51
|
Investigating the structural impact of S311C mutation in DRD2 receptor by molecular dynamics & docking studies. Biochimie 2016; 123:52-64. [DOI: 10.1016/j.biochi.2016.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/16/2016] [Indexed: 01/11/2023]
|
52
|
Deluca SH, Rathmann D, Beck-Sickinger AG, Meiler J. The activity of prolactin releasing peptide correlates with its helicity. Biopolymers 2016; 99:314-25. [PMID: 23426574 DOI: 10.1002/bip.22162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/30/2012] [Accepted: 09/15/2012] [Indexed: 11/09/2022]
Abstract
The prolactin releasing peptide (PrRP) is involved in regulating food intake and body weight homeostasis, but molecular details on the activation of the PrRP receptor remain unclear. C-terminal segments of PrRP with 20 (PrRP20) and 13 (PrRP8-20) amino acids, respectively, have been suggested to be fully active. The data presented herein indicate this is true for the wildtype receptor only; a 5-10-fold loss of activity was found for PrRP8-20 compared to PrRP20 at two extracellular loop mutants of the receptor. To gain insight into the secondary structure of PrRP, we used CD spectroscopy performed in TFE and SDS. Additionally, previously reported NMR data, combined with ROSETTANMR, were employed to determine the structure of amidated PrRP20. The structural ensemble agrees with the spectroscopic data for the full-length peptide, which exists in an equilibrium between α- and 3(10)-helix. We demonstrate that PrRP8-20's reduced propensity to form an α-helix correlates with its reduced biological activity on mutant receptors. Further, distinct amino acid replacements in PrRP significantly decrease affinity and activity but have no influence on the secondary structure of the peptide. We conclude that formation of a primarily α-helical C-terminal region of PrRP is critical for receptor activation.
Collapse
Affiliation(s)
- Stephanie H Deluca
- Vanderbilt University Center for Structural Biology, 5144B Biosci/MRBIII, 465 21st Avenue South, Nashville, TN 37232-8725
| | | | | | | |
Collapse
|
53
|
Duan X, Zhang X, Xu B, Wang F, Lei M. Computational Study and Modified Design of Selective Dopamine D3 Receptor Agonists. Chem Biol Drug Des 2016; 88:142-54. [PMID: 26851125 DOI: 10.1111/cbdd.12743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/27/2015] [Accepted: 01/31/2016] [Indexed: 12/15/2022]
Abstract
Dopamine D3 receptor (D3 R) is considered as a potential target for the treatment of nervous system disorders, such as Parkinson's disease. Current research interests primarily focus on the discovery and design of potent D3 agonists. In this work, we selected 40 D3 R agonists as the research system. Comparative molecular field analysis (CoMFA) of three-dimensional quantitative structure-activity relationship (3D-QSAR), structure-selectivity relationship (3D-QSSR), and molecular docking was performed on D3 receptor agonists to obtain the details at atomic level. The results indicated that both the CoMFA model (r(2) = 0.982, q(2) = 0.503, rpred2 = 0.893, SEE = 0.057, F = 166.308) for structure-activity and (r(2) = 0.876, q(2) = 0.436, rpred2 = 0.828, F = 52.645) for structure-selectivity have good predictive capabilities. Furthermore, docking studies on three compounds binding to D3 receptor were performed to analyze the binding modes and interactions. The results elucidate that agonists formed hydrogen bond and hydrophobic interactions with key residues. Finally, we designed six molecules under the guidance of 3D-QSAR/QSSR models. The activity and selectivity of designed molecules have been improved, and ADMET properties demonstrate they have low probability of hepatotoxicity (<0.5). These results from 3D-QSAR/QSSR and docking studies have great significance for designing novel dopamine D3 selective agonists in the future.
Collapse
Affiliation(s)
- Xinli Duan
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Binglin Xu
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fang Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
54
|
Thomas T, Chalmers DK, Yuriev E. Homology Modeling and Docking Evaluation of Human Muscarinic Acetylcholine Receptors. NEUROMETHODS 2016. [DOI: 10.1007/978-1-4939-2858-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
55
|
Wood M, Ates A, Andre VM, Michel A, Barnaby R, Gillard M. In Vitro and In Vivo Identification of Novel Positive Allosteric Modulators of the Human Dopamine D2 and D3 Receptor. Mol Pharmacol 2015; 89:303-12. [PMID: 26655303 DOI: 10.1124/mol.115.100172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/10/2015] [Indexed: 01/11/2023] Open
Abstract
Agonists at dopamine D2 and D3 receptors are important therapeutic agents in the treatment of Parkinson's disease. Compared with the use of agonists, allosteric potentiators offer potential advantages such as temporal, regional, and phasic potentiation of natural signaling, and that of receptor subtype selectivity. We report the identification of a stereoselective interaction of a benzothiazol racemic compound that acts as a positive allosteric modulator (PAM) of the rat and human dopamine D2 and D3 receptors. The R isomer did not directly stimulate the dopamine D2 receptor but potentiated the effects of dopamine. In contrast the S isomer attenuated the effects of the PAM and the effects of dopamine. In radioligand binding studies, these compounds do not compete for binding of orthosteric ligands, but indeed the R isomer increased the number of high-affinity sites for [(3)H]-dopamine without affecting K(d). We went on to identify a more potent PAM for use in native receptor systems. This compound potentiated the effects of D2/D3 signaling in vitro in electrophysiologic studies on dissociated striatal neurons and in vivo on the effects of L-dopa in the 6OHDA (6-hydroxydopamine) contralateral turning model. These PAMs lacked activity at a wide variety of receptors, lacked PAM activity at related Gi-coupled G protein-coupled receptors, and lacked activity at D1 receptors. However, the PAMs did potentiate [(3)H]-dopamine binding at both D2 and D3 receptors. Together, these studies show that we have identified PAMs of the D2 and D3 receptors both in vitro and in vivo. Such compounds may have utility in the treatment of hypodopaminergic function.
Collapse
Affiliation(s)
- Martyn Wood
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| | - Ali Ates
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| | | | - Anne Michel
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| | - Robert Barnaby
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| | - Michel Gillard
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| |
Collapse
|
56
|
Li Q, Tachie-Baffour Y, Liu Z, Baldwin MW, Kruse AC, Liberles SD. Non-classical amine recognition evolved in a large clade of olfactory receptors. eLife 2015; 4:e10441. [PMID: 26519734 PMCID: PMC4695389 DOI: 10.7554/elife.10441] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/28/2015] [Indexed: 11/13/2022] Open
Abstract
Biogenic amines are important signaling molecules, and the structural basis for their recognition by G Protein-Coupled Receptors (GPCRs) is well understood. Amines are also potent odors, with some activating olfactory trace amine-associated receptors (TAARs). Here, we report that teleost TAARs evolved a new way to recognize amines in a non-classical orientation. Chemical screens de-orphaned eleven zebrafish TAARs, with agonists including serotonin, histamine, tryptamine, 2-phenylethylamine, putrescine, and agmatine. Receptors from different clades contact ligands through aspartates on transmembrane α-helices III (canonical Asp3.32) or V (non-canonical Asp5.42), and diamine receptors contain both aspartates. Non-classical monoamine recognition evolved in two steps: an ancestral TAAR acquired Asp5.42, gaining diamine sensitivity, and subsequently lost Asp3.32. Through this transformation, the fish olfactory system dramatically expanded its capacity to detect amines, ecologically significant aquatic odors. The evolution of a second, alternative solution for amine detection by olfactory receptors highlights the tremendous structural versatility intrinsic to GPCRs. DOI:http://dx.doi.org/10.7554/eLife.10441.001 Many organisms make molecules called biogenic amines. These molecules, which include the human hormones adrenaline and histamine, have important roles in regulating the biology and behaviour of many animals. Some biogenic amines bind to receptor proteins called GPCRs on the surface of cells. Many drugs can affect the activity of GPCRs, so understanding how different GPCRs work is an important goal of the pharmaceutical industry. Like all proteins, GPCRs are made of chains of molecules called amino acids. The GPCRs that can detect biogenic amines use a particular amino acid named Asp3.32, and when this amino acid is mutated, these GPCRs become unable to bind to their target amine. Trace amine-associated receptors (TAARs) are a type of GPCR that are found in many animals to detect odors. Most TAARs in mammals contain the Asp3.32 residue, and recognize amine odors. However, many fish TAARs do not contain Asp3.32, and it was not clear what molecules these fish receptors detect. Here Li et al. find that these fish TAARs also recognize amines, and use a different amino acid called Asp5.42. Also, some TAARs contain both Asp3.32 and Asp5.42, and recognize chemicals with two amines named diamines. Some diamines that bind to TAARs are foul smelling odors; for example, cadaverine and putrescine are repulsive smells emitted by decomposing flesh. In total, the experiments identified amines that can bind to eleven zebrafish TAARs that previously had no odor partner. Li et al. propose that some fish TAARs lost the Asp3.32 during the course of evolution to leave the Asp5.42 as the main interaction site for amines. This change dramatically altered how these TAARs interact with amines, which probably expanded the number of different amines that fish can detect. These findings open up new ways to study how the fish brain processes information about its surroundings. DOI:http://dx.doi.org/10.7554/eLife.10441.002
Collapse
Affiliation(s)
- Qian Li
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Yaw Tachie-Baffour
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Zhikai Liu
