria could offer an unswerving impact in precision medicine. In this review, we will discuss the key molecular mechanisms of resistance development in clinical settings and their spontaneous evolution.
Collapse
Affiliation(s)
- Chowdhury M. Hasan
- School of Biological Sciences, University of Queensland, Brisbane 4072, Australia
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences (IVES), University of Liverpool, Liverpool L7 3EA, UK;
- School of Biological Sciences, Monash University, Melbourne 3800, Australia;
- Correspondence:
| | - Debprasad Dutta
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences (IVES), University of Liverpool, Liverpool L7 3EA, UK;
- Department of Human Genetics, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore 560029, India
| | - An N. T. Nguyen
- School of Biological Sciences, Monash University, Melbourne 3800, Australia;
| |
Collapse
|
73
|
Heß S, Kneis D, Virta M, Hiltunen T. The spread of the plasmid RP4 in a synthetic bacterial community is dependent on the particular donor strain. FEMS Microbiol Ecol 2021; 97:6426180. [PMID: 34788805 DOI: 10.1093/femsec/fiab147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
The rapid spread of antibiotic resistance challenges modern medicine. So far, mechanistic and quantitative knowledge concerning the spread of resistance genes mainly relies on laboratory experiments with simplified setups, e.g. two strain communities. Thus, the transferability of the obtained process rates might be limited. To investigate the role of a diverse community concerning the dissemination of the multidrug resistance plasmid RP4, an Escherichia coli harboring RP4 invaded a microbial community consisting of 21 species. Changes in the community composition as well as plasmid uptake by community members were monitored for 22 days. Special focus was laid on the question of whether the observed changes were dependent on the actual invading donor isolate and the ambient antibiotic concentration. In our microcosm experiment, the community composition was primarily influenced by the given environmental variables and only secondarily by the particular invader E. coli. The establishment of resistance within the community, however, was directly dependent on the donor identity. The extent to which ambient conditions influence the spread of RP4 depended on the E. coli donor strain. These results emphasize that even within one species there are great differences in the ability to conquer an ecological niche and to spread antibiotic resistance.
Collapse
Affiliation(s)
- Stefanie Heß
- Institute of Microbiology, Technische Universität Dresden, 01217 Dresden, Germany
| | - David Kneis
- Institute of Hydrobiology, Technische Universität Dresden, 01217 Dresden, Germany
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00100 Helsinki, Finland
| | - Teppo Hiltunen
- Department of Biology, University of Turku, 20500 Turku, Finland
| |
Collapse
|
74
|
New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates. Antibiotics (Basel) 2021; 10:antibiotics10121443. [PMID: 34943654 PMCID: PMC8697972 DOI: 10.3390/antibiotics10121443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteria of the genus Burkholderia include pathogenic Burkholderia mallei, Burkholderia pseudomallei and the Burkholderia cepacia complex (Bcc). These Gram-negative pathogens have intrinsic drug resistance, which makes treatment of infections difficult. Bcc affects individuals with cystic fibrosis (CF) and the species B. cenocepacia is associated with one of the worst clinical outcomes. Following the repurposing of auranofin as an antibacterial against Gram-positive bacteria, we previously synthetized auranofin analogs with activity against Gram-negatives. In this work, we show that two auranofin analogs, MS-40S and MS-40, have antibiotic activity against Burkholderia clinical isolates. The compounds are bactericidal against B. cenocepacia and kill stationary-phase cells and persisters without selecting for multistep resistance. Caenorhabditis elegans and Galleria mellonella tolerated high concentrations of MS-40S and MS-40, demonstrating that these compounds have low toxicity in these model organisms. In summary, we show that MS-40 and MS-40S have antimicrobial properties that warrant further investigations to determine their therapeutic potential against Burkholderia infections.
Collapse
|
75
|
New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates. Antibiotics (Basel) 2021. [PMID: 34943654 DOI: 10.3390/antibiotics10121443/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Bacteria of the genus Burkholderia include pathogenic Burkholderia mallei, Burkholderia pseudomallei and the Burkholderia cepacia complex (Bcc). These Gram-negative pathogens have intrinsic drug resistance, which makes treatment of infections difficult. Bcc affects individuals with cystic fibrosis (CF) and the species B. cenocepacia is associated with one of the worst clinical outcomes. Following the repurposing of auranofin as an antibacterial against Gram-positive bacteria, we previously synthetized auranofin analogs with activity against Gram-negatives. In this work, we show that two auranofin analogs, MS-40S and MS-40, have antibiotic activity against Burkholderia clinical isolates. The compounds are bactericidal against B. cenocepacia and kill stationary-phase cells and persisters without selecting for multistep resistance. Caenorhabditis elegans and Galleria mellonella tolerated high concentrations of MS-40S and MS-40, demonstrating that these compounds have low toxicity in these model organisms. In summary, we show that MS-40 and MS-40S have antimicrobial properties that warrant further investigations to determine their therapeutic potential against Burkholderia infections.
Collapse
|
76
|
Mikhnevich T, Vyatkina (Turkova) AV, Grigorenko VG, Rubtsova MY, Rukhovich GD, Letarova MA, Kravtsova DS, Vladimirov SA, Orlov AA, Nikolaev EN, Zherebker A, Perminova IV. Inhibition of Class A β-Lactamase (TEM-1) by Narrow Fractions of Humic Substances. ACS OMEGA 2021; 6:23873-23883. [PMID: 34568667 PMCID: PMC8459357 DOI: 10.1021/acsomega.1c02841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance is a global threat. The use of biologically active natural products alone or in combination with the clinically proven antimicrobial agents might be a useful strategy to fight the resistance. The scientific hypotheses of this study were twofold: (1) the natural humic substances rich in dicarboxyl, phenolic, heteroaryl, and other fragments might possess inhibitory activity against β-lactamases, and (2) this inhibitory activity might be linked to the molecular composition of the humic ensemble. To test these hypotheses, we used humic substances (HS) from different sources (coal, peat, and soil) and of different fractional compositions (humic acids, hymatomelanic acids, and narrow fractions from solid-phase extraction) for inhibiting serine β-lactamase TEM-1. Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) was used to characterize the molecular composition of all humic materials used in this study. The kinetic assay with chromogenic substrate CENTA was used for assessment of inhibitory activity. The inhibition data have shown that among all humic materials tested, a distinct activity was observed within apolar fractions of hymatomelanic acid isolated from lignite. The decrease in the hydrolysis rate in the presence of most active fractions was 42% (with sulbactam-87%). Of particular importance is that these very fractions caused a synergistic effect (2-fold) for the combinations with sulbactam. Linking the observed inhibition effects to molecular composition revealed the preferential contribution of low-oxidized aromatic and acyclic components such as flavonoid-, lignin, and terpenoid-like molecules. The binding of single low-molecular-weight components to the cryptic allosteric site along with supramolecular interactions of humic aggregates with the protein surface could be considered as a major contributor to the observed inhibition. We believe that fine fractionation of hydrophobic humic materials along with molecular modeling studies on the interaction between humic molecules and β-lactamases might contribute to the development of novel β-lactamase inhibitors of humic nature.
