51
|
Grant PA, Winston F, Berger SL. The biochemical and genetic discovery of the SAGA complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194669. [PMID: 33338653 DOI: 10.1016/j.bbagrm.2020.194669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
One of the major advances in our understanding of gene regulation in eukaryotes was the discovery of factors that regulate transcription by controlling chromatin structure. Prominent among these discoveries was the demonstration that Gcn5 is a histone acetyltransferase, establishing a direct connection between transcriptional activation and histone acetylation. This breakthrough was soon followed by the purification of a protein complex that contains Gcn5, the SAGA complex. In this article, we review the early genetic and biochemical experiments that led to the discovery of SAGA and the elucidation of its multiple activities.
Collapse
Affiliation(s)
- Patrick A Grant
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States of America
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States of America.
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Department of Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| |
Collapse
|
52
|
Grünebast J, Clos J. Leishmania: Responding to environmental signals and challenges without regulated transcription. Comput Struct Biotechnol J 2020; 18:4016-4023. [PMID: 33363698 PMCID: PMC7744640 DOI: 10.1016/j.csbj.2020.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Here we describe the non-canonical control of gene expression in Leishmania, a single-cell parasite that is responsible for one of the major neglected tropical diseases. We discuss the lack of regulated RNA synthesis, the post-transcriptional gene regulation including RNA stability and regulated translation. We also show that genetic adaptations such as mosaic aneuploidy, gene copy number variations and DNA sequence polymorphisms are important means for overcoming drug challenge and environmental diversity. These mechanisms are discussed in the context of the unique flow of genetic information found in Leishmania and related protists.
Collapse
Affiliation(s)
- Janne Grünebast
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joachim Clos
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
53
|
Prados MB, Sica MP, Miranda S. Inflammatory conditions promote a switch of oligosaccharyltransferase (OST) catalytic subunit isoform expression. Arch Biochem Biophys 2020; 693:108538. [PMID: 32810478 DOI: 10.1016/j.abb.2020.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
Oligosaccharyltransferase (OST) complex catalyzes the N-glycosylation of nascent polypeptides in the endoplasmic reticulum. Glycoproteins are critical for normal cell-cell interactions, especially during an immune response. Abnormal glycosylation is an insignia of several inflammatory diseases. However, the mechanisms that regulate the differential N-glycosylation are not fully understood. The OST complex can be assembled with one out of two catalytic subunits, STT3A or STT3B, which have different enzymatic properties. In this work, we investigated the expression of STT3A and STT3B in several mouse models such as a crossbreeding of normal and abortion-prone mice and an intestinal inflammation model. These animals were either exposed or not to acoustic stress (acute or chronic). The expression of the isoforms was analysed by immunohistochemistry and protein immunoblot. Finally, we investigated the gene regulatory elements employing public databases. Results demonstrated that inflammation alters the balance between the expression of both isoforms in the affected tissues. In homoeostatic conditions, STT3A expression predominates over STT3B, especially in epithelial cells. This relation is reversed as a consequence of inflammation. An increase in STT3B activity was associated to the generation of mannose-rich N-glycans. Accordingly, this type of N-glycans were found to decorate diverse inflamed tissues. The STT3A and STT3B genes are differentially regulated, which could account for the differences in the expression levels observed here. Our results support the idea that these isoforms could play different roles in cellular physiology. This study opens the possibility of studying the STT3A/STT3B expression ratio as a biomarker in acute inflammation or chronic diseases.
Collapse
Affiliation(s)
- María Belén Prados
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires. CONICET, Marcelo T. de Alvear 2270, C1122AAJ, Buenos Aires, Argentina.
| | - Mauricio Pablo Sica
- Instituto de Energía y Desarrollo Sustentable, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, CONICET, Av. E. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina; Instituto Balseiro, Universidad Nacional de Cuyo, Centro Atómico Bariloche, Av. E. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina.
| | - Silvia Miranda
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires. CONICET, Marcelo T. de Alvear 2270, C1122AAJ, Buenos Aires, Argentina.
| |
Collapse
|
54
|
Zhao Y, Sun R, Liu H, Liu X, Xu K, Xiao K, Zhang S, Yang X, Xue C. Multi-Omics Analyses Reveal the Molecular Mechanisms Underlying the Adaptation of Wheat ( Triticum aestivum L.) to Potassium Deprivation. FRONTIERS IN PLANT SCIENCE 2020; 11:588994. [PMID: 33123186 PMCID: PMC7573229 DOI: 10.3389/fpls.2020.588994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 05/25/2023]
Abstract
Potassium (K) is essential for regulating plant growth and mediating abiotic stress responses. Elucidating the biological mechanism underlying plant responses to K-deficiency is crucial for breeding new cultivars with improved K uptake and K utilization efficiency. In this study, we evaluated the extent of the genetic variation among 543 wheat accessions differing in K-deficiency tolerance at the seedling and adult plant stages. Two accessions, KN9204 and BN207, were identified as extremely tolerant and sensitive to K-deficiency, respectively. The accessions were exposed to normal and K-deficient conditions, after which their roots underwent ionomic, transcriptomic, and metabolomic analyses. Under K-deficient conditions, KN9204 exhibited stronger root growth and maintained higher K concentrations than BN207. Moreover, 19,440 transcripts and 162 metabolites were differentially abundant in the roots of both accessions according to transcriptomic and metabolomic analyses. An integrated analysis of gene expression and metabolite profiles revealed that substantially more genes, including those related to ion homeostasis, cellular reactive oxygen species homeostasis, and the glutamate metabolic pathway, were up-regulated in KN9204 than in BN207 in response to low-K stress. Accordingly, these candidate genes have unique regulatory roles affecting plant K-starvation tolerance. These findings may be useful for further clarifying the molecular changes underlying wheat root adaptations to K deprivation.
Collapse
|
55
|
Liu J, Dong C, Jiang G, Lu X, Liu Y, Wu H. Transcription factor expression as a predictor of colon cancer prognosis: a machine learning practice. BMC Med Genomics 2020; 13:135. [PMID: 32957968 PMCID: PMC7504662 DOI: 10.1186/s12920-020-00775-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colon cancer is one of the leading causes of cancer deaths in the USA and around the world. Molecular level characters, such as gene expression levels and mutations, may provide profound information for precision treatment apart from pathological indicators. Transcription factors function as critical regulators in all aspects of cell life, but transcription factors-based biomarkers for colon cancer prognosis were still rare and necessary. METHODS We implemented an innovative process to select the transcription factors variables and evaluate the prognostic prediction power by combining the Cox PH model with the random forest algorithm. We picked five top-ranked transcription factors and built a prediction model by using Cox PH regression. Using Kaplan-Meier analysis, we validated our predictive model on four independent publicly available datasets (GSE39582, GSE17536, GSE37892, and GSE17537) from the GEO database, consisting of 925 colon cancer patients. RESULTS A five-transcription-factors based predictive model for colon cancer prognosis has been developed by using TCGA colon cancer patient data. Five transcription factors identified for the predictive model is HOXC9, ZNF556, HEYL, HOXC4 and HOXC6. The prediction power of the model is validated with four GEO datasets consisting of 1584 patient samples. Kaplan-Meier curve and log-rank tests were conducted on both training and validation datasets, the difference of overall survival time between predicted low and high-risk groups can be clearly observed. Gene set enrichment analysis was performed to further investigate the difference between low and high-risk groups in the gene pathway level. The biological meaning was interpreted. Overall, our results prove our prediction model has a strong prediction power on colon cancer prognosis. CONCLUSIONS Transcription factors can be used to construct colon cancer prognostic signatures with strong prediction power. The variable selection process used in this study has the potential to be implemented in the prognostic signature discovery of other cancer types. Our five TF-based predictive model would help with understanding the hidden relationship between colon cancer patient survival and transcription factor activities. It will also provide more insights into the precision treatment of colon cancer patients from a genomic information perspective.
Collapse
Affiliation(s)
- Jiannan Liu
- Depart of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Chuanpeng Dong
- Depart of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guanglong Jiang
- Depart of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaoyu Lu
- Depart of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Huanmei Wu
- Depart of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
- Temple University College of Public Health, Philadelphia, PA, USA.
| |
Collapse
|
56
|
Admoni Y, Kozlovski I, Lewandowska M, Moran Y. TATA Binding Protein (TBP) Promoter Drives Ubiquitous Expression of Marker Transgene in the Adult Sea Anemone Nematostella vectensis. Genes (Basel) 2020; 11:E1081. [PMID: 32948049 PMCID: PMC7565589 DOI: 10.3390/genes11091081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Nematostella vectensis has emerged as one as the most established models of the phylum Cnidaria (sea anemones, corals, hydroids and jellyfish) for studying animal evolution. The availability of a reference genome and the relative ease of culturing and genetically manipulating this organism make it an attractive model for addressing questions regarding the evolution of venom, development, regeneration and other interesting understudied questions. We and others have previously reported the use of tissue-specific promoters for investigating the function of a tissue or a cell type of interest in vivo. However, to our knowledge, genetic regulators at the whole organism level have not been reported yet. Here we report the identification and utilization of a ubiquitous promoter to drive a wide and robust expression of the fluorescent protein mCherry. We generated animals containing a TATA binding protein (TBP) promoter upstream of the mCherry gene. Flow cytometry and fluorescent microscopy revealed expression of mCherry in diverse cell types, accounting for more than 90% of adult animal cells. Furthermore, we detected a stable mCherry expression at different life stages and throughout generations. This tool will expand the existing experimental toolbox to facilitate genetic engineering and functional studies at the whole organism level.
