51
|
Mills MK, Ruder MG, Nayduch D, Michel K, Drolet BS. Dynamics of epizootic hemorrhagic disease virus infection within the vector, Culicoides sonorensis (Diptera: Ceratopogonidae). PLoS One 2017; 12:e0188865. [PMID: 29176848 PMCID: PMC5703522 DOI: 10.1371/journal.pone.0188865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022] Open
Abstract
Culicoides sonorensis biting midges are confirmed vectors of epizootic hemorrhagic disease virus (EHDV), which causes mortality in white-tailed deer and ruminant populations. Currently, of the seven EHDV serotypes, only 1, 2, and 6 are detected in the USA, and very few studies have focused on the infection time course of these serotypes within the midge. The objective of this current research was to characterize EHDV-2 infection within the midge by measuring infection prevalence, virus dissemination, and viral load over the course of infection. Midges were fed a blood meal containing 106.9 PFU/ml EHDV-2, collected every 12 h from 0-2 days post feeding (dpf) and daily from 3-10 dpf, and cohorts of 20 C. sonorensis were processed using techniques that assessed EHDV infection and dissemination. Cytopathic effect assays and quantitative (q)PCR were used to determine infection prevalence, revealing a 50% infection rate by 10 dpf using both methods. Using immunohistochemistry, EHDV-2 infection was detectable at 5 dpf, and shown to disseminate from the midgut to other tissues, including fat body, eyes, and salivary glands by 5 dpf. Stain intensity increased from 5-8 dpf, indicating replication of EHDV-2 in secondary infection sites after dissemination. This finding is also supported by trends in viral load over time as determined by plaque assays and qPCR. An increase in titer between 4-5 dpf correlated with viral replication in the midgut as seen with staining at day 5, while the subsequent gradual increase in viral load from 8-10 dpf suggested viral replication in midges with disseminated infection. Overall, the data presented herein suggest that EHDV-2 disseminates via the hemolymph to secondary infection sites throughout the midge and demonstrate a high potential for transmission at five days at 25°C after an infective blood-meal.
Collapse
Affiliation(s)
- Mary K. Mills
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, United States of America
| | - Dana Nayduch
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit, Manhattan, Kansas, United States of America
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Barbara S. Drolet
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit, Manhattan, Kansas, United States of America
| |
Collapse
|
52
|
Ateka E, Alicai T, Ndunguru J, Tairo F, Sseruwagi P, Kiarie S, Makori T, Kehoe MA, Boykin LM. Unusual occurrence of a DAG motif in the Ipomovirus Cassava brown streak virus and implications for its vector transmission. PLoS One 2017; 12:e0187883. [PMID: 29155849 PMCID: PMC5695790 DOI: 10.1371/journal.pone.0187883] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/28/2017] [Indexed: 11/19/2022] Open
Abstract
Cassava is the main staple food for over 800 million people globally. Its production in eastern Africa is being constrained by two devastating Ipomoviruses that cause cassava brown streak disease (CBSD); Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), with up to 100% yield loss for smallholder farmers in the region. To date, vector studies have not resulted in reproducible and highly efficient transmission of CBSV and UCBSV. Most virus transmission studies have used Bemisia tabaci (whitefly), but a maximum of 41% U/CBSV transmission efficiency has been documented for this vector. With the advent of next generation sequencing, researchers are generating whole genome sequences for both CBSV and UCBSV from throughout eastern Africa. Our initial goal for this study was to characterize U/CBSV whole genomes from CBSD symptomatic cassava plants sampled in Kenya. We have generated 8 new whole genomes (3 CBSV and 5 UCBSV) from Kenya, and in the process of analyzing these genomes together with 26 previously published sequences, we uncovered the aphid transmission associated DAG motif within coat protein genes of all CBSV whole genomes at amino acid positions 52-54, but not in UCBSV. Upon further