51
|
Shweta H, Singh MK, Yadav K, Verma SD, Pal N, Sen S. Effect of T·T Mismatch on DNA Dynamics Probed by Minor Groove Binders: Comparison of Dynamic Stokes Shifts of Hoechst and DAPI. J Phys Chem B 2017; 121:10735-10748. [PMID: 28922599 DOI: 10.1021/acs.jpcb.7b06937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recognition of DNA base mismatches and their subsequent repair by enzymes is vital for genomic stability. However, it is difficult to comprehend such a process in which enzymes sense and repair different types of mismatches with different ability. It has been suggested that the differential structural changes of mismatched bases act as cues to the repair enzymes, although the effect of such DNA structural changes on surrounding water and ion dynamics is inevitable due to strong electrostatic coupling among them. Thus, collective dynamics of DNA, water, and ions near the mismatch site is believed to be important for mismatch recognition and repair mechanism. Here we show that introduction of a T·T mismatch in the minor groove of DNA induces dispersed (collective) power-law solvation dynamics (of exponent ∼0.24), measured by monitoring the time-resolved fluorescence Stokes shifts (TRFSS) of two popular minor groove binders (Hoechst 33258 and DAPI) over five decades of time from 100 fs to 10 ns. The same ligands however sense different dynamics (power-law of exponent ∼0.15 or power-law multiplied with biexponential relaxation) in the minor groove of normal-DNA. The similar fluorescence anisotropy decays of ligands measured in normal- and T·T-DNA suggest that Stokes shift dynamics and their changes in T·T-DNA purely originate from the solvation process, and not from any internal rotational motion of probe-ligands. The dispersed power-law solvation dynamics seen in T·T-DNA indicate that the ligands do not sense any particular (exponential) relaxation specific to T·T wobbling and/or other conformational changes. This could be the reason why T·T mismatch is recognized by enzymes with lower efficiency compared to purine-pyrimidine and purine-purine mismatches.
Collapse
Affiliation(s)
- Him Shweta
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Moirangthem Kiran Singh
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Kavita Yadav
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Sachin Dev Verma
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Nibedita Pal
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| |
Collapse
|
52
|
Moore EA, Xu YZ. The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch. PLoS One 2017; 12:e0184801. [PMID: 28910418 PMCID: PMC5599020 DOI: 10.1371/journal.pone.0184801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/31/2017] [Indexed: 11/21/2022] Open
Abstract
The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with S-substitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening.
Collapse
Affiliation(s)
- Elaine Ann Moore
- School of Life, Health and Chemical Sciences, STEM Faculty, The Open University, Milton Keynes, Buckinghamshire, United Kingdom
- * E-mail:
| | - Yao-Zhong Xu
- School of Life, Health and Chemical Sciences, STEM Faculty, The Open University, Milton Keynes, Buckinghamshire, United Kingdom
| |
Collapse
|
53
|
DNA mismatch repair and its many roles in eukaryotic cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:174-187. [PMID: 28927527 DOI: 10.1016/j.mrrev.2017.07.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1-independent subpathways of MMR is not known. This review summarizes recent literature on eukaryotic MMR, with emphasis on the diverse cellular roles of eukaryotic MMR proteins, the mechanism of strand discrimination and cross-talk/interactions between and co-regulation of MMR and other DNA repair pathways in eukaryotic cells. The main conclusion of the review is that MMR proteins contribute to genome stability through their ability to recognize and promote an appropriate cellular response to aberrant DNA structures, especially when they arise during DNA replication. Although the molecular mechanism of MMR in the eukaryotic cell is still not completely understood, increased used of single-molecule analyses in the future may yield new insight into these unsolved questions.
Collapse
|
54
|
Molnár I, Besenyei E, Thieme R, Thieme T, Aurori A, Baricz A, Banciu HL, Rakosy-Tican E. Mismatch repair deficiency increases the transfer of antibiosis and antixenosis properties against Colorado potato beetle in somatic hybrids of Solanum tuberosum + S. chacoense. PEST MANAGEMENT SCIENCE 2017; 73:1428-1437. [PMID: 27862922 DOI: 10.1002/ps.4473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Colorado potato beetle (CPB) has become the biggest enemy of cultivated potato worldwide. One of the most effective sources of resistance to CPB is Solanum chacoense, an accession with a high leptine glycoalkaloid content. The aim of our study was to assay the repellence and toxicity of S. chacoense, its somatic hybrids (SHs) and their backcross progenies (BC1 ) with potato for CPB adults and larvae. Transgenic S. chacoense, deficient in DNA mismatch repair (MMR), was also used to produce SHs, in order to increase homeologous recombination and hence introgression of wild-species DNA into the potato gene pool. RESULTS Wild-type SH was highly resistant to CPB. Resistance to CPB of BC1 progenies showed a 1:3 inheritance pattern. MMR-deficient SHs performed better in the resistance analysis. Most MMR-deficient SHs had a similar toxicity as S. chacoense and an intensely repellent effect on CPB adults. Resistance of SHs and BC1 clones may be attributed to leptine biosynthesis, which was confirmed using a RAPD marker. CONCLUSION This is the first report of SHs and their progenies exhibiting both antibiosis and antixenosis against CPB. Resistant SHs are an important step forward in combating this voracious pest of potato. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Imola Molnár
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, 'Babes-Bolyai' University, Cluj-Napoca, Romania
| | - Enikő Besenyei
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, 'Babes-Bolyai' University, Cluj-Napoca, Romania
| | - Ramona Thieme
- Institute for Breeding Research on Agriculture Crops, Julius Kühn-Institut (JKI), Groß Lüsewitz, Germany
| | | | - Adriana Aurori
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, 'Babes-Bolyai' University, Cluj-Napoca, Romania
| | - Andreea Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, 'Babes-Bolyai' University, Cluj-Napoca, Romania
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, 'Babes-Bolyai' University, Cluj-Napoca, Romania
| | - Elena Rakosy-Tican
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, 'Babes-Bolyai' University, Cluj-Napoca, Romania
| |
Collapse
|
55
|
Zhu X, Wang Y, Li H, Xue W, Wang R, Wang L, Zhu M, Zheng L. Deficiency of hMLH1 and hMSH2 expression is a poor prognostic factor in Early Gastric Cancer (EGC). J Cancer 2017. [PMID: 28638463 PMCID: PMC5479254 DOI: 10.7150/jca.18487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purpose: The aim of the study was to investigate the effect of deficiency of hMLH1 and hMSH2 expression on the prognosis of early gastric cancer (EGC) in Chinese populations. Methods: A total of 160 EGC patients who underwent curative gastrectomy with lymphadenectomy from January 2011 to July 2014 at Xinhua Hospital were evaluated. The expression rates of hMLH1 and hMSH2 were examined using tissues preserved in paraffin blocks by immunohistochemical staining. The clinicopathological characteristics and prognosis of EGC with deficient hMLH1 and hMSH2 were analyzed. Results: On immunohistochemical staining, the loss expression of hMLH1 and hMSH2 were observed in 89 (55.6%) and 45 (28.1%), respectively. The hMLH1 deficiency was associated with the middle third of tumor location (P = 0.041). According to Kaplan-Meier survival analysis and Log-Rank test, the loss expression of hMLH1 and hMSH2 were associated with worse survival than positive hMLH1 (HR = 0.247, 95% CI = 0.078-0.781, P = 0.017) and hMSH2 (HR = 0.174, 95% CI = 0.051-0.601, P = 0.006) in EGC. Conclusion: The main conclusions were as follows: The hMLH1 deficiency was preferred to the middle third of EGC. Lymph node metastasis (LNM) was a prognostic factor of EGC. And the prognosis of EGC patients with deficient mismatch repair (dMMR, mainly including deficient hMLH1 and hMSH2) was obviously worse than proficient mismatch repair (pMMR).
Collapse
Affiliation(s)
- Xueru Zhu
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, Shanghai, China
| | - Yiwei Wang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, Shanghai, China
| | - Hongjia Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, 200092, Shanghai, China
| | - Wenji Xue
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, Shanghai, China
| | - Ruifen Wang
- Department of Pathology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, Shanghai, China
| | - Lifeng Wang
- Department of Pathology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, Shanghai, China
| | - Meiling Zhu
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, Shanghai, China
| | - Leizhen Zheng
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, Shanghai, China
| |
Collapse
|
56
|
Klungland A, Robertson AB. Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine. Free Radic Biol Med 2017; 107:62-68. [PMID: 27890639 DOI: 10.1016/j.freeradbiomed.2016.11.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 01/31/2023]
Abstract
Recent reports suggest that the Tet enzyme family catalytically oxidize 5-methylcytosine in mammalian cells. The oxidation of 5-methylcytosine can result in three chemically distinct species - 5-hydroxymethylcytsine, 5-formylcytosine, and 5-carboxycytosine. While the base excision repair machinery processes 5-formylcytosine and 5-carboxycytosine rapidly, 5-hydroxymethylcytosine is stable under physiological conditions. As a stable modification 5-hydroxymethylcytosine has a broad range of functions, from stem cell pluriopotency to tumorigenesis. The subsequent oxidation products, 5-formylcytosine and 5-carboxycytosine, are suggested to be involved in an active DNA demethylation pathway. This review provides an overview of the biochemistry and biology of 5-methylcytosine oxidation products.
Collapse
Affiliation(s)
- Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway; Institute of Basic Medical Sciences, University of Oslo, PO Box 1018 Blindern, N-0315 Oslo, Norway
| | - Adam B Robertson
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway.
| |
Collapse
|
57
|
CpG and Non-CpG Methylation in Epigenetic Gene Regulation and Brain Function. Genes (Basel) 2017; 8:genes8060148. [PMID: 28545252 PMCID: PMC5485512 DOI: 10.3390/genes8060148] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/18/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is a major epigenetic mark with important roles in genetic regulation. Methylated cytosines are found primarily at CpG dinucleotides, but are also found at non-CpG sites (CpA, CpT, and CpC). The general functions of CpG and non-CpG methylation include gene silencing or activation depending on the methylated regions. CpG and non-CpG methylation are found throughout the whole genome, including repetitive sequences, enhancers, promoters, and gene bodies. Interestingly, however, non-CpG methylation is restricted to specific cell types, such as pluripotent stem cells, oocytes, neurons, and glial cells. Thus, accumulation of methylation at non-CpG sites and CpG sites in neurons seems to be involved in development and disease etiology. Here, we provide an overview of CpG and non-CpG methylation and their roles in neurological diseases.