Collapse
Affiliation(s)
| | | | | | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (Y.A.); (I.K.); (M.L.)
| |
Collapse
|
57
|
Fliedner A, Kirchner P, Wiesener A, van de Beek I, Waisfisz Q, van Haelst M, Scott DA, Lalani SR, Rosenfeld JA, Azamian MS, Xia F, Dutra-Clarke M, Martinez-Agosto JA, Lee H, Noh GJ, Lippa N, Alkelai A, Aggarwal V, Agre KE, Gavrilova R, Mirzaa GM, Straussberg R, Cohen R, Horist B, Krishnamurthy V, McWalter K, Juusola J, Davis-Keppen L, Ohden L, van Slegtenhorst M, de Man SA, Ekici AB, Gregor A, van de Laar I, Zweier C, Nelson SF, Grody WW, Lee H, Deignan JL, Kang SH, Arboleda VA, Senaratne TN, Dorrani N, Dutra-Clarke MS, Kianmahd J, Hinkamp FL, Neustadt AM, Martinez-Agosto JA, Fogel BL, Quintero-Rivera F. Variants in SCAF4 Cause a Neurodevelopmental Disorder and Are Associated with Impaired mRNA Processing. Am J Hum Genet 2020; 107:544-554. [PMID: 32730804 DOI: 10.1016/j.ajhg.2020.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/25/2020] [Indexed: 01/14/2023] Open
Abstract
RNA polymerase II interacts with various other complexes and factors to ensure correct initiation, elongation, and termination of mRNA transcription. One of these proteins is SR-related CTD-associated factor 4 (SCAF4), which is important for correct usage of polyA sites for mRNA termination. Using exome sequencing and international matchmaking, we identified nine likely pathogenic germline variants in SCAF4 including two splice-site and seven truncating variants, all residing in the N-terminal two thirds of the protein. Eight of these variants occurred de novo, and one was inherited. Affected individuals demonstrated a variable neurodevelopmental disorder characterized by mild intellectual disability, seizures, behavioral abnormalities, and various skeletal and structural anomalies. Paired-end RNA sequencing on blood lymphocytes of SCAF4-deficient individuals revealed a broad deregulation of more than 9,000 genes and significant differential splicing of more than 2,900 genes, indicating an important role of SCAF4 in mRNA processing. Knockdown of the SCAF4 ortholog CG4266 in the model organism Drosophila melanogaster resulted in impaired locomotor function, learning, and short-term memory. Furthermore, we observed an increased number of active zones in larval neuromuscular junctions, representing large glutamatergic synapses. These observations indicate a role of CG4266 in nervous system development and function and support the implication of SCAF4 in neurodevelopmental phenotypes. In summary, our data show that heterozygous, likely gene-disrupting variants in SCAF4 are causative for a variable neurodevelopmental disorder associated with impaired mRNA processing.
Collapse
|
58
|
Wu K, Qi C, Zhu Z, Wang C, Song B, Chang C. Terahertz Wave Accelerates DNA Unwinding: A Molecular Dynamics Simulation Study. J Phys Chem Lett 2020; 11:7002-7008. [PMID: 32786218 DOI: 10.1021/acs.jpclett.0c01850] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unwinding the double helix of the DNA molecule is the basis of gene duplication and gene editing, and the acceleration of this unwinding process is crucial to the rapid detection of genetic information. Based on the unwinding of six-base-pair DNA duplexes, we demonstrate that a terahertz stimulus at a characteristic frequency (44.0 THz) can serve as an efficient, nonthermal, and long-range method to accelerate the unwinding process of DNA duplexes. The average speed of the unwinding process increased by 20 times at least, and its temperature was significantly reduced. The mechanism was revealed to be the resonance between the terahertz stimulus and the vibration of purine connected by the weak hydrogen bond and the consequent break in hydrogen bond connections between these base pairs. Our findings potentially provide a promising application of terahertz technology for the rapid detection of nucleic acids, biomedicine, and therapy.
Collapse
Affiliation(s)
- Kaijie Wu
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Chonghai Qi
- School of Physics, Shandong University, Jinan 250100, China
- Division of Interfacial Water, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhi Zhu
- School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chunlei Wang
- Division of Interfacial Water, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bo Song
- School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Chang
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
59
|
Ge L, Yang J, Gong X, Kang J, Zhang Y, Liu X, Quan F. Bovine CAPN3 core promoter initiates expression of foreign genes in skeletal muscle cells by MyoD transcriptional regulation. Int J Biochem Cell Biol 2020; 127:105837. [PMID: 32827763 DOI: 10.1016/j.biocel.2020.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/18/2022]
Abstract
Activating foreign genes in bovine skeletal muscle is necessary in the study of the role of related genes in skeletal muscle development and the effects on skeletal muscle formation, especially in the study of transgenic cattle. At this time, a skeletal muscle-specific promoter should be selected to initiate a functional foreign gene. Here, calpain3 (CAPN3) was found to be highly expressed in skeletal muscle and skeletal muscle cells by real-time PCR. Next, 5' deletion analysis of the bovine CAPN3 promoter was performed and showed that Q5(-495/+40) region was the core promoter of the bovine CAPN3. A key regulatory site (-465/-453) in CAPN3 core promoter was associated with the transcription factor, MyoD, which is a skeletal muscle-specific transcription factor. Furthermore, the mRNA and protein expression levels of MyoD and CAPN3 were positively correlated during skeletal muscle cell differentiation. The overexpression of MyoD enhanced the activity of the bovine CAPN3 core promoter. The core promoter Q5(-495/+40) could drive the exogenous gene EGFP and the fat-specific expression gene PPARγ in skeletal muscle cells. In summary, our study obtained a bovine skeletal muscle-specific promoter and provided a basis for studying the role of functional genes in the growth and development of skeletal muscle. It also provides a basis for studying the transcriptional regulation mechanism of CAPN3.
Collapse
Affiliation(s)
- Luxing Ge
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiashu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xutong Gong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
60
|
Arora S, Singh P, Dohare R, Jha R, Ali Syed M. Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19). Gene 2020; 762:145057. [PMID: 32805314 PMCID: PMC7428439 DOI: 10.1016/j.gene.2020.145057] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/13/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
Bioinformatics analysis of mouse mRNA expression dataset for presumptive SARS-CoV-2 targets. Induction of ISGs-Isg15, Oasl1, Usp18 and Ddx58 with no marked changes in the expression of IFNs. No induction of ACE2 and TMPRSS2, raising implications for host factor limitations. Identification of ceRNA network including miR-124-3p, Ddx58, lncRNA (Gm26917) and circRNAs (Ppp1r10, C330019G07RiK). Virus regulates the expression of lnc and circRNAs, acting as sponges for miR-124-3p targeting Ddx58.
COVID-19 is a lurking calamitous disease caused by an unusual virus, SARS-CoV-2, causing massive deaths worldwide. Nonetheless, explicit therapeutic drugs or clinically approved vaccines are not available for COVID-19. Thus, a comprehensive research is crucially needed to decode the pathogenic tools, plausible drug targets, committed to the development of efficient therapy. Host-pathogen interactions via host cellular components is an emerging field of research in this respect. miRNAs have been established as vital players in host-virus interactions. Moreover, viruses have the capability to manoeuvre the host miRNA networks according to their own obligations. Besides protein coding mRNAs, noncoding RNAs might also be targeted in infected cells and viruses can exploit the host miRNA network via ceRNA effect. We have predicted a ceRNA network involving one miRNA (miR-124-3p), one mRNA (Ddx58), one lncRNA (Gm26917) and two circRNAs (Ppp1r10, C330019G07RiK) in SARS-CoV infected cells. We have identified 4 DEGs-Isg15, Ddx58, Oasl1, Usp18 by analyzing a mRNA GEO dataset. There is no notable induction of IFNs and IFN-induced ACE2, significant receptor responsible for S-protein binding mediated viral entry. Pathway enrichment and GO analysis conceded the enrichment of pathways associated with interferon signalling and antiviral-mechanism by IFN-stimulated genes. Further, we have identified 3 noncoding RNAs, playing as potential ceRNAs to the genes associated with immune mechanisms. This integrative analysis has identified noncoding RNAs and their plausible targets, which could effectively enhance the understanding of molecular mechanisms associated with viral infection. However, validation of these targets is further corroborated to determine their therapeutic efficacy.
Collapse
Affiliation(s)
- Shweta Arora
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Rishabh Jha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
61
|
Mystery of Expansion: DNA Metabolism and Unstable Repeats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:101-124. [PMID: 32383118 DOI: 10.1007/978-3-030-41283-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The mammalian genome mostly contains repeated sequences. Some of these repeats are in the regulatory elements of genes, and their instability, particularly the propensity to change the repeat unit number, is responsible for 36 well-known neurodegenerative human disorders. The mechanism of repeat expansion has been an unsolved question for more than 20 years. There are a few hypotheses describing models of mutation development. Every hypothesis is based on assumptions about unusual secondary structures that violate DNA metabolism processes in the cell. Some models are based on replication errors, and other models are based on mismatch repair or base excision repair errors. Additionally, it has been shown that epigenetic regulation of gene expression can influence the probability and frequency of expansion. In this review, we consider the molecular bases of repeat expansion disorders and discuss possible mechanisms of repeat expansion during cell metabolism.
Collapse
|
62
|
Exploring the Role of Non-Coding RNAs in the Pathophysiology of Systemic Lupus Erythematosus. Biomolecules 2020; 10:biom10060937. [PMID: 32580306 PMCID: PMC7356926 DOI: 10.3390/biom10060937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic immune-related disorder designated by a lack of tolerance to self-antigens and the over-secretion of autoantibodies against several cellular compartments. Although the exact pathophysiology of SLE has not been clarified yet, this disorder has a strong genetic component based on the results of familial aggregation and twin studies. Variation in the expression of non-coding RNAs has been shown to influence both susceptibility to SLE and the clinical course of this disorder. Several long non-coding RNAs (lncRNAs) such as GAS5, MALAT1 and NEAT1 are dysregulated in SLE patients. Moreover, genetic variants within lncRNAs such as SLEAR and linc00513 have been associated with risk of this disorder. The dysregulation of a number of lncRNAs in the peripheral blood of SLE patients has potentiated them as biomarkers for diagnosis, disease activity and therapeutic response. MicroRNAs (miRNAs) have also been shown to affect apoptosis and the function of immune cells. Taken together, there is a compelling rationale for the better understanding of the involvement of these two classes of non-coding RNAs in the pathogenesis of SLE. Clarification of the function of these transcripts has the potential to elucidate the molecular pathophysiology of SLE and provide new opportunities for the development of targeted therapies for this disorder.