investigation, the DAG motif was also found at the same positions in two other Ipomoviruses: Squash vein yellowing virus (SqVYV), Coccinia mottle virus (CocMoV). Until this study, the highly-conserved DAG motif, which is associated with aphid transmission was only noticed once, in SqVYV but discounted as being of minimal importance. This study represents the first comprehensive look at Ipomovirus genomes to determine the extent of DAG motif presence and significance for vector relations. The presence of this motif suggests that aphids could potentially be a vector of CBSV, SqVYV and CocMov. Further transmission and ipomoviral protein evolutionary studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Titus Alicai
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute (MARI), Dar es Salaam, Tanzania
| | - Fred Tairo
- Mikocheni Agricultural Research Institute (MARI), Dar es Salaam, Tanzania
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute (MARI), Dar es Salaam, Tanzania
| | - Samuel Kiarie
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Timothy Makori
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Monica A. Kehoe
- Department of Primary Industries and Regional Development, DPIRD Diagnostic Laboratory Services, South Perth, WA, Australia
| | - Laura M. Boykin
- School of Molecular Sciences, University of Western Australia, Crawley, Perth, WA, Australia
| |
Collapse
|
53
|
Shah J, Walling L. Editorial: Advances in Plant-Hemipteran Interactions. FRONTIERS IN PLANT SCIENCE 2017; 8:1652. [PMID: 29033959 PMCID: PMC5627026 DOI: 10.3389/fpls.2017.01652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North TexasDenton, TX, United States
| | - Linda Walling
- Department of Botany and Plant Sciences, University of California, RiversideRiverside, CA, United States
| |
Collapse
|
54
|
Effect of elevated CO 2 and O 3 on phytohormone-mediated plant resistance to vector insects and insect-borne plant viruses. SCIENCE CHINA-LIFE SCIENCES 2017; 60:816-825. [PMID: 28785951 DOI: 10.1007/s11427-017-9126-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Climatic variations are becoming important limiting factors for agriculture productivity, as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pests. Elevated CO2 and O3 are two important climatic factors that have been widely studied before. Elevated CO2 or O3 alters the host plant physiology and affects the vector insects and plant viruses via bottom-up effects of the host plants. Many studies have shown that elevated CO2 or O3 decreases the plant nitrogen content, which modulates the characteristics of vector insects. Recent evidence also reveals that hormone-dependent signaling pathways play a critical role in regulating the response of insects and plant viruses to elevated CO2 or O3. In the current review, we describe how elevated CO2 or O3 affects the vector insects and plant viruses by altering the SA and JA signaling pathways. We also discuss how changes in the feeding behavior of vector insects or the occurrence of plant viruses affects the interactions between vector insects and plant viruses under elevated CO2 or O3. We suggest that new insights into the upstream network that regulates hormone signaling and top-down effects of natural enemies would provide a comprehensive understanding of the complex interactions taking place under elevated CO2 or O3.
Collapse
|
55
|
Drought reduces transmission of Turnip yellows virus, an insect-vectored circulative virus. Virus Res 2017; 241:131-136. [PMID: 28756104 DOI: 10.1016/j.virusres.2017.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/04/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022]
Abstract
Application of a severe water deficit to Arabidopsis thaliana plants infected with a mutant of Turnip yellows virus (TuYV, Family Luteoviridae) triggers a significant alteration of several plant phenology traits and strongly reduces the transmission efficiency of the virus by aphids. Although virus accumulation in water-stressed plants was similar to that in plants grown under well-watered conditions, virus accumulation was reduced in aphids fed on plants under water deficit. These results suggest alteration of the aphid feeding behavior on plants under water deficit.
