51
|
Asan A, Skoko JJ, Woodcock CSC, Wingert BM, Woodcock SR, Normolle D, Huang Y, Stark JM, Camacho CJ, Freeman BA, Neumann CA. Electrophilic fatty acids impair RAD51 function and potentiate the effects of DNA-damaging agents on growth of triple-negative breast cells. J Biol Chem 2018; 294:397-404. [PMID: 30478172 DOI: 10.1074/jbc.ac118.005899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/15/2018] [Indexed: 01/24/2023] Open
Abstract
Homologous recombination (HR)-directed DNA double-strand break (DSB) repair enables template-directed DNA repair to maintain genomic stability. RAD51 recombinase (RAD51) is a critical component of HR and facilitates DNA strand exchange in DSB repair. We report here that treating triple-negative breast cancer (TNBC) cells with the fatty acid nitroalkene 10-nitro-octadec-9-enoic acid (OA-NO2) in combination with the antineoplastic DNA-damaging agents doxorubicin, cisplatin, olaparib, and γ-irradiation (IR) enhances the antiproliferative effects of these agents. OA-NO2 inhibited IR-induced RAD51 foci formation and enhanced H2A histone family member X (H2AX) phosphorylation in TNBC cells. Analyses of fluorescent DSB reporter activity with both static-flow cytometry and kinetic live-cell studies enabling temporal resolution of recombination revealed that OA-NO2 inhibits HR and not nonhomologous end joining (NHEJ). OA-NO2 alkylated Cys-319 in RAD51, and this alkylation depended on the Michael acceptor properties of OA-NO2 because nonnitrated and saturated nonelectrophilic analogs of OA-NO2, octadecanoic acid and 10-nitro-octadecanoic acid, did not react with Cys-319. Of note, OA-NO2 alkylation of RAD51 inhibited its binding to ssDNA. RAD51 Cys-319 resides within the SH3-binding site of ABL proto-oncogene 1, nonreceptor tyrosine kinase (ABL1), so we investigated the effect of OA-NO2-mediated Cys-319 alkylation on ABL1 binding and found that OA-NO2 inhibits RAD51-ABL1 complex formation both in vitro and in cell-based immunoprecipitation assays. The inhibition of the RAD51-ABL1 complex also suppressed downstream RAD51 Tyr-315 phosphorylation. In conclusion, RAD51 Cys-319 is a functionally significant site for adduction of soft electrophiles such as OA-NO2 and suggests further investigation of lipid electrophile-based combinational therapies for TNBC.
Collapse
Affiliation(s)
- Alparslan Asan
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania 15213.,Magee-Womens Research Institute, Magee-Womens Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| | - John J Skoko
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, .,Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania 15213.,Magee-Womens Research Institute, Magee-Womens Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| | - Chen-Shan Chen Woodcock
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | | | - Steven R Woodcock
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Daniel Normolle
- Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Yi Huang
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania 15213.,Magee-Womens Research Institute, Magee-Womens Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | - Bruce A Freeman
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Carola A Neumann
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, .,Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania 15213.,Magee-Womens Research Institute, Magee-Womens Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
52
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
53
|
Buchan GJ, Bonacci G, Fazzari M, Salvatore SR, Gelhaus Wendell S. Nitro-fatty acid formation and metabolism. Nitric Oxide 2018; 79:38-44. [PMID: 30006146 DOI: 10.1016/j.niox.2018.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
Nitro-fatty acids (NO2-FA) are pleiotropic modulators of redox signaling pathways. Their effects on inflammatory signaling have been studied in great detail in cell, animal and clinical models primarily using exogenously administered nitro-oleic acid. While we know a considerable amount regarding NO2-FA signaling, endogenous formation and metabolism is relatively unexplored. This review will cover what is currently known regarding the proposed mechanisms of NO2-FA formation, dietary modulation of endogenous NO2-FA levels, pathways of NO2-FA metabolism and the detection of NO2-FA and corresponding metabolites.
Collapse
Affiliation(s)
- Gregory J Buchan
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gustavo Bonacci
- CIBICI - CONICET, Departamento de Bioquímica Clínica Facultad de Ciencias Químicas, (U.N.C.), Haya de la Torre y Medina Allende Ciudad Universitaria, Córdoba C.P. N°: X5000HUA, Argentina
| | - Marco Fazzari
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Fondazione Ri.MED, Via Bandiera 11, 90133 Palermo, Italy
| | - Sonia R Salvatore
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stacy Gelhaus Wendell
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Clinical Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
54
|
Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol Rev 2018; 98:1169-1203. [PMID: 29717933 PMCID: PMC9762786 DOI: 10.1152/physrev.00023.2017] [Citation(s) in RCA: 1145] [Impact Index Per Article: 163.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Kelch-like ECH-associated protein 1-NF-E2-related factor 2 (KEAP1-NRF2) system forms the major node of cellular and organismal defense against oxidative and electrophilic stresses of both exogenous and endogenous origins. KEAP1 acts as a cysteine thiol-rich sensor of redox insults, whereas NRF2 is a transcription factor that robustly transduces chemical signals to regulate a battery of cytoprotective genes. KEAP1 represses NRF2 activity under quiescent conditions, whereas NRF2 is liberated from KEAP1-mediated repression on exposure to stresses. The rapid inducibility of a response based on a derepression mechanism is an important feature of the KEAP1-NRF2 system. Recent studies have unveiled the complexities of the functional contributions of the KEAP1-NRF2 system and defined its broader involvement in biological processes, including cell proliferation and differentiation, as well as cytoprotection. In this review, we describe historical milestones in the initial characterization of the KEAP1-NRF2 system and provide a comprehensive overview of the molecular mechanisms governing the functions of KEAP1 and NRF2, as well as their roles in physiology and pathology. We also refer to the clinical significance of the KEAP1-NRF2 system as an important prophylactic and therapeutic target for various diseases, particularly aging-related disorders. We believe that controlled harnessing of the KEAP1-NRF2 system is a key to healthy aging and well-being in humans.
Collapse
|
55
|
Hamdi A, Majouli K, Abdelhamid A, Marzouk B, Belghith H, Chraief I, Bouraoui A, Marzouk Z, Heyden YV. Pharmacological activities of the organic extracts and fatty acid composition of the petroleum ether extract from Haplophyllum tuberculatum leaves. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:97-103. [PMID: 29331316 DOI: 10.1016/j.jep.2018.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/29/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Haplophyllum tuberculatum is used in traditional medicine to treat many disorders including inflammation and pain. The aim of this study is to investigate the organic extracts from H. tuberculatum leaves against inflammation, gastric ulcer and pain. MATERIALS AND METHODS Acute toxicity was studied in vivo to determine the toxic doses of the organic extracts. Anti-inflammatory activity was also evaluated in vivo using carrageenan-induced paw edema in Wistar rats. Gastroprotective activity was tested using the HCl/ethanol-induced gastric ulcer test in rats. Peripheral and central analgesic activities were assessed using the acetic acid-induced writhing test and the hot-plate method, respectively. The chemical composition of the fatty acids in the petroleum ether (PE) extract was determined with GC-MS. RESULTS At 25, 50 and 100mg/kg PE extract was the most active against inflammation. Percentages inhibition 5h after carrageenan-injection were 51.12; 86.71% and 96.92%, respectively. The same extract at 100mg/kg showed good analgesic activities using the acetic acid-induced writhing test and the hot-plate method. The chloroform, ethyl acetate (EtOAc) and butanolic (n-BuOH) extracts exhibited strong anti-inflammatory, gastroprotective and analgesic activities at 100mg/kg. The GC-FID analysis revealed that the PE extract was rich in γ-linolenic acid (45.50%) followed by palmitic acid (18.48%), linoleic acid (10.73%), erucic acid (4.72), stearic acid (3.96%) and oleic acid (2.57%). CONCLUSION The results of the present study support the traditional use of the leaves of H. tuberculatum and may possibly serve as prospective material for further development of safe new phytochemical anti-inflammatory, gastroprotective and/or analgesic agents.