Collapse
|
63
|
Song C, Peng Z, Lin X, Luo H, Song M, Jin L, Xiao X, Ji H. Study on Interaction Between TATA-Box Binding Protein (TBP), TATA-Box and Multiprotein Bridging Factor 1(MBF1) in Beauveria bassiana by Graphene-Based Electrochemical Biosensors. Front Chem 2020; 8:278. [PMID: 32351940 PMCID: PMC7174728 DOI: 10.3389/fchem.2020.00278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 11/13/2022] Open
Abstract
The regulation of transcription level is an important step in gene expression process. Beauveria bassiana is a broad-spectrum insecticidal fungi widely used in the biologic control of arthropod. The regulation of its transcription level is a multilevel complex process. Multiprotein bridging factor 1(MBF1) is a transcriptional co-activator that bridges sequence-specific activators and the TATA-box binding protein(TBP), Little is known about the interaction between MBF1, TBP, and TBP binding to DNA(TATA-sequences)in filamentous fungi of Beauveria bassiana, The binding of TBP to TATA-box and TBP to MBF1 was investigated via electrochemical biosensor. Graphene oxide has an electronic mobility that is unattainable for any metal, so it will be highly sensitive as a test electrode. Hence, we developed a simple, sensitive and specific sensor based on an TBP probe and graphene oxide that successfully detected the interaction of TBP and TATA-box or MBF1. From the electrochemical impedance spectroscopy (EIS), we find that the radius will increase when adding TATA-box or MBF1 buffer to the modified TBP protein electrode. When adding no TATA-box or no MBF1, the radius is relatively unchanged. The interaction between TBP and TATA-box or MBF1 was proved based on the results. These data confirmed the specificity of the interactions, (1) our developed graphene-based electrochemical biosensor can be used for monitoring the interaction between TBP and TATA-box or MBF1, (2) TBP can bind to TATA-box, (3) TBP can bind to MBF1, and (4) TBP mediates the interactions of MBF1 to DNA. Therefore, this work provided a label-free, low-cost and simple detection method for the complex process of eukaryotic gene transcription regulation.
Collapse
Affiliation(s)
- Chi Song
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, China
| | - Zhijia Peng
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Haoyue Luo
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Min Song
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Lifeng Jin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Xiangyue Xiao
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, China
| | - Hong Ji
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, China
| |
Collapse
|
64
|
Theodosiou T, Papanikolaou N, Savvaki M, Bonetto G, Maxouri S, Fakoureli E, Eliopoulos AG, Tavernarakis N, Amoutzias GD, Pavlopoulos GA, Aivaliotis M, Nikoletopoulou V, Tzamarias D, Karagogeos D, Iliopoulos I. UniProt-Related Documents (UniReD): assisting wet lab biologists in their quest on finding novel counterparts in a protein network. NAR Genom Bioinform 2020; 2:lqaa005. [PMID: 33575553 PMCID: PMC7671407 DOI: 10.1093/nargab/lqaa005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 02/04/2023] Open
Abstract
The in-depth study of protein–protein interactions (PPIs) is of key importance for understanding how cells operate. Therefore, in the past few years, many experimental as well as computational approaches have been developed for the identification and discovery of such interactions. Here, we present UniReD, a user-friendly, computational prediction tool which analyses biomedical literature in order to extract known protein associations and suggest undocumented ones. As a proof of concept, we demonstrate its usefulness by experimentally validating six predicted interactions and by benchmarking it against public databases of experimentally validated PPIs succeeding a high coverage. We believe that UniReD can become an important and intuitive resource for experimental biologists in their quest for finding novel associations within a protein network and a useful tool to complement experimental approaches (e.g. mass spectrometry) by producing sorted lists of candidate proteins for further experimental validation. UniReD is available at http://bioinformatics.med.uoc.gr/unired/
Collapse
Affiliation(s)
- Theodosios Theodosiou
- University of Crete, School of Medicine, Department of Basic Sciences, Heraklion 71003, Crete, Greece
| | - Nikolaos Papanikolaou
- University of Crete, School of Medicine, Department of Basic Sciences, Heraklion 71003, Crete, Greece
| | - Maria Savvaki
- University of Crete, School of Medicine, Department of Basic Sciences, Heraklion 71003, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Giulia Bonetto
- University of Crete, School of Medicine, Department of Basic Sciences, Heraklion 71003, Crete, Greece
| | - Stella Maxouri
- University of Crete, School of Medicine, Department of Basic Sciences, Heraklion 71003, Crete, Greece.,Medical School of Patras University, Laboratory of General Biology, Asklipiou 1, 26500 Rio Patras, Greece
| | - Eirini Fakoureli
- University of Crete, School of Medicine, Department of Basic Sciences, Heraklion 71003, Crete, Greece
| | - Aristides G Eliopoulos
- Department of Biology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece
| | - Nektarios Tavernarakis
- University of Crete, School of Medicine, Department of Basic Sciences, Heraklion 71003, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Grigoris D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa 41500, Greece
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.,Laboratory of Biological Chemistry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.,Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O.Box 8318, GR 57001, Greece
| | - Vasiliki Nikoletopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Dimitris Tzamarias
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Domna Karagogeos
- University of Crete, School of Medicine, Department of Basic Sciences, Heraklion 71003, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Ioannis Iliopoulos
- University of Crete, School of Medicine, Department of Basic Sciences, Heraklion 71003, Crete, Greece
| |
Collapse
|
65
|
Liu S, Wei Y, Zhang SH. The C3HC type zinc-finger protein (ZFC3) interacting with Lon/MAP1 is important for mitochondrial gene regulation, infection hypha development and longevity of Magnaporthe oryzae. BMC Microbiol 2020; 20:23. [PMID: 32000669 PMCID: PMC6993355 DOI: 10.1186/s12866-020-1711-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background The rice blast is a typical fungal disease caused by Magnaporthe oryzae, and the mitochondrial ATP-dependent Lon protease (MAP1) has been proven to be involved in blast development. We previously screened a C3HC type Zinc-finger domain protein (ZFC3), which is interacted with MAP1. The purpose of this research was to study the biological function of ZFC3 protein in M. oryzae. Results We first confirmed that the ZFC3-RFP fusion protein is localized within the mitochondria. The deleted mutant strains of ZFC3 (∆ZFC3) showed the enhanced expression level of mtATP6, particularly mtATP8, and almost unchanged nATP9. ΔZFC3 produces more conidia and more tolerance to multiple stressors. The knock-out strain shows more melanin accumulation suggests the susceptibility to aging. ΔZFC3 displays faster early-stage hypha infiltration involved in MAP1-mediated pathogenicity in host rice. Conclusion These results support the view that ZFC3 is a key regulator involved in gene regulation, stress response, cell wall integrity, longevity, conidiation, infection hypha development and MAP1-mediated pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Shaoshuai Liu
- College of Plant Sciences, Jilin University, Changchun, China.,Present address: Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich Buff-Ring 26-32, D-35392, Giessen, Germany
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China.
| |
Collapse
|
66
|
Chen X, Sun YZ, Guan NN, Qu J, Huang ZA, Zhu ZX, Li JQ. Computational models for lncRNA function prediction and functional similarity calculation. Brief Funct Genomics 2020; 18:58-82. [PMID: 30247501 DOI: 10.1093/bfgp/ely031] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/17/2018] [Accepted: 08/30/2018] [Indexed: 02/01/2023] Open
Abstract
From transcriptional noise to dark matter of biology, the rapidly changing view of long non-coding RNA (lncRNA) leads to deep understanding of human complex diseases induced by abnormal expression of lncRNAs. There is urgent need to discern potential functional roles of lncRNAs for further study of pathology, diagnosis, therapy, prognosis, prevention of human complex disease and disease biomarker detection at lncRNA level. Computational models are anticipated to be an effective way to combine current related databases for predicting most potential lncRNA functions and calculating lncRNA functional similarity on the large scale. In this review, we firstly illustrated the biological function of lncRNAs from five biological processes and briefly depicted the relationship between mutations or dysfunctions of lncRNAs and human complex diseases involving cancers, nervous system disorders and others. Then, 17 publicly available lncRNA function-related databases containing four types of functional information content were introduced. Based on these databases, dozens of developed computational models are emerging to help characterize the functional roles of lncRNAs. We therefore systematically described and classified both 16 lncRNA function prediction models and 9 lncRNA functional similarity calculation models into 8 types for highlighting their core algorithm and process. Finally, we concluded with discussions about the advantages and limitations of these computational models and future directions of lncRNA function prediction and functional similarity calculation. We believe that constructing systematic functional annotation systems is essential to strengthen the prediction accuracy of computational models, which will accelerate the identification process of novel lncRNA functions in the future.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Ya-Zhou Sun
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Na-Na Guan
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Jia Qu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Zhi-An Huang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Ze-Xuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
67
|
RUNX1 contributes to the mesenchymal subtype of glioblastoma in a TGFβ pathway-dependent manner. Cell Death Dis 2019; 10:877. [PMID: 31754093 PMCID: PMC6872557 DOI: 10.1038/s41419-019-2108-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 11/08/2022]
Abstract
Runt-Related Transcription Factor 1 (RUNX1) is highly expressed in the Mesenchymal (Mes) subtype of glioblastoma (GBM). However, the specific molecular mechanism of RUNX1 in Mes GBM remains largely elusive. In this study, cell and tumor tissue typing were performed by RNA-sequencing. Co-immunoprecipitation (co-IP) and immunofluorescence (IF) were employed to identify members of the RUNX1 transcriptional protein complex. Bioinformatics analysis, chromatin immunoprecipitation (ChIP), and luciferase reporter experiments were utilized to verify target genes. Analyses of The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) verified the expression levels and prognoses associated with RUNX1/p-SMAD3/SUV39H1 target genes. In vivo patient-derived xenograft (PDX) studies and in vitro functional studies verified the impact of RUNX1 on the occurrence and development of GBM. The results showed that RUNX1 was upregulated in Mes GBM cell lines, tissues and patients and promoted proliferation and invasion in GBM in a TGFβ pathway-dependent manner in vivo and in vitro. We found and verified that BCL3 and MGP are transcriptionally activated by p-SMAD3 /RUNX1, while MXI1 is transcriptionally suppressed by the RUNX1/SUV39H1-H3K9me3 axis. This finding offers a theoretical rationale for using molecular markers and choosing therapeutic targets for the Mes type of GBM.