Collapse
Affiliation(s)
- Tatyana
A. Mikhnevich
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, bld. 3, Moscow 119991, Russia
| | | | - Vitaly G. Grigorenko
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, bld. 3, Moscow 119991, Russia
| | - Maya Yu. Rubtsova
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, bld. 3, Moscow 119991, Russia
| | - Gleb D. Rukhovich
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, bld. 3, Moscow 119991, Russia
| | - Maria A. Letarova
- Vinogradsky
Institute of Microbiology, RC Biotechnology of RAS, Prospekt 60-Letiya Oktyabrya, 7,
bldg 2, Moscow 117312, Russia
| | - Darya S. Kravtsova
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, bld. 3, Moscow 119991, Russia
| | - Sergey A. Vladimirov
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, bld. 3, Moscow 119991, Russia
| | - Alexey A. Orlov
- Skolkovo
Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Evgeny N. Nikolaev
- Skolkovo
Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Alexander Zherebker
- Skolkovo
Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Irina V. Perminova
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, bld. 3, Moscow 119991, Russia
| |
Collapse
|
77
|
Korry BJ, Lee SYE, Chakrabarti AK, Choi AH, Ganser C, Machan JT, Belenky P. Genotoxic Agents Produce Stressor-Specific Spectra of Spectinomycin Resistance Mutations Based on Mechanism of Action and Selection in Bacillus subtilis. Antimicrob Agents Chemother 2021; 65:e0089121. [PMID: 34339280 PMCID: PMC8448107 DOI: 10.1128/aac.00891-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Mutagenesis is integral for bacterial evolution and the development of antibiotic resistance. Environmental toxins and stressors are known to elevate the rate of mutagenesis through direct DNA toxicity, known as stress-associated mutagenesis, or via a more general stress-induced process that relies on intrinsic bacterial pathways. Here, we characterize the spectra of mutations induced by an array of different stressors using high-throughput sequencing to profile thousands of spectinomycin-resistant colonies of Bacillus subtilis. We found 69 unique mutations in the rpsE and rpsB genes, and that each stressor leads to a unique and specific spectrum of antibiotic-resistance mutations. While some mutations clearly reflected the DNA damage mechanism of the stress, others were likely the result of a more general stress-induced mechanism. To determine the relative fitness of these mutants under a range of antibiotic selection pressures, we used multistrain competitive fitness experiments and found an additional landscape of fitness and resistance. The data presented here support the idea that the environment in which the selection is applied (mutagenic stressors that are present), as well as changes in local drug concentration, can significantly alter the path to spectinomycin resistance in B. subtilis.
Collapse
Affiliation(s)
- Benjamin J. Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Stella Ye Eun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Amit K. Chakrabarti
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Ashley H. Choi
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Collin Ganser
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Jason T. Machan
- Department of Orthopedics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
78
|
Xing Y, Kang X, Zhang S, Men Y. Specific phenotypic, genomic, and fitness evolutionary trajectories toward streptomycin resistance induced by pesticide co-stressors in Escherichia coli. ISME COMMUNICATIONS 2021; 1:39. [PMID: 37938677 PMCID: PMC9723568 DOI: 10.1038/s43705-021-00041-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 04/27/2023]
Abstract
To explore how co-occurring non-antibiotic environmental stressors affect evolutionary trajectories toward antibiotic resistance, we exposed susceptible Escherichia coli K-12 populations to environmentally relevant levels of pesticides and streptomycin for 500 generations. The coexposure substantially changed the phenotypic, genotypic, and fitness evolutionary trajectories, resulting in much stronger streptomycin resistance (>15-fold increase) of the populations. Antibiotic target modification mutations in rpsL and rsmG, which emerged and dominated at late stages of evolution, conferred the strong resistance even with less than 1% abundance, while the off-target mutations in nuoG, nuoL, glnE, and yaiW dominated at early stages only led to mild resistance (2.5-6-fold increase). Moreover, the strongly resistant mutants exhibited lower fitness costs even without the selective pressure and had lower minimal selection concentrations than the mildly resistant ones. Removal of the selective pressure did not reverse the strong resistance of coexposed populations at a later evolutionary stage. The findings suggest higher risks of the selection and propagation of strong antibiotic resistance in environments potentially impacted by antibiotics and pesticides.
Collapse
Affiliation(s)
- Yue Xing
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xiaoxi Kang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Siwei Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
79
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
80
|
Effect of antibiotic stewardship interventions in primary care on antimicrobial resistance of Escherichia coli bacteraemia in England (2013-18): a quasi-experimental, ecological, data linkage study. THE LANCET. INFECTIOUS DISEASES 2021; 21:1689-1700. [PMID: 34363774 PMCID: PMC8612938 DOI: 10.1016/s1473-3099(21)00069-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Background Antimicrobial resistance is a major global health concern, driven by overuse of antibiotics. We aimed to assess the effectiveness of a national antimicrobial stewardship intervention, the National Health Service (NHS) England Quality Premium implemented in 2015–16, on broad-spectrum antibiotic prescribing and Escherichia coli bacteraemia resistance to broad-spectrum antibiotics in England. Methods In this quasi-experimental, ecological, data linkage study, we used longitudinal data on bacteraemia for patients registered with a general practitioner in the English National Health Service and patients with E coli bacteraemia notified to the national mandatory surveillance programme between Jan 1, 2013, and Dec 31, 2018. We linked these data to data on antimicrobial susceptibility testing of E coli from Public Health England's Second-Generation Surveillance System. We did an ecological analysis using interrupted time-series analyses and generalised estimating equations to estimate the change in broad-spectrum antibiotics prescribing over time and the change in the proportion of E coli bacteraemia cases for which the causative bacteria were resistant to each antibiotic individually or to at least one of five broad-spectrum antibiotics (co-amoxiclav, ciprofloxacin, levofloxacin, moxifloxacin, ofloxacin), after implementation of the NHS England Quality Premium intervention in April, 2015. Findings Before implementation of the Quality Premium, the rate of antibiotic prescribing for all five broad-spectrum antibiotics was increasing at rate of 0·2% per month (incidence rate ratio [IRR] 1·002 [95% CI 1·000–1·004], p=0·046). After implementation of the Quality Premium, an immediate reduction in total broad-spectrum antibiotic prescribing rate was observed (IRR 0·867 [95% CI 0·837–0·898], p<0·0001). This effect was sustained until the end of the study period; a 57% reduction in rate of antibiotic prescribing was observed compared with the counterfactual situation (ie, had the Quality Premium not been implemented). In the same period, the rate of resistance to at least one broad-spectrum antibiotic increased at rate of 0·1% per month (IRR 1·001 [95% CI 0·999–1·003], p=0·346). On implementation of the Quality Premium, an immediate reduction in resistance rate to at least one broad-spectrum antibiotic was observed (IRR 0·947 [95% CI 0·918–0·977], p=0·0007). Although this effect was also sustained until the end of the study period, with a 12·03% reduction in resistance rate compared with the counterfactual situation, the overall trend remained on an upward trajectory. On examination of the long-term effect following implementation of the Quality Premium, there was an increase in the number of isolates resistant to at least one of the five broad-spectrum antibiotics tested (IRR 1·002 [1·000–1·003]; p=0·047). Interpretation Although interventions targeting antibiotic use can result in changes in resistance over a short period, they might be insufficient alone to curtail antimicrobial resistance. Funding National Institute for Health Research, Economic and Social Research Council, Rosetrees Trust, and The Stoneygate Trust.