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Maude W Baldwin
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
57
|
Jang JW, Cho NC, Min SJ, Cho YS, Park KD, Seo SH, No KT, Pae AN. Novel Scaffold Identification of mGlu1 Receptor Negative Allosteric Modulators Using a Hierarchical Virtual Screening Approach. Chem Biol Drug Des 2015; 87:239-56. [DOI: 10.1111/cbdd.12654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/15/2015] [Accepted: 08/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Wan Jang
- Center for Neuro-Medicine; Brain Science Institute; Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 5 Seongbuk-gu, Seoul 136-791 Korea
- Department of Biological Chemistry; School of Science; Korea University of Science and Technology; 52 Eoeun dong Yuseong-gu, Daejeon 305-333 Korea
| | - Nam-Chul Cho
- Center for Neuro-Medicine; Brain Science Institute; Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 5 Seongbuk-gu, Seoul 136-791 Korea
- Department of Biotechnology; Yonsei University; Seodaemun-gu, Seoul 120-749 Korea
| | - Sun-Joon Min
- Department of Applied Chemistry; Hanyang University; Ansan, Gyeonggi-do 15588 Korea
| | - Yong Seo Cho
- Center for Neuro-Medicine; Brain Science Institute; Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 5 Seongbuk-gu, Seoul 136-791 Korea
- Department of Biological Chemistry; School of Science; Korea University of Science and Technology; 52 Eoeun dong Yuseong-gu, Daejeon 305-333 Korea
| | - Ki Duk Park
- Center for Neuro-Medicine; Brain Science Institute; Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 5 Seongbuk-gu, Seoul 136-791 Korea
- Department of Biological Chemistry; School of Science; Korea University of Science and Technology; 52 Eoeun dong Yuseong-gu, Daejeon 305-333 Korea
| | - Seon Hee Seo
- Center for Neuro-Medicine; Brain Science Institute; Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 5 Seongbuk-gu, Seoul 136-791 Korea
| | - Kyoung Tai No
- Department of Biotechnology; Yonsei University; Seodaemun-gu, Seoul 120-749 Korea
| | - Ae Nim Pae
- Center for Neuro-Medicine; Brain Science Institute; Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 5 Seongbuk-gu, Seoul 136-791 Korea
- Department of Biological Chemistry; School of Science; Korea University of Science and Technology; 52 Eoeun dong Yuseong-gu, Daejeon 305-333 Korea
| |
Collapse
|
58
|
Kassel S, Schwed JS, Stark H. Dopamine D3 receptor agonists as pharmacological tools. Eur Neuropsychopharmacol 2015; 25:1480-99. [PMID: 25498414 DOI: 10.1016/j.euroneuro.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/23/2014] [Accepted: 11/04/2014] [Indexed: 01/10/2023]
Abstract
Dysregulation of the dopaminergic innervation in the central nervous system plays a key role in different neurological disorders like Parkinson´s disease, restless legs syndrome, schizophrenia etc. Although dopamine D3 receptors have been recognized as an important target in these diseases, their full pharmacological properties need further investigations. With focus on dopamine D3 receptor full agonists, this review has divided the ergoline and non-ergoline ligands in dissimilar chemical subclasses describing their pharmacodynamic properties on different related receptors, on species differences and their functional properties on different signaling mechanism. This is combined with a short description of structure-activity relationships for each class. Therefore, this overview should support the rational choice for the optimal compound selection based on affinity, selectivity and efficacy data in biochemical and pharmacological studies.
Collapse
Affiliation(s)
- S Kassel
- Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - J S Schwed
- Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - H Stark
- Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
59
|
Zhang J, Yang J, Jang R, Zhang Y. GPCR-I-TASSER: A Hybrid Approach to G Protein-Coupled Receptor Structure Modeling and the Application to the Human Genome. Structure 2015; 23:1538-1549. [PMID: 26190572 DOI: 10.1016/j.str.2015.06.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/03/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022]
Abstract
Experimental structure determination remains difficult for G protein-coupled receptors (GPCRs). We propose a new hybrid protocol to construct GPCR structure models that integrates experimental mutagenesis data with ab initio transmembrane (TM) helix assembly simulations. The method was tested on 24 known GPCRs where the ab initio TM-helix assembly procedure constructed the correct fold for 20 cases. When combined with weak homology and sparse mutagenesis restraints, the method generated correct folds for all the tested cases with an average Cα root-mean-square deviation 2.4 Å in the TM regions. The new hybrid protocol was applied to model all 1,026 GPCRs in the human genome, where 923 have a high confidence score and are expected to have correct folds; these contain many pharmaceutically important families with no previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin, and Neuropeptide Y receptors. The results demonstrate new progress on genome-wide structure modeling of TM proteins.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Jianyi Yang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA; School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
| | - Richard Jang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
60
|
Michino M, Beuming T, Donthamsetti P, Newman AH, Javitch JA, Shi L. What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands? Pharmacol Rev 2015; 67:198-213. [PMID: 25527701 DOI: 10.1124/pr.114.009944] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are integral membrane proteins that represent an important class of drug targets. In particular, aminergic GPCRs interact with a significant portion of drugs currently on the market. However, most drugs that target these receptors are associated with undesirable side effects, which are due in part to promiscuous interactions with close homologs of the intended target receptors. Here, based on a systematic analysis of all 37 of the currently available high-resolution crystal structures of aminergic GPCRs, we review structural elements that contribute to and can be exploited for designing subtype-selective compounds. We describe the roles of secondary binding pockets (SBPs), as well as differences in ligand entry pathways to the orthosteric binding site, in determining selectivity. In addition, using the available crystal structures, we have identified conformational changes in the SBPs that are associated with receptor activation and explore the implications of these changes for the rational development of selective ligands with tailored efficacy.
Collapse
Affiliation(s)
- Mayako Michino
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (M.M., L.S.); Schrödinger Inc., New York, New York (T.B.); Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (P.D., J.A.J.); and Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland (A.H.N.)
| | - Thijs Beuming
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (M.M., L.S.); Schrödinger Inc., New York, New York (T.B.); Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (P.D., J.A.J.); and Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland (A.H.N.)
| | - Prashant Donthamsetti
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (M.M., L.S.); Schrödinger Inc., New York, New York (T.B.); Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (P.D., J.A.J.); and Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland (A.H.N.)
| | - Amy Hauck Newman
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (M.M., L.S.); Schrödinger Inc., New York, New York (T.B.); Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (P.D., J.A.J.); and Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland (A.H.N.)
| | - Jonathan A Javitch
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (M.M., L.S.); Schrödinger Inc., New York, New York (T.B.); Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (P.D., J.A.J.); and Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland (A.H.N.)
| | - Lei Shi
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (M.M., L.S.); Schrödinger Inc., New York, New York (T.B.); Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (P.D., J.A.J.); and Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland (A.H.N.)
| |
Collapse
|
61
|
Root-Bernstein R, Dillon PF. A common molecular motif characterizes extracellular allosteric enhancers of GPCR aminergic receptors and suggests enhancer mechanism of action. Curr Med Chem 2015; 21:3673-86. [PMID: 25174918 PMCID: PMC4266041 DOI: 10.2174/0929867321666140826120604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/08/2014] [Accepted: 08/22/2014] [Indexed: 11/22/2022]
Abstract
Several classes of compounds that have no intrinsic activity on aminergic systems nonetheless enhance the potency of aminergic receptor ligands three-fold or more while significantly increasing their duration of activity, preventing tachyphylaxis and reversing fade. Enhancer compounds include ascorbic acid, ethylenediaminetetraacetic acid, cortico-steroids, opioid peptides, opiates and opiate antagonists. This paper provides the first review of aminergic enhancement, demonstrating that all enhancers have a common, inobvious molecular motif and work through a common mechanism that is manifested by three common characteristics. First, aminergic enhancers bind directly to the amines they enhance, suggesting that the common structural motif is reflected in common binding targets. Second, one common target is the first extracellular loop of aminergic receptors. Third, at least some enhancers are antiphosphodiesterases. These observations suggest that aminergic enhancers act on the extracellular surface of aminergic receptors to keep the receptor in its high affinity state, trapping the ligand inside the receptor. Enhancer binding produces allosteric modifications of the receptor structure that interfere with phosphorylation of the receptor, thereby inhibiting down-regulation of the receptor. The mechanism explains how enhancers potentiate aminergic activity and increase duration of activity and makes testable predictions about additional compounds that should act as aminergic enhancers.