Collapse
|
58
|
Błażej P, Mackiewicz D, Grabińska M, Wnętrzak M, Mackiewicz P. Optimization of amino acid replacement costs by mutational pressure in bacterial genomes. Sci Rep 2017; 7:1061. [PMID: 28432324 PMCID: PMC5430830 DOI: 10.1038/s41598-017-01130-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/27/2017] [Indexed: 12/17/2022] Open
Abstract
Mutations are considered a spontaneous and random process, which is important component of evolution because it generates genetic variation. On the other hand, mutations are deleterious leading to non-functional genes and energetically costly repairs. Therefore, one can expect that the mutational pressure is optimized to simultaneously generate genetic diversity and preserve genetic information. To check if empirical mutational pressures are optimized in these ways, we compared matrices of nucleotide mutation rates derived from bacterial genomes with their best possible alternatives that minimized or maximized costs of amino acid replacements associated with differences in their physicochemical properties (e.g. hydropathy and polarity). It should be noted that the studied empirical nucleotide substitution matrices and the costs of amino acid replacements are independent because these matrices were derived from sites free of selection on amino acid properties and the amino acid costs assumed only amino acid physicochemical properties without any information about mutation at the nucleotide level. Obtained results indicate that the empirical mutational matrices show a tendency to minimize costs of amino acid replacements. It implies that bacterial mutational pressures can evolve to decrease consequences of amino acid substitutions. However, the optimization is not full, which enables generation of some genetic variability.
Collapse
Affiliation(s)
- Paweł Błażej
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Dorota Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Małgorzata Grabińska
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Małgorzata Wnętrzak
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
59
|
Viberg LT, Sarovich DS, Kidd TJ, Geake JB, Bell SC, Currie BJ, Price EP. Within-Host Evolution of Burkholderia pseudomallei during Chronic Infection of Seven Australasian Cystic Fibrosis Patients. mBio 2017; 8:e00356-17. [PMID: 28400528 PMCID: PMC5388805 DOI: 10.1128/mbio.00356-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder characterized by progressive lung function decline. CF patients are at an increased risk of respiratory infections, including those by the environmental bacterium Burkholderia pseudomallei, the causative agent of melioidosis. Here, we compared the genomes of B. pseudomallei isolates collected between ~4 and 55 months apart from seven chronically infected CF patients. Overall, the B. pseudomallei strains showed evolutionary patterns similar to those of other chronic infections, including emergence of antibiotic resistance, genome reduction, and deleterious mutations in genes involved in virulence, metabolism, environmental survival, and cell wall components. We documented the first reported B. pseudomallei hypermutators, which were likely caused by defective MutS. Further, our study identified both known and novel molecular mechanisms conferring resistance to three of the five clinically important antibiotics for melioidosis treatment. Our report highlights the exquisite adaptability of microorganisms to long-term persistence in their environment and the ongoing challenges of antibiotic treatment in eradicating pathogens in the CF lung. Convergent evolution with other CF pathogens hints at a degree of predictability in bacterial evolution in the CF lung and potential targeted eradication of chronic CF infections in the future.IMPORTANCEBurkholderia pseudomallei, the causative agent of melioidosis, is an environmental opportunistic bacterium that typically infects immunocompromised people and those with certain risk factors such as cystic fibrosis (CF). Patients with CF tend to develop chronic melioidosis infections, for reasons that are not well understood. This report is the first to describe B. pseudomallei evolution within the CF lung during chronic infection. We show that the pathways by which B. pseudomallei adapts to the CF lung are similar to those seen in better-studied CF pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia complex species. Adaptations include the accumulation of antibiotic resistance, loss of nonessential genes, metabolic alterations, and virulence factor attenuation. Known and novel mechanisms of resistance to three of the five antibiotics used in melioidosis treatment were identified. Similar pathways of evolution in CF pathogens, including B. pseudomallei, provide exciting avenues for more-targeted treatment of chronic, recalcitrant infections.
Collapse
Affiliation(s)
- Linda T Viberg
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Derek S Sarovich
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - James B Geake
- Department of Respiratory Medicine, The Lyell McEwin Hospital, Elizabeth Vale, South Australia, Australia
| | - Scott C Bell
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Erin P Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
60
|
Larkin AA, Martiny AC. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:55-70. [PMID: 28185400 DOI: 10.1111/1758-2229.12523] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
With rapidly improving sequencing technologies, scientists have recently gained the ability to examine diverse microbial communities at high genomic resolution, revealing that both free-living and host-associated microbes partition their environment at fine phylogenetic scales. This 'microdiversity,' or closely related (> 97% similar 16S rRNA gene) but ecologically and physiologically distinct sub-taxonomic groups, appears to be an intrinsic property of microorganisms. However, the functional implications of microdiversity as well as its effects on microbial biogeography are poorly understood. Here, we present two theoretical models outlining the evolutionary mechanisms that drive the formation of microdiverse 'sub-taxa.' Additionally, we review recent literature and reveal that microdiversity influences a wide range of functional traits across diverse ecosystems and microbes. Moving to higher levels of organization, we use laboratory data from marine, soil, and host-associated bacteria to demonstrate that the aggregated trait-based response of microdiverse sub-taxa modifies the fundamental niche of microbes. The correspondence between microdiversity and niche space represents a critical tool for future studies of microbial ecology. By combining growth experiments on diverse isolates with examinations of environmental abundance patterns, researchers can better quantify the fundamental and realized niches of microbes and improve understanding of microbial biogeography and response to future environmental change.
Collapse
Affiliation(s)
- Alyse A Larkin
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
61
|
Mei GY, Tang J, Bach S, Kostrzynska M. Changes in Gene Transcription Induced by Hydrogen Peroxide Treatment of Verotoxin-Producing Escherichia coli O157:H7 and Non-O157 Serotypes on Romaine Lettuce. Front Microbiol 2017; 8:477. [PMID: 28377761 PMCID: PMC5359304 DOI: 10.3389/fmicb.2017.00477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/08/2017] [Indexed: 01/05/2023] Open
Abstract
Disease outbreaks of verotoxin-producing Escherichia coli (VTEC) O157:H7 and non-O157 serotypes associated with leafy green vegetables are becoming a growing concern. A better understanding of the behavior of VTEC, particularly non-O157 serotypes, on lettuce under stress conditions is necessary for designing more effective control strategies. Hydrogen peroxide (H2O2) can be used as a sanitizer to reduce the microbial load in leafy green vegetables, particularly in fresh produce destined for the organic market. In this study, we tested the hypothesis that H2O2 treatment of contaminated lettuce affects in the same manner transcription of stress-associated and virulence genes in VTEC strains representing O157 and non-O157 serotypes. Six VTEC isolates representing serotypes O26:H11, O103:H2, O104:H4, O111:NM, O145:NM, and O157:H7 were included in this study. The results indicate that 50 mM H2O2 caused a population reduction of 2.4-2.8 log10 (compared to non-treated control samples) in all six VTEC strains present on romaine lettuce. Following the treatment, the transcription of genes related to oxidative stress (oxyR and sodA), general stress (uspA and rpoS), starvation (phoA), acid stress (gadA, gadB, and gadW), and virulence (stx1A, stx2A, and fliC) were dramatically downregulated in all six VTEC serotypes (P ≤ 0.05) compared to not treated control samples. Therefore, VTEC O157:H7 and non-O157 serotypes on lettuce showed similar survival rates and gene transcription profiles in response to 50 mM H2O2 treatment. Thus, the results derived from this study provide a basic understanding of the influence of H2O2 treatment on the survival and virulence of VTEC O157:H7 and non-O157 serotypes on lettuce.
Collapse
Affiliation(s)
- Gui-Ying Mei
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada Guelph, ON, Canada
| | - Joshua Tang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada Guelph, ON, Canada
| | - Susan Bach
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada Summerland, BC, Canada
| | - Magdalena Kostrzynska
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada Guelph, ON, Canada
| |
Collapse
|
62
|
Pereira-Gómez M, Sanjuán R. Effect of mismatch repair on the mutation rate of bacteriophage ϕX174. Virus Evol 2016; 1:vev010. [PMID: 27774282 PMCID: PMC5014478 DOI: 10.1093/ve/vev010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Viral mutation rates vary widely in nature, yet the mechanistic and evolutionary determinants of this variability remain unclear. Small DNA viruses mutate orders of magnitude faster than their hosts despite using host-encoded polymerases for replication, which suggests these viruses may avoid post-replicative repair. Supporting this, the genome of bacteriophage ϕX174 is completely devoid of GATC sequence motifs, which are required for methyl-directed mismatch repair in Escherichia coli. Here, we show that restoration of the randomly expected number of GATC sites leads to an eightfold reduction in the rate of spontaneous mutation of the phage, without severely impairing its replicative capacity over the short term. However, the efficacy of mismatch repair in the presence of GATC sites is limited by inefficient methylation of the viral DNA. Therefore, both GATC avoidance and DNA under-methylation elevate the mutation rate of the phage relative to that of the host. We also found that the effects of GATC sites on the phage mutation rate vary extensively depending on their specific location within the phage genome. Finally, the mutation rate reduction afforded by GATC sites is fully reverted under stress conditions, which up-regulate repair pathways and expression of error-prone host polymerases such as heat and treatment with the base analog 5-fluorouracil, suggesting that access to repair renders the phage sensitive to stress-induced mutagenesis.