Collapse
|
68
|
Mao W, Ghasemzadeh A, Freeman ZT, Obradovic A, Chaimowitz MG, Nirschl TR, McKiernan E, Yegnasubramanian S, Drake CG. Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition. J Immunother Cancer 2019; 7:277. [PMID: 31653272 PMCID: PMC6814994 DOI: 10.1186/s40425-019-0758-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Background Prostate cancer responds poorly to current immunotherapies. Epigenetic therapies such as BET Bromodomain inhibition can change the transcriptome of tumor cells, possibly making them more immunogenic and thus susceptible to immune targeting. Methods We characterized the effects of BET bromodomain inhibition using JQ1 on PD-L1 and HLA-ABC expression in two human prostate cell lines, DU145 and PC3. RNA-Seq was performed to assess changes on a genome-wide level. A cytotoxic T cell killing assay was performed in MC38-OVA cells treated with JQ1 to demonstrate increased immunogenicity. In vivo experiments in the Myc-Cap model were conducted to show the effects of JQ1 administration in concert with anti-CTLA-4 checkpoint blockade. Results Here, we show that targeting BET bromodomains using the small molecule inhibitor JQ1 decreased PD-L1 expression and mitigated tumor progression in prostate cancer models. Mechanistically, BET bromodomain inhibition increased MHC I expression and increased the immunogenicity of tumor cells. Transcriptional profiling showed that BET bromodomain inhibition regulates distinct networks of antigen processing and immune checkpoint molecules. In murine models, treatment with JQ1 was additive with anti-CTLA-4 immunotherapy, resulting in an increased CD8/Treg ratio. Conclusions BET Bromodomain inhibition can mediate changes in expression at a genome wide level in prostate cancer cells, resulting in an increased susceptibility to CD8 T cell targeting. These data suggest that combining BET bromodomain inhibition with immune checkpoint blockade may have clinical activity in prostate cancer patients.
Collapse
Affiliation(s)
- Wendy Mao
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ali Ghasemzadeh
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Zachary T Freeman
- Unit for Laboratory Animal Medicine (ULAM), Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA.,Columbia University Systems Biology, Herbert Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Matthew G Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Thomas R Nirschl
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Emily McKiernan
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Department of Urology, Columbia University Medical Center, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Center, Division of Hematology / Oncology, Columbia University Medical Center, 177 Fort Washington Avenue, Suite 6GN-435, New York, NY, 10032, USA.
| |
Collapse
|
69
|
Pessina F, Giavazzi F, Yin Y, Gioia U, Vitelli V, Galbiati A, Barozzi S, Garre M, Oldani A, Flaus A, Cerbino R, Parazzoli D, Rothenberg E, d'Adda di Fagagna F. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat Cell Biol 2019; 21:1286-1299. [PMID: 31570834 PMCID: PMC6859070 DOI: 10.1038/s41556-019-0392-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
Damage-induced long non-coding RNAs (dilncRNA) synthesized at DNA double-strand breaks (DSBs) by RNA polymerase II are necessary for DNA-damage-response (DDR) focus formation. We demonstrate that induction of DSBs results in the assembly of functional promoters that include a complete RNA polymerase II preinitiation complex, MED1 and CDK9. Absence or inactivation of these factors causes a reduction in DDR foci both in vivo and in an in vitro system that reconstitutes DDR events on nucleosomes. We also show that dilncRNAs drive molecular crowding of DDR proteins, such as 53BP1, into foci that exhibit liquid-liquid phase-separation condensate properties. We propose that the assembly of DSB-induced transcriptional promoters drives RNA synthesis, which stimulates phase separation of DDR factors in the shape of foci.
Collapse
Affiliation(s)
- Fabio Pessina
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Ubaldo Gioia
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valerio Vitelli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Sara Barozzi
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Amanda Oldani
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Andrew Flaus
- Centre for Chromosome Biology, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Roberto Cerbino
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Dario Parazzoli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
70
|
Abstract
Background As a result of decades of effort by many investigators we now have an advanced level of understanding about several molecular systems involved in the control of gene expression. Examples include CpG islands, promoters, mRNA splicing and epigenetic signals. It is less clear, however, how such systems work together to integrate the functions of a living organism. Here I describe the results of a study to test the idea that a contribution might be made by focusing on genes specifically expressed in a particular tissue, the human testis. Experimental design A database of 239 testis-specific genes was accumulated and each was examined for the presence of features relevant to control of gene expression. These include: (1) the presence of a promoter, (2) the presence of a CpG island (CGI) within the promoter, (3) the presence in the promoter of a transcription factor binding site near the transcription start site, (4) the level of gene expression, and (5) the above features in genes of testis-specific cell types such as spermatocyte and spermatid that differ in their extent of differentiation. Results Of the 107 database genes with an annotated promoter, 56 were found to have one or more transcription factor binding sites near the transcription start site. Three of the binding sites observed, Pax-5, AP-2αA and GRα, stand out in abundance suggesting they may be involved in testis-specific gene expression. Compared to less differentiated testis-specific cells, genes of more differentiated cells were found to be (1) more likely to lack a CGI, (2) more likely to lack introns and (3) higher in expression level. The results suggest genes of more differentiated cells have a reduced need for CGI-based regulatory repression, reduced usage of gene splicing and a smaller set of expressed proteins.
Collapse
|
71
|
Sugaya K. Chromosome instability caused by mutations in the genes involved in transcription and splicing. RNA Biol 2019; 16:1521-1525. [PMID: 31385554 DOI: 10.1080/15476286.2019.1652523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mutations in molecules involved in transcription and splicing can cause chromosome instability such as sister chromatid exchanges. We isolated and characterized responsible genes from mammalian temperature-sensitive mutant cells showing chromosome instability. A mutation in the largest subunit of RNA polymerase II affected DNA synthesis in S phase-arrested cells, resulting in abnormal induction of sister chromatid exchanges. The yeast mutant harboring a homologous mutation showed very similar phenotype to that of the mammalian mutant. A mutation in Smu1, which is involved in splicing, also affected DNA synthesis in S and G2 phase-arrested cells, resulting in abnormal induction of sister chromatid exchanges and chromosomal aberrations. These cells showed a connection between defects of RNA metabolism and induction of chromosome instability. Genome instability appeared to be caused by links between RNA metabolism and replication resulting in genomic recombination. RNA metabolism can be regarded as one possible driver of genome modification triggering genome evolution.
Collapse
Affiliation(s)
- Kimihiko Sugaya
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Group of Quantum-state Controlled MRI, QST , Chiba , Japan
| |
Collapse
|
72
|
Zou LG, Balamurugan S, Zhou TB, Chen JW, Li DW, Yang WD, Liu JS, Li HY. Potentiation of concurrent expression of lipogenic genes by novel strong promoters in the oleaginous microalga Phaeodactylum tricornutum. Biotechnol Bioeng 2019; 116:3006-3015. [PMID: 31282986 DOI: 10.1002/bit.27110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/18/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
There has been growing interest in using microalgae as production hosts for a wide range of value-added compounds. However, microalgal genetic improvement is impeded by lack of genetic tools to concurrently control multiple genes. Here, we identified two novel strong promoters, designated Pt202 and Pt667, and delineated their potential role on simultaneously driving the expression of key lipogenic genes in Phaeodactylum tricornutum. In silico analyses of the identified promoter sequences predicted the presence of essential core cis elements such as TATA and CAAT boxes. Regulatory role of the promoters was preliminarily assessed by using GUS reporter which demonstrated strong GUS expression. Thereafter, two key lipogenic genes including malic enzyme (PtME) and 5-desaturase (PtD5b), were overexpressed by the two promoters Pt202 and Pt667, respectively, in P. tricornutum. Combinatorial gene overexpression did not impair general physiological performance, meanwhile neutral lipid content was remarkably increased by 2.4-fold. GC-MS analysis of fatty acid methyl esters revealed that eicosapentaenoic acid (EPA; C20:5) was increased significantly. The findings augment a crucial kit to microalgal genetic tools that could facilitate the multiple-gene expression driven by various promoters, and promote microalgae for industrial bioproduction.
Collapse
Affiliation(s)
- Li-Gong Zou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tian-Bao Zhou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jia-Wen Chen
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
73
|
Nguyen DX, Sakaguchi T, Nakazawa T, Sakamoto M, Honda Y. A 14-bp stretch plays a critical role in regulating gene expression from β1-tubulin promoters of basidiomycetes. Curr Genet 2019; 66:217-228. [DOI: 10.1007/s00294-019-01014-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/25/2022]
|
74
|
Choudhury S. Genomics of the OLIG family of a bHLH transcription factor associated with oligo dendrogenesis. Bioinformation 2019; 15:430-438. [PMID: 31312081 PMCID: PMC6614118 DOI: 10.6026/97320630015430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023] Open
Abstract
The glial cell neoplasms are not fully classified by using cellular morphology. However, this is possible using known molecular markers in glial development. Oligo-dendrocyte lineage gene induces differentiation of neural progenitors and putative immature progenitor cells of the adult central nervous system. These oligo-dendrocyte lineage genes OLIG1 and OLIG2 encode basic helix-loop-helix transcription factors. The murine bHLH transcription factors found in chromosome 21 are essential for oligo-dendrocyte development. Moreover, OLIG3 of the OLIG family is known to be linked with the brain and spinal cord development. Therefore, it is of interest to analyse oligodendrocyte lineage genes in the OLIG family of bHLH domain for the understanding of oligo-dendrogenesis in eukaryotes. Several bHLH domain linked basic-helix-loop-helix transcription factors in Homo sapiens and Mus musculus from this analysis are reported. Thus, genomics data analysis of OLIG family of bHLH transcription factors help explain observed similarity and differences within the molecular evolutionary context and hence assess the functional significance of the distinct genetic blueprints.