Collapse
Affiliation(s)
| | - Patrick F Dillon
- Department of Physiology, Michigan State University, East Lansing, MI 48824 USA.
| |
Collapse
|
62
|
Duan X, Zhang M, Zhang X, Wang F, Lei M. Molecular modeling and docking study on dopamine D2-like and serotonin 5-HT2A receptors. J Mol Graph Model 2015; 57:143-55. [DOI: 10.1016/j.jmgm.2015.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 01/22/2023]
|
63
|
Mente S, Guilmette E, Salafia M, Gray D. Dopamine D1 receptor-agonist interactions: A mutagenesis and homology modeling study. Bioorg Med Chem Lett 2015; 25:2106-11. [PMID: 25881819 DOI: 10.1016/j.bmcl.2015.03.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
Abstract
The dopamine D1 receptor is a G protein-coupled receptor that regulates intracellular signaling via agonist activation. Although the number of solved GPCR X-ray structures has been steadily increasing, still no structure of the D1 receptor exists. We have used site-directed mutagenesis of 12 orthosteric vicinity residues of possible importance to G protein-coupled activation to examine the function of prototypical orthosteric D1 agonists and partial agonists. We find that residues from four different regions of the D1 receptor make significant contributions to agonist function. All compounds studied, which are catechol-amines, are found to interact with the previously identified residues: the conserved D103(3.32), as well as the trans-membrane V serine residues. Additional key interactions are found for trans-membrane VI residues F288(6.51), F289(6.52) and N292(6.55), as well as the extra-cellular loop residue L190(ECL2). Molecular dynamics simulations of a D1 homology model have been used to help put the ligand-residue interactions into context. Finally, we considered the rescaling of fold-shift data as a method to account for the change in the size of the mutated side-chain and found that this rescaling helps to relate the calculated ligand-residue energies with observed experimental fold-shifts.
Collapse
Affiliation(s)
- Scot Mente
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA 02139, United States.
| | - Edward Guilmette
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA 02139, United States
| | - Michelle Salafia
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA 02139, United States
| | - David Gray
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA 02139, United States
| |
Collapse
|
64
|
Canale V, Kurczab R, Partyka A, Satała G, Witek J, Jastrzębska-Więsek M, Pawłowski M, Bojarski AJ, Wesołowska A, Zajdel P. Towards novel 5-HT7 versus 5-HT1A receptor ligands among LCAPs with cyclic amino acid amide fragments: Design, synthesis, and antidepressant properties. Part II. Eur J Med Chem 2015; 92:202-11. [DOI: 10.1016/j.ejmech.2014.12.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/16/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022]
|
65
|
Salmas RE, Yurtsever M, Stein M, Durdagi S. Modeling and protein engineering studies of active and inactive states of human dopamine D2 receptor (D2R) and investigation of drug/receptor interactions. Mol Divers 2015; 19:321-32. [DOI: 10.1007/s11030-015-9569-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/11/2015] [Indexed: 01/11/2023]
|
66
|
Wifling D, Bernhardt G, Dove S, Buschauer A. The extracellular loop 2 (ECL2) of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity. PLoS One 2015; 10:e0117185. [PMID: 25629160 PMCID: PMC4309601 DOI: 10.1371/journal.pone.0117185] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/21/2014] [Indexed: 11/25/2022] Open
Abstract
In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R) shows extraordinarily high constitutive activity. In the extracellular loop (ECL), replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R.
Collapse
Affiliation(s)
- David Wifling
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry II, University of Regensburg, Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry II, University of Regensburg, Regensburg, Germany
| | - Stefan Dove
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry II, University of Regensburg, Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry II, University of Regensburg, Regensburg, Germany
| |
Collapse
|
67
|
Liberles SD. Trace amine-associated receptors: ligands, neural circuits, and behaviors. Curr Opin Neurobiol 2015; 34:1-7. [PMID: 25616211 DOI: 10.1016/j.conb.2015.01.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 11/27/2022]
Abstract
Trace amine-associated receptors (TAARs) are G Protein-Coupled Receptors that function as vertebrate olfactory receptors. Like odorant receptors, TAARs constitute an ever-evolving sensory subsystem, with individual TAARs recognizing particular chemicals and some evoking stereotyped behaviors. Several TAARs mediate aversion or attraction towards volatile amines that include the mouse odor trimethylamine, the predator odor 2-phenylethylamine, and the death-associated odor cadaverine. TAAR-expressing sensory neurons achieve monoallelic receptor expression, use canonical olfactory signaling molecules, and target a dedicated olfactory bulb region. In mouse, TAAR4 and TAAR5 are encoded by adjacent genes and localize to adjacent glomeruli, yet mediate opposing behaviors. Future studies are needed to understand how TAAR-expressing sensory neurons engage higher-order neural circuits to encode odor valence.
Collapse
Affiliation(s)
- Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
68
|
Kmiecik S, Jamroz M, Kolinski M. Structure prediction of the second extracellular loop in G-protein-coupled receptors. Biophys J 2015; 106:2408-16. [PMID: 24896119 PMCID: PMC4052351 DOI: 10.1016/j.bpj.2014.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/26/2014] [Accepted: 04/17/2014] [Indexed: 12/29/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) play key roles in living organisms. Therefore, it is important to determine their functional structures. The second extracellular loop (ECL2) is a functionally important region of GPCRs, which poses significant challenge for computational structure prediction methods. In this work, we evaluated CABS, a well-established protein modeling tool for predicting ECL2 structure in 13 GPCRs. The ECL2s (with between 13 and 34 residues) are predicted in an environment of other extracellular loops being fully flexible and the transmembrane domain fixed in its x-ray conformation. The modeling procedure used theoretical predictions of ECL2 secondary structure and experimental constraints on disulfide bridges. Our approach yielded ensembles of low-energy conformers and the most populated conformers that contained models close to the available x-ray structures. The level of similarity between the predicted models and x-ray structures is comparable to that of other state-of-the-art computational methods. Our results extend other studies by including newly crystallized GPCRs.
Collapse
Affiliation(s)
- Sebastian Kmiecik
- University of Warsaw, Faculty of Chemistry, Laboratory of Theory of Biopolymers, Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Jamroz
- University of Warsaw, Faculty of Chemistry, Laboratory of Theory of Biopolymers, Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Kolinski
- Mossakowski Medical Research Center, Polish Academy of Sciences, Bioinformatics Laboratory, Pawinskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
69
|
Soriano-Ursúa MA, Trujillo-Ferrara JG, Arias-Montaño JA, Villalobos-Molina R. Insights into a defined secondary binding region on β-adrenoceptors and putative roles in ligand binding and drug design. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00011d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Putative roles of a secondary binding region shared among beta-adrenoceptors.
Collapse
Affiliation(s)
- M. A. Soriano-Ursúa
- Posgraduate and Research Section
- Escuela Superior de Medicina
- Instituto Politécnico Nacional
- Mexico City
- Mexico
| | - J. G. Trujillo-Ferrara
- Posgraduate and Research Section
- Escuela Superior de Medicina
- Instituto Politécnico Nacional
- Mexico City
- Mexico
| | - J. A. Arias-Montaño
- Departamento de Fisiología
- Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del IPN
- Mexico City
- Mexico
| | - R. Villalobos-Molina
- Unidad de Investigación en Biomedicina
- Facultad de Estudios Superiores Iztacala
- Universidad Nacional Autónoma de México
- Tlalnepantla
- Mexico
| |
Collapse
|
70
|
Isberg V, de Graaf C, Bortolato A, Cherezov V, Katritch V, Marshall FH, Mordalski S, Pin JP, Stevens RC, Vriend G, Gloriam DE. Generic GPCR residue numbers - aligning topology maps while minding the gaps. Trends Pharmacol Sci 2014; 36:22-31. [PMID: 25541108 DOI: 10.1016/j.tips.2014.11.001] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 12/31/2022]
Abstract
Generic residue numbers facilitate comparisons of, for example, mutational effects, ligand interactions, and structural motifs. The numbering scheme by Ballesteros and Weinstein for residues within the class A GPCRs (G protein-coupled receptors) has more than 1100 citations, and the recent crystal structures for classes B, C, and F now call for a community consensus in residue numbering within and across these classes. Furthermore, the structural era has uncovered helix bulges and constrictions that offset the generic residue numbers. The use of generic residue numbers depends on convenient access by pharmacologists, chemists, and structural biologists. We review the generic residue numbering schemes for each GPCR class, as well as a complementary structure-based scheme, and provide illustrative examples and GPCR database (GPCRDB) web tools to number any receptor sequence or structure.