Collapse
Affiliation(s)
- Marianoel Pereira-Gómez
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Departament de Genètica, Universitat de València, Paterna 46980, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Departament de Genètica, Universitat de València, Paterna 46980, Spain
| |
Collapse
|
63
|
Wang B, Francis J, Sharma M, Law SM, Predeus AV, Feig M. Long-Range Signaling in MutS and MSH Homologs via Switching of Dynamic Communication Pathways. PLoS Comput Biol 2016; 12:e1005159. [PMID: 27768684 PMCID: PMC5074593 DOI: 10.1371/journal.pcbi.1005159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/21/2016] [Indexed: 11/19/2022] Open
Abstract
Allostery is conformation regulation by propagating a signal from one site to another distal site. This study focuses on the long-range communication in DNA mismatch repair proteins MutS and its homologs where intramolecular signaling has to travel over 70 Å to couple lesion detection to ATPase activity and eventual downstream repair. Using dynamic network analysis based on extensive molecular dynamics simulations, multiple preserved communication pathways were identified that would allow such long-range signaling. The pathways appear to depend on the nucleotides bound to the ATPase domain as well as the type of DNA substrate consistent with previously proposed functional cycles of mismatch recognition and repair initiation by MutS and homologs. A mechanism is proposed where pathways are switched without major conformational rearrangements allowing for efficient long-range signaling and allostery.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Joshua Francis
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Monika Sharma
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Sean M. Law
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Alexander V. Predeus
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
- * E-mail:
| |
Collapse
|
64
|
Tagel M, Tavita K, Hõrak R, Kivisaar M, Ilves H. A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads. Mutat Res 2016; 790:41-55. [PMID: 27447898 DOI: 10.1016/j.mrfmmm.2016.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Formation of microcolonies (papillae) permits easy visual screening of mutational events occurring in single colonies of bacteria. In this study, we have established a novel papillation assay employable in a wide range of pseudomonads including Pseudomonas aeruginosa and Pseudomonas putida for monitoring mutation frequency in distinct colonies. With the aid of this assay, we conducted a genome-wide search for the factors affecting mutation frequency in P. putida. Screening ∼27,000 transposon mutants for increased mutation frequency allowed us to identify 34 repeatedly targeted genes. In addition to genes involved in DNA replication and repair, we identified genes participating in metabolism and transport of secondary metabolites, cell motility, and cell wall synthesis. The highest effect on mutant frequency was observed when truA (tRNA pseudouridine synthase), mpl (UDP-N-acetylmuramate-alanine ligase) or gacS (multi-sensor hybrid histidine kinase) were inactivated. Inactivation of truA elevated the mutant frequency only in growing cells, while the deficiency of gacS affected mainly stationary-phase mutagenesis. Thus, our results demonstrate the feasibility of the assay for isolating mutants with elevated mutagenesis in growing as well as stationary-phase bacteria.
Collapse
Affiliation(s)
- Mari Tagel
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kairi Tavita
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Rita Hõrak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heili Ilves
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
65
|
Wang QW, Kamiyama C, Hidema J, Hikosaka K. Ultraviolet-B-induced DNA damage and ultraviolet-B tolerance mechanisms in species with different functional groups coexisting in subalpine moorlands. Oecologia 2016; 181:1069-82. [PMID: 27139425 DOI: 10.1007/s00442-016-3644-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/20/2016] [Indexed: 01/19/2023]
Abstract
High doses of ultraviolet-B (UV-B; 280-315 nm) radiation can have detrimental effects on plants, and especially damage their DNA. Plants have DNA repair and protection mechanisms to prevent UV-B damage. However, it remains unclear how DNA damage and tolerance mechanisms vary among field species. We studied DNA damage and tolerance mechanisms in 26 species with different functional groups coexisting in two moorlands at two elevations. We collected current-year leaves in July and August, and determined accumulation of cyclobutane pyrimidine dimer (CPD) as UV-B damage and photorepair activity (PRA) and concentrations of UV-absorbing compounds (UACs) and carotenoids (CARs) as UV-B tolerance mechanisms. DNA damage was greater in dicot than in monocot species, and higher in herbaceous than in woody species. Evergreen species accumulated more CPDs than deciduous species. PRA was higher in Poaceae than in species of other families. UACs were significantly higher in woody than in herbaceous species. The CPD level was not explained by the mechanisms across species, but was significantly related to PRA and UACs when we ignored species with low CPD, PRA and UACs, implying the presence of another effective tolerance mechanism. UACs were correlated negatively with PRA and positively with CARs. Our results revealed that UV-induced DNA damage significantly varies among native species, and this variation is related to functional groups. DNA repair, rather than UV-B protection, dominates in UV-B tolerance in the field. Our findings also suggest that UV-B tolerance mechanisms vary among species under evolutionary trade-off and synergism.
Collapse
Affiliation(s)
- Qing-Wei Wang
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan.
| | - Chiho Kamiyama
- Institute for the Advanced Study of Sustainability, United Nations University, Shibuya, Tokyo, 150-8925, Japan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan.,CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo, 102-0076, Japan
| |
Collapse
|
66
|
Huang SH, Kobryn K. The Borrelia burgdorferi telomere resolvase, ResT, anneals ssDNA complexed with its cognate ssDNA-binding protein. Nucleic Acids Res 2016; 44:5288-98. [PMID: 27131360 PMCID: PMC4914115 DOI: 10.1093/nar/gkw344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/18/2016] [Indexed: 11/12/2022] Open
Abstract
Spirochetes of the genus Borrelia possess unusual genomes that consist in a linear chromosome and multiple linear and circular plasmids. The linear replicons are terminated by covalently closed hairpin ends, referred to as hairpin telomeres. The hairpin telomeres represent a simple solution to the end-replication problem. Deoxyribonucleic acid replication initiates internally and proceeds bidirectionally toward the hairpin telomeres. The telomere resolvase, ResT, forms the hairpin telomeres from replicated telomere intermediates in a reaction with similarities to those promoted by type IB topoisomerases and tyrosine recombinases. ResT has also been shown to possess DNA single-strand annealing activity. We report here that ResT promotes single-strand annealing of both free DNA strands and ssDNA complexed with single-stranded DNA binding protein (SSB). The annealing of complementary strands bound by SSB requires a ResT-SSB interaction that is mediated by the conserved amphipathic C-terminal tail of SSB. These properties of ResT are similar to those demonstrated for the recombination mediator protein, RecO, of the RecF pathway. Borrelia burgdorferi is unusual in lacking identifiable homologs of the RecFOR proteins. We propose that ResT may provide missing RecFOR functions.
Collapse
Affiliation(s)
- Shu Hui Huang
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Kerri Kobryn
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
67
|
Wang Y, Li S, Smith K, Waldman BC, Waldman AS. Intrachromosomal recombination between highly diverged DNA sequences is enabled in human cells deficient in Bloom helicase. DNA Repair (Amst) 2016; 41:73-84. [PMID: 27100209 DOI: 10.1016/j.dnarep.2016.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/21/2016] [Indexed: 11/30/2022]
Abstract
Mutation of Bloom helicase (BLM) causes Bloom syndrome (BS), a rare human genetic disorder associated with genome instability, elevation of sister chromatid exchanges, and predisposition to cancer. Deficiency in BLM homologs in Drosophila and yeast brings about significantly increased rates of recombination between imperfectly matched sequences ("homeologous recombination," or HeR). To assess whether BLM deficiency provokes an increase in HeR in human cells, we transfected an HeR substrate into a BLM-null cell line derived from a BS patient. The substrate contained a thymidine kinase (tk)-neo fusion gene disrupted by the recognition site for endonuclease I-SceI, as well as a functional tk gene to serve as a potential recombination partner for the tk-neo gene. The two tk sequences on the substrate displayed 19% divergence. A double-strand break was introduced by expression of I-SceI and repair events were recovered by selection for G418-resistant clones. Among 181 events recovered, 30 were accomplished via HeR with the balance accomplished by nonhomologous end-joining. The frequency of HeR events in the BS cells was elevated significantly compared to that seen in normal human fibroblasts or in BS cells complemented for BLM expression. We conclude that BLM deficiency enables HeR in human cells.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Shen Li
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Krissy Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | - Alan S Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
68
|
DNA repair genes in the Megavirales pangenome. Curr Opin Microbiol 2016; 31:94-100. [PMID: 27042991 DOI: 10.1016/j.mib.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
The order 'Megavirales' represents a group of eukaryotic viruses with a large genome encoding a few hundred up to two thousand five hundred genes. Several members of Megavirales possess genes involved in major DNA repair pathways. Some of these genes were likely inherited from an ancient virus world and some others were derived from the genomes of their hosts. Here we examine molecular phylogenies of key DNA repair enzymes in light of recent hypotheses on the origin of Megavirales, and propose that the last common ancestors of the individual families of the order Megavirales already possessed DNA repair functions to achieve and maintain a moderately large genome and that this repair capacity gradually increased, in a family-dependent manner, during their recent evolution.
Collapse
|
69
|
Reon BJ, Dutta A. Biological Processes Discovered by High-Throughput Sequencing. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:722-32. [PMID: 26828742 PMCID: PMC5807928 DOI: 10.1016/j.ajpath.2015.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/16/2015] [Accepted: 10/30/2015] [Indexed: 11/20/2022]
Abstract
Advances in DNA and RNA sequencing technologies have completely transformed the field of genomics. High-throughput sequencing (HTS) is now a widely used and accessible technology that allows scientists to sequence an entire transcriptome or genome in a timely and cost-effective manner. Application of HTS techniques has led to many key discoveries, including the identification of long noncoding RNAs, microDNAs, a family of small extrachromosomal circular DNA species, and tRNA-derived fragments, which are a group of small non-miRNAs that are derived from tRNAs. Furthermore, public sequencing repositories provide unique opportunities for laboratories to parse large sequencing databases to identify proteins and noncoding RNAs at a scale that was not possible a decade ago. Herein, we review how HTS has led to the discovery of novel nucleic acid species and uncovered new biological processes during the course.