Collapse
|
75
|
Development of a fast and sensitive method to study transcription factor activation under endogenous conditions in primary mouse T cells applying Alpha technology. J Immunol Methods 2019; 471:57-60. [PMID: 31128086 DOI: 10.1016/j.jim.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022]
|
76
|
Chen YR, Huang HC, Lin CC. Regulatory feedback loops bridge the human gene regulatory network and regulate carcinogenesis. Brief Bioinform 2019; 20:976-984. [PMID: 29194477 DOI: 10.1093/bib/bbx166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
The development of disease involves a systematic disturbance inside cells and is associated with changes in the interactions or regulations among genes forming biological networks. The bridges inside a network are critical in shortening the distances between nodes. We observed that, inside the human gene regulatory network, one strongly connected core bridged the whole network. Other regulations outside the core formed a weakly connected component surrounding the core like a peripheral structure. Furthermore, the regulatory feedback loops (FBLs) inside the core compose an interface-like structure between the core and periphery. We then denoted the regulatory FBLs as the interface core. Notably, both the cancer-associated and essential biomolecules and regulations were significantly overrepresented in the interface core. These results implied that the interface core is not only critical for the network structure but central in cellular systems. Furthermore, the enrichment of the cancer-associated and essential regulations in the interface core might be attributed to its bridgeness in the network. More importantly, we identified one regulatory FBL between HNF4A and NR2F2 that possesses the highest bridgeness in the interface core. Further investigation suggested that the disturbance of the HNF4A-NR2F2 FBL might protect tumor cells from apoptotic processes. Our results emphasize the relevance of the regulatory network properties to cellular systems and might reveal a critical role of the interface core in cancer.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei
| |
Collapse
|
77
|
Quantitative proteomics analysis provides insight into the biological role of Hsp90 in BmNPV infection in Bombyx mori. J Proteomics 2019; 203:103379. [PMID: 31102755 DOI: 10.1016/j.jprot.2019.103379] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
Heat shock protein 90, an essential chaperone responsible for the correct maturation of key proteins, has been confirmed to facilitate Bombyx mori nucleopolyhedrovirus (BmNPV) proliferation but the mechanism is not clear. In this study, we use quantitative proteomics analysis to investigate the mechanism of Hsp90 in BmNPV replication. In total, 195 differentially expressed proteins (DEPs) were identified with 136 up-regulated proteins and 59 down-regulated proteins. The protein expression level of small heat shock proteins, immune-related proteins, cellular DNA repair-related proteins and zinc finger proteins is significantly enhanced while that of protein kinases is declined. KEGG pathway analysis reveals that DEPs are involved in longevity regulating pathway, mTOR signaling pathway, FoxO signaling pathway and Toll and Imd signaling pathway. Based on the DEPs results, we speculate that inhibition of Hsp90 suppresses the BmNPV infection may because it could not only stimulate the host innate immune, induce small heat shock proteins expression to maintain the cellular proteostasis but activate host transcription factors to bind to virus DNA or protein and subsequently hinder virus replication. The results will help understand the roles of Hsp90 in BmNPV infection and shed light on new clue to illustrate the molecular mechanism of silkworm-virus interaction. SIGNIFICANCE: This is the first report on Hsp90 roles in BmNPV infection based on proteomic analysis. Our findings may provide new clue and research orientation to illustrate the molecular mechanism of silkworm-virus interaction and a set of BmHsp90 candidate clients, which may involve in BmNPV infection in BmN cells.
Collapse
|
78
|
Stages identifying and transcriptome profiling of the floral transition in Juglans regia. Sci Rep 2019; 9:7092. [PMID: 31068628 PMCID: PMC6506622 DOI: 10.1038/s41598-019-43582-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/27/2019] [Indexed: 11/30/2022] Open
Abstract
Using paraffin sections, the stages of walnut female flower bud differentiation were divided into the predifferentiation period (F_1), initial differentiation period (F_2) and flower primordium differentiation period (F_3). Leaf buds collected at the same stage as F_2 were designated JRL. Transcriptomic profiling was performed, and a total of 132,154 unigenes were obtained with lengths ranging from 201 bp to 16,831 bp. The analysis of differentially expressed genes (DEGs) showed that there were 597, 784 and 532 DEGs in the three combinations F_1vsF_2, F_1vsF_3, and F_2vsF_3, respectively. The comparison F_2vsJRL showed that 374 DEGs were differentially expressed between female buds and leaf buds. Thirty-one DEGs related to flowering time were further used to construct coexpression networks, and CRY2 and NF-YA were identified as core DEGs in flowering time regulation. Eighteen DEGs related to flowering time were subjected to real-time quantitative analysis. Our work provides a foundation for further research on the walnut floral transition and provides new resources for future research on walnut biology and biotechnology.
Collapse
|
79
|
Shao W, Alcantara SGM, Zeitlinger J. Reporter-ChIP-nexus reveals strong contribution of the Drosophila initiator sequence to RNA polymerase pausing. eLife 2019; 8:41461. [PMID: 31021316 PMCID: PMC6483594 DOI: 10.7554/elife.41461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
RNA polymerase II (Pol II) pausing is a general regulatory step in transcription, yet the stability of paused Pol II varies widely between genes. Although paused Pol II stability correlates with core promoter elements, the contribution of individual sequences remains unclear, in part because no rapid assay is available for measuring the changes in Pol II pausing as a result of altered promoter sequences. Here, we overcome this hurdle by showing that ChIP-nexus captures the endogenous Pol II pausing on transfected plasmids. Using this reporter-ChIP-nexus assay in Drosophila cells, we show that the pausing stability is influenced by downstream promoter sequences, but that the strongest contribution to Pol II pausing comes from the initiator sequence, in which a single nucleotide, a G at the +2 position, is critical for stable Pol II pausing. These results establish reporter-ChIP-nexus as a valuable tool to analyze Pol II pausing.
Collapse
Affiliation(s)
- Wanqing Shao
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, United States
| |
Collapse
|
80
|
Gan Z, Feng Y, Wu T, Wang Y, Xu X, Zhang X, Han Z. Downregulation of the auxin transporter gene SlPIN8 results in pollen abortion in tomato. PLANT MOLECULAR BIOLOGY 2019; 99:561-573. [PMID: 30734902 DOI: 10.1007/s11103-019-00836-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/02/2019] [Indexed: 05/12/2023]
Abstract
SlPIN8 is expressed specifically within tomato pollen, and that it is involved in tomato pollen development and intracellular auxin homeostasis. The auxin (IAA) transport protein PIN-FORMED (PIN) plays key roles in various aspects of plant development. The biological role of the auxin transporter SlPIN8 in tomato development remains unclear. Here, we examined the expression pattern of the SlPIN8 gene in vegetative and reproductive organs of tomato. RNA interference (RNAi) transgenic lines specifically silenced for the SlPIN8 gene were generated to identify the role of SlPIN8 in pollen development. We found that SlPIN8 mRNA is expressed specifically within tomato pollen. In the anthers, the highest mRNA expression and β-glucuronidase (GUS) activity of promoter-SlPIN8-GUS was detected during late stages of anther development, when pollen maturation occurred. The downregulation of SlPIN8 did not drastically affect the vegetative growth of tomato. However, in SlPIN8-RNAi transgenic plants, approximately 80% of the pollen grains were identified to be abnormal and lack viability; they were shriveled and flattened. Furthermore, the downregulation of SlPIN8 affected the gene expression of some anther development-specific proteins. SlPIN8-RNAi transgenic plants induced seedless fruits because of defective pollen function rather than defective female gametophyte function. In addition, SlPIN8 was found to localize to the endoplasmic reticulum, consistent with the changes in the auxin levels of SlPIN8-RNAi lines, whereas the level of free IAA was increased in SlPIN8-overexpressing protoplasts, indicating that SlPIN8 is involved in intracellular auxin homeostasis.
Collapse
Affiliation(s)
- Zengyu Gan
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yi Feng
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ting Wu
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yi Wang
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xuefeng Xu
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinzhong Zhang
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenhai Han
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
81
|
Li Z, Pan X, Guo X, Fan K, Lin W. Physiological and Transcriptome Analyses of Early Leaf Senescence for ospls1 Mutant Rice ( Oryza sativa L.) during the Grain-Filling Stage. Int J Mol Sci 2019; 20:ijms20051098. [PMID: 30836615 PMCID: PMC6429080 DOI: 10.3390/ijms20051098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 01/21/2023] Open
Abstract
Early leaf senescence is an important agronomic trait that affects crop yield and quality. To understand the molecular mechanism of early leaf senescence, Oryza sativa premature leaf senescence 1 (ospls1) mutant rice with a deletion of OsVHA-A and its wild type were employed in this study. The genotype-dependent differences in photosynthetic indexes, senescence-related physiological parameters, and yield characters were investigated during the grain-filling stage. Moreover, RNA sequencing (RNA-seq) was performed to determine the genotype differences in transcriptome during the grain-filling stage. Results showed that the ospls1 mutant underwent significant decreases in the maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), net photosynthesis rate (Pn), and soluble sugar and protein, followed by the decreases in OsVHA-A transcript and vacuolar H+-ATPase activity. Finally, yield traits were severely suppressed in the ospls1 mutant. RNA-seq results showed that 4827 differentially expressed genes (DEGs) were identified in ospls1 mutant between 0 day and 14 days, and the pathways of biosynthesis of secondary metabolites, carbon fixation in photosynthetic organisms, and photosynthesis were downregulated in the senescing leaves of ospls1 mutant during the grain-filling stage. In addition, 81 differentially expressed TFs were identified to be involved in leaf senescence. Eleven DEGs related to hormone signaling pathways were significantly enriched in auxin, cytokinins, brassinosteroids, and abscisic acid pathways, indicating that hormone signaling pathways participated in leaf senescence. Some antioxidative and carbohydrate metabolism-related genes were detected to be differentially expressed in the senescing leaves of ospls1 mutant, suggesting that these genes probably play response and regulatory roles in leaf senescence.