Collapse
|
81
|
Ruelens P, de Visser JAGM. Choice of β-Lactam Resistance Pathway Depends Critically on Initial Antibiotic Concentration. Antimicrob Agents Chemother 2021; 65:e0047121. [PMID: 33972257 PMCID: PMC8284463 DOI: 10.1128/aac.00471-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/05/2021] [Indexed: 02/03/2023] Open
Abstract
Antibiotic resistance trajectories with different final resistance may critically depend on the first mutation, due to epistatic interactions. Here, we study the effect of mutation bias and the concentration-dependent effects on fitness of two clinically important mutations in TEM-1 β-lactamase in initiating alternative trajectories to cefotaxime resistance. We show that at low cefotaxime concentrations, the R164S mutation (a mutation of arginine to serine at position 164), which confers relatively low resistance, is competitively superior to the G238S mutation, conferring higher resistance, thus highlighting a critical influence of antibiotic concentration on long-term resistance evolution.
Collapse
Affiliation(s)
- Philip Ruelens
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
82
|
Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with Escherichia coli. Proc Natl Acad Sci U S A 2021; 118:2016886118. [PMID: 33441451 DOI: 10.1073/pnas.2016886118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a growing health concern. Efforts to control resistance would benefit from an improved ability to forecast when and how it will evolve. Epistatic interactions between mutations can promote divergent evolutionary trajectories, which complicates our ability to predict evolution. We recently showed that differences between genetic backgrounds can lead to idiosyncratic responses in the evolvability of phenotypic resistance, even among closely related Escherichia coli strains. In this study, we examined whether a strain's genetic background also influences the genotypic evolution of resistance. Do lineages founded by different genotypes take parallel or divergent mutational paths to achieve their evolved resistance states? We addressed this question by sequencing the complete genomes of antibiotic-resistant clones that evolved from several different genetic starting points during our earlier experiments. We first validated our statistical approach by quantifying the specificity of genomic evolution with respect to antibiotic treatment. As expected, mutations in particular genes were strongly associated with each drug. Then, we determined that replicate lines evolved from the same founding genotypes had more parallel mutations at the gene level than lines evolved from different founding genotypes, although these effects were more subtle than those showing antibiotic specificity. Taken together with our previous work, we conclude that historical contingency can alter both genotypic and phenotypic pathways to antibiotic resistance.
Collapse
|
83
|
Hubeny J, Harnisz M, Korzeniewska E, Buta M, Zieliński W, Rolbiecki D, Giebułtowicz J, Nałęcz-Jawecki G, Płaza G. Industrialization as a source of heavy metals and antibiotics which can enhance the antibiotic resistance in wastewater, sewage sludge and river water. PLoS One 2021; 16:e0252691. [PMID: 34086804 PMCID: PMC8177550 DOI: 10.1371/journal.pone.0252691] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
The spread of antibiotic resistance is closely related with selective pressure in the environment. Wastewater from industrialized regions is characterized by higher concentrations of these pollutants than sewage from less industrialized areas. The aim of this study was to compare the concentrations of contaminants such as antibiotics and heavy metals (HMs), and to evaluate their impact on the spread of genes encoding resistance to antimicrobial drugs in samples of wastewater, sewage sludge and river water in two regions with different levels of industrialization. The factors exerting selective pressure, which significantly contributed to the occurrence of the examined antibiotic resistance genes (ARGs), were identified. The concentrations of selected gene copy numbers conferring resistance to four groups of antibiotics as well as class 1 and 2 integron-integrase genes were determined in the analyzed samples. The concentrations of six HMs and antibiotics corresponding to genes mediated resistance from 3 classes were determined. Based on network analysis, only some of the analyzed antibiotics correlated with ARGs, while HM levels were correlated with ARG concentrations, which can confirm the important role of HMs in promoting drug resistance. The samples from a wastewater treatment plant (WWTP) located an industrialized region were characterized by higher HM contamination and a higher number of significant correlations between the analyzed variables than the samples collected from a WWTP located in a less industrialized region. These results indicated that treated wastewater released into the natural environment can pose a continuous threat to human health by transferring ARGs, antibiotics and HMs to the environment. These findings shed light on the impact of industrialization on antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- * E-mail: ,
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Martyna Buta
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Grażyna Płaza
- Faculty of Organization and Management, Silesian University of Technology, Zabrze, Poland
| |
Collapse
|
84
|
Diard M, Bakkeren E, Lentsch V, Rocker A, Bekele NA, Hoces D, Aslani S, Arnoldini M, Böhi F, Schumann-Moor K, Adamcik J, Piccoli L, Lanzavecchia A, Stadtmueller BM, Donohue N, van der Woude MW, Hockenberry A, Viollier PH, Falquet L, Wüthrich D, Bonfiglio F, Loverdo C, Egli A, Zandomeneghi G, Mezzenga R, Holst O, Meier BH, Hardt WD, Slack E. A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nat Microbiol 2021; 6:830-841. [PMID: 34045711 PMCID: PMC7611113 DOI: 10.1038/s41564-021-00911-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
The ability of gut bacterial pathogens to escape immunity by antigenic variation-particularly via changes to surface-exposed antigens-is a major barrier to immune clearance1. However, not all variants are equally fit in all environments2,3. It should therefore be possible to exploit such immune escape mechanisms to direct an evolutionary trade-off. Here, we demonstrate this phenomenon using Salmonella enterica subspecies enterica serovar Typhimurium (S.Tm). A dominant surface antigen of S.Tm is its O-antigen: a long, repetitive glycan that can be rapidly varied by mutations in biosynthetic pathways or by phase variation4,5. We quantified the selective advantage of O-antigen variants in the presence and absence of O-antigen-specific immunoglobulin A and identified a set of evolutionary trajectories allowing immune escape without an associated fitness cost in naive mice. Through the use of rationally designed oral vaccines, we induced immunoglobulin A responses blocking all of these trajectories. This selected for Salmonella mutants carrying deletions of the O-antigen polymerase gene wzyB. Due to their short O-antigen, these evolved mutants were more susceptible to environmental stressors (detergents or complement) and predation (bacteriophages) and were impaired in gut colonization and virulence in mice. Therefore, a rationally induced cocktail of intestinal antibodies can direct an evolutionary trade-off in S.Tm. This lays the foundations for the exploration of mucosal vaccines capable of setting evolutionary traps as a prophylactic strategy.