Collapse
Affiliation(s)
- Vignir Isberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands
| | | | - Vadim Cherezov
- The Bridge@USC, Department of Chemistry, University of Southern California, Los Angeles, CA 90089 USA
| | - Vsevolod Katritch
- The Bridge@USC, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 USA
| | | | - Stefan Mordalski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jean-Philippe Pin
- Institute of Functional Genomics, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5203, Universities Montpellier, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 661, Montpellier, France
| | - Raymond C Stevens
- The Bridge@USC, Department of Chemistry, University of Southern California, Los Angeles, CA 90089 USA; The Bridge@USC, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 USA
| | - Gerrit Vriend
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, Nijmegen, The Netherlands
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
71
|
Peng X, Wang Q, Mishra Y, Xu J, Reichert DE, Malik M, Taylor M, Luedtke RR, Mach RH. Synthesis, pharmacological evaluation and molecular modeling studies of triazole containing dopamine D3 receptor ligands. Bioorg Med Chem Lett 2014; 25:519-23. [PMID: 25556097 DOI: 10.1016/j.bmcl.2014.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/09/2014] [Indexed: 02/01/2023]
Abstract
A series of 2-methoxyphenyl piperazine analogues containing a triazole ring were synthesized and their in vitro binding affinities at human dopamine D2 and D3 receptors were evaluated. Compounds 5b, 5c, 5d, and 4g, demonstrate high affinity for dopamine D3 receptors and moderate selectivity for the dopamine D3 versus D2 receptor subtypes. To further examine their potential as therapeutic agents, their intrinsic efficacy at both D2 and D3 receptors was determined using a forskolin-dependent adenylyl cyclase inhibition assay. Affinity at dopamine D4 and serotonin 5-HT1A receptors was also determined. In addition, information from previous molecular modeling studies of the binding of a panel of 163 structurally-related benzamide analogues at dopamine D2 and D3 receptors was applied to this series of compounds. The results of the modeling studies were consistent with our previous experimental data. More importantly, the modeling study results explained why the replacement of the amide linkage with the hetero-aromatic ring leads to a reduction in the affinity of these compounds at D3 receptors.
Collapse
Affiliation(s)
- Xin Peng
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Qi Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Yogesh Mishra
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - David E Reichert
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Maninder Malik
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert H Mach
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
72
|
Zhao LS, Xu CY. Effect of prazosin on diabetic nephropathy patients with positive α1-adrenergic receptor autoantibodies and refractory hypertension. Exp Ther Med 2014; 9:177-182. [PMID: 25452798 PMCID: PMC4247280 DOI: 10.3892/etm.2014.2036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/20/2014] [Indexed: 12/13/2022] Open
Abstract
To investigate the effect of prazosin on patients with diabetic nephropathy (DN), α1-adrenergic receptor (α1-R) autoantibodies and refractory hypertension, a total of 126 patients with DN and hypertension were recruited. The patients were divided into a refractory hypertension group, (n=76) and a non-refractory hypertension group (n=50). The epitope of the second extracellular loop of the α1-R (192–218) was synthesized and an enzyme-linked immunosorbent assay (ELISA) was performed to detect serum autoantibodies. In the group with DN-associated refractory hypertension, the positive rate of autoantibodies against the α1-R was 80.3% (n=61). The 61 patients who were positive for α1-R autoantibodies were randomly divided into a treatment group (n=31) and a control group (n=30). The patients were given drugs at the same dosage and administration, with the exception of prazosin, which was provided only to the patients in the treatment group [1 mg, three times a day (tid)] for a duration of six weeks. Subsequently, prazosin was added (1 mg, tid) to the therapeutic schedule of the patients in the control group and the α1-R autoantibody-negative group for another six weeks. The analysis was carried out on an intention-to-treat basis. The prazosin treatment resulted in significant improvements in hypertension in the treatment group (P<0.05), while there was no marked improvement in the control group. The total effective rate of hypertension improvement was 90.3% in the treatment group, which was higher compared with that of the control group (33.3%). In conclusion, α1-R autoantibodies may play an important role in the pathogenesis of DN with refractory hypertension. Prazosin was demonstrated to be effective and safe in the treatment of DN with refractory hypertension.
Collapse
Affiliation(s)
- Lin-Shuang Zhao
- Department of Endocrinology, Guangzhou Command Wuhan General Hospital, Wuhan, Hubei 430070, P.R. China
| | - Chun-Yan Xu
- Graduate College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
73
|
Sato M, Hirokawa T. Extended Template-Based Modeling and Evaluation Method Using Consensus of Binding Mode of GPCRs for Virtual Screening. J Chem Inf Model 2014; 54:3153-61. [DOI: 10.1021/ci500499j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Miwa Sato
- Department
of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan
- Molecular
Profiling Research Center of Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
- Mitsui Knowledge Industry Co., Ltd., Tokyo 105-6215, Japan
| | - Takatsugu Hirokawa
- Molecular
Profiling Research Center of Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| |
Collapse
|
74
|
Keck TM, Burzynski C, Shi L, Newman AH. Beyond small-molecule SAR: using the dopamine D3 receptor crystal structure to guide drug design. ADVANCES IN PHARMACOLOGY 2014; 69:267-300. [PMID: 24484980 DOI: 10.1016/b978-0-12-420118-7.00007-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dopamine D3 receptor is a target of pharmacotherapeutic interest in a variety of neurological disorders including schizophrenia, restless leg syndrome, and drug addiction. The high protein sequence homology between the D3 and D2 receptors has posed a challenge to developing D3 receptor-selective ligands whose behavioral actions can be attributed to D3 receptor engagement, in vivo. However, through primarily small-molecule structure-activity relationship (SAR) studies, a variety of chemical scaffolds have been discovered over the past two decades that have resulted in several D3 receptor-selective ligands with high affinity and in vivo activity. Nevertheless, viable clinical candidates remain limited. The recent determination of the high-resolution crystal structure of the D3 receptor has invigorated structure-based drug design, providing refinements to the molecular dynamic models and testable predictions about receptor-ligand interactions. This chapter will highlight recent preclinical and clinical studies demonstrating potential utility of D3 receptor-selective ligands in the treatment of addiction. In addition, new structure-based rational drug design strategies for D3 receptor-selective ligands that complement traditional small-molecule SAR to improve the selectivity and directed efficacy profiles are examined.
Collapse
Affiliation(s)
- Thomas M Keck
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA
| | - Caitlin Burzynski
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA
| | - Lei Shi
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Cornell Medical College, New York, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA.
| |
Collapse
|
75
|
Maïga A, Dupont M, Blanchet G, Marcon E, Gilquin B, Servent D, Gilles N. Molecular exploration of the α1A-adrenoceptor orthosteric site: Binding site definition for epinephrine, HEAT and prazosin. FEBS Lett 2014; 588:4613-9. [DOI: 10.1016/j.febslet.2014.10.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/10/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022]
|
76
|
Bourguet CB, Claing A, Laporte SA, Hébert TE, Chemtob S, Lubell WD. Synthesis of azabicycloalkanone amino acid and azapeptide mimics and their application as modulators of the prostaglandin F2α receptor for delaying preterm birth. CAN J CHEM 2014. [DOI: 10.1139/cjc-2014-0289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Premature birth (<37 weeks gestation) is the major cause of perinatal mortality and morbidity and has been steadily increasing worldwide. Towards the rational design of more effective therapeutic agents for inhibiting uterine contractions and prolonging gestation (a so-called tocolytic drug), our team has targeted the prostaglandin F2α receptor (FP) employing a peptidomimetic approach designed to provide modulators of this novel target. We identified first a lead peptide (PDC113) (1) based on the sequence of the second extracellular loop of FP on the basis that the loop itself might modulate receptor activation. Systematic study of the structure−activity relationships of 1 generated hypotheses concerning the conformation and side-chains responsible for activity that led to the synthesis of PDC113.31 (2), a potent all d-amino acid peptide, which has successfully completed Phase 1b clinical trials. Employing indolizidinone amino acids, peptide mimics were developed that served to probe the mechanism of FP modulation. For example, PDC113.824 (9) was shown to allosterically regulate FP activity contingent on the presence of prostaglandin F2α by a mechanism implicating biased signalling. Although attempts to understand the turn geometry responsible for the activity of 9 by replacement of its indolizidin-2-one moiety with other azabicycloalkanones failed to produce biologically active analogs, employment of aza-aminoacyl-proline analogs resulted in a series of FP modulators exhibiting distinct effects on different G protein-mediated signalling pathways. Our program has thus contributed novel probes for understanding the chemical biology of FP as well as new therapeutic agents with promise for inhibiting uterine contractions and preventing preterm birth.