Collapse
Affiliation(s)
- Brian J Reon
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Anindya Dutta
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
70
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
71
|
Abstract
Many aspects of the evolutionary process of tumorigenesis that are fundamental to cancer biology and targeted treatment have been challenging to reveal, such as the divergence times and genetic clonality of metastatic lineages. To address these challenges, we performed tumor phylogenetics using molecular evolutionary models, reconstructed ancestral states of somatic mutations, and inferred cancer chronograms to yield three conclusions. First, in contrast to a linear model of cancer progression, metastases can originate from divergent lineages within primary tumors. Evolved genetic changes in cancer lineages likely affect only the proclivity toward metastasis. Single genetic changes are unlikely to be necessary or sufficient for metastasis. Second, metastatic lineages can arise early in tumor development, sometimes long before diagnosis. The early genetic divergence of some metastatic lineages directs attention toward research on driver genes that are mutated early in cancer evolution. Last, the temporal order of occurrence of driver mutations can be inferred from phylogenetic analysis of cancer chronograms, guiding development of targeted therapeutics effective against primary tumors and metastases.
Collapse
|
72
|
Bartoli C, Roux F, Lamichhane JR. Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective. MOLECULAR PLANT PATHOLOGY 2016; 17:303-10. [PMID: 26062772 PMCID: PMC6638374 DOI: 10.1111/mpp.12284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human- and plant-pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant-pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant-pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops.
Collapse
Affiliation(s)
- Claudia Bartoli
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, UMR441, F-31326, Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), CNRS, UMR2594, F-31326, Castanet-Tolosan, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, UMR441, F-31326, Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), CNRS, UMR2594, F-31326, Castanet-Tolosan, France
| | | |
Collapse
|
73
|
Pines G, Freed EF, Winkler JD, Gill RT. Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination. ACS Synth Biol 2015; 4:1176-85. [PMID: 25856528 DOI: 10.1021/acssynbio.5b00009] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ability to specifically modify bacterial genomes in a precise and efficient manner is highly desired in various fields, ranging from molecular genetics to metabolic engineering and synthetic biology. Much has changed from the initial realization that phage-derived genes may be employed for such tasks to today, where recombineering enables complex genetic edits within a genome or a population. Here, we review the major developments leading to recombineering becoming the method of choice for in situ bacterial genome editing while highlighting the various applications of recombineering in pushing the boundaries of synthetic biology. We also present the current understanding of the mechanism of recombineering. Finally, we discuss in detail issues surrounding recombineering efficiency and future directions for recombineering-based genome editing.
Collapse
Affiliation(s)
- Gur Pines
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Emily F. Freed
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - James D. Winkler
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ryan T. Gill
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
74
|
Kamat MA, Bacolla A, Cooper DN, Chuzhanova N. A Role for Non-B DNA Forming Sequences in Mediating Microlesions Causing Human Inherited Disease. Hum Mutat 2015; 37:65-73. [PMID: 26466920 DOI: 10.1002/humu.22917] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/22/2015] [Indexed: 12/25/2022]
Abstract
Missense/nonsense mutations and microdeletions/microinsertions (<21 bp) represent ∼ 76% of all mutations causing human inherited disease, and their occurrence has been associated with sequence motifs (direct, inverted, and mirror repeats; G-quartets) capable of adopting non-B DNA structures. We found that a significant proportion (∼ 21%) of both microdeletions and microinsertions occur within direct repeats, and are explicable by slipped misalignment. A novel mutational mechanism, DNA triplex formation followed by DNA repair, may explain ∼ 5% of microdeletions and microinsertions at mirror repeats. Further, G-quartets, direct, and inverted repeats also appear to play a prominent role in mediating missense mutations, whereas only direct and inverted repeats mediate nonsense mutations. We suggest a mutational mechanism involving slipped strand mispairing, slipped structure formation, and DNA repair, to explain ∼ 15% of missense and ∼ 12% of nonsense mutations yielding perfect direct repeats from imperfect repeats, or the extension of existing direct repeats. Similar proportions of missense and nonsense mutations were explicable by hairpin/loop formation and DNA repair, yielding perfect inverted repeats from imperfect repeats. We also propose a model for single base-pair substitution based on one-electron oxidation reactions at G-quadruplex DNA. Overall, the proposed mechanisms provide support for a role for non-B DNA structures in human gene mutagenesis.
Collapse
Affiliation(s)
- Mihir Anant Kamat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, UK
| | - Albino Bacolla
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Nadia Chuzhanova
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, UK
| |
Collapse
|
75
|
Bartoli C, Lamichhane JR, Berge O, Varvaro L, Morris CE. Mutability in Pseudomonas viridiflava as a programmed balance between antibiotic resistance and pathogenicity. MOLECULAR PLANT PATHOLOGY 2015; 16:860-9. [PMID: 25649542 PMCID: PMC6638476 DOI: 10.1111/mpp.12243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mutable bacterial cells are defective in their DNA repair system and often have a phenotype different from that of their wild-type counterparts. In human bacterial pathogens, the mutable and hypermutable phenotypes are often associated with general antibiotic resistance. Here, we quantified the occurrence of mutable cells in Pseudomonas viridiflava, a phytopathogenic bacterium in the P. syringae complex with a broad host range and capacity to live as a saprophyte. Two phenotypic variants (transparent and mucoid) were produced by this bacterium. The transparent variant had a mutator phenotype, showed general antibiotic resistance and could not induce disease on the plant species tested (bean). In contrast, the mucoid variant did not display mutability or resistance to antibiotics and was capable of inducing disease on bean. Both the transparent and mucoid variants were less fit when grown in vitro, whereas, in planta, both of the variants and wild-types attained similar population densities. Given the importance of the methyl-directed mismatch repair system (MMR) in the occurrence of mutable and hypermutable cells in human bacterial pathogens, we investigated whether mutations in mut genes were associated with mutator transparent cells in P. viridiflava. Our results showed no mutations in MMR genes in any of the P. viridiflava cells tested. Here, we report that a high mutation rate and antibiotic resistance are inversely correlated with pathogenicity in P. viridiflava, but are not associated with mutations in MMR. In addition, P. viridiflava variants differ from variants produced by other phytopathogenic bacteria in the absence of reversion to the wild-type phenotype.
Collapse
Affiliation(s)
- Claudia Bartoli
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, 01100, Viterbo, Italy
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| | - Jay Ram Lamichhane
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, 01100, Viterbo, Italy
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| | - Odile Berge
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| | - Leonardo Varvaro
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, 01100, Viterbo, Italy
| | - Cindy E Morris
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| |
Collapse
|
76
|
Lenhart JS, Pillon MC, Guarné A, Biteen JS, Simmons LA. Mismatch repair in Gram-positive bacteria. Res Microbiol 2015; 167:4-12. [PMID: 26343983 DOI: 10.1016/j.resmic.2015.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/14/2015] [Accepted: 08/26/2015] [Indexed: 12/31/2022]
Abstract
DNA mismatch repair (MMR) is responsible for correcting errors formed during DNA replication. DNA polymerase errors include base mismatches and extra helical nucleotides referred to as insertion and deletion loops. In bacteria, MMR increases the fidelity of the chromosomal DNA replication pathway approximately 100-fold. MMR defects in bacteria reduce replication fidelity and have the potential to affect fitness. In mammals, MMR defects are characterized by an increase in mutation rate and by microsatellite instability. In this review, we discuss current advances in understanding how MMR functions in bacteria lacking the MutH and Dam methylase-dependent MMR pathway.
Collapse
Affiliation(s)
- Justin S Lenhart
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
77
|
Ojini I, Gammie A. Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants. G3 (BETHESDA, MD.) 2015; 5:1925-35. [PMID: 26199284 PMCID: PMC4555229 DOI: 10.1534/g3.115.020560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/20/2015] [Indexed: 01/12/2023]
Abstract
Resistance to cancer therapy is a major obstacle in the long-term treatment of cancer. A greater understanding of drug resistance mechanisms will ultimately lead to the development of effective therapeutic strategies to prevent resistance from occurring. Here, we exploit the mutator phenotype of mismatch repair defective yeast cells combined with whole genome sequencing to identify drug resistance mutations in key pathways involved in the development of chemoresistance. The utility of this approach was demonstrated via the identification of the known CAN1 and TOP1 resistance targets for two compounds, canavanine and camptothecin, respectively. We have also experimentally validated the plasma membrane transporter HNM1 as the primary drug resistance target of mechlorethamine. Furthermore, the sequencing of mitoxantrone-resistant strains identified inactivating mutations within IPT1, a gene encoding inositolphosphotransferase, an enzyme involved in sphingolipid biosynthesis. In the case of bactobolin, a promising anticancer drug, the endocytosis pathway was identified as the drug resistance target responsible for conferring resistance. Finally, we show that that rapamycin, an mTOR inhibitor previously shown to alter the fitness of the ipt1 mutant, can effectively prevent the formation of mitoxantrone resistance. The rapid and robust nature of these techniques, using Saccharomyces cerevisiae as a model organism, should accelerate the identification of drug resistance targets and guide the development of novel therapeutic combination strategies to prevent the development of chemoresistance in various cancers.
Collapse
Affiliation(s)
- Irene Ojini
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Alison Gammie
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
78
|
Abstract
Diverse forms of kin discrimination, broadly defined as alteration of social behavior as a function of genetic relatedness among interactants, are common among social organisms from microbes to humans. However, the evolutionary origins and causes of kin-discriminatory behavior remain largely obscure. One form of kin discrimination observed in microbes is the failure of genetically distinct colonies to merge freely upon encounter. Here, we first use natural isolates of the highly social bacterium Myxococcus xanthus to show that colony-merger incompatibilities can be strong barriers to social interaction, particularly by reducing chimerism in multicellular fruiting bodies that develop near colony-territory borders. We then use experimental laboratory populations to test hypotheses regarding the evolutionary origins of kin discrimination. We show that the generic process of adaptation, irrespective of selective environment, is sufficient to repeatedly generate kin-discriminatory behaviors between evolved populations and their common ancestor. Further, we find that kin discrimination pervasively evolves indirectly between allopatric replicate populations that adapt to the same ecological habitat and that this occurs generically in many distinct habitats. Patterns of interpopulation discrimination imply that kin discrimination phenotypes evolved via many diverse genetic mechanisms and mutation-accumulation patterns support this inference. Strong incompatibility phenotypes emerged abruptly in some populations but strengthened gradually in others. The indirect evolution of kin discrimination in an asexual microbe is analogous to the indirect evolution of reproductive incompatibility in sexual eukaryotes and linguistic incompatibility among human cultures, the commonality being indirect, noncoordinated divergence of complex systems evolving in isolation.