Collapse
Affiliation(s)
- Médéric Diard
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Department of Zoology, University of Oxford, Oxford, UK
| | - Verena Lentsch
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | | | | | - Daniel Hoces
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | - Selma Aslani
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | - Markus Arnoldini
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | - Flurina Böhi
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Department of Molecular Mechanisms of Disease, University of Zürich, Zürich, Switzerland
| | - Kathrin Schumann-Moor
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Division of Surgical Research, University Hospital of Zürich, Zürich, Switzerland
| | - Jozef Adamcik
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Beth M Stadtmueller
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas Donohue
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK.,Department of Orthopedics and Trauma, Medical University of Graz, Graz, Austria
| | - Marjan W van der Woude
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Alyson Hockenberry
- Department of Environmental Microbiology, Eawag, Dubendorf, Switzerland.,Department of Environmental Sciences, ETH Zürich, Zürich, Switzerland
| | - Patrick H Viollier
- Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Daniel Wüthrich
- Infection Biology, University Hospital of Basel, Basel, Switzerland
| | | | - Claude Loverdo
- Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Adrian Egli
- Infection Biology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Raffaele Mezzenga
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland.,Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Otto Holst
- Forschungszentrum Borstel, Borstel, Germany
| | - Beat H Meier
- Institute for Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Emma Slack
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland. .,Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
85
|
Igler C, Rolff J, Regoes R. Multi-step vs. single-step resistance evolution under different drugs, pharmacokinetics, and treatment regimens. eLife 2021; 10:64116. [PMID: 34001313 PMCID: PMC8184216 DOI: 10.7554/elife.64116] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
The success of antimicrobial treatment is threatened by the evolution of drug resistance. Population genetic models are an important tool in mitigating that threat. However, most such models consider resistance emergence via a single mutational step. Here, we assembled experimental evidence that drug resistance evolution follows two patterns: (i) a single mutation, which provides a large resistance benefit, or (ii) multiple mutations, each conferring a small benefit, which combine to yield high-level resistance. Using stochastic modeling, we then investigated the consequences of these two patterns for treatment failure and population diversity under various treatments. We find that resistance evolution is substantially limited if more than two mutations are required and that the extent of this limitation depends on the combination of drug type and pharmacokinetic profile. Further, if multiple mutations are necessary, adaptive treatment, which only suppresses the bacterial population, delays treatment failure due to resistance for a longer time than aggressive treatment, which aims at eradication.
Collapse
Affiliation(s)
- Claudia Igler
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Roland Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
86
|
Wen X, Cao J, Mi J, Huang J, Liang J, Wang Y, Ma B, Zou Y, Liao X, Liang JB, Wu Y. Metabonomics reveals an alleviation of fitness cost in resistant E. coli competing against susceptible E. coli at sub-MIC doxycycline. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124215. [PMID: 33109407 DOI: 10.1016/j.jhazmat.2020.124215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
High concentrations of antibiotics may induce bacterial resistance mutations and further lead to fitness costs by reducing growth of resistant bacteria. However, antibiotic concentrations faced by bacteria are usually low in common environments, which leads to questions about how resistant bacteria with fitness costs regulate metabolism to coexist or compete with susceptible bacteria during sublethal challenge. Our study revealed that a low proportion (< 15%) of resistant bacteria coexisted with susceptible bacteria due to the fitness cost without doxycycline. However, the cost for the resistant strain decreased at a doxycycline concentration of 1 mg/L and even disappeared when the doxycycline concentration was 2 mg/L. Metabonomics analysis revealed that bypass carbon metabolism and biosynthesis of secondary metabolites were the primary metabolic pathways enriching various upregulated metabolites in resistant bacteria without doxycycline. Moreover, the alleviation of fitness cost for resistant bacteria competed with susceptible bacteria at 1 mg/L doxycycline was correlated with the downregulation of the biomarkers pyruvate and pilocarpine. Our study offered new insight into the metabolic mechanisms by which the fitness cost of resistant mutants was reduced at doxycycline concentrations as low as 1 mg/L and identified various potential metabolites to limit the spread of antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Junchao Cao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Jielan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiadi Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Juan Boo Liang
- Laboratory of Animal Production, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China.
| |
Collapse
|
87
|
Card KJ, Jordan JA, Lenski RE. Idiosyncratic variation in the fitness costs of tetracycline-resistance mutations in Escherichia coli. Evolution 2021; 75:1230-1238. [PMID: 33634468 DOI: 10.1111/evo.14203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
A bacterium's fitness relative to its competitors, both in the presence and absence of antibiotics, plays a key role in its ecological success and clinical impact. In this study, we examine whether tetracycline-resistant mutants are less fit in the absence of the drug than their sensitive parents, and whether the fitness cost of resistance is constant or variable across independently derived lines. Tetracycline-resistant lines suffered, on average, a reduction in fitness of almost 8%. There was substantial among-line variation in the fitness cost. This variation was not associated with the level of resistance conferred by the mutations, nor did it vary significantly across several genetic backgrounds. The two resistant lines with the most extreme fitness costs involved functionally unrelated mutations on different genetic backgrounds. However, there was also significant variation in the fitness costs for mutations affecting the same pathway and even different alleles of the same gene. Our findings demonstrate that the fitness costs of antibiotic resistance do not always correlate with the phenotypic level of resistance or the underlying genetic changes. Instead, these costs reflect the idiosyncratic effects of particular resistance mutations and the genetic backgrounds in which they occur.
Collapse
Affiliation(s)
- Kyle J Card
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824.,Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, 48824.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, 48824
| | - Jalin A Jordan
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, 48824.,Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824.,Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, 48824.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
88
|
Abstract
Nucleotide metabolism plays a central role in bacterial physiology, producing the nucleic acids necessary for DNA replication and RNA transcription. Recent studies demonstrate that nucleotide metabolism also proactively contributes to antibiotic-induced lethality in bacterial pathogens and that disruptions to nucleotide metabolism contributes to antibiotic treatment failure in the clinic. As antimicrobial resistance continues to grow unchecked, new approaches are needed to study the molecular mechanisms responsible for antibiotic efficacy. Here we review emerging technologies poised to transform understanding into why antibiotics may fail in the clinic. We discuss how these technologies led to the discovery that nucleotide metabolism regulates antibiotic drug responses and why these are relevant to human infections. We highlight opportunities for how studies into nucleotide metabolism may enhance understanding of antibiotic failure mechanisms.