Collapse
|
56
|
Wang W, Zhao W, Li J, Luo L, Kang L, Cui F. The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication. eLife 2017; 6. [PMID: 28716183 PMCID: PMC5515582 DOI: 10.7554/elife.26591] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/17/2017] [Indexed: 12/21/2022] Open
Abstract
No evidence has shown whether insect-borne viruses manipulate the c-Jun N-terminal kinase (JNK) signaling pathway of vector insects. Using a system comprising the plant virus Rice stripe virus (RSV) and its vector insect, the small brown planthopper, we have studied the response of the vector insect’s JNK pathway to plant virus infection. We found that RSV increased the level of Tumor Necrosis Factor-α and decreased the level of G protein Pathway Suppressor 2 (GPS2) in the insect vector. The virus capsid protein competitively bound GPS2 to release it from inhibiting the JNK activation machinery. We confirmed that JNK activation promoted RSV replication in the vector, whereas JNK inhibition caused a significant reduction in virus production and thus delayed the disease incidence of plants. These findings suggest that inhibition of insect vector JNK may be a useful strategy for controling the transmission of plant viruses. DOI:http://dx.doi.org/10.7554/eLife.26591.001 There are over a thousand different viruses that infect plants. Many plant viruses are transmitted by insects that feed on the plants, much as mosquitoes spread diseases between people when feeding on blood. Often the plant virus can replicate inside the cells of the insect. However, unlike in the plant hosts, the viruses do not seem to cause disease in the insects that carry them. Rice stripe disease is a major viral disease of rice that can reduce the crop’s yield by more than 50% in some areas. An insect called the small brown planthopper spreads the rice stripe virus between plants. Like other animals, insects have an immune system that protects them against viral infections. This means that the rice stripe virus must manipulate the planthopper’s immune system in order to replicate inside the insect’s cells. It was not clear how the virus did this, but answering this question could provide important clues to help scientists develop new ways to protect crops against plant viruses. Wang, Zhao, Li et al. now show that rice stripe virus manipulates its insect host to produce more of a protein called TNF-α and less of a protein called GPS2. Moreover, a protein that makes up part of the virus also binds to GPS2. This stops GPS2 from inhibiting a conserved signaling pathway that involves an enzyme known as JNK. When the JNK signaling pathway becomes active, replication of the rice stripe virus inside the insect is accelerated. Further experiments showed that inhibiting JNK made it harder for the virus to replicate, which meant that it took longer for the disease to develop in rice plants. These findings uncover a host of proteins that could be manipulated in insects to benefit rice agriculture. Such alterations could possibly be achieved through breeding or otherwise genetically modifying the insects to make them less able to carry viruses and then releasing them into wild populations. Alternatively, if further studies can identify chemicals that cause insect cells to alter the levels of the proteins, such chemicals could be administered to farmland to reduce the spread of viruses. DOI:http://dx.doi.org/10.7554/eLife.26591.002
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lan Luo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
57
|
Chang KC, Chang LT, Huang YW, Lai YC, Lee CW, Liao JT, Lin NS, Hsu YH, Hu CC. Transmission of Bamboo mosaic virus in Bamboos Mediated by Insects in the Order Diptera. Front Microbiol 2017; 8:870. [PMID: 28559888 PMCID: PMC5432563 DOI: 10.3389/fmicb.2017.00870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/28/2017] [Indexed: 11/13/2022] Open
Abstract
Bamboo mosaic virus (BaMV), a member of the genus Potexvirus, is the major threat to bamboo cultivation. Similar to most potexviruses, the transmission of BaMV by insect vectors has not been documented previously. However, field observations of BaMV disease incidences suggested that insect vectors might be involved. In this study, we aimed to investigate the possibility of insect-mediated transmission of BaMV among bamboo clumps, in order to provide further insights into the infection cycles of BaMV for the development of effective disease management measures. From the major insects collected from infected bamboo plantations, BaMV genomic RNAs were detected inside the bodies of two dipteran insects, Gastrozona fasciventris and Atherigona orientalis, but not in thrips (Scirtothrips dorsalis). Artificial feeding assays using green fluorescent protein-tagged BaMV virions revealed that BaMV could enter the digestive systems and survive in the regurgitant and excretion of the dipterans. BaMV RNA could be retained in the dipterans for up to 4 weeks. Insect-mediated transmission assays indicated that both dipterans could transmit BaMV to bamboo seedlings through artificially created wounds with low infection efficiency (14 - 41%), suggesting that the dipterans may mediate the transmission in a mechanical-like manner. These results demonstrated that dipterans with sponge-like mouthparts may also serve as vectors for at least one potexvirus, BaMV, among bamboo plants. The finding suggested that dipteran insect control should be integrated into the disease management measures against BaMV infections.