Collapse
Affiliation(s)
- Zhaowei Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xinfeng Pan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaodong Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Kai Fan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
82
|
Abstract
OBJECTIVE Promoter single-nucleotide polymorphisms (SNPs) of the ABCB1 gene, encoding the placental efflux transporter P-glycoprotein, can affect its expression and alter xenobiotic transfer from the maternal to the fetal circulation. Because SNPs are arranged in specific combinations as defined haplotypes, the aims of this study were to: (i) determine the placental haplotype structure of the ABCB1 promoter and (ii) determine the differential effect of these haplotypes on placental ABCB1 promoter activity. MATERIALS AND METHODS DNA samples from 100 healthy placentas were PCR-amplified and sequenced to identify existing SNPs in the proximal ABCB1 promoter. The haplotype structure encompassing these SNPs was inferred by PHASE analysis. Luciferase reporter constructs representing these haplotypes were generated and transfected into human placental 3A cells and their effect on ABCB1 promoter activity was determined using a dual-luciferase assay. RESULTS We identified 12 ABCB1 promoter SNPs. These SNPs were predicted by PHASE to segregate into 28 haplotypes with frequencies ranging between 0.019 and 0.88. We found 12 of these haplotypes in our population in addition to two haplotypes not predicted by PHASE. We also generated two haplotypes to determine individual SNP effects for a total of 16 studied. Compared with the ancestral haplotype, three haplotypes significantly up-regulated (107-266% increase; P<0.05), one significantly down-regulated (95.4% decrease; P<0.01), and 12 had no statistically significant effect on ABCB1 promoter activity. DISCUSSION AND CONCLUSION Our data show that the effect of SNPs on promoter activity depends on their presence in a specific haplotype. This indicates that haplotypes, rather than individual SNPs, could play a significant role in regulating placental P-glycoprotein expression and affect placental transfer and fetal exposure to xenobiotics.
Collapse
|
83
|
Zhang H, Zhang Q, Liao Z. Microarray Data Analysis of Molecular Mechanism Associated with Stroke Progression. J Mol Neurosci 2019; 67:424-433. [PMID: 30610589 DOI: 10.1007/s12031-018-1247-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
Abstract
This study aimed to explore the molecular mechanism of stroke and provide a new target in the clinical management. The miRNA dataset GSE97532 (3 blood samples from middle cerebral artery occlusion (MCAO) and 3 from sham operation) and mRNA dataset GSE97533 (3 blood samples from MCAO and 3 from sham operation) were obtained from GEO database. Differentially expressed mRNA (DEGs) and miRNAs (DEMIRs) were screened out between MCAO and sham operation groups. Then, DEMIR-DEG interactions were explored and visualized using Cytoscape software. Moreover, the enrichment analysis was performed on these DEMIRs and DEGs. Furthermore, protein-protein interaction (PPI) network was constructed. Finally, the DEG-target transcription factors (TFs) were investigated using the WebGestal software. The current bioinformatics analysis revealed 38 DEMIRs and 546 DEGs between MCAO and sham operation groups. The DEMIR-DEG analysis revealed 370 relations, such as miR-107-5p-Furin. The top 10 up- and downregulated DEMIRs were mainly enriched in pathways like cAMP signaling pathway. The PPI network analysis revealed 2 modules. The target DEGs of the 10 up- and downregulated DEMIRs in 2 modules were mainly assembled in functions like ATP binding and pathway including ABC transporters. Furthermore, the DEG-TF network analysis identified 5 outstanding TFs including androgen receptor (AR). miR107-5p might take part in the progression of stroke via inhibiting the expression of Furin. TFs like AR might be used as a novel gene therapy target for stroke. Furthermore, cAMP signaling pathway and ATP binding function might be a novel breakthrough for stroke treatment.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Neurology, Fourth People's Hospital of Jinan, No. 50 Shifan Road, Tianqiao District, Jinan, 250031, Shandong Province, China
| | - Qiying Zhang
- Department of Internal Medicine, Second People's Hospital of Jinan, No. 148 Jingyi Road, Huaiyin District, Jinan, 250001, Shandong Province, China
| | - Zuning Liao
- Department of Neurology, Fourth People's Hospital of Jinan, No. 50 Shifan Road, Tianqiao District, Jinan, 250031, Shandong Province, China.
| |
Collapse
|
84
|
Fang Z, Sun Y, Zhang X, Wang G, Li Y, Wang Y, Zhang Z. Responses of HSP70 Gene to Vibrio parahaemolyticus Infection and Thermal Stress and Its Transcriptional Regulation Analysis in Haliotis diversicolor. Molecules 2019; 24:E162. [PMID: 30609869 PMCID: PMC6337134 DOI: 10.3390/molecules24010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023] Open
Abstract
Heat-shock protein 70 (HSP70) is a molecular chaperone that plays critical roles in cell protein folding and metabolism, which helps to protect cells from unfavorable environmental stress. Haliotis diversicolor is one of the most important economic breeding species in the coastal provinces of south China. To date, the expression and transcriptional regulation of HSP70 in Haliotis diversicolor (HdHSP70) has not been well characterized. In this study, the expression levels of HdHSP70 gene in different tissues and different stress conditions were detected. The results showed that the HdHSP70 gene was ubiquitously expressed in sampled tissues and was the highest in hepatopancreas, followed by hemocytes. In hepatopancreas and hemocytes, the HdHSP70 gene was significantly up-regulated by Vibrio parahaemolyticus infection, thermal stress, and combined stress (Vibrio parahaemolyticus infection and thermal stress combination), indicating that HdHSP70 is involved in the stress response and the regulation of innate immunity. Furthermore, a 2383 bp of 5'-flanking region sequence of the HdHSP70 gene was cloned, and it contains a presumed core promoter region, a CpG island, a (TG)39 simple sequence repeat (SSR), and many potential transcription factor binding sites. The activity of HdHSP70 promoter was evaluated by driving the expression of luciferase gene in HEK293FT cells. A series of experimental results indicated that the core promoter region is located between -189 bp and +46 bp, and high-temperature stress can increase the activity of HdHSP70 promoter. Sequence-consecutive deletions of the luciferase reporter gene in HEK293FT cells revealed two possible promoter activity regions. To further identify the binding site of the key transcription factor in the two regions, two expression vectors with site-directed mutation were constructed. The results showed that the transcriptional activity of NF-1 site-directed mutation was significantly increased (p < 0.05), whereas the transcriptional activity of NF-κB site-directed mutation was significantly reduced. These results suggest that NF-1 and NF-κB may be two important transcription factors that regulate the expression of HdHSP70 gene.
Collapse
Affiliation(s)
- Zhiqiang Fang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Yulong Sun
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Yuting Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
85
|
TELS: A Novel Computational Framework for Identifying Motif Signatures of Transcribed Enhancers. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:332-341. [PMID: 30578915 PMCID: PMC6364045 DOI: 10.1016/j.gpb.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/23/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022]
Abstract
In mammalian cells, transcribed enhancers (TrEns) play important roles in the initiation of gene expression and maintenance of gene expression levels in a spatiotemporal manner. One of the most challenging questions is how the genomic characteristics of enhancers relate to enhancer activities. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers’ DNA code in a more systematic way. To address this problem, we developed a novel computational framework, Transcribed Enhancer Landscape Search (TELS), aimed at identifying predictive cell type/tissue-specific motif signatures of TrEns. As a case study, we used TELS to compile a comprehensive catalog of motif signatures for all known TrEns identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that combinations of different short motifs characterize in an optimized manner cell type/tissue-specific TrEns. Our study is the first to report combinations of motifs that maximize classification performance of TrEns exclusively transcribed in one cell type/tissue from TrEns exclusively transcribed in different cell types/tissues. Moreover, we also report 31 motif signatures predictive of enhancers’ broad activity. TELS codes and material are publicly available at http://www.cbrc.kaust.edu.sa/TELS.
Collapse
|
86
|
Abstract
The vertebrate immune system is tasked with the challenge of responding to any pathogen the organism might encounter, and retaining memory of that pathogen in case of future infection. Recognition and memory of pathogens are encoded within the adaptive immune system and production of T and B lymphocytes with diverse antigen receptor repertoires. In B lymphocytes, diversity is generated by sequential recombination between Variable (V), Diversity (D) and Joining (J) gene segments in the immunoglobulin heavy chain gene (Igh) and subsequent V-J recombination in immunoglobulin light chain genes (Igκ followed by Igλ). However, the process by which particular V, D and J segments are selected during recombination, and stochasticity is maintained to ensure antibody repertoire diversity, is still unclear. In this review, we focus on Igκ and recent findings regarding the relationships between gene structure, the generation of diversity and allelic choice. Surprisingly, the nuclear environment in which each Igκ allele resides, including transcription factories assembled on the nuclear matrix, plays critical roles in both gene regulation and in shaping the diversity of Vκ genes accessible to recombination. These findings provide a new paradigm for understanding Igκ recombination and Vκ diversity in the context of B lymphopoiesis.