Collapse
Affiliation(s)
- Carine B. Bourguet
- Département de Chimie, Université de Montréal, C.P.6128. Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Audrey Claing
- Département de Pharmacologie, Université de Montréal, C.P.6128. Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Stéphane A. Laporte
- Department of Medicine, McGill University Health Center Research Institute, Montréal, QC H3A 1A1, Canada
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Sylvain Chemtob
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - William D. Lubell
- Département de Chimie, Université de Montréal, C.P.6128. Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
77
|
Structure–activity relationships and molecular modeling studies of novel arylpiperazinylalkyl 2-benzoxazolones and 2-benzothiazolones as 5-HT7 and 5-HT1A receptor ligands. Eur J Med Chem 2014; 85:716-26. [DOI: 10.1016/j.ejmech.2014.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/22/2014] [Accepted: 08/06/2014] [Indexed: 11/20/2022]
|
78
|
Kooistra AJ, Kuhne S, de Esch IJP, Leurs R, de Graaf C. A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design. Br J Pharmacol 2014; 170:101-26. [PMID: 23713847 DOI: 10.1111/bph.12248] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Chemogenomics focuses on the discovery of new connections between chemical and biological space leading to the discovery of new protein targets and biologically active molecules. G-protein coupled receptors (GPCRs) are a particularly interesting protein family for chemogenomics studies because there is an overwhelming amount of ligand binding affinity data available. The increasing number of aminergic GPCR crystal structures now for the first time allows the integration of chemogenomics studies with high-resolution structural analyses of GPCR-ligand complexes. EXPERIMENTAL APPROACH In this study, we have combined ligand affinity data, receptor mutagenesis studies, and amino acid sequence analyses to high-resolution structural analyses of (hist)aminergic GPCR-ligand interactions. This integrated structural chemogenomics analysis is used to more accurately describe the molecular and structural determinants of ligand affinity and selectivity in different key binding regions of the crystallized aminergic GPCRs, and histamine receptors in particular. KEY RESULTS Our investigations highlight interesting correlations and differences between ligand similarity and ligand binding site similarity of different aminergic receptors. Apparent discrepancies can be explained by combining detailed analysis of crystallized or predicted protein-ligand binding modes, receptor mutation studies, and ligand structure-selectivity relationships that identify local differences in essential pharmacophore features in the ligand binding sites of different receptors. CONCLUSIONS AND IMPLICATIONS We have performed structural chemogenomics studies that identify links between (hist)aminergic receptor ligands and their binding sites and binding modes. This knowledge can be used to identify structure-selectivity relationships that increase our understanding of ligand binding to (hist)aminergic receptors and hence can be used in future GPCR ligand discovery and design.
Collapse
Affiliation(s)
- A J Kooistra
- Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
79
|
Rodríguez D, Ranganathan A, Carlsson J. Strategies for improved modeling of GPCR-drug complexes: blind predictions of serotonin receptors bound to ergotamine. J Chem Inf Model 2014; 54:2004-21. [PMID: 25030302 DOI: 10.1021/ci5002235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The recent increase in the number of atomic-resolution structures of G protein-coupled receptors (GPCRs) has contributed to a deeper understanding of ligand binding to several important drug targets. However, reliable modeling of GPCR-ligand complexes for the vast majority of receptors with unknown structure remains to be one of the most challenging goals for computer-aided drug design. The GPCR Dock 2013 assessment, in which researchers were challenged to predict the crystallographic structures of serotonin 5-HT(1B) and 5-HT(2B) receptors bound to ergotamine, provided an excellent opportunity to benchmark the current state of this field. Our contributions to GPCR Dock 2013 accurately predicted the binding mode of ergotamine with RMSDs below 1.8 Å for both receptors, which included the best submissions for the 5-HT(1B) complex. Our models also had the most accurate description of the binding sites and receptor-ligand contacts. These results were obtained using a ligand-guided homology modeling approach, which combines extensive molecular docking screening with incorporation of information from multiple crystal structures and experimentally derived restraints. In this work, we retrospectively analyzed thousands of structures that were generated during the assessment to evaluate our modeling strategies. Major contributors to accuracy were found to be improved modeling of extracellular loop two in combination with the use of molecular docking to optimize the binding site for ligand recognition. Our results suggest that modeling of GPCR-drug complexes has reached a level of accuracy at which structure-based drug design could be applied to a large number of pharmaceutically relevant targets.
Collapse
Affiliation(s)
- David Rodríguez
- Science for Life Laboratory, Stockholm University , Box 1031, SE-171 21 Solna, Sweden
| | | | | |
Collapse
|
80
|
Bock A, Mohr K. Dualsteric GPCR targeting and functional selectivity: the paradigmatic M(2) muscarinic acetylcholine receptor. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e245-52. [PMID: 24050275 DOI: 10.1016/j.ddtec.2012.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Muscarinic acetylcholine receptors belong to Class Aseven transmembrane helical receptors and serve as important drug targets in the treatment of various diseases such as chronic obstructive pulmonary disease, overactive bladder, bronchial asthma and glaucoma. Despite intensive research the discovery of experimental ligands which activate or block specific muscarinic receptor subtypes has only been successful for the M1 and M4 subtypes but remains a challenging task at the other subtypes. In recent years, ligands have been introduced which bind simultaneously to the acetylcholine binding site, that is, the orthosteric site, and to an allosteric binding site. These so-called dualsteric ligands display M2 subtype preference due to the addressing of the allosteric binding site. As proven recently, dualsteric receptor activation goes along with a pronounced signaling bias which follows clear structure–bias-relationships. Dualsteric receptor targeting might represent a common strategy to generate functional selectivity.
Collapse
|
81
|
Levit A, Beuming T, Krilov G, Sherman W, Niv MY. Predicting GPCR Promiscuity Using Binding Site Features. J Chem Inf Model 2013; 54:184-94. [DOI: 10.1021/ci400552z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Anat Levit
- Institute
of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty
of Agriculture Food and Environment, The Hebrew University, Rehovot 76100, Israel
- Fritz
Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Thijs Beuming
- Schrodinger Inc., 120 West Forty-Fifth Street, 17th Floor, New York, New York 10036, United States
| | - Goran Krilov
- Schrodinger Inc., 120 West Forty-Fifth Street, 17th Floor, New York, New York 10036, United States
| | - Woody Sherman
- Schrodinger Inc., 120 West Forty-Fifth Street, 17th Floor, New York, New York 10036, United States
| | - Masha Y. Niv
- Institute
of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty
of Agriculture Food and Environment, The Hebrew University, Rehovot 76100, Israel
- Fritz
Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
82
|
Thomas T, McLean KC, McRobb FM, Manallack DT, Chalmers DK, Yuriev E. Homology modeling of human muscarinic acetylcholine receptors. J Chem Inf Model 2013; 54:243-53. [PMID: 24328076 DOI: 10.1021/ci400502u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have developed homology models of the acetylcholine muscarinic receptors M₁R-M₅R, based on the β₂-adrenergic receptor crystal as the template. This is the first report of homology modeling of all five subtypes of acetylcholine muscarinic receptors with binding sites optimized for ligand binding. The models were evaluated for their ability to discriminate between muscarinic antagonists and decoy compounds using virtual screening using enrichment factors, area under the ROC curve (AUC), and an early enrichment measure, LogAUC. The models produce rational binding modes of docked ligands as well as good enrichment capacity when tested against property-matched decoy libraries, which demonstrates their unbiased predictive ability. To test the relative effects of homology model template selection and the binding site optimization procedure, we generated and evaluated a naïve M₂R model, using the M₃R crystal structure as a template. Our results confirm previous findings that binding site optimization using ligand(s) active at a particular receptor, i.e. including functional knowledge into the model building process, has a more pronounced effect on model quality than target-template sequence similarity. The optimized M₁R-M₅R homology models are made available as part of the Supporting Information to allow researchers to use these structures, compare them to their own results, and thus advance the development of better modeling approaches.