Collapse
Affiliation(s)
- Kuo-Chen Chang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Ling-Teng Chang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Yi-Chin Lai
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Chin-Wei Lee
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Jia-Teh Liao
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Na-Sheng Lin
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan.,Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
58
|
Filamentous Structures Induced by a Phytoreovirus Mediate Viral Release from Salivary Glands in Its Insect Vector. J Virol 2017; 91:JVI.00265-17. [PMID: 28381575 DOI: 10.1128/jvi.00265-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
Numerous viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. These viruses circulate in the vector body, enter the salivary gland, and then are released into the apical plasmalemma-lined cavities, where saliva is stored. The cavity plasmalemma of vector salivary glands thus represents the last membrane barrier for viral transmission. Here, we report a novel mechanism used by a persistent virus to overcome this essential barrier. We observed that the infection by rice gall dwarf virus (RGDV), a species of the genus Phytoreovirus in the family Reoviridae, induced the formation of virus-associated filaments constructed by viral nonstructural protein Pns11 within the salivary glands of its leafhopper vector, Recilia dorsalis Such filaments attached to actin-based apical plasmalemma and induced an exocytosis-like process for viral release into vector salivary gland cavities, through a direct interaction of Pns11 of RGDV and actin of R. dorsalis Failure of virus-induced filaments assembly by RNA interference with synthesized double-stranded RNA targeting the Pns11 gene inhibited the dissemination of RGDV into salivary cavities, preventing viral transmission by R. dorsalis For the first time, we show that a virus can exploit virus-induced inclusion as a vehicle to pass through the apical plasmalemma into vector salivary gland cavities, thus overcoming the last membrane barrier for viral transmission by insect vectors.IMPORTANCE Understanding how persistent viruses overcome multiple tissue and membrane barriers within the insect vectors until final transmission is the key for viral disease control. The apical plasmalemma of the cavities where saliva is stored in the salivary glands is the last barrier for viral transmission by insect vectors; however, the mechanism is still poorly understood. Here we show that a virus has evolved to exploit virus-induced filaments to perform an exocytosis-like process that enables viral passage through the apical plasmalemma into salivary cavities. This mechanism could be extensively exploited by other persistent viruses to overcome salivary gland release barriers in insect vectors, opening new perspectives for viral control.
Collapse
|
59
|
Dietzgen RG, Mann KS, Johnson KN. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions. Viruses 2016; 8:E303. [PMID: 27834855 PMCID: PMC5127017 DOI: 10.3390/v8110303] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia QLD 4072, Australia.
| | - Krin S Mann
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada.
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
60
|
Abstract
Multipartite viruses have one of the most puzzling genetic organizations found in living organisms. These viruses have several genome segments, each containing only a part of the genetic information, and each individually encapsidated into a separate virus particle. While countless studies on molecular and cellular mechanisms of the infection cycle of multipartite viruses are available, just as for other virus types, very seldom is their lifestyle questioned at the viral system level. Moreover, the rare available “system” studies are purely theoretical, and their predictions on the putative benefit/cost balance of this peculiar genetic organization have not received experimental support. In light of ongoing progresses in general virology, we here challenge the current hypotheses explaining the evolutionary success of multipartite viruses and emphasize their shortcomings. We also discuss alternative ideas and research avenues to be explored in the future in order to solve the long-standing mystery of how viral systems composed of interdependent but physically separated information units can actually be functional.
Collapse
|
61
|
Bosquee E, Yin R, Bragard C, Yong L, Chen J, Francis F. Transmission Efficiency of Cucumber Mosaic Virus by Myzus
persicae According to Virus Strain and Aphid Clone from China. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajppaj.2016.61.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
62
|
Perilla-Henao LM, Casteel CL. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1163. [PMID: 27555855 PMCID: PMC4977473 DOI: 10.3389/fpls.2016.01163] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant-virus-vector interactions has flourished in recent years, plant-bacteria-vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant-bacteria-vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and 'Candidatus Phytoplasma spp.'. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector-plant-bacteria interactions.
Collapse
Affiliation(s)
| | - Clare L. Casteel
- Department of Plant Pathology, University of California at Davis, Davis, CAUSA
| |
Collapse
|
63
|
Abstract
Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses.