Collapse
Affiliation(s)
- Assia Hamdi
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, 5000, Tunisia; Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Kaouther Majouli
- Biochemistry Laboratory, Research Unit: UR 12ES08 "Cell Signaling and Pathologies" Faculty of Medicine, University of Monastir, 5000, Tunisia
| | - Amal Abdelhamid
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, 5000, Tunisia
| | - Belsem Marzouk
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, 5000, Tunisia
| | - Hèla Belghith
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, 5000, Tunisia
| | - Imed Chraief
- USCR Spectrométrie de Masse, Faculté de Médecine, University of Monastir, 5000, Tunisia
| | - Abderrahman Bouraoui
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, 5000, Tunisia
| | - Zohra Marzouk
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, 5000, Tunisia
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
56
|
Mata-Pérez C, Padilla MN, Sánchez-Calvo B, Begara-Morales JC, Valderrama R, Chaki M, Barroso JB. Biological properties of nitro-fatty acids in plants. Nitric Oxide 2018; 78:S1089-8603(17)30286-0. [PMID: 29601928 DOI: 10.1016/j.niox.2018.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/24/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Nitro-fatty acids (NO2-FAs) are formed from the reaction between nitrogen dioxide (NO2) and mono and polyunsaturated fatty acids. Knowledge concerning NO2-FAs has significantly increased within a few years ago and the beneficial actions of these species uncovered in animal systems have led to consider them as molecules with therapeutic potential. Based on their nature and structure, NO2-FAs have the ability to release nitric oxide (NO) in aqueous environments and the capacity to mediate post-translational modifications (PTM) by nitroalkylation. Recently, based on the potential of these NO-derived molecules in the animal field, the endogenous occurrence of nitrated-derivatives of linolenic acid (NO2-Ln) was assessed in plant species. Moreover and through RNA-seq technology, it was shown that NO2-Ln can induce a large set of heat-shock proteins (HSPs) and different antioxidant systems suggesting this molecule may launch antioxidant and defence responses in plants. Furthermore, the capacity of this nitro-fatty acid to release NO has also been demonstrated. In view of this background, here we offer an overview on the biological properties described for NO2-FAs in plants and the potential of these molecules to be considered new key intermediaries of NO metabolism in the plant field.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - María N Padilla
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain.
| |
Collapse
|
57
|
Turell L, Steglich M, Alvarez B. The chemical foundations of nitroalkene fatty acid signaling through addition reactions with thiols. Nitric Oxide 2018; 78:S1089-8603(17)30305-1. [PMID: 29578058 DOI: 10.1016/j.niox.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 11/30/2022]
Abstract
Nitroalkene fatty acids can be formed in vivo and administered exogenously. They exert pleiotropic signaling actions with cytoprotective and antiinflammatory effects. The presence of the potent electron withdrawing nitro group confers electrophilicity to the adjacent β-carbon. Thiols (precisely, thiolates) are strong nucleophiles and can react with nitroalkene fatty acids through reversible Michael addition reactions. In addition, nitroalkene fatty acids can undergo several other processes including metabolic oxidation, reduction, esterification, nitric oxide release and partition into hydrophobic compartments. The signaling actions of nitroalkenes are mainly mediated by reactions with critical thiols in regulatory proteins. Thus, the thio-Michael addition reaction provides a framework for understanding the molecular basis of the biological effects of nitroalkene fatty acids at the crossroads of thiol signaling and electrophilic lipid signaling. In this review, we describe the reactions of nitroalkene fatty acids in biological contexts. We focus on the Michael addition-elimination reaction with thiols and its mechanism, and extrapolate kinetic and thermodynamic considerations to in vivo settings.
Collapse
Affiliation(s)
- Lucía Turell
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| | - Martina Steglich
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
58
|
Beckel JM, de Groat WC. The effect of the electrophilic fatty acid nitro-oleic acid on TRP channel function in sensory neurons. Nitric Oxide 2018; 78:S1089-8603(17)30289-6. [PMID: 29578059 PMCID: PMC6151181 DOI: 10.1016/j.niox.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/28/2023]
Abstract
Nitro-oleic acid (NO2-OA) and related nitroalkenes are electrophilic fatty acid derivatives that are present in normal tissues at nanomolar concentrations and can increase significantly during inflammation. These substances can suppress multiple intracellular signaling pathways contributing to inflammation by reversible Michael addition reactions with nucleophilic residues such as cysteine and histidine leading to post-translational modification of proteins. NO2-OA also can influence inflammation and pain by acting on transient receptor potential (TRP) channels in primary sensory neurons. TRPV1, TRPA1 and TRPC can respond to electrophilic fatty acids because they have ankyrin-like repeats in their N terminus that are rich in cysteine residues that react with electrophiles and other thiol modifying species. NO2-OA acts on TRP channels to initially depolarize and induce firing in sensory neurons followed by desensitization and suppression of firing. In vivo experiments revealed that pretreatment with NO2-OA reduces nociceptive behavior evoked by local administration of a TRPA1 agonist (AITC) to the rat hind paw. These results raise the possibility that NO2-OA might be useful clinically to reduce neurogenic inflammation and certain types of painful sensations by desensitizing TRPA1 expressing nociceptive afferents.
Collapse
Affiliation(s)
- Jonathan M Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
59
|
Rom O, Khoo NKH, Chen YE, Villacorta L. Inflammatory signaling and metabolic regulation by nitro-fatty acids. Nitric Oxide 2018; 78:S1089-8603(17)30329-4. [PMID: 29578057 PMCID: PMC6151155 DOI: 10.1016/j.niox.2018.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 02/06/2023]
Abstract
The addition of nitrogen dioxide (NO2) to the double bond of unsaturated fatty acids yields an array of electrophilic nitro-fatty acids (NO2-FA) with unique biochemical and signaling properties. During the last decade, NO2-FA have been shown to exert a protective role in various inflammatory and metabolic disorders. NO2-FA exert their biological effects primarily by regulating two central physiological adaptive responses: the canonical inflammatory signaling and metabolic pathways. In this mini-review, we summarize current knowledge on the regulatory role of NO2-FA in the inflammatory and metabolic response via regulation of nuclear factor kappa B (NF-κB) and peroxisome proliferator-activated receptor γ (PPARγ), master regulators of inflammation and metabolism. Moreover, the engagement of novel signaling and metabolic pathways influenced by NO2-FA, beyond NF-κB and PPAR signaling, is discussed herein.
Collapse
Affiliation(s)
- Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, USA
| | - Nicholas K H Khoo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA
| | - Y Eugene Chen
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, USA
| | - Luis Villacorta
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, USA.
| |
Collapse
|
60
|
Deen AJ, Sihvola V, Härkönen J, Patinen T, Adinolfi S, Levonen AL. Regulation of stress signaling pathways by nitro-fatty acids. Nitric Oxide 2018; 78:S1089-8603(17)30323-3. [PMID: 29567143 DOI: 10.1016/j.niox.2018.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022]
Abstract
Electrophilic nitrated-fatty acids (NO2-FA, nitroalkenes) are formed during reactions of NO-derived oxidized species (•NO, •NO2) with either free or esterified polyunsaturated fatty acids. Due to their electrophilic character, they react with nucleophiles such as cysteine thiols in signaling proteins, thereby triggering downstream signaling cascades. Herein, we review two stress-signaling pathways activated by nitroalkenes, the KEAP1-NRF2 signaling pathway and the heat shock response (HSR) pathway. In addition, their biological and pharmacological relevance are discussed. Given that perturbations in both proteostasis and redox balance are common in many disease processes, dual activation of both pathways by nitroalkenes is a promising pharmacological approach for their treatment.
Collapse
Affiliation(s)
- Ashik Jawahar Deen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FI-70211, Finland
| | - Virve Sihvola
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FI-70211, Finland
| | - Jouni Härkönen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FI-70211, Finland
| | - Tommi Patinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FI-70211, Finland
| | - Simone Adinolfi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FI-70211, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FI-70211, Finland.