Collapse
Affiliation(s)
- Trayder Thomas
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, VIC 3052 Australia
| | | | | | | | | | | |
Collapse
|
83
|
Soriano-Ursúa MA, Trujillo-Ferrara JG, Correa-Basurto J, Vilar S. Recent structural advances of β1 and β2 adrenoceptors yield keys for ligand recognition and drug design. J Med Chem 2013; 56:8207-23. [PMID: 23862978 DOI: 10.1021/jm400471z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because they represent attractive drug targets, adrenoceptors have been widely studied. Recent progress in structural data of β-adrenoceptors allows us to understand and predict key interactions in ligand recognition and receptor activation. Nevertheless, an important aspect of this process has only begun to be explored: the stabilization of a conformational state of these receptors upon contact with a ligand and the capacity of a ligand to influence receptor conformation through allosteric modulation, biased signaling, and selectivity. The aim of the present Perspective is to identify the well-defined orthosteric binding site and possible allosteric sites and to analyze the importance of the ligand-receptor interaction in the stabilization of certain receptor conformations. For this purpose, we have reviewed recent advances made through the use of X-ray data from ligand-β-adrenoceptor (including ADRB1 and ADRB2) crystal structures. Most importantly, implications in the medicinal chemistry field are explored in relation to drug design.
Collapse
Affiliation(s)
- Marvin A Soriano-Ursúa
- Departments of Biochemistry and Physiology, Laboratory of Molecular Modeling and Bioinformatics, Postgraduate Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Dı́az Mirón s/n, Mexico City, 11340, Mexico
| | | | | | | |
Collapse
|
84
|
Gutiérrez-de-Terán H, Massink A, Rodríguez D, Liu W, Han GW, Joseph JS, Katritch I, Heitman LH, Xia L, Ijzerman AP, Cherezov V, Katritch V, Stevens RC. The role of a sodium ion binding site in the allosteric modulation of the A(2A) adenosine G protein-coupled receptor. Structure 2013; 21:2175-85. [PMID: 24210756 DOI: 10.1016/j.str.2013.09.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/14/2022]
Abstract
The function of G protein-coupled receptors (GPCRs) can be modulated by a number of endogenous allosteric molecules. In this study, we used molecular dynamics, radioligand binding, and thermostability experiments to elucidate the role of the recently discovered sodium ion binding site in the allosteric modulation of the human A(2A) adenosine receptor, conserved among class A GPCRs. While the binding of antagonists and sodium ions to the receptor was noncompetitive in nature, the binding of agonists and sodium ions appears to require mutually exclusive conformational states of the receptor. Amiloride analogs can also bind to the sodium binding pocket, showing distinct patterns of agonist and antagonist modulation. These findings suggest that physiological concentrations of sodium ions affect functionally relevant conformational states of GPCRs and can help to design novel synthetic allosteric modulators or bitopic ligands exploiting the sodium ion binding pocket.
Collapse
Affiliation(s)
- Hugo Gutiérrez-de-Terán
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago, E-15706 Santiago de Compostela, Spain; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Riniker S, Landrum GA. Similarity maps - a visualization strategy for molecular fingerprints and machine-learning methods. J Cheminform 2013; 5:43. [PMID: 24063533 PMCID: PMC3852750 DOI: 10.1186/1758-2946-5-43] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/23/2013] [Indexed: 02/03/2023] Open
Abstract
Fingerprint similarity is a common method for comparing chemical structures. Similarity is an appealing approach because, with many fingerprint types, it provides intuitive results: a chemist looking at two molecules can understand why they have been determined to be similar. This transparency is partially lost with the fuzzier similarity methods that are often used for scaffold hopping and tends to vanish completely when molecular fingerprints are used as inputs to machine-learning (ML) models. Here we present similarity maps, a straightforward and general strategy to visualize the atomic contributions to the similarity between two molecules or the predicted probability of a ML model. We show the application of similarity maps to a set of dopamine D3 receptor ligands using atom-pair and circular fingerprints as well as two popular ML methods: random forests and naïve Bayes. An open-source implementation of the method is provided.
Collapse
Affiliation(s)
- Sereina Riniker
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | |
Collapse
|
86
|
Chan KH, Wong YH. A molecular and chemical perspective in defining melatonin receptor subtype selectivity. Int J Mol Sci 2013; 14:18385-406. [PMID: 24018885 PMCID: PMC3794785 DOI: 10.3390/ijms140918385] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/16/2013] [Accepted: 08/26/2013] [Indexed: 12/15/2022] Open
Abstract
Melatonin is primarily synthesized and secreted by the pineal gland during darkness in a normal diurnal cycle. In addition to its intrinsic antioxidant property, the neurohormone has renowned regulatory roles in the control of circadian rhythm and exerts its physiological actions primarily by interacting with the G protein-coupled MT1 and MT2 transmembrane receptors. The two melatonin receptor subtypes display identical ligand binding characteristics and mediate a myriad of signaling pathways, including adenylyl cyclase inhibition, phospholipase C stimulation and the regulation of other effector molecules. Both MT1 and MT2 receptors are widely expressed in the central nervous system as well as many peripheral tissues, but each receptor subtype can be linked to specific functional responses at the target tissue. Given the broad therapeutic implications of melatonin receptors in chronobiology, immunomodulation, endocrine regulation, reproductive functions and cancer development, drug discovery and development programs have been directed at identifying chemical molecules that bind to the two melatonin receptor subtypes. However, all of the melatoninergics in the market act on both subtypes of melatonin receptors without significant selectivity. To facilitate the design and development of novel therapeutic agents, it is necessary to understand the intrinsic differences between MT1 and MT2 that determine ligand binding, functional efficacy, and signaling specificity. This review summarizes our current knowledge in differentiating MT1 and MT2 receptors and their signaling capacities. The use of homology modeling in the mapping of the ligand-binding pocket will be described. Identification of conserved and distinct residues will be tremendously useful in the design of highly selective ligands.
Collapse
MESH Headings
- Animals
- Humans
- Melatonin/metabolism
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/chemistry
- Receptor, Melatonin, MT2/metabolism
- Receptors, Melatonin/chemistry
- Receptors, Melatonin/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- King Hang Chan
- Biotechnology Research Institute, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.
| | | |
Collapse
|
87
|
Stäubert C, Bohnekamp J, Schöneberg T. Determinants involved in subtype-specific functions of rat trace amine-associated receptors 1 and 4. Br J Pharmacol 2013; 168:1266-78. [PMID: 23072560 DOI: 10.1111/bph.12020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 09/26/2012] [Accepted: 10/07/2012] [Indexed: 01/14/2023] Open
Abstract
AIMS The trace amine-associated receptor (Taar) family displays high species- and subtype-specific pharmacology. Several trace amines such as β-phenylethylamine (β-PEA), p-tyramine and tryptamine are agonists at TA(1) but poorly activate rat and mouse Taar4. PRINCIPAL RESULTS Using rat TA(1) and Taar4 chimera, we identified determinants in transmembrane helices 3 and 6, which, when replaced by the corresponding portion of rat TA(1) , can rescue cell surface expression of rat Taar4. When expressed at the cell surface, rat Taar4 pharmacology was very similar to that of TA(1) and coupled to the Gα(s) -protein/AC pathway. Our data suggest that binding pockets of Taar for surrogate agonists overlap between paralogs. CONCLUSIONS This implicates that the repertoire of Taar ensures functional redundancy, tissue- and cell-specific expression and/or different downstream signalling rather than different agonist specificity.
Collapse
Affiliation(s)
- C Stäubert
- Institute of Biochemistry, Medical Faculty, University Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
88
|
Hou D, Chen Y, Liu J, Xu L, Zhang Z, Zhang J, Wang H, Wang X, Chen J, Zhao R, Hu A, Hakonarson H, Zhang L, Shen Y. Proteomics screen to reveal molecular changes mediated by C722G missense mutation in CHRM2 gene. J Proteomics 2013; 89:39-50. [PMID: 23743182 DOI: 10.1016/j.jprot.2013.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/15/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Previously, we reported a missense mutation (C722G) in the M2-muscarinic acetylcholine receptor (CHRM2) gene associated with familial dilated cardiomyopathy. However, the exact molecular mechanisms by the related protein changes of CHRM2-C722G mutation induced are still unclear. CHRM2 and CHRM2-C722G lentiviral vector was infected to CHO cells. Proteomic analysis by label-free shotgun strategy and the STRING 9.0 software were performed. A total of 102 proteins with at least 2-fold change in the CHRM2-C722G group were identified, 42 proteins were up-regulated, whereas 57 were down-regulated. These altered proteins belong to three broad functional categories: (i) metabolic (e.g. Cytosolic acyl coenzyme A thioester hydrolase, Malate dehydrogenase); (ii) cytoskeletal (e.g. Actin-related protein, Myosin light polypeptide 6 and Alpha-actinin-1) and (iii) stress response (e.g. heat shock protein 70, Ras-related protein Rab-10). Interestingly, the marked differences in the expression of selected eight proteins (change >4.0-fold), were connected with many proteins related to apoptosis and immune/inflammatory response such as: FOS, BAX, MYC, TP53 and IL6. This novel study demonstrated for the first time a full-scale screening of the proteomics research by CHRM2-C722G mutation and profiled 102 changed proteins, of which, eight might be critical in cardiac dysfunction for future mapping. SIGNIFICANCE It was a full-scale screening of the proteomics research by CHRM2-C722G mutation. These proteins might serve as valuable biomarkers that could predict the presence of a precursor field. These proteins might serve to further explore the pathophysiological mechanisms in familial DCM patients with C176W mutation.