Collapse
Affiliation(s)
- Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China;
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China;
| |
Collapse
|
64
|
Blanc S, Michalakis Y. Manipulation of hosts and vectors by plant viruses and impact of the environment. CURRENT OPINION IN INSECT SCIENCE 2016; 16:36-43. [PMID: 27720048 DOI: 10.1016/j.cois.2016.05.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 05/15/2023]
Abstract
The effect of environmental factors on the efficiency of plant virus transmission is extremely difficult to predict, because they obviously impact concomitantly multiple steps of the complex three-way plant-virus-vector interaction. This review summarizes the diversity of the relationship between plants, viruses and insect vectors, and highlights the numerous phases of this process that can be altered by the virus in ways that can potentially enhance its transmission success. Many of the reported cases are often considered to be possible viral manipulations acting through modifications of the physiology of the host plant, indirectly reaching to the insect vector. Plants are extremely responsive to environmental fluctuations and so interferences with these putative viral manipulations are highly expected. The role of environmental factors in plant virus transmission can thus be envisaged solely in the context of this complexity. It is only briefly evoked here because this field of research is in its infancy and currently suffers from an impressive lack of experimental data.
Collapse
|
65
|
Chen Q, Wei T. Viral receptors of the gut: insect-borne propagative plant viruses of agricultural importance. CURRENT OPINION IN INSECT SCIENCE 2016; 16:9-13. [PMID: 27720057 DOI: 10.1016/j.cois.2016.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Insect-borne propagative plant viruses of agricultural importance are transmitted by sap-sucking insects. Although the infection routes of these viruses within the bodies of insect vectors are well established, cellular receptors on the microvilli, intercellular junctions, and basal lamina for mediating viral entry or spread in insect gut epithelium have not been well identified or characterized. Recent trends in the field are opening questions on how viruses exploit actin-based tubule motility to overcome insect gut epithelium barriers after viral entry in epithelium. Advances in insect cell lines, genome sequencing, reverse genetic systems and others not yet developed technologies are needed to find and characterize the counterpart receptors in vectors and to design strategies to interfere with viral transmission.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
66
|
Abstract
Why some viruses are enveloped while others lack an outer lipid bilayer is a major question in viral evolution but one that has received relatively little attention. The viral envelope serves several functions, including protecting the RNA or DNA molecule(s), evading recognition by the immune system, and facilitating virus entry. Despite these commonalities, viral envelopes come in a wide variety of shapes and configurations. The evolution of the viral envelope is made more puzzling by the fact that nonenveloped viruses are able to infect a diverse range of hosts across the tree of life. We reviewed the entry, transmission, and exit pathways of all (101) viral families on the 2013 International Committee on Taxonomy of Viruses (ICTV) list. By doing this, we revealed a strong association between the lack of a viral envelope and the presence of a cell wall in the hosts these viruses infect. We were able to propose a new hypothesis for the existence of enveloped and nonenveloped viruses, in which the latter represent an adaptation to cells surrounded by a cell wall, while the former are an adaptation to animal cells where cell walls are absent. In particular, cell walls inhibit viral entry and exit, as well as viral transport within an organism, all of which are critical waypoints for successful infection and spread. Finally, we discuss how this new model for the origin of the viral envelope impacts our overall understanding of virus evolution.