| |
Collapse
|
61
|
Li K, Brennan L, Bloomfield JF, Duff DJ, McNulty BA, Flynn A, Walton J, Gibney MJ, Nugent AP. Adiposity Associated Plasma Linoleic Acid is Related to Demographic, Metabolic Health and Haplotypes of FADS1/2 Genes in Irish Adults. Mol Nutr Food Res 2018; 62:e1700785. [DOI: 10.1002/mnfr.201700785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/04/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Kaifeng Li
- Institute of Food and Health; School of Agriculture and Food Science; University College Dublin (UCD); Belfield Republic of Ireland
| | - Lorraine Brennan
- Institute of Food and Health; School of Agriculture and Food Science; University College Dublin (UCD); Belfield Republic of Ireland
| | | | - Dan J. Duff
- Chemical Analysis Laboratories; Sandycove Republic of Ireland
| | - Breige A. McNulty
- Institute of Food and Health; School of Agriculture and Food Science; University College Dublin (UCD); Belfield Republic of Ireland
| | - Albert Flynn
- School of Food and Nutritional Sciences; University College Cork; Cork Republic of Ireland
| | - Janette Walton
- School of Food and Nutritional Sciences; University College Cork; Cork Republic of Ireland
- School of Biological Sciences; Cork Institute of Technology; Cork Republic of Ireland
| | - Michael J. Gibney
- Institute of Food and Health; School of Agriculture and Food Science; University College Dublin (UCD); Belfield Republic of Ireland
| | - Anne P. Nugent
- Institute of Food and Health; School of Agriculture and Food Science; University College Dublin (UCD); Belfield Republic of Ireland
- School of Biological Sciences; Institute for Global Food Security; Queens University; Belfast Northern Ireland
| |
Collapse
|
62
|
Mathers AR, Carey CD, Killeen ME, Salvatore SR, Ferris LK, Freeman BA, Schopfer FJ, Falo LD. Topical electrophilic nitro-fatty acids potentiate cutaneous inflammation. Free Radic Biol Med 2018; 115:31-42. [PMID: 29132974 PMCID: PMC5767521 DOI: 10.1016/j.freeradbiomed.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 11/18/2022]
Abstract
Endogenous electrophilic fatty acids mediate anti-inflammatory responses by modulating metabolic and inflammatory signal transduction and gene expression. Nitro-fatty acids and other electrophilic fatty acids may thus be useful for the prevention and treatment of immune-mediated diseases, including inflammatory skin disorders. In this regard, subcutaneous (SC) injections of nitro oleic acid (OA-NO2), an exemplary nitro-fatty acid, inhibit skin inflammation in a model of allergic contact dermatitis (ACD). Given the nitration of unsaturated fatty acids during metabolic and inflammatory processes and the growing use of fatty acids in topical formulations, we sought to further study the effect of nitro-fatty acids on cutaneous inflammation. To accomplish this, the effect of topically applied OA-NO2 on skin inflammation was evaluated using established murine models of contact hypersensitivity (CHS). In contrast to the effects of subcutaneously injected OA-NO2, topical OA-NO2 potentiated hapten-dependent inflammation inducing a sustained neutrophil-dependent inflammatory response characterized by psoriasiform histological features, increased angiogenesis, and an inflammatory infiltrate that included neutrophils, inflammatory monocytes, and γδ T cells. Consistent with these results, HPLC-MS/MS analysis of skin from psoriasis patients displayed a 56% increase in nitro-conjugated linoleic acid (CLA-NO2) levels in lesional skin compared to non-lesional skin. These results suggest that nitro-fatty acids in the skin microenvironment are products of cutaneous inflammatory responses and, in high local concentrations, may exacerbate inflammatory skin diseases.
Collapse
Affiliation(s)
- Alicia R Mathers
- Departments of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA; Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA.
| | - Cara D Carey
- Departments of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Meaghan E Killeen
- Departments of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Sonia R Salvatore
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Laura K Ferris
- Departments of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Bruce A Freeman
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Francisco J Schopfer
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Louis D Falo
- Departments of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA; Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| |
Collapse
|
63
|
Villacorta L, Minarrieta L, Salvatore SR, Khoo NK, Rom O, Gao Z, Berman RC, Jobbagy S, Li L, Woodcock SR, Chen YE, Freeman BA, Ferreira AM, Schopfer FJ, Vitturi DA. In situ generation, metabolism and immunomodulatory signaling actions of nitro-conjugated linoleic acid in a murine model of inflammation. Redox Biol 2018; 15:522-531. [PMID: 29413964 PMCID: PMC5881417 DOI: 10.1016/j.redox.2018.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Conjugated linoleic acid (CLA) is a prime substrate for intra-gastric nitration giving rise to the formation of nitro-conjugated linoleic acid (NO2-CLA). Herein, NO2-CLA generation is demonstrated within the context of acute inflammatory responses both in vitro and in vivo. Macrophage activation resulted in dose- and time-dependent CLA nitration and also in the production of secondary electrophilic and non-electrophilic derivatives. Both exogenous NO2-CLA as well as that generated in situ, attenuated NF-κB-dependent gene expression, decreased pro-inflammatory cytokine production and up-regulated Nrf2-regulated proteins. Importantly, both CLA nitration and the corresponding downstream anti-inflammatory actions of NO2-CLA were recapitulated in a mouse peritonitis model where NO2-CLA administration decreased pro-inflammatory cytokines and inhibited leukocyte recruitment. Taken together, our results demonstrate that the formation of NO2-CLA has the potential to function as an adaptive response capable of not only modulating inflammation amplitude but also protecting neighboring tissues via the expression of Nrf2-dependent genes.
Collapse
Affiliation(s)
- Luis Villacorta
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, USA.
| | - Lucia Minarrieta
- Cátedra de Inmunología, Facultad de Química y Ciencias, Universidad de la República, Montevideo, Uruguay; Institute of Infection Immunology, TWINCORE, Hannover, Germany
| | - Sonia R Salvatore
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas K Khoo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Zhen Gao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Rebecca C Berman
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Soma Jobbagy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lihua Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Eugene Chen
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana M Ferreira
- Cátedra de Inmunología, Facultad de Química y Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
64
|
Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components. Future Med Chem 2017; 9:2069-2079. [PMID: 28793800 DOI: 10.4155/fmc-2017-0109] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Camellia oleifera Abel is a member of Camellia, and its seeds are used to extract Camellia oil, which is generally used as cooking oil in the south of China. Camellia oil consists of unsaturated fatty acids, tea polyphenol, squalene, saponin, carrot element and vitamins, etc. The seed remains after oil extraction of C. oleifera Abel are by-products of oil production, named as Camellia oil cake. Its extracts contain bioactive compounds including sasanquasaponin, flavonoid and tannin. Major components from Camellia oil and its cake have been shown to have anti-inflammatory, antioxidative, antimicrobial and antitumor activities. In this review, we will summarize the latest advance in the studies on anti-inflammatory or antioxidative effects of C. oleifera products, thus providing valuable reference for the future research and development of C. oleifera Abel.
Collapse
|
65
|
Abstract
This Perspective delineates how redox signaling affects the activity of specific enzyme isoforms and how this property may be harnessed for rational drug design. Covalent drugs have resurged in recent years and several reports have extolled the general virtues of developing irreversible inhibitors. Indeed, many modern pharmaceuticals contain electrophilic appendages. Several invoke a warhead that hijacks active-site nucleophiles whereas others take advantage of spectator nucleophilic side chains that do not participate in enzymatic chemistry, but are poised to bind/react with electrophiles. The latest data suggest that innate electrophile sensing-which enables rapid reaction with an endogenous signaling electrophile-is a quintessential resource for the development of covalent drugs. For instance, based on recent work documenting isoform-specific electrophile sensing, isozyme non-specific drugs may be converted to isozyme-specific analogs by hijacking privileged first-responder electrophile-sensing cysteines. Because this approach targets functionally relevant cysteines, we can simultaneously harness previously untapped moonlighting roles of enzymes linked to redox sensing.
Collapse
Affiliation(s)
| | - Yimon Aye
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14850, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
66
|
Koch CD, Gladwin MT, Freeman BA, Lundberg JO, Weitzberg E, Morris A. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radic Biol Med 2017; 105:48-67. [PMID: 27989792 PMCID: PMC5401802 DOI: 10.1016/j.freeradbiomed.2016.12.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Recent insights into the bioactivation and signaling actions of inorganic, dietary nitrate and nitrite now suggest a critical role for the microbiome in the development of cardiac and pulmonary vascular diseases. Once thought to be the inert, end-products of endothelial-derived nitric oxide (NO) heme-oxidation, nitrate and nitrite are now considered major sources of exogenous NO that exhibit enhanced vasoactive signaling activity under conditions of hypoxia and stress. The bioavailability of nitrate and nitrite depend on the enzymatic reduction of nitrate to nitrite by a unique set of bacterial nitrate reductase enzymes possessed by specific bacterial populations in the mammalian mouth and gut. The pathogenesis of pulmonary hypertension (PH), obesity, hypertension and CVD are linked to defects in NO signaling, suggesting a role for commensal oral bacteria to shape the development of PH through the formation of nitrite, NO and other bioactive nitrogen oxides. Oral supplementation with inorganic nitrate or nitrate-containing foods exert pleiotropic, beneficial vascular effects in the setting of inflammation, endothelial dysfunction, ischemia-reperfusion injury and in pre-clinical models of PH, while traditional high-nitrate dietary patterns are associated with beneficial outcomes in hypertension, obesity and CVD. These observations highlight the potential of the microbiome in the development of novel nitrate- and nitrite-based therapeutics for PH, CVD and their risk factors.