Collapse
Affiliation(s)
- Allison J Lopatkin
- Department of Biology, Barnard College, New York, NY, United States.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, United States.,Data Science Institute, Columbia University, New York, NY, United States
| | - Jason H Yang
- Ruy V. Lourenço Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, United States.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
89
|
Dihydrotanshinone I Is Effective against Drug-Resistant Helicobacter pylori In Vitro and In Vivo. Antimicrob Agents Chemother 2021; 65:AAC.01921-20. [PMID: 33318002 DOI: 10.1128/aac.01921-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a major global pathogen and has been implicated in gastritis, peptic ulcer, and gastric carcinoma. The efficacy of the extensive therapy of H. pylori infection with antibiotics is compromised by the development of drug resistance and toxicity toward human gut microbiota, which urgently demands novel and selective antibacterial strategies. The present study was mainly performed to assess the in vitro and in vivo effects of a natural herbal compound, dihydrotanshinone I (DHT), against standard and clinical H. pylori strains. DHT demonstrated effective antibacterial activity against H. pylori in vitro (MIC50/90, 0.25/0.5 μg/ml), with no development of resistance during continuous serial passaging. Time-kill curves showed strong time-dependent bactericidal activity for DHT. Also, DHT eliminated preformed biofilms and killed biofilm-encased H. pylori cells more efficiently than the conventional antibiotic metronidazole. In mouse models of multidrug-resistant H. pylori infection, dual therapy with DHT and omeprazole showed in vivo killing efficacy superior to that of the standard triple-therapy approach. Moreover, DHT treatment induces negligible toxicity against normal tissues and exhibits a relatively good safety index. These results suggest that DHT could be suitable for use as an anti-H. pylori agent in combination with a proton pump inhibitor to eradicate multidrug-resistant H. pylori.
Collapse
|
90
|
Sanchez-Cid C, Guironnet A, Wiest L, Vulliet E, Vogel TM. Gentamicin Adsorption onto Soil Particles Prevents Overall Short-Term Effects on the Soil Microbiome and Resistome. Antibiotics (Basel) 2021; 10:191. [PMID: 33672037 PMCID: PMC7919497 DOI: 10.3390/antibiotics10020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
Antibiotics used in agriculture may reach the environment and stimulate the development and dissemination of antibiotic resistance in the soil microbiome. However, the scope of this phenomenon and the link to soil properties needs to be elucidated. This study compared the short-term effects of a range of gentamicin concentrations on the microbiome and resistome of bacterial enrichments and microcosms of an agricultural soil using a metagenomic approach. Gentamicin impact on bacterial biomass was roughly estimated by the number of 16SrRNA gene copies. In addition, the soil microbiome and resistome response to gentamicin pollution was evaluated by 16SrRNA gene and metagenomic sequencing, respectively. Finally, gentamicin bioavailability in soil was determined. While gentamicin pollution at the scale of µg/g strongly influenced the bacterial communities in soil enrichments, concentrations up to 1 mg/g were strongly adsorbed onto soil particles and did not cause significant changes in the microbiome and resistome of soil microcosms. This study demonstrates the differences between the response of bacterial communities to antibiotic pollution in enriched media and in their environmental matrix, and exposes the limitations of culture-based studies in antibiotic-resistance surveillance. Furthermore, establishing links between the effects of antibiotic pollution and soil properties is needed.
Collapse
Affiliation(s)
- Concepcion Sanchez-Cid
- Environmental Microbial Genomics, Laboratoire Ampère, UMR 5005, CNRS, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully, France;
- Promega France, 69100 Charbonnières-les-Bains, France
| | - Alexandre Guironnet
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, CNRS, Université de Lyon, 69100 Villeurbanne, France; (A.G.); (L.W.); (E.V.)
| | - Laure Wiest
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, CNRS, Université de Lyon, 69100 Villeurbanne, France; (A.G.); (L.W.); (E.V.)
| | - Emmanuelle Vulliet
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, CNRS, Université de Lyon, 69100 Villeurbanne, France; (A.G.); (L.W.); (E.V.)
| | - Timothy M. Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, UMR 5005, CNRS, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully, France;
| |
Collapse
|
91
|
Modgill O, Patel G, Akintola D, Obisesan O, Tagar H. AAA: a rock and a hard place. Br Dent J 2021:10.1038/s41415-020-2594-3. [PMID: 33479516 PMCID: PMC7819621 DOI: 10.1038/s41415-020-2594-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/26/2020] [Indexed: 11/09/2022]
Abstract
Introduction This retrospective analysis sought to ascertain the effect of the advice, analgesia and antibiotics (AAA) regimen upon the appropriateness of antibiotic prescribing for those patients attending for emergency dental extraction at the Department of Oral Surgery, King's College Dental Hospital (KCDH), London. This has subsequently been used as a foundation upon which to discuss the potential factors that are likely to have had an effect upon the prescribing patterns of general dental practitioners (GDPs) throughout the United Kingdom (UK) at this time and possible future implications should the UK experience a second mandatory closure of primary care dental settings.Materials and methods Retrospective data collection for patients attending for emergency dental extractions was performed at the Department of Oral Surgery, KCDH. Data were collected between March-June 2020 during KCDH's designation as an urgent dental care hub.Results In total, 1,414 patients attended for emergency dental extraction. Four hundred and seventy-one (33.3%) patients sought advice from their GDP before contacting KCDH's emergency dental triage service. Prior to attending KCDH for emergency dental extraction, 665 (47%) patients were prescribed antibiotics by a primary care health provider.Conclusion Our findings suggest that the AAA regimen may have inadvertently contributed to inappropriate prescription of systemic antibiotics by GDPs.
Collapse
Affiliation(s)
- Omesh Modgill
- Specialist Oral Surgeon, King´s College Dental Hospital, SE5 9RS, London, UK.