Collapse
|
79
|
Błażej P, Miasojedow B, Grabińska M, Mackiewicz P. Optimization of Mutation Pressure in Relation to Properties of Protein-Coding Sequences in Bacterial Genomes. PLoS One 2015; 10:e0130411. [PMID: 26121655 PMCID: PMC4488281 DOI: 10.1371/journal.pone.0130411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Most mutations are deleterious and require energetically costly repairs. Therefore, it seems that any minimization of mutation rate is beneficial. On the other hand, mutations generate genetic diversity indispensable for evolution and adaptation of organisms to changing environmental conditions. Thus, it is expected that a spontaneous mutational pressure should be an optimal compromise between these two extremes. In order to study the optimization of the pressure, we compared mutational transition probability matrices from bacterial genomes with artificial matrices fulfilling the same general features as the real ones, e.g., the stationary distribution and the speed of convergence to the stationarity. The artificial matrices were optimized on real protein-coding sequences based on Evolutionary Strategies approach to minimize or maximize the probability of non-synonymous substitutions and costs of amino acid replacements depending on their physicochemical properties. The results show that the empirical matrices have a tendency to minimize the effects of mutations rather than maximize their costs on the amino acid level. They were also similar to the optimized artificial matrices in the nucleotide substitution pattern, especially the high transitions/transversions ratio. We observed no substantial differences between the effects of mutational matrices on protein-coding sequences in genomes under study in respect of differently replicated DNA strands, mutational cost types and properties of the referenced artificial matrices. The findings indicate that the empirical mutational matrices are rather adapted to minimize mutational costs in the studied organisms in comparison to other matrices with similar mathematical constraints.
Collapse
Affiliation(s)
- Paweł Błażej
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Błażej Miasojedow
- Section of Mathematical Statistics, The Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warszawa, Poland
| | - Małgorzata Grabińska
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
- * E-mail:
| |
Collapse
|
80
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
81
|
Grazielle-Silva V, Zeb TF, Bolderson J, Campos PC, Miranda JB, Alves CL, Machado CR, McCulloch R, Teixeira SMR. Distinct Phenotypes Caused by Mutation of MSH2 in Trypanosome Insect and Mammalian Life Cycle Forms Are Associated with Parasite Adaptation to Oxidative Stress. PLoS Negl Trop Dis 2015; 9:e0003870. [PMID: 26083967 PMCID: PMC4470938 DOI: 10.1371/journal.pntd.0003870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/02/2015] [Indexed: 11/19/2022] Open
Abstract
Background DNA repair mechanisms are crucial for maintenance of the genome in all organisms, including parasites where successful infection is dependent both on genomic stability and sequence variation. MSH2 is an early acting, central component of the Mismatch Repair (MMR) pathway, which is responsible for the recognition and correction of base mismatches that occur during DNA replication and recombination. In addition, recent evidence suggests that MSH2 might also play an important, but poorly understood, role in responding to oxidative damage in both African and American trypanosomes. Methodology/Principal Findings To investigate the involvement of MMR in the oxidative stress response, null mutants of MSH2 were generated in Trypanosoma brucei procyclic forms and in Trypanosoma cruzi epimastigote forms. Unexpectedly, the MSH2 null mutants showed increased resistance to H2O2 exposure when compared with wild type cells, a phenotype distinct from the previously observed increased sensitivity of T. brucei bloodstream forms MSH2 mutants. Complementation studies indicated that the increased oxidative resistance of procyclic T. brucei was due to adaptation to MSH2 loss. In both parasites, loss of MSH2 was shown to result in increased tolerance to alkylation by MNNG and increased accumulation of 8-oxo-guanine in the nuclear and mitochondrial genomes, indicating impaired MMR. In T. cruzi, loss of MSH2 also increases the parasite capacity to survive within host macrophages. Conclusions/Significance Taken together, these results indicate MSH2 displays conserved, dual roles in MMR and in the response to oxidative stress. Loss of the latter function results in life cycle dependent differences in phenotypic outcomes in T. brucei MSH2 mutants, most likely because of the greater burden of oxidative stress in the insect stage of the parasite. Trypanosoma brucei and Trypanosoma cruzi are protozoa parasites that cause sleeping sickness and Chagas disease, respectively, two neglected tropical diseases endemic in sub-Saharan Africa and Latin America. The high genetic diversity found in the T. cruzi population and the highly diverse repertoire of surface glycoprotein genes found in T. brucei are crucial factors that ensure a successful infection in their hosts. Besides responding to host immune responses, these parasites must deal with various sources of oxidative stress that can cause DNA damage. Thus, by determining the right balance between genomic stability and genetic variation, DNA repair pathways have a big impact in the ability of these parasites to maintain infection. This study is focused on the role of a DNA mismatch repair (MMR) protein named MSH2 in protecting these parasites’ DNA against oxidative assault. Using knock-out mutants, we showed that, besides acting in the MMR pathway as a key protein that recognizes and repairs base mismatches, insertions or deletions that can occur after DNA replication, MSH2 has an additional role in the oxidative stress response. Importantly, this extra role of MSH2 seems to be independent of other MMR components and dependent on the parasite developmental stage.
Collapse
Affiliation(s)
- Viviane Grazielle-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- The Wellcome Trust Center for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Tehseen Fatima Zeb
- The Wellcome Trust Center for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jason Bolderson
- The Wellcome Trust Center for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Priscila C. Campos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julia B. Miranda
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ceres L. Alves
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos R. Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Richard McCulloch
- The Wellcome Trust Center for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail: (RM); (SMRT)
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (RM); (SMRT)
| |
Collapse
|
82
|
Dillon LW, Kumar P, Shibata Y, Wang YH, Willcox S, Griffith JD, Pommier Y, Takeda S, Dutta A. Production of Extrachromosomal MicroDNAs Is Linked to Mismatch Repair Pathways and Transcriptional Activity. Cell Rep 2015; 11:1749-59. [PMID: 26051933 DOI: 10.1016/j.celrep.2015.05.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/20/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022] Open
Abstract
MicroDNAs are <400-base extrachromosomal circles found in mammalian cells. Tens of thousands of microDNAs have been found in all tissue types, including sperm. MicroDNAs arise preferentially from areas with high gene density, GC content, and exon density from promoters with activating chromatin modifications and in sperm from the 5'-UTR of full-length LINE-1 elements, but are depleted from lamin-associated heterochromatin. Analysis of microDNAs from a set of human cancer cell lines revealed lineage-specific patterns of microDNA origins. A survey of microDNAs from chicken cells defective in various DNA repair proteins reveals that homologous recombination and non-homologous end joining repair pathways are not required for microDNA production. Deletion of the MSH3 DNA mismatch repair protein results in a significant decrease in microDNA abundance, specifically from non-CpG genomic regions. Thus, microDNAs arise as part of normal cellular physiology—either from DNA breaks associated with RNA metabolism or from replication slippage followed by mismatch repair.
Collapse
Affiliation(s)
- Laura W Dillon
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Shunichi Takeda
- CREST Research Project, Japan Science and Technology Corporation, Radiation Genetics, Faculty of Medicine, Kyoto University, Konoe Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
83
|
Gottlieb Y, Lalzar I, Klasson L. Distinctive Genome Reduction Rates Revealed by Genomic Analyses of Two Coxiella-Like Endosymbionts in Ticks. Genome Biol Evol 2015; 7:1779-96. [PMID: 26025560 PMCID: PMC4494066 DOI: 10.1093/gbe/evv108] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genome reduction is a hallmark of symbiotic genomes, and the rate and patterns of gene loss associated with this process have been investigated in several different symbiotic systems. However, in long-term host-associated coevolving symbiont clades, the genome size differences between strains are normally quite small and hence patterns of large-scale genome reduction can only be inferred from distant relatives. Here we present the complete genome of a Coxiella-like symbiont from Rhipicephalus turanicus ticks (CRt), and compare it with other genomes from the genus Coxiella in order to investigate the process of genome reduction in a genus consisting of intracellular host-associated bacteria with variable genome sizes. The 1.7-Mb CRt genome is larger than the genomes of most obligate mutualists but has a very low protein-coding content (48.5%) and an extremely high number of identifiable pseudogenes, indicating that it is currently undergoing genome reduction. Analysis of encoded functions suggests that CRt is an obligate tick mutualist, as indicated by the possible provisioning of the tick with biotin (B7), riboflavin (B2) and other cofactors, and by the loss of most genes involved in host cell interactions, such as secretion systems. Comparative analyses between CRt and the 2.5 times smaller genome of Coxiella from the lone star tick Amblyomma americanum (CLEAA) show that many of the same gene functions are lost and suggest that the large size difference might be due to a higher rate of genome evolution in CLEAA generated by the loss of the mismatch repair genes mutSL. Finally, sequence polymorphisms in the CRt population sampled from field collected ticks reveal up to one distinct strain variant per tick, and analyses of mutational patterns within the population suggest that selection might be acting on synonymous sites. The CRt genome is an extreme example of a symbiont genome caught in the act of genome reduction, and the comparison between CLEAA and CRt indicates that losses of particular genes early on in this process can potentially greatly influence the speed of this process.