Collapse
Affiliation(s)
- Carl D Koch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA
| | - Bruce A Freeman
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| |
Collapse
|
67
|
Mata-Pérez C, Sánchez-Calvo B, Padilla MN, Begara-Morales JC, Valderrama R, Corpas FJ, Barroso JB. Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism. Redox Biol 2017; 11:554-561. [PMID: 28104576 PMCID: PMC5241575 DOI: 10.1016/j.redox.2017.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 01/21/2023] Open
Abstract
Recent studies in animal systems have shown that NO can interact with fatty acids to generate nitro-fatty acids (NO2-FAs). They are the product of the reaction between reactive nitrogen species and unsaturated fatty acids, and are considered novel mediators of cell signaling based mainly on a proven anti-inflammatory response. Although these signaling mediators have been described widely in animal systems, NO2-FAs have scarcely been studied in plants. Preliminary data have revealed the endogenous presence of free and protein-adducted NO2-FAs in extra-virgin olive oil (EVOO), which appear to be contributing to the cardiovascular benefits associated with the Mediterranean diet. Importantly, new findings have displayed the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in the model plant Arabidopsis thaliana and the modulation of NO2-Ln levels throughout this plant's development. Furthermore, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant-defense response against different abiotic-stress conditions, mainly by inducing the chaperone network and supporting a conserved mechanism of action in both animal and plant defense processes. Thus, NO2-Ln levels significantly rose under several abiotic-stress conditions, highlighting the strong signaling role of these molecules in the plant-protection mechanism. Finally, the potential of NO2-Ln as a NO donor has recently been described both in vitro and in vivo. Jointly, this ability gives NO2-Ln the potential to act as a signaling molecule by the direct release of NO, due to its capacity to induce different changes mediated by NO or NO-related molecules such as nitration and S-nitrosylation, or by the electrophilic capacity of these molecules through a nitroalkylation mechanism. Here, we describe the current state of the art regarding the advances performed in the field of NO2-FAs in plants and their implication in plant physiology.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain
| | - María N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain.
| |
Collapse
|
68
|
Mathers AR, Carey CD, Killeen ME, Diaz-Perez JA, Salvatore SR, Schopfer FJ, Freeman BA, Falo LD. Electrophilic nitro-fatty acids suppress allergic contact dermatitis in mice. Allergy 2017; 72:656-664. [PMID: 27718238 DOI: 10.1111/all.13067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Reactions between nitric oxide (NO), nitrite (NO2-), and unsaturated fatty acids give rise to electrophilic nitro-fatty acids (NO2 -FAs), such as nitro oleic acid (OA-NO2 ) and nitro linoleic acid (LNO2 ). Endogenous electrophilic fatty acids (EFAs) mediate anti-inflammatory responses by modulating metabolic and inflammatory signal transduction reactions. Hence, there is considerable interest in employing NO2 -FAs and other EFAs for the prevention and treatment of inflammatory disorders. Thus, we sought to determine whether OA-NO2 , an exemplary nitro-fatty acid, has the capacity to inhibit cutaneous inflammation. METHODS We evaluated the effect of OA-NO2 on allergic contact dermatitis (ACD) using an established model of contact hypersensitivity in C57Bl/6 mice utilizing 2,4-dinitrofluorobenzene as the hapten. RESULTS We found that subcutaneous (SC) OA-NO2 injections administered 18 h prior to sensitization and elicitation suppresses ACD in both preventative and therapeutic models. In vivo SC OA-NO2 significantly inhibits pathways that lead to inflammatory cell infiltration and the production of inflammatory cytokines in the skin. Moreover, OA-NO2 is capable of enhancing regulatory T-cell activity. Thus, OA-NO2 treatment results in anti-inflammatory effects capable of inhibiting ACD by inducing immunosuppressive responses. CONCLUSION Overall, these results support the development of OA-NO2 as a promising therapeutic for ACD and provides new insights into the role of electrophilic fatty acids in the control of cutaneous immune responses potentially relevant to a broad range of allergic and inflammatory skin diseases.
Collapse
Affiliation(s)
- A. R. Mathers
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
- Department of Immunology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - C. D. Carey
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - M. E. Killeen
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - J. A. Diaz-Perez
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - S. R. Salvatore
- Department of Pharmacology and Chemical Biology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - F. J. Schopfer
- Department of Pharmacology and Chemical Biology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - B. A. Freeman
- Department of Pharmacology and Chemical Biology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - L. D. Falo
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
- Department of Bioengineering; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| |
Collapse
|
69
|
Verescakova H, Ambrozova G, Kubala L, Perecko T, Koudelka A, Vasicek O, Rudolph TK, Klinke A, Woodcock SR, Freeman BA, Pekarova M. Nitro-oleic acid regulates growth factor-induced differentiation of bone marrow-derived macrophages. Free Radic Biol Med 2017; 104:10-19. [PMID: 28063941 PMCID: PMC5329068 DOI: 10.1016/j.freeradbiomed.2017.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023]
Abstract
Many diseases accompanied by chronic inflammation are connected with dysregulated activation of macrophage subpopulations. Recently, we reported that nitro-fatty acids (NO2-FAs), products of metabolic and inflammatory reactions of nitric oxide and nitrite, modulate macrophage and other immune cell functions. Bone marrow cell suspensions were isolated from mice and supplemented with macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) in combination with NO2-OA for different times. RAW 264.7 macrophages were used for short-term (1-5min) experiments. We discovered that NO2-OA reduces cell numbers, cell colony formation, and proliferation of macrophages differentiated with colony-stimulating factors (CSFs), all in the absence of toxicity. In a case of GM-CSF-induced bone marrow-derived macrophages (BMMs), NO2-OA acts via downregulation of signal transducer and activator of transcription 5 and extracellular signal-regulated kinase (ERK) activation. In the case of M-CSF-induced BMMs, NO2-OA decreases activation of M-CSFR and activation of related PI3K and ERK. Additionally, NO2-OA also attenuates activation of BMMs. In aggregate, we demonstrate that NO2-OA regulates the process of macrophage differentiation and that NO2-FAs represent a promising therapeutic tool in the treatment of inflammatory pathologies linked with increased accumulation of macrophages in inflamed tissues.
Collapse
Affiliation(s)
- Hana Verescakova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia
| | - Lukas Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia
| | - Tomas Perecko
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia
| | - Adolf Koudelka
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia; Department of Animal Physiology and Immunology, Masaryk University, Brno, Czechia
| | - Ondrej Vasicek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia
| | - Tanja K Rudolph
- Heart Centre, University Hospital of Cologne, Cologne, Germany
| | - Anna Klinke
- International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia; Heart Centre, University Hospital of Cologne, Cologne, Germany
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michaela Pekarova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czechia.
| |
Collapse
|
70
|
Cui Y, Li X, Lin J, Hao Q, Li XD. Histone Ketoamide Adduction by 4-Oxo-2-nonenal Is a Reversible Posttranslational Modification Regulated by Sirt2. ACS Chem Biol 2017; 12:47-51. [PMID: 28103679 DOI: 10.1021/acschembio.6b00713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid-derived electrophiles (LDEs) directly modify proteins to modulate cellular signaling pathways in response to oxidative stress. One such LDE, 4-oxo-2-nonenal (4-ONE), has recently been found to target histones and interfere with histone assembly into nucleosomes. Unlike other LDEs that preferentially modify cysteine via nucleophilic Michael addition, 4-ONE reacts with histone lysine residues to form a new histone modification, gamma-oxononanoylation (Kgon). However, it remains unclear whether Kgon can cause irreversible damage or be regulated by enzymes "erasing" this nonenzymatic modification. Here, we report that human Sirt2 catalyzes the removal of histone Kgon. Among the tested human sirtuins, Sirt2 showed robust deacylase activity toward the Kgon-carrying histone peptides in vitro. We use alkynyl-4-ONE as a chemical reporter for Kgon to demonstrate that Sirt2 is responsible for removing histone Kgon in cells. Furthermore, we develop a ketone-reactive chemical probe to detect histones modified by endogenous 4-ONE in macrophages in response to inflammatory stimulation. Using this probe, we show Sirt2 as a deacylase able to control histone Kgon in stimulated macrophages. This study unravels a new mechanism for the regulation of LDE-derived protein posttranslational modifications, as well as a novel role played by Sirt2 as a histone Kgon deacylase in cytoprotective signaling responses.