Collapse
|
67
|
Sicard A, Zeddam JL, Yvon M, Michalakis Y, Gutiérrez S, Blanc S. Circulative Nonpropagative Aphid Transmission of Nanoviruses: an Oversimplified View. J Virol 2015; 89:9719-26. [PMID: 26178991 PMCID: PMC4577921 DOI: 10.1128/jvi.00780-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/08/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Plant virus species of the family Nanoviridae have segmented genomes with the highest known number of segments encapsidated individually. They thus likely represent the most extreme case of the so-called multipartite, or multicomponent, viruses. All species of the family are believed to be transmitted in a circulative nonpropagative manner by aphid vectors, meaning that the virus simply crosses cellular barriers within the aphid body, from the gut to the salivary glands, without replicating or even expressing any of its genes. However, this assumption is largely based on analogy with the transmission of other plant viruses, such as geminiviruses or luteoviruses, and the details of the molecular and cellular interactions between aphids and nanoviruses are poorly investigated. When comparing the relative frequencies of the eight genome segments in populations of the species Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus) within host plants and within aphid vectors fed on these plants, we unexpectedly found evidence of reproducible changes in the frequencies of some specific segments. We further show that these changes occur within the gut during early stages of the virus cycle in the aphid and not later, when the virus is translocated into the salivary glands. This peculiar observation, which was similarly confirmed in three aphid vector species, Acyrthosiphon pisum, Aphis craccivora, and Myzus persicae, calls for revisiting of the mechanisms of nanovirus transmission. It reveals an unexpected intimate interaction that may not fit the canonical circulative nonpropagative transmission. IMPORTANCE A specific mode of interaction between viruses and arthropod vectors has been extensively described in plant viruses in the three families Luteoviridae, Geminiviridae, and Nanoviridae, but never in arboviruses of animals. This so-called circulative nonpropagative transmission contrasts with the classical biological transmission of animal arboviruses in that the corresponding viruses are thought to cross the vector cellular barriers, from the gut lumen to the hemolymph and to the salivary glands, without expressing any of their genes and without replicating. By monitoring the genetic composition of viral populations during the life cycle of Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus), we demonstrate reproducible genetic changes during the transit of the virus within the body of the aphid vector. These changes do not fit the view that viruses simply traverse the bodies of their arthropod vectors and suggest more intimate interactions, calling into question the current understanding of circulative nonpropagative transmission.
Collapse
|
68
|
Ng JCK, Zhou JS. Insect vector-plant virus interactions associated with non-circulative, semi-persistent transmission: current perspectives and future challenges. Curr Opin Virol 2015; 15:48-55. [PMID: 26318639 DOI: 10.1016/j.coviro.2015.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/30/2022]
Abstract
The non-circulative, semi-persistent (NCSP) mode of insect vector-mediated plant virus transmission is shaped by biological, molecular and mechanical interactions that take place across a continuum of processes involved in virion acquisition, retention and inoculation. Our understanding of the interactive roles of virus, insect vector, and plant associated with NCSP transmission is still evolving. Mechanisms exist that determine where and how virion acquisition (from the plant) and retention (in the insect vector) are achieved, with both processes being mediated by strategies involving viral capsid proteins, in some cases aided by non-capsid proteins. By contrast, mechanisms underlying virion inoculation (to the plant) remain poorly understood. Here, we review the established paradigms as well as fresh perspectives on the mechanisms of NCSP transmission.
Collapse
Affiliation(s)
- James C K Ng
- Department of Plant Pathology and Microbiology and Center for Disease Vector Research, University of California, Riverside, CA 92521, USA.
| | - Jaclyn S Zhou
- Department of Plant Pathology and Microbiology and Center for Disease Vector Research, University of California, Riverside, CA 92521, USA
| |
Collapse
|
69
|
Drucker M, Then C. Transmission activation in non-circulative virus transmission: a general concept? Curr Opin Virol 2015; 15:63-8. [PMID: 26318641 DOI: 10.1016/j.coviro.2015.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/29/2015] [Accepted: 08/09/2015] [Indexed: 11/26/2022]
Abstract
Many viruses are transmitted by arthropod vectors. An important mode of transmission is the noncirculative or mechanical transmission where viruses attach to the vector mouthparts for transport to a new host. It has long been assumed that noncirculative transmission is an unsophisticated mode of viral spread, and in the simplest case mere contamination of the vector mouthparts. However, emerging evidence strongly suggests that noncirculative transmission, like other transmission strategies, results from specific interactions between pathogens, hosts, and vectors. Recently, new insights into this concept have been obtained, by demonstrating that a plant virus responds instantly to the presence of its aphid vector on the host by forming transmission morphs. This novel concept, named Transmission Activation (TA), where viruses respond directly or via the host to the outside world, opens new research horizons.