Collapse
|
87
|
Wang L, Xu X, Yang J, Chen L, Liu B, Liu T, Jin Q. Integrated microRNA and mRNA analysis in the pathogenic filamentous fungus Trichophyton rubrum. BMC Genomics 2018; 19:933. [PMID: 30547762 PMCID: PMC6295003 DOI: 10.1186/s12864-018-5316-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Trichophyton rubrum (T. rubrum) is an important model organism of dermatophytes, which are the most common fungal pathogens worldwide. Despite the severity and prevalence of the infection caused by these pathogens, current therapies are not sufficient. MicroRNA (miRNA) is a class of small noncoding RNAs that are key factors in the regulation of gene expression. These miRNAs are reported to be highly conserved in different organisms and are involved in various essential cellular processes. In this study, we performed an integrated analysis of microRNA-like RNAs (milRNAs) and mRNAs between conidial and mycelial stages to investigate the roles of milRNAs in regulating the expression of target genes in T. rubrum. RESULTS A total of 158 conserved milRNAs and 12 novel milRNAs were identified in our study, corresponding to 5470 target genes, which were involved in various essential biological pathways. In addition, 137 target genes corresponding to 21 milRNAs were concurrent differentially expressed between the conidial and mycelial stages. Among these 137 target genes, 64 genes showed the opposite trend to their corresponding milRNAs in expression difference between the two stages, indicating possible negative regulation. Furthermore, 46% of differentially expressed target genes are involved in transcription, transcriptional and post-transcriptional regulation. Our results indicate that milRNAs might associate with other regulatory elements to control gene expression at both transcriptional and post-transcriptional level. CONCLUSIONS This study provides the first analysis of milRNA expression profile in T. rubrum as well as dermatophytes in general. The results revealed the roles of milRNAs in regulating gene expression between the two major growth stages of this fungus. Our study deepens our understanding of T. rubrum and will serve as a foundation for further investigations to combat this fungus.
Collapse
Affiliation(s)
- Lingling Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingye Xu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
88
|
Qu D, Cui F, Lu D, Yang Y, Xu Y. DEP domain containing 1 predicts prognosis of hepatocellular carcinoma patients and regulates tumor proliferation and metastasis. Cancer Sci 2018; 110:157-165. [PMID: 30417471 PMCID: PMC6317931 DOI: 10.1111/cas.13867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022] Open
Abstract
DEP domain containing 1 (DEPDC1) protein is a novel oncoantigen upregulated in multiple types of cancers which present oncogenic activity and high immunogenicity. However, the function and therapeutic potential of DEPDC1 in hepatocellular carcinoma (HCC) remain unclear. In the present study, we showed that DEPDC1 was frequently upregulated in HCC and associated with cancer diagnosis and poor prognosis for HCC patients. Moreover, DEPDC1 promotes HCC cell proliferation in vitro as well as carcinogenesis in vivo. Notably, DEPDC1 overexpression also increases the neoplasm metastasis ability of HCC cells both in vivo and in vitro. Gene set enrichment analysis results showed that DEPDC1 expression is positively correlated with K‐RAS signal pathway, pathways in cancer and WNT/β‐catenin signal pathway, all of which are closely associated with specific cancer‐related gene sets. Our study provides the basis for further investigation of the molecular mechanism by which DEPDC1 promotes the development and metastasis of HCC.
Collapse
Affiliation(s)
- Di Qu
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Cui
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Lu
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Yang
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuqing Xu
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
89
|
Zhang C, Zhang G, Liu D. Histone deacetylase inhibitors reactivate silenced transgene in vivo. Gene Ther 2018; 26:75-85. [DOI: 10.1038/s41434-018-0053-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 11/09/2022]
|
90
|
Jin W, Qazi TJ, Quan Z, Li N, Qing H. Dysregulation of Transcription Factors: A Key Culprit Behind Neurodegenerative Disorders. Neuroscientist 2018; 25:548-565. [PMID: 30484370 DOI: 10.1177/1073858418811787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) are considered heterogeneous disorders characterized by progressive pathological changes in neuronal systems. Transcription factors are protein molecules that are important in regulating the expression of genes. Although the clinical manifestations of NDs vary, the pathological processes appear similar with regard to neuroinflammation, oxidative stress, and proteostasis, to which, as numerous studies have discovered, transcription factors are closely linked. In this review, we summarized and reviewed the roles of transcription factors in NDs, and then we elucidated their functions during pathological processes, and finally we discussed their therapeutic values in NDs.
Collapse
Affiliation(s)
- Wei Jin
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Talal Jamil Qazi
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhenzhen Quan
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Nuomin Li
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Hong Qing
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| |
Collapse
|
91
|
Identification, Characterization, and Expression Patterns of TCP Genes and microRNA319 in Cotton. Int J Mol Sci 2018; 19:ijms19113655. [PMID: 30463287 PMCID: PMC6274894 DOI: 10.3390/ijms19113655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/07/2023] Open
Abstract
The TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) gene family is a group of plant-specific transcription factors that have versatile functions in developmental processes and stress responses. In this study, a total of 73 TCP genes in upland cotton were identified and characterizated. Phylogenetic analysis classified them into three subgroups: 50 belonged to PCF, 16 to CIN, and 7 to CYC/TB1. GhTCP genes are randomly distributed in 22 of the 26 chromosomes in cotton. Expression patterns of GhTCPs were analyzed in 10 tissues, including different developmental stages of ovule and fiber, as well as under heat, salt, and drought stresses. Transcriptome analysis showed that 44 GhTCP genes exhibited varied transcript accumulation patterns in the tested tissues and 41 GhTCP genes were differentially expressed in response to heat, salt, and drought stresses. Furthermore, three GhTCP genes of the CIN clade were found to contain miR319-binding sites. An anti-correlation expression of GhTCP21 and GhTCP54 was analyzed with miR319 under salt and drought stress. Our results lay the foundation for understanding the complex mechanisms of GhTCP-mediated developmental processes and abiotic stress-signaling transduction pathways in cotton.
Collapse
|
92
|
Ahmadian S, Eslami G, Fatahi A, Hosseini SS, Vakili M, Ajamein Fahadan V, Elloumi M. J- binding protein 1 and J- binding protein 2 expression in clinical Leishmania major no response-antimonial isolates. J Parasit Dis 2018; 43:39-45. [PMID: 30956444 DOI: 10.1007/s12639-018-1052-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a major disease in many parts of the world. Since no vaccine has been developed, treatment is the best way to control it. In most areas, antimonial resistance whose mechanisms have not been completely understood has been reported. The main aim of this study is gene expression assessing of J-binging protein 1 and J-binding protein 2 in clinical Leishmania major isolates. The patients with CL from central and north Iran were considered for this study. The samples were transferred in RNAlater solution and stored in - 20 °C. RNA extraction and cDNA synthesis were performed. The gene expression analysis was done with SYBR Green real-time PCR using ∆∆CT. Written informed consent forms were filled out by patients, and then, information forms were filled out based on the Helsinki Declaration. Statistical analysis was done with SPSS (16.0; SPSS Inc, Chicago) using independent t test, Shapiro-Wilk, and Pearson's and Spearman's rank correlation coefficients. P ≤ 0.05 was considered significant. The gene expression of JBP1 and JBP2 had no relation with sex and age. The JBP1 gene expression was high in sensitive isolates obtained from north of the country. The JBP2 gene expression was significant in sensitive and no response-antimonial isolates from the north, but no significant differences were detected in sensitive and resistant isolates from central Iran. Differential gene expression of JBP1 and JBP2 in various clinical resistances isolates in different geographical areas shows multifactorial ways of developing resistance in different isolates.
Collapse
Affiliation(s)
- Salman Ahmadian
- 1Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 2Department of Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gilda Eslami
- 1Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 2Department of Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Fatahi
- 2Department of Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeede Sadat Hosseini
- 1Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmoud Vakili
- 3Department of Community and Preventive Medicine, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahid Ajamein Fahadan
- 1Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 2Department of Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mourad Elloumi
- 4Laboratory of Technologies of Information and Communication and Electrical Engineering (LaTICE), University of Tunis, Tunis, Tunisia
| |
Collapse
|
93
|
Guiro J, Murphy S. Regulation of expression of human RNA polymerase II-transcribed snRNA genes. Open Biol 2018; 7:rsob.170073. [PMID: 28615474 PMCID: PMC5493778 DOI: 10.1098/rsob.170073] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
In addition to protein-coding genes, RNA polymerase II (pol II) transcribes numerous genes for non-coding RNAs, including the small-nuclear (sn)RNA genes. snRNAs are an important class of non-coding RNAs, several of which are involved in pre-mRNA splicing. The molecular mechanisms underlying expression of human pol II-transcribed snRNA genes are less well characterized than for protein-coding genes and there are important differences in expression of these two gene types. Here, we review the DNA features and proteins required for efficient transcription of snRNA genes and co-transcriptional 3′ end formation of the transcripts.
Collapse
Affiliation(s)
- Joana Guiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
94
|
Su LN, Song XQ, Xue ZX, Zheng CQ, Yin HF, Wei HP. Network analysis of microRNAs, transcription factors, and target genes involved in axon regeneration. J Zhejiang Univ Sci B 2018; 19:293-304. [PMID: 29616505 DOI: 10.1631/jzus.b1700179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axon regeneration is crucial for recovery from neurological diseases. Numerous studies have identified several genes, microRNAs (miRNAs), and transcription factors (TFs) that influence axon regeneration. However, the regulatory networks involved have not been fully elucidated. In the present study, we analyzed a regulatory network of 51 miRNAs, 27 TFs, and 59 target genes, which is involved in axon regeneration. We identified 359 pairs of feed-forward loops (FFLs), seven important genes (Nap1l1, Arhgef12, Sema6d, Akt3, Trim2, Rab11fip2, and Rps6ka3), six important miRNAs (hsa-miR-204-5p, hsa-miR-124-3p, hsa-miR-26a-5p, hsa-miR-16-5p, hsa-miR-17-5p, and hsa-miR-15b-5p), and eight important TFs (Smada2, Fli1, Wt1, Sp6, Sp3, Smad4, Smad5, and Creb1), which appear to play an important role in axon regeneration. Functional enrichment analysis revealed that axon-associated genes are involved mainly in the regulation of cellular component organization, axonogenesis, and cell morphogenesis during neuronal differentiation. However, these findings need to be validated by further studies.