Collapse
Affiliation(s)
- Yiwen Cui
- Department
of Chemistry and ‡School of Biomedical Sciences, The University of Hong Kong, Pokfulam
Road, Hong Kong, China
| | - Xin Li
- Department
of Chemistry and ‡School of Biomedical Sciences, The University of Hong Kong, Pokfulam
Road, Hong Kong, China
| | - Jianwei Lin
- Department
of Chemistry and ‡School of Biomedical Sciences, The University of Hong Kong, Pokfulam
Road, Hong Kong, China
| | - Quan Hao
- Department
of Chemistry and ‡School of Biomedical Sciences, The University of Hong Kong, Pokfulam
Road, Hong Kong, China
| | - Xiang David Li
- Department
of Chemistry and ‡School of Biomedical Sciences, The University of Hong Kong, Pokfulam
Road, Hong Kong, China
| |
Collapse
|
71
|
Evaluation of 10-Nitro Oleic Acid Bio-Elimination in Rats and Humans. Sci Rep 2017; 7:39900. [PMID: 28054588 PMCID: PMC5215368 DOI: 10.1038/srep39900] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
Nitrated fatty acids are endogenously present in human and animal tissues, as well as in plant-derived oils. In particular, 10-nitro oleic acid (10-NO2-OA) potently induces Nrf2-dependent antioxidant gene expression and inhibits TLR4/NF-κB signaling, thus promoting an overall cyto-protective and anti-inflammatory response. 10-NO2-OA has been extensively tested in animal models and is currently undergoing clinical evaluation in humans. Bio-elimination pathways for 10-NO2-OA were evaluated in rats (30 mg/kg·day) and in humans (0.34 mg/kg) using samples obtained from a double-blind, dose-rising clinical trial. Quantitative radiochromatographic/MS analysis indicated that the renal and fecal pathways are the main routes for 10-NO2-OA excretion in rats, and allowed the identification of 4-nitro-octanedioic acid (NO2-8:0-diCOOH) as the most abundant metabolite in rat urine. In addition, high resolution LC-MS/MS analysis revealed the presence of a novel series of urinary metabolites including ω-carboxylation and β-oxidation products, as well as N-acetylcysteine, taurine and sulfo-conjugates in both rats and humans. Overall, the findings reported herein not only provide valuable tools for the experimental evaluation of 10-NO2-OA levels in vivo, but importantly they also set the basis for monitoring its metabolism during potential clinical interventions in humans.
Collapse
|
72
|
Electrophilic Nitro-Fatty Acids: Nitric Oxide and Nitrite-Derived Metabolic and Inflammatory Signaling Mediators. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
73
|
Padilla MN, Mata-Pérez C, Melguizo M, Barroso JB. In vitro nitro-fatty acid release from Cys-NO 2-fatty acid adducts under nitro-oxidative conditions. Nitric Oxide 2016; 68:14-22. [PMID: 28030780 DOI: 10.1016/j.niox.2016.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 10/24/2022]
Abstract
Stress situations are characterized by a rise in reactive oxygen (ROS) and nitrogen (RNS) species levels. Nitro-fatty acids (NO2-FAs), or nitroalkenes, are produced by the interaction of RNS and unsaturated fatty acids, stored in cells, mostly as part of protein-adducted NO2-FAs, and are esterified in complex lipids. These molecules, which have been shown to play a pivotal role as anti-inflammatory and pro-survival players, have been widely characterized in animal systems. Recently, it has been reported that NO2-FAs play an important role in plant defense against several stress conditions. Furthermore, a significant increase in NO2-FA levels has been observed under various inflammatory and stressful conditions in both animal and plant systems. In this study, we describe the in vitro release of NO2-FAs from protein-adducts under nitro-oxidative stress conditions. The findings of this study highlight the ability of hydrogen peroxide and peroxynitrite, as representative ROS and RNS molecules induced under stress conditions, to oxidize cysteine-adducted NO2-FAs, which is followed by the release of free nitroalkenes. This release may be partly responsible for the increase in NO2-FA content observed under different stressful conditions in both animal and plant systems as well as the activation of antioxidant and anti-inflammatory properties attributed to these molecules.
Collapse
Affiliation(s)
- María N Padilla
- Biochemistry and Cell Signaling in Nitric Oxide Group, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Capilla Mata-Pérez
- Biochemistry and Cell Signaling in Nitric Oxide Group, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Manuel Melguizo
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Juan B Barroso
- Biochemistry and Cell Signaling in Nitric Oxide Group, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain.
| |
Collapse
|
74
|
Turell L, Vitturi DA, Coitiño EL, Lebrato L, Möller MN, Sagasti C, Salvatore SR, Woodcock SR, Alvarez B, Schopfer FJ. The Chemical Basis of Thiol Addition to Nitro-conjugated Linoleic Acid, a Protective Cell-signaling Lipid. J Biol Chem 2016; 292:1145-1159. [PMID: 27923813 DOI: 10.1074/jbc.m116.756288] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/23/2016] [Indexed: 11/06/2022] Open
Abstract
Nitroalkene fatty acids are formed in vivo and exert protective and anti-inflammatory effects via reversible Michael addition to thiol-containing proteins in key signaling pathways. Nitro-conjugated linoleic acid (NO2-CLA) is preferentially formed, constitutes the most abundant nitrated fatty acid in humans, and contains two carbons that could potentially react with thiols, modulating signaling actions and levels. In this work, we examined the reactions of NO2-CLA with low molecular weight thiols (glutathione, cysteine, homocysteine, cysteinylglycine, and β-mercaptoethanol) and human serum albumin. Reactions followed reversible biphasic kinetics, consistent with the presence of two electrophilic centers in NO2-CLA located on the β- and δ-carbons with respect to the nitro group. The differential reactivity was confirmed by computational modeling of the electronic structure. The rates (kon and koff) and equilibrium constants for both reactions were determined for different thiols. LC-UV-Visible and LC-MS analyses showed that the fast reaction corresponds to β-adduct formation (the kinetic product), while the slow reaction corresponds to the formation of the δ-adduct (the thermodynamic product). The pH dependence of the rate constants, the correlation between intrinsic reactivity and thiol pKa, and the absence of deuterium solvent kinetic isotope effects suggested stepwise mechanisms with thiolate attack on NO2-CLA as rate-controlling step. Computational modeling supported the mechanism and revealed additional features of the transition states, anionic intermediates, and final neutral products. Importantly, the detection of cysteine-δ-adducts in human urine provided evidence for the biological relevance of this reaction. Finally, human serum albumin was found to bind NO2-CLA both non-covalently and to form covalent adducts at Cys-34, suggesting potential modes for systemic distribution. These results provide new insights into the chemical basis of NO2-CLA signaling actions.
Collapse
Affiliation(s)
- Lucía Turell
- From the Laboratorios de Enzimología.,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo 11400, Uruguay and
| | - Darío A Vitturi
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | | | - Lourdes Lebrato
- From the Laboratorios de Enzimología.,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo 11400, Uruguay and
| | - Matías N Möller
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo 11400, Uruguay and.,Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, and
| | | | - Sonia R Salvatore
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Steven R Woodcock
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Beatriz Alvarez
- From the Laboratorios de Enzimología, .,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo 11400, Uruguay and
| | - Francisco J Schopfer
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
75
|
Chen Y, Chen Y, Shi Y, Ma C, Wang X, Li Y, Miao Y, Chen J, Li X. Antitumor activity of Annona squamosa seed oil. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:362-367. [PMID: 27566205 DOI: 10.1016/j.jep.2016.08.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/08/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Custard apple (Annona squamosa Linn.) is an edible tropical fruit, and its seeds have been used to treat "malignant sore" (cancer) and other usage as insecticide. A comparison of extraction processes, chemical composition analysis and antitumor activity of A. squamosa seed oil (ASO) were investigated. MATERIALS AND METHODS The optimal extraction parameters of ASO were established by comparing percolation, soxhlet, ultrasonic and SFE-CO2 extraction methods. The chemical composition of fatty acid and content of total annonaceous acetogenins (ACGs) of ASO was investigated by GC-MS and colorimetric assay, and anti-tumor activity of ASO was tested using H22 xenografts bearing mice. RESULTS The optimal extraction parameters of ASO were obtained as follows: using soxhlet extraction method with extraction solvent of petroleum ether, temperature of 80°C, and extraction time of 90min. Under these conditions, the yield of ASO was 22.65%. GC-MS analysis results showed that the main chemical compositions of fatty acid of ASO were palmitic acid (9.92%), linoleic acid (20.49%), oleic acid (56.50%) and stearic acid (9.14%). The total ACGs content in ASO was 41.00mg/g. ASO inhibited the growth of H22 tumor cells in mice with a maximum inhibitory rate of 53.54% by oral administration. Furthermore, it was found that ASO exerted an antitumor effect via decreasing interleukin-6 (IL-6), janus kinase (Jak) and phosphorylated signal transducers and activators of transcription (p-Stat3) expression. DISCUSSION AND CONCLUSION The results demonstrated that ASO suppressed the H22 solid tumor development may due to its main chemical constituents unsaturated fatty acid and ACGs via IL-6/Jak/Stat3 pathway. ASO may be a potential candidate for the treatment of cancer.