Collapse
Affiliation(s)
- Martin Drucker
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), TA A54K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France.
| | - Christiane Then
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), TA A54K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| |
Collapse
|
70
|
Blanc S, Gutiérrez S. The specifics of vector transmission of arboviruses of vertebrates and plants. Curr Opin Virol 2015; 15:27-33. [PMID: 26233515 DOI: 10.1016/j.coviro.2015.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
Abstract
Blood-feeding or sap-feeding arthropods, principally in the taxa Acarina and Insecta are major vectors of viruses of plants and vertebrates. The enormous associated literature suggests that the virus-vector interaction can be of distinct types, some adopted specifically by plant viruses and others by vertebrate viruses. Based on emblematic examples of poxviruses and orthomyxoviruses of vertebrates and of luteovirus, geminivirus, and nanovirus of plants, we here discuss the possibility that the current restriction of certain transmission modes to a given host type may simply reflect limited knowledge. Particularly, we question the absence of a specific relationship in some cases of 'mechanical' transmission of viruses of vertebrates and challenge the so-called 'circulative non-propagative' transmission as a discrete concept specific to plant viruses.
Collapse
Affiliation(s)
- Stéphane Blanc
- INRA, UMR BGPI, CIRAD TA-A54/K, Campus international de Baillarguet, Montpellier Cedex 05, France.
| | - Serafín Gutiérrez
- CIRAD, UMR CMAEE, CIRAD TA-A15/B, Campus international de Baillarguet, Montpellier Cedex 05, France
| |
Collapse
|
71
|
Insect vector-mediated transmission of plant viruses. Virology 2015; 479-480:278-89. [DOI: 10.1016/j.virol.2015.03.026] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 02/17/2015] [Accepted: 03/06/2015] [Indexed: 12/24/2022]
|
72
|
Whitfield AE, Rotenberg D. Disruption of insect transmission of plant viruses. CURRENT OPINION IN INSECT SCIENCE 2015; 8:79-87. [PMID: 32846687 DOI: 10.1016/j.cois.2015.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 06/11/2023]
Abstract
Plant-infecting viruses are transmitted by a diverse array of organisms including insects, mites, nematodes, fungi, and plasmodiophorids. Virus interactions with these vectors are diverse, but there are some commonalities. Generally the infection cycle begins with the vector encountering the virus in the plant and the virus is acquired by the vector. The virus must then persist in or on the vector long enough for the virus to be transported to a new host and delivered into the plant cell. Plant viruses rely on their vectors for breaching the plant cell wall to be delivered directly into the cytosol. In most cases, viral capsid or membrane glycoproteins are the specific viral proteins that are required for transmission and determinants of vector specificity. Specific molecules in vectors also interact with the virus and while there are few-identified to no-identified receptors, candidate recognition molecules are being further explored in these systems. Due to the specificity of virus transmission by vectors, there are defined steps that represent good targets for interdiction strategies to disrupt the disease cycle. This review focuses on new technologies that aim to disrupt the virus-vector interaction and focuses on a few of the well-characterized virus-vector interactions in the field. In closing, we discuss the importance of integration of these technologies with current methods for plant virus disease control.
Collapse
Affiliation(s)
- Anna E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66502, USA.
| | - Dorith Rotenberg
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66502, USA
| |
Collapse
|
73
|
Assembly of viroplasms by viral nonstructural protein Pns9 is essential for persistent infection of rice gall dwarf virus in its insect vector. Virus Res 2014; 196:162-9. [PMID: 25455335 DOI: 10.1016/j.virusres.2014.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/19/2014] [Accepted: 11/23/2014] [Indexed: 11/24/2022]
Abstract
Rice gall dwarf virus (RGDV), a plant reovirus, is transmitted by leafhopper vector Recilia dorsalis in a persistent-propagative manner. In a sequential study of RGDV infection of its insect vector, the virus initially infected the filter chamber epithelium, then directly crossed the basal lamina into the visceral muscles, from where it spread throughout the entire midgut and hindgut. Finally, RGDV spread into the salivary glands. During RGDV infection of the continuous cultured cells of R. dorsalis, viroplasm that was mainly comprised of viral nonstructural protein Pns9 was formed and acted as the site of viral replication and assembly of progeny virions. Knockdown of Pns9 expression in cultured insect vector cells using synthesized dsRNAs from the Pns9 gene strongly inhibited viroplasm formation and viral infection. The microinjection of dsRNAs from the Pns9 gene strongly abolished viroplasm formation in the initially infected filter chamber epithelium and prevented viral spread into leafhopper visceral muscles. These results indicated that the assembly of viroplasms was essential for the persistent infection and spread of RGDV in its insect vector.
Collapse
|