| | - Ginal Patel
- Dental Core Trainee Year 1, King´s College Dental Hospital, SE5 9RS, London, UK
| | - Dapo Akintola
- Consultant Oral Surgeon, King´s College Dental Hospital, SE5 9RS, London, UK
| | - Olamide Obisesan
- Consultant Oral Surgeon and Departmental Lead, King´s College Dental Hospital, SE5 9RS, London, UK
| | - Harjit Tagar
- Consultant Oral Surgeon, King´s College Dental Hospital, SE5 9RS, London, UK
| |
Collapse
|
92
|
Fu S, Yang Q, Wang Q, Pang B, Lan R, Wei D, Qu B, Liu Y. Continuous Genomic Surveillance Monitored the In Vivo Evolutionary Trajectories of Vibrio parahaemolyticus and Identified a New Virulent Genotype. mSystems 2021; 6:e01254-20. [PMID: 33468708 PMCID: PMC7820670 DOI: 10.1128/msystems.01254-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/28/2020] [Indexed: 01/22/2023] Open
Abstract
Our ability to predict evolutionary trajectories of pathogens is one of the promising leverages to fight against the pandemic disease, yet few studies have addressed this question in situ, due to the difficulty in monitoring the milestone evolutionary events for a given pathogen and in understanding the evolutionary strategies. In this study, we monitored the real-time evolution of Vibrio parahaemolyticus in response to successive antibiotic treatment in three shrimp farms in North China from 2011 to 2018 by whole-genome sequencing. Results showed that the stepwise emergence of resistance was associated with the antibiotic usage. Genomic analysis of resistant isolates showed that the acquisition of the resistant mobile genetic elements flanked by an insertion sequence (ISVal1) closely mirrored the antibiotics used in shrimp farms since 2014. Next, we also identified 50 insertion sites of ISVal1 in the chromosome, which facilitated the formation of pathogenicity islands (PAIs) and fitness islands in the following years. Further, horizontal transfers of a virulent trh-nik-ure genomic island (GI) and two GIs improving the fitness have been observed in two farms since 2016. In this case study, we proposed that the insertion sequence triggered four major evolutionary events during the outbreaks of shrimp disease in three farms, including horizontal transfer of transposon (HTT) (stage 1), the formation of resistance islands (stage 2) and the PAIs (stage 3), and horizontal transfer of the PAIs (stage 4). This study presented the first in vivo evolutionary trajectories for a given bacterial pathogen, which helps us to understand the emergence mechanisms of new genotypes.IMPORTANCE Most human infectious diseases originate from animals. Thus, how to reduce or prevent pandemic zoonoses before they emerge in people is becoming a critical issue. Continuous genomic surveillance of the evolutionary trajectories of potential human pathogens on farms is a promising strategy to realize early warning. Here, we conducted an 8-year surveillance of Vibrio parahaemolyticus in three shrimp farms. The results showed that the use of antibiotics and horizontal transfer of transposons (HTT) drove the evolution of V. parahaemolyticus, which could be divided into four stages: HTT, formation of resistance islands, formation of pathogenicity islands (PAIs), and horizontal transfer of PAIs. This study presented the first in vivo monitoring of evolutionary trajectories for a given bacterial pathogen, providing valuable information for the prevention of pandemic zoonoses.
Collapse
Affiliation(s)
- Songzhe Fu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Qian Yang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Qingyao Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Bo Pang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Dawei Wei
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Baocheng Qu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Ying Liu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| |
Collapse
|
93
|
Rusic D, Bukić J, Seselja Perisin A, Leskur D, Modun D, Petric A, Vilovic M, Bozic J. Are We Making the Most of Community Pharmacies? Implementation of Antimicrobial Stewardship Measures in Community Pharmacies: A Narrative Review. Antibiotics (Basel) 2021; 10:antibiotics10010063. [PMID: 33440609 PMCID: PMC7827930 DOI: 10.3390/antibiotics10010063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/01/2022] Open
Abstract
Community pharmacists recognize the need to implement antimicrobial stewardship activities in community pharmacies. They are in a unique position to provide triage for common primary care indications and to lower the burden of patients at general practitioners’ offices. However, research shows that, in some areas, dispensing of antimicrobials without valid prescription is still highly prevalent. Regardless of training, every community pharmacist can give his contribution to antimicrobial stewardship. One of the basic elements should be antimicrobial dispensing according to regulations, either prescription only, or according to guidelines where pharmacists have prescribing authority. Patient consultation supported with educational materials, such as leaflets, may reduce patients’ expectations to receive antibiotics for self-limiting infections and reduce pressure on general practitioners to prescribe antibiotics on patients’ demand. Treatment optimization may be achieved in collaboration with the prescribing general practitioners or by providing feedback. At last, pharmacists provided with additional training may be encouraged to provide consultation services to long-term care facilities, to introduce point-of-care testing for infectious diseases in their pharmacies or prescribe antimicrobials for uncomplicated infections. These services are welcomed by patients and communities. Expanding pharmacy services and pharmacists’ prescribing autonomy have shown a positive impact by reducing antibiotics consumption, thus ensuring better compliance with treatment guidelines.
Collapse
Affiliation(s)
- Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2, 21 000 Split, Croatia; (D.R.); (J.B.); (A.S.P.); (D.L.); (D.M.); (A.P.)
| | - Josipa Bukić
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2, 21 000 Split, Croatia; (D.R.); (J.B.); (A.S.P.); (D.L.); (D.M.); (A.P.)
| | - Ana Seselja Perisin
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2, 21 000 Split, Croatia; (D.R.); (J.B.); (A.S.P.); (D.L.); (D.M.); (A.P.)
| | - Dario Leskur
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2, 21 000 Split, Croatia; (D.R.); (J.B.); (A.S.P.); (D.L.); (D.M.); (A.P.)
| | - Darko Modun
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2, 21 000 Split, Croatia; (D.R.); (J.B.); (A.S.P.); (D.L.); (D.M.); (A.P.)
| | - Ana Petric
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2, 21 000 Split, Croatia; (D.R.); (J.B.); (A.S.P.); (D.L.); (D.M.); (A.P.)
- The Split-Dalmatia County Pharmacy, Dugopoljska 3, 21 204 Dugopolje, Croatia
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2, 21 000 Split, Croatia;
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2, 21 000 Split, Croatia;
- Correspondence:
| |
Collapse
|
94
|
Sathyanarayana P, Visweswariah SS, Ayappa KG. Mechanistic Insights into Pore Formation by an α-Pore Forming Toxin: Protein and Lipid Bilayer Interactions of Cytolysin A. Acc Chem Res 2021; 54:120-131. [PMID: 33291882 DOI: 10.1021/acs.accounts.0c00551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pore forming toxins (PFTs) are the largest class of bacterial toxins playing a central role in bacterial pathogenesis. They are proteins specifically designed to form nanochannels in the membranes of target cells, ultimately resulting in cell death and establishing infection. PFTs are broadly classified as α- and β-PFTs, depending on secondary structures that form the transmembrane channel. A unique feature about this class of proteins is the drastic conformational changes and complex oligomerization pathways that occur upon exposure to the plasma membrane. A molecular understanding of pore formation has implications in designing novel intervention strategies to combat rising antimicrobial resistance, targeted-cancer therapy, as well as designing nanopores for specialized technologies. Central to unraveling the pore formation pathway is the availability of high resolution crystal structures. In this regard, β-toxins are better understood, when compared with α-toxins whose pore forming mechanisms are complicated by an incomplete knowledge of the driving forces for amphiphatic membrane-inserted helices to organize into functional pores. With the publication of the first crystal structure for an α-toxin, cytolysin A (ClyA), in 2009 we embarked on an extensive multiscale study to unravel its pore forming mechanism. This Account represents the collective mechanistic knowledge gained in our laboratories using a variety of experimental and theoretical techniques which include large scale molecular dynamics (MD) simulations, kinetic modeling studies, single-molecule fluorescence imaging, and super-resolution spectroscopy. We reported MD simulations of the ClyA protomer, oligomeric intermediates, and full pore complex in a lipid bilayer and mapped the conformational transitions that accompany membrane binding. Using single-molecule fluorescence imaging, the conformational transition was experimentally verified by analysis of various diffusion states of membrane bound ClyA. Importantly, we have uncovered a hitherto unknown putative cholesterol binding motif in the membrane-inserted helix of ClyA. Distinct binding pockets for cholesterol formed by adjacent membrane-inserted helices are revealed in MD simulations. Cholesterol appears to play a dual role by stabilizing both the membrane-inserted protomer as well as oligomeric intermediates. Molecular dynamics simulations and kinetic modeling studies suggest that the membrane-inserted arcs oligomerize reversibly to form the predominant transmembrane oligomeric intermediates during pore formation. We posit that this mechanistic understanding of the complex action of α-PFTs has implications in unraveling pore assembly across the wider family of bacterial toxins. With emerging antimicrobial resistance, alternate therapies may rely on disrupting pore functionality or oligomerization of these pathogenic determinants utilized by bacteria, and our study includes assessing the potential for dendrimers as pore blockers.