Collapse
Affiliation(s)
- Yong Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yayun Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yeye Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengyao Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xunan Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunjie Miao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianwei Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
76
|
Parvez S, Long MJC, Lin HY, Zhao Y, Haegele JA, Pham VN, Lee DK, Aye Y. T-REX on-demand redox targeting in live cells. Nat Protoc 2016; 11:2328-2356. [PMID: 27809314 PMCID: PMC5260244 DOI: 10.1038/nprot.2016.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This protocol describes targetable reactive electrophiles and oxidants (T-REX)-a live-cell-based tool designed to (i) interrogate the consequences of specific and time-resolved redox events, and (ii) screen for bona fide redox-sensor targets. A small-molecule toolset comprising photocaged precursors to specific reactive redox signals is constructed such that these inert precursors specifically and irreversibly tag any HaloTag-fused protein of interest (POI) in mammalian and Escherichia coli cells. Syntheses of the alkyne-functionalized endogenous reactive signal 4-hydroxynonenal (HNE(alkyne)) and the HaloTag-targetable photocaged precursor to HNE(alkyne) (also known as Ht-PreHNE or HtPHA) are described. Low-energy light prompts photo-uncaging (t1/2 <1-2 min) and target-specific modification. The targeted modification of the POI enables precisely timed and spatially controlled redox events with no off-target modification. Two independent pathways are described, along with a simple setup to functionally validate known targets or discover novel sensors. T-REX sidesteps mixed responses caused by uncontrolled whole-cell swamping with reactive signals. Modification and downstream response can be analyzed by in-gel fluorescence, proteomics, qRT-PCR, immunofluorescence, fluorescence resonance energy transfer (FRET)-based and dual-luciferase reporters, or flow cytometry assays. T-REX targeting takes 4 h from initial probe treatment. Analysis of targeted redox responses takes an additional 4-24 h, depending on the nature of the pathway and the type of readouts used.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Marcus J C Long
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Hong-Yu Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Yi Zhao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Joseph A Haegele
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Vanha N Pham
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Dustin K Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Yimon Aye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
77
|
Thinon E, Percher A, Hang HC. Bioorthogonal Chemical Reporters for Monitoring Unsaturated Fatty-Acylated Proteins. Chembiochem 2016; 17:1800-1803. [PMID: 27350074 DOI: 10.1002/cbic.201600213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/11/2022]
Abstract
Dietary unsaturated fatty acids, such as oleic acid, have been shown to be covalently incorporated into a small subset of proteins, but the generality and diversity of this protein modification has not been studied. We synthesized unsaturated fatty-acid chemical reporters and determined their protein targets in mammalian cells. The reporters can induce the formation of lipid droplets and be incorporated site-specifically onto known fatty-acylated proteins and label many proteins in mammalian cells. Quantitative proteomics analysis revealed that unsaturated fatty acids modify similar protein targets to saturated fatty acids, including several immunity-associated proteins. This demonstrates that unsaturated fatty acids can directly modify many proteins to exert their unique and often beneficial physiological effects in vivo.
Collapse
Affiliation(s)
- Emmanuelle Thinon
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.,The Crick Institute, 215 Euston Road, London, NW1 2BE, UK
| | - Avital Percher
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
78
|
Abstract
Since their introduction, statin (HMG-CoA reductase inhibitor) drugs have advanced the practice of cardiology to unparalleled levels. Even so, coronary heart disease (CHD) still remains the leading cause of death in developed countries, and is predicted to soon dominate the causes of global mortality and disability as well. The currently available non-statin drugs have had limited success in reversing the burden of heart disease, but new information suggests they have roles in sizeable subpopulations of those affected. In this review, the status of approved non-statin drugs and the significant potential of newer drugs are discussed. Several different ways to raise plasma high-density lipoprotein (HDL) cholesterol (HDL-C) levels have been proposed, but disappointments are now in large part attributed to a preoccupation with HDL quantity, rather than quality, which is more important in cardiovascular (CV) protection. Niacin, an old drug with many antiatherogenic properties, was re-evaluated in two imperfect randomized controlled trials (RCTs), and failed to demonstrate clear effectiveness or safety. Fibrates, also with an attractive antiatherosclerotic profile and classically used for hypertriglyceridemia, lacks evidence-based proof of efficacy, save for a subgroup of diabetic patients with atherogenic dyslipidemia. Omega-3 fatty acids fall into this category as well, even with an impressive epidemiological evidence base. Omega-3 research has been plagued with methodological difficulties yielding tepid, uncertain, and conflicting results; well-designed studies over longer periods of time are needed. Addition of ezetimibe to statin therapy has now been shown to decrease levels of low-density lipoprotein (LDL) cholesterol (LDL-C), accompanied by a modest decrease in the number of CV events, though without any improvement in CV mortality. Importantly, the latest data provide crucial evidence that LDL lowering is central to the management of CV disease. Of drugs that inhibit cholesteryl ester transfer protein (CETP) tested thus far, two have failed and two remain under investigation and may yet prove to be valuable therapeutic agents. Monoclonal antibodies to proprotein convertase subtilisin/kexin type 9, now in phase III trials, lower LDL-C by over 50 % and are most promising. These drugs offer new ability to lower LDL-C in patients in whom statin drug use is, for one reason or another, limited or insufficient. Mipomersen and lomitapide have been approved for use in patients with familial hypercholesterolemia, a more common disease than appreciated. Anti-inflammatory drugs are finally receiving due attention in trials to elucidate potential clinical usefulness. All told, even though statins remain the standard of care, non-statin drugs are poised to assume a new, vital role in managing dyslipidemia.
Collapse
|
79
|
Long MC, Poganik JR, Aye Y. On-Demand Targeting: Investigating Biology with Proximity-Directed Chemistry. J Am Chem Soc 2016; 138:3610-22. [PMID: 26907082 PMCID: PMC4805449 DOI: 10.1021/jacs.5b12608] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 11/28/2022]
Abstract
Proximity enhancement is a central chemical tenet underpinning an exciting suite of small-molecule toolsets that have allowed us to unravel many biological complexities. The leitmotif of this opus is "tethering"-a strategy in which a multifunctional small molecule serves as a template to bring proteins/biomolecules together. Scaffolding approaches have been powerfully applied to control diverse biological outcomes such as protein-protein association, protein stability, activity, and improve imaging capabilities. A new twist on this strategy has recently appeared, in which the small-molecule probe is engineered to unleash controlled amounts of reactive chemical signals within the microenvironment of a target protein. Modification of a specific target elicits a precisely timed and spatially controlled gain-of-function (or dominant loss-of-function) signaling response. Presented herein is a unique personal outlook conceptualizing the powerful proximity-enhanced chemical biology toolsets into two paradigms: "multifunctional scaffolding" versus "on-demand targeting". By addressing the latest advances and challenges in the established yet constantly evolving multifunctional scaffolding strategies as well as in the emerging on-demand precision targeting (and related) systems, this Perspective is aimed at choosing when it is best to employ each of the two strategies, with an emphasis toward further promoting novel applications and discoveries stemming from these innovative chemical biology platforms.
Collapse
Affiliation(s)
- Marcus
J. C. Long
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Jesse R. Poganik
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Yimon Aye
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
- Department
of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
80
|
Wang S, Xiang N, Yang L, Zhu C, Zhu X, Wang L, Gao P, Xi Q, Zhang Y, Shu G, Jiang Q. Linoleic acid and stearic acid elicit opposite effects on AgRP expression and secretion via TLR4-dependent signaling pathways in immortalized hypothalamic N38 cells. Biochem Biophys Res Commun 2016; 471:566-71. [PMID: 26879142 DOI: 10.1016/j.bbrc.2016.02.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 12/28/2022]
|
81
|
Villacorta L, Gao Z, Schopfer FJ, Freeman BA, Chen YE. Nitro-fatty acids in cardiovascular regulation and diseases: characteristics and molecular mechanisms. Front Biosci (Landmark Ed) 2016; 21:873-89. [PMID: 26709810 DOI: 10.2741/4425] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electrophilic nitro-fatty acids (NO2-FAs) are endogenously formed by redox reactions of nitric oxide ((.)NO)- and nitrite ((.)NO2)- derived nitrogen dioxide with unsaturated fatty acids. Nitration preferentially occurs on polyunsaturated fatty acids with conjugated dienes under physiological or pathophysiological conditions such as during digestion, metabolism and as adaptive inflammatory processes. Nitro-fatty acids are present in free and esterified forms achieving broad biodistribution in humans and experimental models. Structural, functional and biological characterization of NO2-FAs has revealed clinically relevant protection from inflammatory injury in a number of cardiovascular, renal and metabolic experimental models. NO2-FAs are engaged in posttranslational modifications (PTMs) of a selective redox sensitive pool of proteins and regulate key adaptive signaling pathways involved in cellular homeostasis and inflammatory response. Here, we review and update the biosynthesis, metabolism and signaling actions of NO2-FAs, highlighting their diverse protective roles relevant to the cardiovascular system.