Collapse
Affiliation(s)
- Dongyan Hou
- Heart Failure Center, Department of Cardiology, Capital Medical University, Chao-Yang Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Malo M, Persson R, Svensson P, Luthman K, Brive L. Development of 7TM receptor-ligand complex models using ligand-biased, semi-empirical helix-bundle repacking in torsion space: application to the agonist interaction of the human dopamine D2 receptor. J Comput Aided Mol Des 2013; 27:277-91. [PMID: 23553533 PMCID: PMC3639355 DOI: 10.1007/s10822-013-9640-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/20/2013] [Indexed: 11/30/2022]
Abstract
Prediction of 3D structures of membrane proteins, and of G-protein coupled receptors (GPCRs) in particular, is motivated by their importance in biological systems and the difficulties associated with experimental structure determination. In the present study, a novel method for the prediction of 3D structures of the membrane-embedded region of helical membrane proteins is presented. A large pool of candidate models are produced by repacking of the helices of a homology model using Monte Carlo sampling in torsion space, followed by ranking based on their geometric and ligand-binding properties. The trajectory is directed by weak initial restraints to orient helices towards the original model to improve computation efficiency, and by a ligand to guide the receptor towards a chosen conformational state. The method was validated by construction of the β1 adrenergic receptor model in complex with (S)-cyanopindolol using bovine rhodopsin as template. In addition, models of the dopamine D2 receptor were produced with the selective and rigid agonist (R)-N-propylapomorphine ((R)-NPA) present. A second quality assessment was implemented by evaluating the results from docking of a library of 29 ligands with known activity, which further discriminated between receptor models. Agonist binding and recognition by the dopamine D2 receptor is interpreted using the 3D structure model resulting from the approach. This method has a potential for modeling of all types of helical transmembrane proteins for which a structural template with sequence homology sufficient for homology modeling is not available or is in an incorrect conformational state, but for which sufficient empirical information is accessible.
Collapse
Affiliation(s)
- Marcus Malo
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden
| | - Ronnie Persson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden
| | - Peder Svensson
- NeuroSearch Sweden AB, Arvid Wallgrens Backe 20, SE-413 46 Göteborg, Sweden
- Present Address: Astra Zeneca R&D Mölndal, SE-431 83 Mölndal, Sweden
| | - Kristina Luthman
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden
| | - Lars Brive
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Box 440, SE-405 30 Göteborg, Sweden
- Cygnal Bioscience, Björnvägen 15, SE-435 43 Pixbo, Sweden
| |
Collapse
|
90
|
Study of the selectivity of α1-adrenergic antagonists by molecular modeling of α1a-, α1b-, and α1d-adrenergic receptor subtypes and docking simulations. MONATSHEFTE FUR CHEMIE 2013. [DOI: 10.1007/s00706-013-0966-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
91
|
Bock A, Merten N, Schrage R, Dallanoce C, Bätz J, Klöckner J, Schmitz J, Matera C, Simon K, Kebig A, Peters L, Müller A, Schrobang-Ley J, Tränkle C, Hoffmann C, De Amici M, Holzgrabe U, Kostenis E, Mohr K. The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. Nat Commun 2013; 3:1044. [PMID: 22948826 PMCID: PMC3658004 DOI: 10.1038/ncomms2028] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/30/2012] [Indexed: 12/16/2022] Open
Abstract
Seven transmembrane helical receptors (7TMRs) modulate cell function via different types of G proteins, often in a ligand-specific manner. Class A 7TMRs harbour allosteric vestibules in the entrance of their ligand-binding cavities, which are in the focus of current drug discovery. However, their biological function remains enigmatic. Here we present a new strategy for probing and manipulating conformational transitions in the allosteric vestibule of label-free 7TMRs using the M2 acetylcholine receptor as a paradigm. We designed dualsteric agonists as 'tailor-made' chemical probes to trigger graded receptor activation from the acetylcholine-binding site while simultaneously restricting spatial flexibility of the receptor's allosteric vestibule. Our findings reveal for the first time that a 7TMR's allosteric vestibule controls the extent of receptor movement to govern a hierarchical order of G-protein coupling. This is a new concept assigning a biological role to the allosteric vestibule for controlling fidelity of 7TMR signalling. Class A seven transmembrane helical receptors harbour vestibules at the entrance to the ligand-binding domain. Here, Bock et al. use probes to monitor the conformation of the M2 muscarinic receptor and show that the vestibule alters the extent of receptor movement.
Collapse
Affiliation(s)
- Andreas Bock
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Levit A, Barak D, Behrens M, Meyerhof W, Niv MY. Homology model-assisted elucidation of binding sites in GPCRs. Methods Mol Biol 2013; 914:179-205. [PMID: 22976029 DOI: 10.1007/978-1-62703-023-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
G protein-coupled receptors (GPCRs) are important mediators of cell signaling and a major family of drug targets. Despite recent breakthroughs, experimental elucidation of GPCR structures remains a formidable challenge. Homology modeling of 3D structures of GPCRs provides a practical tool for elucidating the structural determinants governing the interactions of these important receptors with their ligands. The working model of the binding site can then be used for virtual screening of additional ligands that may fit this site, for determining and comparing specificity profiles of related receptors, and for structure-based design of agonists and antagonists. The current review presents the protocol and enumerates the steps for modeling and validating the residues involved in ligand binding. The main stages include (a) modeling the receptor structure using an automated fragment-based approach, (b) predicting potential binding pockets, (c) docking known binders, (d) analyzing predicted interactions and comparing with positions that have been shown to bind ligands in other receptors, (e) validating the structural model by mutagenesis.
Collapse
Affiliation(s)
- Anat Levit
- Institute of Biochemistry, Food Science, and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | | | | | | | | |
Collapse
|
93
|
Cang X, Du Y, Mao Y, Wang Y, Yang H, Jiang H. Mapping the Functional Binding Sites of Cholesterol in β2-Adrenergic Receptor by Long-Time Molecular Dynamics Simulations. J Phys Chem B 2013; 117:1085-94. [DOI: 10.1021/jp3118192] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaohui Cang
- Drug Discovery and
Design Center, State Key Laboratory of Drug Research, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yun Du
- Drug Discovery and
Design Center, State Key Laboratory of Drug Research, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yanyan Mao
- Drug Discovery and
Design Center, State Key Laboratory of Drug Research, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuanyuan Wang
- Drug Discovery and
Design Center, State Key Laboratory of Drug Research, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Huaiyu Yang
- Drug Discovery and
Design Center, State Key Laboratory of Drug Research, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery and
Design Center, State Key Laboratory of Drug Research, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
94
|
Slusarz MJ, Sikorska E, Slusarz R. Interactions of vasopressin and oxytocin receptors with vasopressin analogues substituted in position 2 with 3,3'-diphenylalanine--a molecular docking study. J Pept Sci 2013; 19:118-26. [PMID: 23303737 DOI: 10.1002/psc.2485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/12/2012] [Accepted: 12/20/2012] [Indexed: 11/11/2022]
Abstract
Vasopressin and oxytocin receptors belong to the superfamily of G protein-coupled receptors and play an important role in many physiological functions. They are also involved in a number of pathological conditions being important drug targets. In this work, four vasopressin analogues substituted at position 2 with 3,3'-diphenylalanine have been docked into partially flexible vasopressin and oxytocin receptors. The bulky residue at position 2 acts as a structural restraint much stronger in the oxytocin receptor (OTR) than in the vasopressin V2 receptor (V2R), resulting in a different location of the analogues in these receptors. This explains the different, either agonistic or antagonistic, activities of the analogues in V2R and OTR, respectively. In all complexes, the conserved polar residues serve as anchor points for the ligand both in OTR and V2R. Strong interactions of the C-terminus of analogue II ([Mpa(1) ,d-Dpa(2) ,Val(4) ,d-Arg(8) ]VP) with extracellular loop 3 may be responsible for its highest activity at V2R. It also appears that V2R adapts more readily to the docking analogues by conformational changes in the aromatic side chains triggering receptor activation. A weak activity at V1a vasopressin receptor appears to be caused by weak receptor-ligand interactions. Results of this study may facilitate a rational design of new analogues with the highest activity/selectivity at vasopressin and OTRs.