Collapse
Affiliation(s)
- Pradeep Sathyanarayana
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
| | - Sandhya S. Visweswariah
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India 560012
| | - K. Ganapathy Ayappa
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
95
|
Andersson DI, Balaban NQ, Baquero F, Courvalin P, Glaser P, Gophna U, Kishony R, Molin S, Tønjum T. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol Rev 2020; 44:171-188. [PMID: 31981358 DOI: 10.1093/femsre/fuaa001] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is one of the major challenges facing modern medicine worldwide. The past few decades have witnessed rapid progress in our understanding of the multiple factors that affect the emergence and spread of antibiotic resistance at the population level and the level of the individual patient. However, the process of translating this progress into health policy and clinical practice has been slow. Here, we attempt to consolidate current knowledge about the evolution and ecology of antibiotic resistance into a roadmap for future research as well as clinical and environmental control of antibiotic resistance. At the population level, we examine emergence, transmission and dissemination of antibiotic resistance, and at the patient level, we examine adaptation involving bacterial physiology and host resilience. Finally, we describe new approaches and technologies for improving diagnosis and treatment and minimizing the spread of resistance.
Collapse
Affiliation(s)
- Dan I Andersson
- Department of Medical Biochemistry and Microbiology, University of Uppsala, BMC, Husargatan 3, 75237, Uppsala, Sweden
| | - Nathalie Q Balaban
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Jerusalem, Israel
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal Health Research Institute, Ctra. Colmenar Viejo Km 9,100 28034 - Madrid, Madrid, Spain
| | - Patrice Courvalin
- French National Reference Center for Antibiotics, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, Paris, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, Paris, France
| | - Uri Gophna
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 121 Jack Green building, Tel-Aviv University, Ramat-Aviv, 6997801, Tel Aviv, Israel
| | - Roy Kishony
- Faculty of Biology, The Technion, Technion City, Haifa 3200003, Haifa, Israel
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220 2800 Kgs.Lyngby, Lyngby, Denmark
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, OUS HF Rikshospitalet Postboks 4950 Nydalen 0424 Oslo, Oslo, Norway.,Oslo University Hospital, P. O. Box 4950 Nydalen N-0424 Oslo, Oslo, Norway
| |
Collapse
|
96
|
Rocha MP, Santos MS, Rodrigues PLF, Araújo TSD, de Oliveira JM, Rosa LP, Bagnato VS, da Silva FC. Photodynamic therapry with curcumin in the reduction of enterococcus faecalis biofilm in bone cavity: rMicrobiological and spectral fluorescense analysis. Photodiagnosis Photodyn Ther 2020; 33:102084. [PMID: 33176181 DOI: 10.1016/j.pdpdt.2020.102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (PDT) has emerged as a therapeutic strategy to conventional procedures using antibiotics. OBJECTIVE To evaluate the antimicrobial effectiveness of PDT using blue light emitting diode (LED) associated with curcumin on biofilms of Enterococcus faecalis in bovine bone cavities and also to analyze the presence of these biofilms through spectral fluorescence. MATERIALS AND METHODS Standardized suspensions of E. faecalis (ATCC 29212) were incubated in artificial bone cavities for 14 days at 36 °C ± 1 °C for biofilm formation. The test specimens were distributed among the four experimental groups (n = 10): L-C- (control), L + C- (LED for 5 min), L-C+ (curcumin for 5 min) and L + C+ (PDT). Aliquots were collected from the bone cavities after treatments and seeded on BHI agar for 24 h at 36 °C ± 1 °C for CFU count. Before and after each treatment the specimens were submitted to spectral fluorescence, whose images were compared in the Image J program. The log10 CFU/mL results were submitted to the Kruskal-Wallis test (5%) and the biofilm fluorescence spectroscopy results were submitted to the Wilcoxon test (5%). RESULTS All treatments presented statistical difference when compared to the control, and PDT was responsible for the largest reduction (1.92 log10 CFU/mL). There was a reduction in the fluorescence emitted after the treatments, with greater statistical difference in the PDT group. CONCLUSION PDT was efficient in the reduction of E. faecalis biofilms. In all groups post treatment there was a significant reduction of biofilms in the fluorescence spectroscopy images with greater reduction in the PDT group.
Collapse
Affiliation(s)
- Marisol Porto Rocha
- Multidisciplinary Institute in Health, Federal University of Bahia - UFBA, Brazil.
| | - Mariana Sousa Santos
- Multidisciplinary Institute in Health, Federal University of Bahia - UFBA, Brazil.
| | | | | | | | - Luciano Pereira Rosa
- Multidisciplinary Institute in Health, Federal University of Bahia - UFBA, Brazil.