Collapse
Affiliation(s)
- Luis Villacorta
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, North Campus Research Complex 26, 2800 Plymouth Road, Ann Arbor, MI 48109,,
| | - Zhen Gao
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, North Campus Research Complex 26, 2800 Plymouth Road, Ann Arbor, MI 48109
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, E1343 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15213
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, E1343 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15213
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, North Campus Research Complex 26, 2800 Plymouth Road, Ann Arbor, MI 48109
| |
Collapse
|
82
|
Lynn DA, Dalton HM, Sowa JN, Wang MC, Soukas AA, Curran SP. Omega-3 and -6 fatty acids allocate somatic and germline lipids to ensure fitness during nutrient and oxidative stress in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2015; 112:15378-83. [PMID: 26621724 PMCID: PMC4687584 DOI: 10.1073/pnas.1514012112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Animals in nature are continually challenged by periods of feast and famine as resources inevitably fluctuate, and must allocate somatic reserves for reproduction to abate evolutionary pressures. We identify an age-dependent lipid homeostasis pathway in Caenorhabditis elegans that regulates the mobilization of lipids from the soma to the germline, which supports fecundity but at the cost of survival in nutrient-poor and oxidative stress environments. This trade-off is responsive to the levels of dietary carbohydrates and organismal oleic acid and is coupled to activation of the cytoprotective transcription factor SKN-1 in both laboratory-derived and natural isolates of C. elegans. The homeostatic balance of lipid stores between the somatic and germ cells is mediated by arachidonic acid (omega-6) and eicosapentaenoic acid (omega-3) precursors of eicosanoid signaling molecules. Our results describe a mechanism for resource reallocation within intact animals that influences reproductive fitness at the cost of somatic resilience.
Collapse
Affiliation(s)
- Dana A Lynn
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Hans M Dalton
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Jessica N Sowa
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Meng C Wang
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Alexander A Soukas
- Center for Human Genetic Research and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Sean P Curran
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089;
| |
Collapse
|
83
|
Chen Y, Qin W, Wang C. Chemoproteomic profiling of protein modifications by lipid-derived electrophiles. Curr Opin Chem Biol 2015; 30:37-45. [PMID: 26625013 DOI: 10.1016/j.cbpa.2015.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/21/2023]
Abstract
Lipid-derived electrophiles (LDEs) are a group of endogenous reactive metabolites generated as products of lipid peroxidation when cells are under oxidative stress. LDEs are able to covalently modify nucleophilic residues in proteins to alter their structures and activities, either resulting in irreversible functional damage or triggering aberrant signaling pathways. Traditional biochemical methods have revealed individual protein targets modified by LDEs, however, deciphering the toxicity and/or signaling roles of LDEs requires systematic studies of these modifications in a high-throughput fashion. Here we survey recent progress in developing chemical proteomic strategies to globally profile protein-LDE interactions directly from complex proteomes. These powerful chemoproteomic methods have yielded a rich inventory of proteins and residue sites that are sensitive to LDE modification, serving as valuable resources to investigate mechanisms of their cellular toxicity at the molecular level.
Collapse
Affiliation(s)
- Ying Chen
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering and Peking University, Beijing 100871, China
| | - Wei Qin
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chu Wang
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering and Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
84
|
Assies J, Mocking RJT, Lok A, Koeter MWJ, Bockting CLH, Visser I, Pouwer F, Ruhé HG, Schene AH. Erythrocyte fatty acid profiles and plasma homocysteine, folate and vitamin B6 and B12 in recurrent depression: Implications for co-morbidity with cardiovascular disease. Psychiatry Res 2015; 229:992-8. [PMID: 26260568 DOI: 10.1016/j.psychres.2015.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/23/2015] [Accepted: 06/01/2015] [Indexed: 01/02/2023]
Abstract
Oxidative stress induced interactions between fatty acid (FA) and one-carbon metabolism may be involved in co-occurrence of major depressive disorder (MDD) and cardiovascular disease (CVD), which have been scarcely studied together. In 137 recurrent MDD-patients vs. 73 age- and sex-matched healthy controls, we simultaneously measured key components of one-carbon metabolism in plasma (homocysteine, folate, vitamins B6 and B12), and of FA-metabolism in red blood cell membranes [main polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA) and structural FA-indices (chain length, unsaturation, peroxidation)]. Results show significant positive associations of folate with EPA, DHA, and the peroxidation index, which were similar in patients and controls. After correction for confounders, these associations were lost except for EPA. Associations between B-vitamins and FA-parameters were non-significant, but also similar in patients and controls. Homocysteine and DHA were significantly less negatively associated in patients than in controls. In conclusion, these data indicate similarities but also differences in associations between parameters of one-carbon and FA-metabolism in recurrent MDD patients vs. controls, which may reflect differences in handling of oxidative stress. Further research should test the consequences of these differences, particularly the premature development of CVD in MDD.
Collapse
Affiliation(s)
- Johanna Assies
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Roel J T Mocking
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Lok
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Arq Psychotrauma Expert Group, Diemen, The Netherlands
| | - Maarten W J Koeter
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudi L H Bockting
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands; Department of Clinical and Health Psychology, University of Utrecht, Utrecht, The Netherlands
| | - Ieke Visser
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - François Pouwer
- Department of Medical and Clinical Psychology, Center of Research on Psychology in Somatic Diseases (CoRPS), Tilburg University, The Netherlands
| | - Henricus G Ruhé
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; University of Groningen, University Center for Psychiatry UMCG, Program for Mood and Anxiety Disorders, The Netherlands
| | - Aart H Schene
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
85
|
Lundberg JO, Gladwin MT, Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 2015; 14:623-41. [PMID: 26265312 DOI: 10.1038/nrd4623] [Citation(s) in RCA: 391] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a key signalling molecule in the cardiovascular, immune and central nervous systems, and crucial steps in the regulation of NO bioavailability in health and disease are well characterized. Although early approaches to therapeutically modulate NO bioavailability failed in clinical trials, an enhanced understanding of fundamental subcellular signalling has enabled a range of novel therapeutic approaches to be identified. These include the identification of: new pathways for enhancing NO synthase activity; ways to amplify the nitrate-nitrite-NO pathway; novel classes of NO-donating drugs; drugs that limit NO metabolism through effects on reactive oxygen species; and ways to modulate downstream phosphodiesterases and soluble guanylyl cyclases. In this Review, we discuss these latest developments, with a focus on cardiovascular disease.
Collapse
Affiliation(s)
- Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Mark T Gladwin
- Vascular Medicine Institute, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pennsylvania 15213, USA
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| |
Collapse
|
86
|
Yang X, Haghiac M, Glazebrook P, Minium J, Catalano PM, Hauguel-de Mouzon S. Saturated fatty acids enhance TLR4 immune pathways in human trophoblasts. Hum Reprod 2015. [PMID: 26202921 DOI: 10.1093/humrep/dev173] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION What are the effects of fatty acids on placental inflammatory cytokine with respect to toll-like receptor-4/nuclear factor-kappa B (TLR4/NF-kB)? SUMMARY ANSWER Exogenous fatty acids induce a pro-inflammatory cytokine response in human placental cells in vitro via activation of TLR4 signaling pathways. WHAT IS KNOWN ALREADY The placenta is exposed to changes in circulating maternal fatty acid concentrations throughout pregnancy. Fatty acids are master regulators of innate immune pathways through recruitment of toll-like receptors and activation of cytokine synthesis. STUDY DESIGN, SIZE, DURATION Trophoblast cells isolated from 14 normal term human placentas were incubated with long chain fatty acids (FA) of different carbon length and degree of saturation. The expression and secretion of interleukin-6 (IL-6), IL-8 and tumor necrosis factor-alpha (TNF-α) were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Antibodies against TLR4 ligand binding domain, downstream signaling and anti-p65 NFkB-inhibitor were used to characterize the pathways of FA action. PARTICIPANTS/MATERIALS, SETTING, METHODS General approach used primary human term trophoblast cell culture. Methods and end-points used real-time quantitative PCR, cytokine measurements, immunohistochemistry, western blots. MAIN RESULTS AND THE ROLE OF CHANCE The long chain saturated fatty acids, stearic and palmitic (PA), stimulated the synthesis as well as the release of TNF-α, IL-6 and IL-8 by trophoblast cells (2- to 6-fold, P < 0.001). In contrast, the unsaturated (palmitoleic, oleic, linoleic) acids did not modify cytokine expression significantly. Palmitate-induced inflammatory effects were mediated via TLR4 activation, NF-kB phosphorylation and nuclear translocation. LIMITATIONS, REASONS FOR CAUTION TNF-α protein level was close to the limit of detection in the culture medium even when cells were cultured with PA. WIDER IMPLICATIONS OF THE FINDINGS These mechanisms open the way to a better understanding of how changes in maternal lipid homeostasis may regulate placental inflammatory status. STUDY FUNDING/COMPETING INTERESTS X.Y. was recipient of fellowship award from West China Second University Hospital, Sichuan University (NIH HD 22965-19). The authors have nothing else to disclose. TRIAL REGISTRATION NUMBER None.