Collapse
Affiliation(s)
- Li-Ning Su
- Department of Basic Medicine, Hebei North University, Zhangjiakou 075029, China
| | - Xiao-Qing Song
- Department of Basic Medicine, Hebei North University, Zhangjiakou 075029, China
| | - Zhan-Xia Xue
- Department of Pharmacy, Hebei North University, Zhangjiakou 075029, China
| | - Chen-Qing Zheng
- Shenzhen RealOmics (Biotech) Co., Ltd., Shenzhen 518081, China
| | - Hai-Feng Yin
- Department of Basic Medicine, Hebei North University, Zhangjiakou 075029, China
| | - Hui-Ping Wei
- Department of Basic Medicine, Hebei North University, Zhangjiakou 075029, China
| |
Collapse
|
95
|
Madison BJ, Clark KA, Bhachech N, Hollenhorst PC, Graves BJ, Currie SL. Electrostatic repulsion causes anticooperative DNA binding between tumor suppressor ETS transcription factors and JUN-FOS at composite DNA sites. J Biol Chem 2018; 293:18624-18635. [PMID: 30315111 DOI: 10.1074/jbc.ra118.003352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Many different transcription factors (TFs) regulate gene expression in a combinatorial fashion, often by binding in close proximity to each other on composite cis-regulatory DNA elements. Here, we investigated how ETS TFs bind with the AP1 TFs JUN-FOS at composite DNA-binding sites. DNA-binding ability with JUN-FOS correlated with the phenotype of ETS proteins in prostate cancer. We found that the oncogenic ETS-related gene (ERG) and ETS variant (ETV) 1/4/5 subfamilies co-occupy ETS-AP1 sites with JUN-FOS in vitro, whereas JUN-FOS robustly inhibited DNA binding by the tumor suppressors ETS homologous factor (EHF) and SAM pointed domain-containing ETS TF (SPDEF). EHF bound ETS-AP1 DNA with tighter affinity than ERG in the absence of JUN-FOS, possibly enabling EHF to compete with ERG and JUN-FOS for binding to ETS-AP1 sites. Genome-wide mapping of EHF- and ERG-binding sites in prostate epithelial cells revealed that EHF is preferentially excluded from closely spaced ETS-AP1 DNA sequences. Structural modeling and mutational analyses indicated that adjacent positively charged surfaces from EHF and JUN-FOS use electrostatic repulsion to disfavor simultaneous DNA binding. Conservation of positive residues on the JUN-FOS interface identified E74-like ETS TF 1 (ELF1) as an additional ETS TF exhibiting anticooperative DNA binding with JUN-FOS, and we found that ELF1 is frequently down-regulated in prostate cancer. In summary, divergent electrostatic features of ETS TFs at their JUN-FOS interface enable distinct binding events at ETS-AP1 DNA sites, which may drive specific targeting of ETS TFs to facilitate distinct transcriptional programs.
Collapse
Affiliation(s)
- Bethany J Madison
- From the Department of Oncological Sciences and.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Kathleen A Clark
- From the Department of Oncological Sciences and.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Niraja Bhachech
- From the Department of Oncological Sciences and.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Peter C Hollenhorst
- the Medical Sciences program, Indiana University School of Medicine, Bloomington, Indiana 47405, and
| | - Barbara J Graves
- From the Department of Oncological Sciences and .,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112.,the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Simon L Currie
- From the Department of Oncological Sciences and.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| |
Collapse
|
96
|
miR-145 via targeting ERCC2 is involved in arsenite-induced DNA damage in human hepatic cells. Toxicol Lett 2018; 295:220-228. [DOI: 10.1016/j.toxlet.2018.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/06/2023]
|
97
|
Context-dependent prediction of protein complexes by SiComPre. NPJ Syst Biol Appl 2018; 4:37. [PMID: 30245847 PMCID: PMC6141528 DOI: 10.1038/s41540-018-0073-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022] Open
Abstract
Most cellular processes are regulated by groups of proteins interacting together to form protein complexes. Protein compositions vary between different tissues or disease conditions enabling or preventing certain protein-protein interactions and resulting in variations in the complexome. Quantitative and qualitative characterization of context-specific protein complexes will help to better understand context-dependent variations in the physiological behavior of cells. Here, we present SiComPre 1.0, a computational tool that predicts context-specific protein complexes by integrating multi-omics sources. SiComPre outperforms other protein complex prediction tools in qualitative predictions and is unique in giving quantitative predictions on the complexome depending on the specific interactions and protein abundances defined by the user. We provide tutorials and examples on the complexome prediction of common model organisms, various human tissues and how the complexome is affected by drug treatment.
Collapse
|
98
|
Xin S, Wang X, Dai G, Zhang J, An T, Zou W, Zhang G, Xie K, Wang J. Bioinformatics Analysis of SNPs in IL-6 Gene Promoter of Jinghai Yellow Chickens. Genes (Basel) 2018; 9:genes9090446. [PMID: 30200658 PMCID: PMC6162446 DOI: 10.3390/genes9090446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022] Open
Abstract
The proinflammatory cytokine, interleukin-6 (IL-6), plays a critical role in many chronic inflammatory diseases, particularly inflammatory bowel disease. To investigate the regulation of IL-6 gene expression at the molecular level, genomic DNA sequencing of Jinghai yellow chickens (Gallus gallus) was performed to detect single-nucleotide polymorphisms (SNPs) in the region -2200 base pairs (bp) upstream to 500 bp downstream of IL-6. Transcription factor binding sites and CpG islands in the IL-6 promoter region were predicted using bioinformatics software. Twenty-eight SNP sites were identified in IL-6. Four of these 28 SNPs, three [-357 (G > A), -447 (C > G), and -663 (A > G)] in the 5' regulatory region and one in the 3' non-coding region [3177 (C > T)] are not labelled in GenBank. Bioinformatics analysis revealed 11 SNPs within the promoter region that altered putative transcription factor binding sites. Furthermore, the C-939G mutation in the promoter region may change the number of CpG islands, and SNPs in the 5' regulatory region may influence IL-6 gene expression by altering transcription factor binding or CpG methylation status. Genetic diversity analysis revealed that the newly discovered A-663G site significantly deviated from Hardy-Weinberg equilibrium. These results provide a basis for further exploration of the promoter function of the IL-6 gene and the relationships of these SNPs to intestinal inflammation resistance in chickens.
Collapse
Affiliation(s)
- Shijie Xin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Key Lab for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou 225009, China.
| | - Xiaohui Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Key Lab for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou 225009, China.
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Key Lab for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou 225009, China.
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
| | - Jingjing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Key Lab for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou 225009, China.
| | - Tingting An
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Key Lab for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou 225009, China.
| | - Wenbin Zou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Key Lab for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou 225009, China.
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Key Lab for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou 225009, China.
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Key Lab for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou 225009, China.
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Key Lab for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou 225009, China.
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
99
|
Stringer JM, Winship A, Liew SH, Hutt K. The capacity of oocytes for DNA repair. Cell Mol Life Sci 2018; 75:2777-2792. [PMID: 29748894 PMCID: PMC11105623 DOI: 10.1007/s00018-018-2833-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
Female fertility and offspring health are critically dependent on the maintenance of an adequate supply of high-quality oocytes. Like somatic cells, oocytes are subject to a variety of different types of DNA damage arising from endogenous cellular processes and exposure to exogenous genotoxic stressors. While the repair of intentionally induced DNA double strand breaks in gametes during meiotic recombination is well characterised, less is known about the ability of oocytes to repair pathological DNA damage and the relative contribution of DNA repair to oocyte quality is not well defined. This review will discuss emerging data suggesting that oocytes are in fact capable of efficient DNA repair and that DNA repair may be an important mechanism for ensuring female fertility, as well as the transmission of high-quality genetic material to subsequent generations.
Collapse
Affiliation(s)
- Jessica M Stringer
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Amy Winship
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
100
|
Sugaya K. Let's think again about using mammalian temperature-sensitive mutants to investigate functional molecules-The perspectives from the studies on three mutants showing chromosome instability. J Cell Biochem 2018; 119:7143-7150. [PMID: 29943840 DOI: 10.1002/jcb.27205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/24/2018] [Indexed: 11/06/2022]
Abstract
This review evaluates the use of temperature-sensitive (ts) mutants to investigate functional molecules in mammalian cells. A series of studies were performed in which mammalian cells expressing functional molecules were isolated from ts mutants using complementation by the introduction and expression of the responsible protein tagged with the green fluorescent protein. The results showed that chromosome instability and cell-cycle arrest were caused by ts defects in the following three molecules: the largest subunit of RNA polymerase II, a protein involved in splicing, and ubiquitin-activating enzyme. The cells expressing functional protein were then isolated by introducing the responsible gene tagged with the green fluorescent protein to complement the ts phenotype. These cells proved to be useful in analyzing the dynamics of RNA polymerase II in living cells. Analyses of the functional interaction between proteins involved in splicing were also useful in the investigation of ts mutants and their derivatives. In addition, these cells demonstrated the functional localization of ubiquitin-activating enzyme in the nucleus. Mammalian ts mutants continue to show great potential to aid in understanding the functions of the essential molecules in cells. Therefore, it is highly important that studies on the identification and characterization of the genes responsible for the phenotype of a mutant are carried out.
Collapse
Affiliation(s)
- Kimihiko Sugaya
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan.,Group of Quantum-state Controlled MRI, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|