Collapse
Affiliation(s)
- Yuval Gottlieb
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Itai Lalzar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Uppsala University, Sweden
| |
Collapse
|
84
|
Basu S, Majumder S, Bhowal A, Ghosh A, Naskar S, Nandy S, Mukherjee S, Sinha RK, Basu K, Karmakar D, Banerjee S, Sengupta S. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia. PLoS One 2015; 10:e0125560. [PMID: 25938433 PMCID: PMC4418837 DOI: 10.1371/journal.pone.0125560] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/24/2015] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is one of the leading causes of mortality among aging males. There is an unmet requirement of clinically useful biomarkers for early detection of prostate cancer to reduce the liabilities of overtreatment and accompanying morbidity. The present population-based study investigates the factors disrupting expression of multiple functionally related genes of DNA mismatch repair pathway in prostate cancer patients to identify molecular attributes distinguishing adenocarcinoma from benign hyperplasia of prostate. Gene expression was compared between tissue samples from prostate cancer and benign prostatic hyperplasia using real-time-PCR, western blot and immunohistochemistry. Assessment of genotypes of seven single-nucleotide-polymorphisms of three MMR genes was conducted using PCR-coupled RFLP and sequencing. Promoter methylation was interrogated by methylation-specific-PCR and bisulfite-sequencing. Interaction between microRNAs and MMR genes was verified by 3'UTR-based dual luciferase assays. Concurrent reduction of three MMR genes namely hMLH1, hMSH6 and hMSH2 (34-85%, P<0.05) was observed in prostate cancer tissues. hMSH6 polymorphism rs1800932(Pro92Pro) conferred a borderline protection in cancer patients (OR = 0.33, 95% CI = 0.15-0.75). Relative transcript level of hMLH1 was inversely related (r = -0.59, P<0.05) with methylation quotient of its promoter which showed a significantly higher methylation density (P = 0.008, Z = -2.649) in cancer patients. hsa-miR-155, hsa-miR-141 and hsa-miR-21 gene expressions were significantly elevated (66-85%, P<0.05) in tumor specimens and negatively correlated (r = -0.602 to -0.527, P<0.05) with that of MMR genes. hsa-miR-155 & hsa-miR-141 and hsa-miR-155 & hsa-miR-21 were demonstrated to bind to their putative seed sequences in hMLH1 and hMSH6 3'UTRs respectively. Relatively higher expression of DNA methyl-transferases (DNMT1 and DNMT3b) and HIF-1α genes (34-50%, P<0.05) were also detected in tumor tissues. This study provides statistical evidence that MMR deficiency is correlated with hypermethylation of hMLH1 promoter and upregulation of hsa-miR-155, hsa-miR-141 and hsa-miR-21 in prostate cancer. This comparative study reflects that microRNA expression level, particularly hsa-miR-155, exhibits predictive signature of prostate adenocarcinoma.
Collapse
Affiliation(s)
- Sanmitra Basu
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | - Subhadipa Majumder
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | - Ankur Bhowal
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | - Alip Ghosh
- Centre for Liver Research, Institute of Post-Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Sukla Naskar
- Department of Pathology, Calcutta National Medical College & Hospital, Kolkata, West Bengal, India
| | - Sumit Nandy
- Department of Pathology, Calcutta National Medical College & Hospital, Kolkata, West Bengal, India
| | - Subhabrata Mukherjee
- Department of Urology, Calcutta National Medical College & Hospital, Kolkata, West Bengal, India
| | - Rajan Kumar Sinha
- Department of Urology, Calcutta National Medical College & Hospital, Kolkata, West Bengal, India
| | - Keya Basu
- Department of Pathology, Calcutta National Medical College & Hospital, Kolkata, West Bengal, India
| | - Dilip Karmakar
- Department of Urology, Calcutta National Medical College & Hospital, Kolkata, West Bengal, India
| | - Soma Banerjee
- Centre for Liver Research, Institute of Post-Graduate Medical Education & Research, Kolkata, West Bengal, India
| | | |
Collapse
|
85
|
Kaniak-Golik A, Skoneczna A. Mitochondria-nucleus network for genome stability. Free Radic Biol Med 2015; 82:73-104. [PMID: 25640729 DOI: 10.1016/j.freeradbiomed.2015.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
The proper functioning of the cell depends on preserving the cellular genome. In yeast cells, a limited number of genes are located on mitochondrial DNA. Although the mechanisms underlying nuclear genome maintenance are well understood, much less is known about the mechanisms that ensure mitochondrial genome stability. Mitochondria influence the stability of the nuclear genome and vice versa. Little is known about the two-way communication and mutual influence of the nuclear and mitochondrial genomes. Although the mitochondrial genome replicates independent of the nuclear genome and is organized by a distinct set of mitochondrial nucleoid proteins, nearly all genome stability mechanisms responsible for maintaining the nuclear genome, such as mismatch repair, base excision repair, and double-strand break repair via homologous recombination or the nonhomologous end-joining pathway, also act to protect mitochondrial DNA. In addition to mitochondria-specific DNA polymerase γ, the polymerases α, η, ζ, and Rev1 have been found in this organelle. A nuclear genome instability phenotype results from a failure of various mitochondrial functions, such as an electron transport chain activity breakdown leading to a decrease in ATP production, a reduction in the mitochondrial membrane potential (ΔΨ), and a block in nucleotide and amino acid biosynthesis. The loss of ΔΨ inhibits the production of iron-sulfur prosthetic groups, which impairs the assembly of Fe-S proteins, including those that mediate DNA transactions; disturbs iron homeostasis; leads to oxidative stress; and perturbs wobble tRNA modification and ribosome assembly, thereby affecting translation and leading to proteotoxic stress. In this review, we present the current knowledge of the mechanisms that govern mitochondrial genome maintenance and demonstrate ways in which the impairment of mitochondrial function can affect nuclear genome stability.
Collapse
Affiliation(s)
- Aneta Kaniak-Golik
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland.
| |
Collapse
|
86
|
Kokes M, Dunn JD, Granek JA, Nguyen BD, Barker JR, Valdivia RH, Bastidas RJ. Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia. Cell Host Microbe 2015; 17:716-25. [PMID: 25920978 DOI: 10.1016/j.chom.2015.03.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/11/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022]
Abstract
Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically induced mutants of the genetically intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole-genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins and modulates F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community.
Collapse
Affiliation(s)
- Marcela Kokes
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA
| | - Joe Dan Dunn
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA
| | - Joshua A Granek
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, 2424 Erwin Road, Suite 1102 Hock Plaza, Box 2721, Durham, NC 27710, USA
| | - Bidong D Nguyen
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA
| | - Jeffrey R Barker
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA.
| | - Robert J Bastidas
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA.
| |
Collapse
|
87
|
Neisseria gonorrhoeae MutS affects pilin antigenic variation through mismatch correction and not by pilE guanine quartet binding. J Bacteriol 2015; 197:1828-38. [PMID: 25777677 DOI: 10.1128/jb.02594-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Many pathogens use homologous recombination to vary surface antigens to avoid immune surveillance. Neisseria gonorrhoeae achieves this in part by changing the properties of its surface pili in a process called pilin antigenic variation (AV). Pilin AV occurs by high-frequency gene conversion reactions that transfer silent pilS sequences into the expressed pilE locus and requires the formation of an upstream guanine quartet (G4) DNA structure to initiate this process. The MutS and MutL proteins of the mismatch correction (MMC) system act to correct mismatches after replication and prevent homeologous (i.e., partially homologous) recombination, but MutS orthologs can also bind to G4 structures. A previous study showed that mutation of MutS resulted in a 3-fold increase in pilin AV, which could be due to the loss of MutS antirecombination properties or loss of G4 binding. We tested two site-directed separation-of-function MutS mutants that are both predicted to bind to G4s but are not able to perform MMC. Pilus phase variation assays and DNA sequence analysis of pilE variants produced in these mutants showed that all three mutS mutants and a mutL mutant had similar increased frequencies of pilin AV. Moreover, the mutS mutants all showed similar increased levels of pilin AV-dependent synthetic lethality. These results show that antirecombination by MMC is the reason for the effect that MutS has on pilin AV and is not due to pilE G4 binding by MutS. IMPORTANCE Neisseria gonorrhoeae continually changes its outer surface proteins to avoid recognition by the immune system. N. gonorrhoeae alters the antigenicity of the pilus by directed recombination between partially homologous pilin copies in a process that requires a guanine quartet (G4) structure. The MutS protein of the mismatch correction (MMC) system prevents recombination between partially homologous sequences and can also bind to G4s. We confirmed that loss of MMC increases the frequency of pilin antigenic variation and that two MutS mutants that are predicted to separate the two different functions of MutS inhibit pilin variation similarly to a complete-loss-of-function mutant, suggesting that interaction of MutS with the G4 structure is not a major factor in this process.
Collapse
|
88
|
DNA methylation analysis of cancer-related genes in oral epithelial cells of healthy smokers. Arch Oral Biol 2015; 60:825-33. [PMID: 25791328 DOI: 10.1016/j.archoralbio.2015.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/18/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022]
Abstract
AIM The aim of this study was to investigate the smoking habit influence on DNA methylation status in the promoters of the cancer related-genes MLH1, hTERT and TP53 in oral epithelial cells of healthy subjects. MATERIALS AND METHODS DNA methylation analysis was performed using methylation-sensitive restriction enzymes (MSRE) in oral epithelial cells from non-smokers, smokers and ex-smokers. RESULTS The investigated CpG dinucleotides located at HhaI and HpaII sites in the MLH1 gene promoter were observed to be fully methylated in the majority of DNA samples from the smoker group and statistical differences were found between non-smokers and smokers and between smokers and ex-smokers (p<0.05). The same was observed in the hTERT gene promoter at HhaI sites (p<0.05) and for HpaII sites the unmethylated condition was more frequent in smokers in comparison to non-smokers (p<0.05). For TP53, no differences were found among groups (p>0.05), with the fully methylated condition found to be a common event in healthy oral epithelial cells. CONCLUSION We conclude that smoking may induce changes in DNA methylation status in cancer-related genes of oral epithelial cells and that the cessation of smoking is capable of reversing this process. Based on our data, we suggest that DNA methylation status of the hTERT and MLH1 gene promoters are promising markers for screening a set of smoking-related alterations in oral cells.