Collapse
Affiliation(s)
- Magdalena J Slusarz
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952, Gdańsk, Poland.
| | | | | |
Collapse
|
95
|
Schultes S, Nijmeijer S, Engelhardt H, Kooistra AJ, Vischer HF, de Esch IJP, Haaksma EEJ, Leurs R, de Graaf C. Mapping histamine H4 receptor–ligand binding modes. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20212c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Computational prediction of ligand binding modes in G protein-coupled receptors (GPCRs) remains a challenging task. Systematic consideration of different protein modelling templates, ligand binding poses, and ligand protonation states in extensive molecular dynamics (MD) simulation studies enabled the prediction of ligand-specific mutation effects in the histamine H4 receptor, a key player in inflammation.
Collapse
Affiliation(s)
- Sabine Schultes
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry
- Department of Pharmacochemistry
- Faculty of Exact Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| | - Saskia Nijmeijer
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry
- Department of Pharmacochemistry
- Faculty of Exact Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| | - Harald Engelhardt
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry
- Department of Pharmacochemistry
- Faculty of Exact Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| | - Albert J. Kooistra
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry
- Department of Pharmacochemistry
- Faculty of Exact Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| | - Henry F. Vischer
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry
- Department of Pharmacochemistry
- Faculty of Exact Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| | - Iwan J. P. de Esch
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry
- Department of Pharmacochemistry
- Faculty of Exact Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| | - Eric E. J. Haaksma
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry
- Department of Pharmacochemistry
- Faculty of Exact Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| | - Rob Leurs
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry
- Department of Pharmacochemistry
- Faculty of Exact Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| | - Chris de Graaf
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry
- Department of Pharmacochemistry
- Faculty of Exact Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| |
Collapse
|
96
|
Kooistra AJ, Roumen L, Leurs R, de Esch IJ, de Graaf C. From Heptahelical Bundle to Hits from the Haystack. Methods Enzymol 2013; 522:279-336. [DOI: 10.1016/b978-0-12-407865-9.00015-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
97
|
de Graaf C, Vischer HF, de Kloe GE, Kooistra AJ, Nijmeijer S, Kuijer M, Verheij MHP, England PJ, van Muijlwijk-Koezen JE, Leurs R, de Esch IJP. Small and colorful stones make beautiful mosaics: fragment-based chemogenomics. Drug Discov Today 2012; 18:323-30. [PMID: 23266367 DOI: 10.1016/j.drudis.2012.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/19/2012] [Accepted: 12/05/2012] [Indexed: 12/01/2022]
Abstract
Smaller stones with a wide variety of colors make a higher resolution mosaic. In much the same way, smaller chemical entities that are structurally diverse are better able to interrogate protein binding sites. This feature article describes the construction of a diverse fragment library and an analysis of the screening of six representative protein targets belonging to three diverse target classes (G protein-coupled receptors ADRB2, H1R, H3R, and H4R, the ligand-gated ion channel 5-HT3R, and the kinase PKA) using chemogenomics approaches. The integration of experimentally determined bioaffinity profiles across related and unrelated protein targets and chemogenomics analysis of fragment binding and protein structure allow the identification of: (i) unexpected similarities and differences in ligand binding properties, and (ii) subtle ligand affinity and selectivity cliffs. With a wealth of fragment screening data being generated in industry and academia, such approaches will contribute to a more detailed structural understanding of ligand-protein interactions.
Collapse
Affiliation(s)
- Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Sirci F, Istyastono EP, Vischer HF, Kooistra AJ, Nijmeijer S, Kuijer M, Wijtmans M, Mannhold R, Leurs R, de Esch IJP, de Graaf C. Virtual Fragment Screening: Discovery of Histamine H3 Receptor Ligands Using Ligand-Based and Protein-Based Molecular Fingerprints. J Chem Inf Model 2012; 52:3308-24. [DOI: 10.1021/ci3004094] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francesco Sirci
- Laboratory for Chemometrics
and Chemoinformatics, Chemistry Department, University of Perugia, Via Elce di Sotto, 10, I-06123 Perugia Italy
| | - Enade P. Istyastono
- Division of Medicinal Chemistry,
Faculty of Sciences, Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Molecular Modeling Division, Pharmaceutical
Technology Laboratory, Universitas Sanata Dharma, Yogyakarta, Indonesia
| | - Henry F. Vischer
- Division of Medicinal Chemistry,
Faculty of Sciences, Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Albert J. Kooistra
- Division of Medicinal Chemistry,
Faculty of Sciences, Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Saskia Nijmeijer
- Division of Medicinal Chemistry,
Faculty of Sciences, Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Martien Kuijer
- Division of Medicinal Chemistry,
Faculty of Sciences, Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry,
Faculty of Sciences, Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Raimund Mannhold
- Department of Laser Medicine,
Molecular Drug Research Group, Heinrich-Heine-Universität, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Rob Leurs
- Division of Medicinal Chemistry,
Faculty of Sciences, Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Iwan J. P. de Esch
- Division of Medicinal Chemistry,
Faculty of Sciences, Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry,
Faculty of Sciences, Amsterdam Institute for Molecules, Medicines
and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
99
|
Katritch V, Cherezov V, Stevens RC. Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 2012; 53:531-56. [PMID: 23140243 DOI: 10.1146/annurev-pharmtox-032112-135923] [Citation(s) in RCA: 783] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the past few years, crystallography of G protein-coupled receptors (GPCRs) has experienced exponential growth, resulting in the determination of the structures of 16 distinct receptors-9 of them in 2012 alone. Including closely related subtype homology models, this coverage amounts to approximately 12% of the human GPCR superfamily. The adrenergic, rhodopsin, and adenosine receptor systems are also described by agonist-bound active-state structures, including a structure of the receptor-G protein complex for the β(2)-adrenergic receptor. Biochemical and biophysical techniques, such as nuclear magnetic resonance and hydrogen-deuterium exchange coupled with mass spectrometry, are providing complementary insights into ligand-dependent dynamic equilibrium between different functional states. Additional details revealed by high-resolution structures illustrate the receptors as allosteric machines that are controlled not only by ligands but also by ions, lipids, cholesterol, and water. This wealth of data is helping redefine our knowledge of how GPCRs recognize such a diverse array of ligands and how they transmit signals 30 angstroms across the cell membrane; it also is shedding light on a structural basis of GPCR allosteric modulation and biased signaling.
Collapse
Affiliation(s)
- Vsevolod Katritch
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
100
|
Platania CBM, Salomone S, Leggio GM, Drago F, Bucolo C. Homology modeling of dopamine D2 and D3 receptors: molecular dynamics refinement and docking evaluation. PLoS One 2012; 7:e44316. [PMID: 22970199 PMCID: PMC3435408 DOI: 10.1371/journal.pone.0044316] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/01/2012] [Indexed: 12/15/2022] Open
Abstract
Dopamine (DA) receptors, a class of G-protein coupled receptors (GPCRs), have been targeted for drug development for the treatment of neurological, psychiatric and ocular disorders. The lack of structural information about GPCRs and their ligand complexes has prompted the development of homology models of these proteins aimed at structure-based drug design. Crystal structure of human dopamine D3 (hD3) receptor has been recently solved. Based on the hD3 receptor crystal structure we generated dopamine D2 and D3 receptor models and refined them with molecular dynamics (MD) protocol. Refined structures, obtained from the MD simulations in membrane environment, were subsequently used in molecular docking studies in order to investigate potential sites of interaction. The structure of hD3 and hD2L receptors was differentiated by means of MD simulations and D3 selective ligands were discriminated, in terms of binding energy, by docking calculation. Robust correlation of computed and experimental Ki was obtained for hD3 and hD2L receptor ligands. In conclusion, the present computational approach seems suitable to build and refine structure models of homologous dopamine receptors that may be of value for structure-based drug discovery of selective dopaminergic ligands.
Collapse
Affiliation(s)
- Chiara Bianca Maria Platania
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, Catania University, Catania, Italy
| | - Salvatore Salomone
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, Catania University, Catania, Italy
| | - Gian Marco Leggio
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, Catania University, Catania, Italy
| | - Filippo Drago
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, Catania University, Catania, Italy
| | - Claudio Bucolo
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, Catania University, Catania, Italy
- * E-mail:
| |
Collapse
|