| | | | | |
Collapse
|
97
|
Revitt-Mills SA, Robinson A. Antibiotic-Induced Mutagenesis: Under the Microscope. Front Microbiol 2020; 11:585175. [PMID: 33193230 PMCID: PMC7642495 DOI: 10.3389/fmicb.2020.585175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
The development of antibiotic resistance poses an increasing threat to global health. Understanding how resistance develops in bacteria is critical for the advancement of new strategies to combat antibiotic resistance. In the 1980s, it was discovered that certain antibiotics induce elevated rates of mutation in bacteria. From this, an “increased evolvability” hypothesis was proposed: antibiotic-induced mutagenesis increases the genetic diversity of bacterial populations, thereby increasing the rate at which bacteria develop antibiotic resistance. However, antibiotic-induced mutagenesis is one of multiple competing factors that act on bacterial populations exposed to antibiotics. Its relative importance in shaping evolutionary outcomes, including the development of antibiotic resistance, is likely to depend strongly on the conditions. Presently, there is no quantitative model that describes the relative contribution of antibiotic-induced mutagenesis to bacterial evolution. A far more complete understanding could be reached if we had access to technology that enabled us to study antibiotic-induced mutagenesis at the molecular-, cellular-, and population-levels simultaneously. Direct observations would, in principle, allow us to directly link molecular-level events with outcomes in individual cells and cell populations. In this review, we highlight microscopy studies which have allowed various aspects of antibiotic-induced mutagenesis to be directly visualized in individual cells for the first time. These studies have revealed new links between error-prone DNA polymerases and recombinational DNA repair, evidence of spatial regulation occurring during the SOS response, and enabled real-time readouts of mismatch and mutation rates. Further, we summarize the recent discovery of stochastic population fluctuations in cultures exposed to sub-inhibitory concentrations of bactericidal antibiotics and discuss the implications of this finding for the study of antibiotic-induced mutagenesis. The studies featured here demonstrate the potential of microscopy to provide direct observation of phenomena relevant to evolution under antibiotic-induced mutagenesis.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
98
|
Parthasarathy A, Mantravadi PK, Kalesh K. Detectives and helpers: Natural products as resources for chemical probes and compound libraries. Pharmacol Ther 2020; 216:107688. [PMID: 32980442 DOI: 10.1016/j.pharmthera.2020.107688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
About 70% of the drugs in use are derived from natural products, either used directly or in chemically modified form. Among all possible small molecules (not greater than 5 kDa), only a few of them are biologically active. Natural product libraries may have a higher rate of finding "hits" than synthetic libraries, even with the use of fewer compounds. This is due to the complementarity between the "chemical space" of small molecules and biological macromolecules such as proteins, DNA and RNA, in addition to the three-dimensional complexity of NPs. Chemical probes are molecules which aid in the elucidation of the biological mechanisms behind the action of drugs or drug-like molecules by binding with macromolecular/cellular interaction partners. Probe development and application have been spurred by advancements in photoaffinity label synthesis, affinity chromatography, activity based protein profiling (ABPP) and instrumental methods such as cellular thermal shift assay (CETSA) and advanced/hyphenated mass spectrometry (MS) techniques, as well as genome sequencing and bioengineering technologies. In this review, we restrict ourselves to a survey of natural products (including peptides/mini-proteins and excluding antibodies), which have been applied largely in the last 5 years for the target identification of drugs/drug-like molecules used in research on infectious diseases, and the description of their mechanisms of action.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA
| | | | - Karunakaran Kalesh
- Department of Chemistry, Durham University, Lower Mount Joy, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
99
|
Abstract
Vaccinations and therapies targeting evolving pathogens aim to curb the pathogen and to steer it toward a controlled evolutionary state. Control is leveraged against the pathogen’s intrinsic evolutionary forces, which in turn, can drive an escape from control. Here, we analyze a simple model of control, in which a host produces antibodies that bind the pathogen. We show that the leverages of host (or external intervention) and pathogen are often highly imbalanced: an error threshold separates parameter regions of efficient control from regions of compromised control, where the pathogen retains the upper hand. Because control efficiency can be predicted from few measurable fitness parameters, our results establish a proof of principle how control theory can guide interventions against evolving pathogens. Control can alter the eco-evolutionary dynamics of a target pathogen in two ways, by changing its population size and by directed evolution of new functions. Here, we develop a payoff model of eco-evolutionary control based on strategies of evolution, regulation, and computational forecasting. We apply this model to pathogen control by molecular antibody–antigen binding with a tunable dosage of antibodies. By analytical solution, we obtain optimal dosage protocols and establish a phase diagram with an error threshold delineating parameter regimes of successful and compromised control. The solution identifies few independently measurable fitness parameters that predict the outcome of control. Our analysis shows how optimal control strategies depend on mutation rate and population size of the pathogen, and how monitoring and computational forecasting affect protocols and efficiency of control. We argue that these results carry over to more general systems and are elements of an emerging eco-evolutionary control theory.
Collapse
|
100
|
Slizovskiy IB, Mukherjee K, Dean CJ, Boucher C, Noyes NR. Mobilization of Antibiotic Resistance: Are Current Approaches for Colocalizing Resistomes and Mobilomes Useful? Front Microbiol 2020; 11:1376. [PMID: 32695079 PMCID: PMC7338343 DOI: 10.3389/fmicb.2020.01376] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/28/2020] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) poses a global human and animal health threat, and predicting AMR persistence and transmission remains an intractable challenge. Shotgun metagenomic sequencing can help overcome this by enabling characterization of AMR genes within all bacterial taxa, most of which are uncultivatable in laboratory settings. Shotgun sequencing, therefore, provides a more comprehensive glance at AMR "potential" within samples, i.e., the "resistome." However, the risk inherent within a given resistome is predicated on the genomic context of various AMR genes, including their presence within mobile genetic elements (MGEs). Therefore, resistome risk stratification can be advanced if AMR profiles are considered in light of the flanking mobilizable genomic milieu (e.g., plasmids, integrative conjugative elements (ICEs), phages, and other MGEs). Because such mediators of horizontal gene transfer (HGT) are involved in uptake by pathogens, investigators are increasingly interested in characterizing that resistome fraction in genomic proximity to HGT mediators, i.e., the "mobilome"; we term this "colocalization." We explored the utility of common colocalization approaches using alignment- and assembly-based techniques, on clinical (human) and agricultural (cattle) fecal metagenomes, obtained from antimicrobial use trials. Ordination revealed that tulathromycin-treated cattle experienced a shift in ICE and plasmid composition versus untreated animals, though the resistome was unaffected during the monitoring period. Contrarily, the human resistome and mobilome composition both shifted shortly after antimicrobial administration, though this rebounded to pre-treatment status. Bayesian networks revealed statistical AMR-MGE co-occurrence in 19 and 2% of edges from the cattle and human networks, respectively, suggesting a putatively greater mobility potential of AMR in cattle feces. Conversely, using Mobility Index (MI) and overlap analysis, abundance of de novo-assembled contigs supporting resistomes flanked by MGE increased shortly post-exposure within human metagenomes, though > 40 days after peak dose such contigs were rare (∼2%). MI was not substantially altered by antimicrobial exposure across all cattle metagenomes, ranging 0.5-4.0%. We highlight that current alignment- and assembly-based methods estimating resistome mobility yield contradictory and incomplete results, likely constrained by approach-specific data inputs, and bioinformatic limitations. We discuss recent laboratory and computational advancements that may enhance resistome risk analysis in clinical, regulatory, and commercial applications.
Collapse
Affiliation(s)
- Ilya B Slizovskiy
- Food-Centric Corridor, Infectious Disease Laboratory, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Kingshuk Mukherjee
- Department of Computer and Information Science and Engineering, The Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - Christopher J Dean
- Food-Centric Corridor, Infectious Disease Laboratory, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, The Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - Noelle R Noyes
- Food-Centric Corridor, Infectious Disease Laboratory, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|