Collapse
|
89
|
Morioka T, Miyoshi-Imamura T, Blyth BJ, Kaminishi M, Kokubo T, Nishimura M, Kito S, Tokairin Y, Tani S, Murakami-Murofushi K, Yoshimi N, Shimada Y, Kakinuma S. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice. Cancer Sci 2015; 106:217-26. [PMID: 25529563 PMCID: PMC4376429 DOI: 10.1111/cas.12591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/05/2023] Open
Abstract
Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1−/− and Mlh1+/+ mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1+/+ mice. Colon tumors developed after DSS treatment alone in Mlh1−/− mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency.
Collapse
Affiliation(s)
- Takamitsu Morioka
- Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Japan; Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Schmitz-Linneweber C, Lampe MK, Sultan LD, Ostersetzer-Biran O. Organellar maturases: A window into the evolution of the spliceosome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:798-808. [PMID: 25626174 DOI: 10.1016/j.bbabio.2015.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 12/25/2022]
Abstract
During the evolution of eukaryotic genomes, many genes have been interrupted by intervening sequences (introns) that must be removed post-transcriptionally from RNA precursors to form mRNAs ready for translation. The origin of nuclear introns is still under debate, but one hypothesis is that the spliceosome and the intron-exon structure of genes have evolved from bacterial-type group II introns that invaded the eukaryotic genomes. The group II introns were most likely introduced into the eukaryotic genome from an α-proteobacterial predecessor of mitochondria early during the endosymbiosis event. These self-splicing and mobile introns spread through the eukaryotic genome and later degenerated. Pieces of introns became part of the general splicing machinery we know today as the spliceosome. In addition, group II introns likely brought intron maturases with them to the nucleus. Maturases are found in most bacterial introns, where they act as highly specific splicing factors for group II introns. In the spliceosome, the core protein Prp8 shows homology to group II intron-encoded maturases. While maturases are entirely intron specific, their descendant of the spliceosomal machinery, the Prp8 protein, is an extremely versatile splicing factor with multiple interacting proteins and RNAs. How could such a general player in spliceosomal splicing evolve from the monospecific bacterial maturases? Analysis of the organellar splicing machinery in plants may give clues on the evolution of nuclear splicing. Plants encode various proteins which are closely related to bacterial maturases. The organellar genomes contain one maturase each, named MatK in chloroplasts and MatR in mitochondria. In addition, several maturase genes have been found in the nucleus as well, which are acting on mitochondrial pre-RNAs. All plant maturases show sequence deviation from their progenitor bacterial maturases, and interestingly are all acting on multiple organellar group II intron targets. Moreover, they seem to function in the splicing of group II introns together with a number of additional nuclear-encoded splicing factors, possibly acting as an organellar proto-spliceosome. Together, this makes them interesting models for the early evolution of nuclear spliceosomal splicing. In this review, we summarize recent advances in our understanding of the role of plant maturases and their accessory factors in plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
| | - Marie-Kristin Lampe
- Institute of Biology, Molecular Genetics, Humboldt University of Berlin, D-10115 Berlin, Germany
| | - Laure D Sultan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel.
| |
Collapse
|
91
|
Apalkov VM, Chakraborty T. Tunable spin-selective transport through DNA with mismatched base pairs. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:475302. [PMID: 25345441 DOI: 10.1088/0953-8984/26/47/475302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In our theoretical analysis of spin-selective transport through a homogeneous poly(G)-poly(C) DNA we explore the influence of a mismatched base pair in the DNA chain. The spin polarization of the electrical current through DNA is strongly sensitive to the presence of the mispair in a DNA with less than 20 base pairs. Replacing a canonical G-C base pair by a G-A mispair in homogeneous DNA can strongly decrease, increase up to an order of magnitude, or even change the sign of spin polarization of the electrical current. The mispair induced spin-selective current through DNA also depends on the location of the mispair within the DNA.
Collapse
Affiliation(s)
- Vadym M Apalkov
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
| | | |
Collapse
|
92
|
Yap KP, Gan HM, Teh CSJ, Chai LC, Thong KL. Comparative genomics of closely related Salmonella enterica serovar Typhi strains reveals genome dynamics and the acquisition of novel pathogenic elements. BMC Genomics 2014; 15:1007. [PMID: 25412680 PMCID: PMC4289253 DOI: 10.1186/1471-2164-15-1007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/06/2014] [Indexed: 12/31/2022] Open
Abstract
Background Typhoid fever is an infectious disease of global importance that is caused by Salmonella enterica subsp. enterica serovar Typhi (S. Typhi). This disease causes an estimated 200,000 deaths per year and remains a serious global health threat. S. Typhi is strictly a human pathogen, and some recovered individuals become long-term carriers who continue to shed the bacteria in their faeces, thus becoming main reservoirs of infection. Results A comparative genomics analysis combined with a phylogenomic analysis revealed that the strains from the outbreak and carrier were closely related with microvariations and possibly derived from a common ancestor. Additionally, the comparative genomics analysis with all of the other completely sequenced S. Typhi genomes revealed that strains BL196 and CR0044 exhibit unusual genomic variations despite S. Typhi being generally regarded as highly clonal. The two genomes shared distinct chromosomal architectures and uncommon genome features; notably, the presence of a ~10 kb novel genomic island containing uncharacterised virulence-related genes, and zot in particular. Variations were also detected in the T6SS system and genes that were related to SPI-10, insertion sequences, CRISPRs and nsSNPs among the studied genomes. Interestingly, the carrier strain CR0044 harboured far more genetic polymorphisms (83% mutant nsSNPs) compared with the closely related BL196 outbreak strain. Notably, the two highly related virulence-determinant genes, rpoS and tviE, were mutated in strains BL196 and CR0044, respectively, which revealed that the mutation in rpoS is stabilising, while that in tviE is destabilising. These microvariations provide novel insight into the optimisation of genes by the pathogens. However, the sporadic strain was found to be far more conserved compared with the others. Conclusions The uncommon genomic variations in the two closely related BL196 and CR0044 strains suggests that S. Typhi is more diverse than previously thought. Our study has demonstrated that the pathogen is continually acquiring new genes through horizontal gene transfer in the process of host adaptation, providing novel insight into its unusual genomic dynamics. The understanding of these strains and virulence factors, and particularly the strain that is associated with the large outbreak and the less studied asymptomatic Typhi carrier in the population, will have important impact on disease control. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1007) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
93
|
Shinsato Y, Furukawa T, Yunoue S, Yonezawa H, Minami K, Nishizawa Y, Ikeda R, Kawahara K, Yamamoto M, Hirano H, Tokimura H, Arita K. Reduction of MLH1 and PMS2 confers temozolomide resistance and is associated with recurrence of glioblastoma. Oncotarget 2014; 4:2261-70. [PMID: 24259277 PMCID: PMC3926825 DOI: 10.18632/oncotarget.1302] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although there is a relationship between DNA repair deficiency and temozolomide (TMZ) resistance in glioblastoma (GBM), it remains unclear which molecule is associated with GBM recurrence. We isolated three TMZ-resistant human GBM cell lines and examined the expression of O6-methylguanine-DNA methyltransferase (MGMT) and mismatch repair (MMR) components. We used immunohistochemical analysis to compare MutL homolog 1 (MLH1), postmeiotic segregation increased 2 (PMS2) and MGMT expression in primary and recurrent GBM specimens obtained from GBM patients during TMZ treatment. We found a reduction in MLH1 expression and a subsequent reduction in PMS2 protein levels in TMZ-resistant cells. Furthermore, MLH1 or PMS2 knockdown confered TMZ resistance. In recurrent GBM tumours, the expression of MLH1 and PMS2 was reduced when compared to primary tumours.
Collapse
Affiliation(s)
- Yoshinari Shinsato
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Epshtein V. UvrD helicase: an old dog with a new trick: how one step backward leads to many steps forward. Bioessays 2014; 37:12-9. [PMID: 25345862 DOI: 10.1002/bies.201400106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcription-coupled repair (TCR) is a phenomenon that exists in a wide variety of organisms from bacteria to humans. This mechanism allows cells to repair the actively transcribed DNA strand much faster than the non-transcribed one. At the sites of bulky DNA damage RNA polymerase stalls, initiating recruitment of the repair machinery. It is a commonly accepted paradigm that bacterial cells utilize a sole coupling factor, called Mfd to initiate TCR. According to that model, Mfd removes transcription complexes stalled at the lesion site and simultaneously recruits repair machinery. However, this model was recently put in doubt by various discrepancies between the proposed universal role of Mfd in the TCR and its biochemical and phenotypical properties. Here, I present a second pathway of bacterial TCR recently discovered in my laboratory, which does not involve Mfd but implicates a common repair factor, UvrD, in a central position in the process.
Collapse
Affiliation(s)
- Vitaliy Epshtein
- Department of Biochemistry, New York University, Langhorn Medical Center, New York, NY, USA
| |
Collapse
|
95
|
Wang L, Zhou H, Han J, Milne RI, Wang M, Liu B. Genome-scale transcriptome analysis of the alpine "glasshouse" plant Rheum nobile (Polygonaceae) with special translucent bracts. PLoS One 2014; 9:e110712. [PMID: 25343261 PMCID: PMC4208811 DOI: 10.1371/journal.pone.0110712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/16/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Rheum nobile is an alpine plant with translucent bracts concealing the inflorescence which produce a "glasshouse" effect promoting the development of fertile pollen grains in such conditions. The current understanding of the adaptation of such bracts to alpine environments mainly focuses on the phenotypic and physiological changes while the genetic basis is very limited. By sequencing the upper bract and the lower rosulate leaf from the same R. nobile stem, we identified candidate genes that may be involved in alpine adaption of the translucent bract in "glasshouse" plants and illustrated the changes in gene expression underlying the adaptive and complex evolution of the bracts phenotype. RESULTS A total of 174.2 million paired-end reads from each transcriptome were assembled into 25,249 unigenes. By comparing the gene expression profiles, we identified 1,063 and 786 genes up-regulated respectively in the upper bract and the lower leaf. Functional enrichment analyses of these genes recovered a number of differential important pathways, including flavonoid biosynthesis, mismatch repair and photosynthesis related pathways. These pathways are mainly involved in three types of functions: 9 genes in the UV protective process, 9 mismatch repair related genes and 88 genes associated with photosynthesis. CONCLUSIONS This study provides the first comprehensive dataset characterizing Rheum nobile gene expression at the transcriptomic scale, and provides novel insights into the gene expression profiles associated with the adaptation of the "glasshouse" plant bracts. The dataset will be served as a public genetic resources for further functional and evolutionary studies of "glasshouse" plants.