Collapse
Affiliation(s)
- Xiaohua Yang
- Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| | - Maricela Haghiac
- Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| | - Patricia Glazebrook
- Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| | - Judi Minium
- Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| | - Patrick M Catalano
- Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| | - Sylvie Hauguel-de Mouzon
- Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| |
Collapse
|
87
|
Convergence of biological nitration and nitrosation via symmetrical nitrous anhydride. Nat Chem Biol 2015; 11:504-10. [PMID: 26006011 PMCID: PMC4472503 DOI: 10.1038/nchembio.1814] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/06/2015] [Indexed: 02/06/2023]
Abstract
Current perspective holds that the generation of secondary signaling mediators from nitrite (NO2−) requires acidification to nitrous acid (HNO2) or metal catalysis. Herein, the use of stable isotope-labeled NO2− and LC-MS/MS analysis of products revealed that NO2− also participates in fatty acid nitration and thiol S-nitrosation at neutral pH. These reactions occur in the absence of metal centers and are stimulated by nitric oxide (•NO) autoxidation via symmetrical dinitrogen trioxide (nitrous anhydride, symN2O3) formation. While theoretical models have predicted physiological symN2O3 formation, its generation is now demonstrated in aqueous reaction systems, cell models and in viv, with the concerted reactions of •NO and NO2− shown to be critical for symN2O3 formation. These results reveal new mechanisms underlying the NO2− propagation of •NO signaling and the regulation of both biomolecule function and signaling network activity via NO2−-dependent nitrosation and nitration reactions.
Collapse
|
88
|
Abstract
Inflammation is believed to play a central role in many of the chronic diseases that characterize modern society. In the past decade, our understanding of how dietary fats affect our immune system and subsequently our inflammatory status has grown considerably. There are compelling data showing that high-fat meals promote endotoxin [e.g., lipopolysaccharide (LPS)] translocation into the bloodstream, stimulating innate immune cells and leading to a transient postprandial inflammatory response. The nature of this effect is influenced by the amount and type of fat consumed. The role of various dietary constituents, including fats, on gut microflora and subsequent health outcomes in the host is another exciting and novel area of inquiry. The impact of specific fatty acids on inflammation may be central to how dietary fats affect health. Three key fatty acid-inflammation interactions are briefly described. First, the evidence suggests that saturated fatty acids induce inflammation in part by mimicking the actions of LPS. Second, the often-repeated claim that dietary linoleic acid promotes inflammation was not supported in a recent systematic review of the evidence. Third, an explanation is offered for why omega-3 (n-3) polyunsaturated fatty acids are so much less anti-inflammatory in humans than in mice. The article closes with a cautionary tale from the genomic literature that illustrates why extrapolating the results from inflammation studies in mice to humans is problematic.
Collapse
Affiliation(s)
- Kevin L Fritsche
- Animal Sciences Division, Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
89
|
Snyder NW, Golin-Bisello F, Gao Y, Blair IA, Freeman BA, Wendell SG. 15-Oxoeicosatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways. Chem Biol Interact 2014; 234:144-53. [PMID: 25450232 DOI: 10.1016/j.cbi.2014.10.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023]
Abstract
Bioactive lipids govern cellular homeostasis and pathogenic inflammatory processes. Current dogma holds that bioactive lipids, such as prostaglandins and lipoxins, are inactivated by 15-hydroxyprostaglandin dehydrogenase (15PGDH). In contrast, the present results reveal that catabolic "inactivation" of hydroxylated polyunsaturated fatty acids (PUFAs) yields electrophilic α,β-unsaturated ketone derivatives. These endogenously produced species are chemically reactive signaling mediators that induce tissue protective events. Electrophilic fatty acids diversify the proteome through post-translational alkylation of nucleophilic cysteines in key transcriptional regulatory proteins and enzymes that govern cellular metabolic and inflammatory homeostasis. 15PGDH regulates these processes as it is responsible for the formation of numerous electrophilic fatty acids including the arachidonic acid metabolite, 15-oxoeicosatetraenoic acid (15-oxoETE). Herein, the role of 15-oxoETE in regulating signaling responses is reported. In cell cultures, 15-oxoETE activates Nrf2-regulated antioxidant responses (AR) and inhibits NF-κB-mediated pro-inflammatory responses via IKKβ inhibition. Inhibition of glutathione S-transferases using ethacrynic acid incrementally increased the signaling capacity of 15-oxoETE by decreasing 15-oxoETE-GSH adduct formation. This work demonstrates that 15PGDH plays a role in the regulation of cell and tissue homeostasis via the production of electrophilic fatty acid signaling mediators.
Collapse
Affiliation(s)
- Nathaniel W Snyder
- University of Pennsylvania, Department of Pharmacology and Center of Excellence in Environmental Toxicology, Philadelphia, PA 19104, USA
| | - Franca Golin-Bisello
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, USA
| | - Yang Gao
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, USA
| | - Ian A Blair
- University of Pennsylvania, Department of Pharmacology and Center of Excellence in Environmental Toxicology, Philadelphia, PA 19104, USA
| | - Bruce A Freeman
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, USA
| | - Stacy Gelhaus Wendell
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, USA.
| |
Collapse
|
90
|
Zhang X, Beckel JM, Daugherty SL, Wang T, Woodcock SR, Freeman BA, de Groat WC. Activation of TRPC channels contributes to OA-NO2-induced responses in guinea-pig dorsal root ganglion neurons. J Physiol 2014; 592:4297-312. [PMID: 25128576 DOI: 10.1113/jphysiol.2014.271783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Effects of nitro-oleic acid (OA-NO2) on TRP channels were examined in guinea-pig dissociated dorsal root ganglia (DRG) neurons using calcium imaging and patch clamp techniques. OA-NO2 increased intracellular Ca(2+) in 60-80% DRG neurons. 1-Oleoyl-2acetyl-sn-glycerol (OAG), a TRPC agonist, elicited responses in 36% of OA-NO2-sensitive neurons while capsaicin (TRPV1 agonist) or allyl-isothiocyanate (AITC, TRPA1 agonist) elicited responses in only 16% and 10%, respectively, of these neurons. A TRPV1 antagonist (diarylpiperazine, 5 μm) in combination with a TRPA1 antagonist (HC-030031, 30 μm) did not change the amplitude of the Ca(2+) transients or percentage of neurons responding to OA-NO2; however, a reducing agent DTT (50 mm) or La(3+) (50 μm) completely abolished OA-NO2 responses. OA-NO2 also induced a transient inward current associated with a membrane depolarization followed by a prolonged outward current and hyperpolarization in 80% of neurons. The reversal potentials of inward and outward currents were approximately -20 mV and -60 mV, respectively. Inward current was reduced when extracellular Na(+) was absent, but unchanged by niflumic acid (100 μm), a Cl(-) channel blocker. Outward current was abolished in the absence of extracellular Ca(2+) or a combination of two Ca(2+)-activated K(+) channel blockers (iberiotoxin, 100 nm and apamin, 1 μm). BTP2 (1 or 10 μm), a broad spectrum TRPC antagonist, or La(3+) (50 μm) completely abolished OA-NO2 currents. RT-PCR performed on mRNA extracted from DRGs revealed the expression of all seven subtypes of TRPC channels. These results support the hypothesis that OA-NO2 activates TRPC channels other than the TRPV1 and TRPA1 channels already known to be targets in rat and mouse sensory neurons and challenge the prevailing view that electrophilic compounds act specifically on TRPA1 or TRPV1 channels. The modulation of sensory neuron excitability via actions on multiple TRP channels can contribute to the anti-inflammatory effect of OA-NO2.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Jonathan M Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stephanie L Daugherty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ting Wang
- Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stephen R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
91
|
Schopfer FJ, Freeman BA, Khoo NKH. Nitro-oleic acid and epoxyoleic acid are not altered in obesity and type 2 diabetes: reply. Cardiovasc Res 2014; 102:518. [PMID: 24562767 DOI: 10.1093/cvr/cvu042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, BST E1314, Pittsburgh, PA 15261, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, BST E1314, Pittsburgh, PA 15261, USA
| | - Nicholas K H Khoo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, BST E1314, Pittsburgh, PA 15261, USA
| |
Collapse
|