Collapse
Affiliation(s)
- Lizhong Wang
- State Key Laboratory of Grassland Agro-ecosystem, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Haihong Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jin Han
- State Key Laboratory of Grassland Agro-ecosystem, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Richard I. Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mingyu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- * E-mail: (MW); (BL)
| | - Bingbing Liu
- State Key Laboratory of Grassland Agro-ecosystem, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
- * E-mail: (MW); (BL)
| |
Collapse
|
96
|
Stoco PH, Wagner G, Talavera-Lopez C, Gerber A, Zaha A, Thompson CE, Bartholomeu DC, Lückemeyer DD, Bahia D, Loreto E, Prestes EB, Lima FM, Rodrigues-Luiz G, Vallejo GA, Filho JFDS, Schenkman S, Monteiro KM, Tyler KM, de Almeida LGP, Ortiz MF, Chiurillo MA, de Moraes MH, Cunha ODL, Mendonça-Neto R, Silva R, Teixeira SMR, Murta SMF, Sincero TCM, Mendes TADO, Urmenyi TP, Silva VG, DaRocha WD, Andersson B, Romanha ÁJ, Steindel M, de Vasconcelos ATR, Grisard EC. Genome of the avirulent human-infective trypanosome--Trypanosoma rangeli. PLoS Negl Trop Dis 2014; 8:e3176. [PMID: 25233456 PMCID: PMC4169256 DOI: 10.1371/journal.pntd.0003176] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/08/2014] [Indexed: 11/25/2022] Open
Abstract
Background Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings The T. rangeli haploid genome is ∼24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins. Conclusions/Significance Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets. Comparative genomics is a powerful tool that affords detailed study of the genetic and evolutionary basis for aspects of lifecycles and pathologies caused by phylogenetically related pathogens. The reference genome sequences of three trypanosomatids, T. brucei, T. cruzi and L. major, and subsequent addition of multiple Leishmania and Trypanosoma genomes has provided data upon which large-scale investigations delineating the complex systems biology of these human parasites has been built. Here, we compare the annotated genome sequence of T. rangeli strain SC-58 to available genomic sequence and annotation data from related species. We provide analysis of gene content, genome architecture and key characteristics associated with the biology of this non-pathogenic trypanosome. Moreover, we report striking new genomic features of T. rangeli compared with its closest relative, T. cruzi, such as (1) considerably less amplification on the gene copy number within multigene virulence factor families such as MASPs, trans-sialidases and mucins; (2) a reduced repertoire of genes encoding anti-oxidant defense enzymes; and (3) the presence of vestigial orthologs of the RNAi machinery, which are insufficient to constitute a functional pathway. Overall, the genome of T. rangeli provides for a much better understanding of the identity, evolution, regulation and function of trypanosome virulence determinants for both mammalian host and insect vector.
Collapse
Affiliation(s)
- Patrícia Hermes Stoco
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| | - Glauber Wagner
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Universidade do Oeste de Santa Catarina, Joaçaba, Santa Catarina, Brazil
| | - Carlos Talavera-Lopez
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Arnaldo Zaha
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | - Diana Bahia
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Elgion Loreto
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Fábio Mitsuo Lima
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | | | | | - Sérgio Schenkman
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | - Kevin Morris Tyler
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, United Kingdom
| | | | - Mauro Freitas Ortiz
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Miguel Angel Chiurillo
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela
| | | | | | | | - Rosane Silva
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Turán Peter Urmenyi
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Björn Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Álvaro José Romanha
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mário Steindel
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Edmundo Carlos Grisard
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| |
Collapse
|
97
|
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are closely related organisms that cause the sexually transmitted infection gonorrhea and serious bacterial meningitis and septicemia, respectively. Both species possess multiple mechanisms to alter the expression of surface-exposed proteins through the processes of phase and antigenic variation. This potential for wide variability in surface-exposed structures allows the organisms to always have subpopulations of divergent antigenic types to avoid immune surveillance and to contribute to functional variation. Additionally, the Neisseria are naturally competent for DNA transformation, which is their main means of genetic exchange. Although bacteriophages and plasmids are present in this genus, they are not as effective as DNA transformation for horizontal genetic exchange. There are barriers to genetic transfer, such as restriction-modification systems and CRISPR loci, that limit particular types of exchange. These host-restricted pathogens illustrate the rich complexity of genetics that can help define the similarities and differences of closely related organisms.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | | |
Collapse
|
98
|
Desai A, Gerson S. Exo1 independent DNA mismatch repair involves multiple compensatory nucleases. DNA Repair (Amst) 2014; 21:55-64. [PMID: 25037770 PMCID: PMC5944346 DOI: 10.1016/j.dnarep.2014.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 05/07/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022]
Abstract
Functional DNA mismatch repair (MMR) is essential for maintaining the fidelity of DNA replication and genetic stability. In hematopoiesis, loss of MMR results in methylating agent resistance and a hematopoietic stem cell (HSC) repopulation defect. Additionally MMR failure is associated with a variety of human malignancies, notably Lynch syndrome. We focus on the 5'→3' exonuclease Exo1, the primary enzyme excising the nicked strand during MMR, preceding polymerase synthesis. We found that nuclease dead Exo1 mutant cells are sensitive to the O6-methylguanine alkylating agent temozolomide when given with the MGMT inactivator, O6benzylguanine (BG). Additionally we used an MMR reporter plasmid to verify that Exo1(mut) MEFs were able to repair G:T base mismatches in vitro. We showed that unlike other MMR deficient mouse models, Exo1(mut) mouse HSC did not gain a competitive survival advantage post temozolomide/BG treatment in vivo. To determine potential nucleases implicated in MMR in the absence of Exo1 nuclease activity, but in the presence of the inactive protein, we performed gene expression analyses of several mammalian nucleases in WT and Exo1(mut) MEFs before and after temozolomide treatment and identified upregulation of Artemis, Fan1, and Mre11. Partial shRNA mediated silencing of each of these in Exo1(mut) cells resulted in decreased MMR capacity and increased resistance to temozolomide/BG. We propose that nuclease function is required for fully functional MMR, but a portfolio of nucleases is able to compensate for loss of Exo1 nuclease activity to maintain proficiency.
Collapse
Affiliation(s)
- Amar Desai
- Department of Pharmacology, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States; Division of Hematology/Oncology, Center of Stem Cell and Regenerative Medicine, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States
| | - Stanton Gerson
- Department of Pharmacology, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States; Division of Hematology/Oncology, Center of Stem Cell and Regenerative Medicine, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States; Case Comprehensive Cancer Center, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States.
| |
Collapse
|
99
|
DNA repair pathways in trypanosomatids: from DNA repair to drug resistance. Microbiol Mol Biol Rev 2014; 78:40-73. [PMID: 24600040 DOI: 10.1128/mmbr.00045-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All living organisms are continuously faced with endogenous or exogenous stress conditions affecting genome stability. DNA repair pathways act as a defense mechanism, which is essential to maintain DNA integrity. There is much to learn about the regulation and functions of these mechanisms, not only in human cells but also equally in divergent organisms. In trypanosomatids, DNA repair pathways protect the genome against mutations but also act as an adaptive mechanism to promote drug resistance. In this review, we scrutinize the molecular mechanisms and DNA repair pathways which are conserved in trypanosomatids. The recent advances made by the genome consortiums reveal the complete genomic sequences of several pathogens. Therefore, using bioinformatics and genomic sequences, we analyze the conservation of DNA repair proteins and their key protein motifs in trypanosomatids. We thus present a comprehensive view of DNA repair processes in trypanosomatids at the crossroads of DNA repair and drug resistance.
Collapse
|
100
|
Alfsnes K, Raynaud X, Tønjum T, Ambur OH. Mathematical and live meningococcal models for simple sequence repeat dynamics - coherent predictions and observations. PLoS One 2014; 9:e101637. [PMID: 24999629 PMCID: PMC4085013 DOI: 10.1371/journal.pone.0101637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/10/2014] [Indexed: 11/18/2022] Open
Abstract
Evolvability by means of simple sequence repeat (SSR) instability is a feature under the constant influence of opposing selective pressures to expand and compress the repeat tract and is mechanistically influenced by factors that affect genetic instability. In addition to direct selection for protein expression and structural integrity, other factors that influence tract length evolution were studied. The genetic instability of SSRs that switch the expression of antibiotic resistance ON and OFF was modelled mathematically and monitored in a panel of live meningococcal strains. The mathematical model showed that the SSR length of a theoretical locus in an evolving population may be shaped by direct selection of expression status (ON or OFF), tract length dependent (α) and tract length independent factors (β). According to the model an increase in α drives the evolution towards shorter tracts. An increase in β drives the evolution towards a normal distribution of tract lengths given that an upper and a lower limit are set. Insertion and deletion biases were shown to skew allelic distributions in both directions. The meningococcal SSR model was tested in vivo by monitoring the frequency of spectinomycin resistance OFF→ON switching in a designed locus. The instability of a comprehensive panel of the homopolymeric SSRs, constituted of a range of 5-13 guanine nucleotides, was monitored in wildtype and mismatch repair deficient backgrounds. Both the repeat length itself and mismatch repair deficiency were shown to influence the genetic instability of the homopolymeric tracts. A possible insertion bias was observed in tracts ≤G10. Finally, an inverse correlation between the number of tract-encoded amino acids and growth in the presence of ON-selection illustrated a limitation to SSR expansion in an essential gene associated with the designed model locus and the protein function mediating antibiotic resistance.
Collapse
Affiliation(s)
- Kristian Alfsnes
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Xavier Raynaud
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Ole Herman Ambur
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
- * E-mail:
| |
Collapse
|