51
|
Properties of phase transition of ice binding protein from Arctic yeast (LeIBP) utilizing differential scanning calorimetry (DSC) and Raman spectroscopy. Cryobiology 2018; 85:33-38. [PMID: 30296411 DOI: 10.1016/j.cryobiol.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 11/22/2022]
Abstract
Ice binding proteins (IBPs) have been attracting significant interest on account of their characteristic of inhibiting ice growth and recrystallization. Owing to their unique characteristics, IBPs have been studied for applications in food, pharmaceuticals, and medicine, as well as from a general scientific point of view. In this study, we have used differential scanning calorimetry (DSC) and Raman spectroscopy as tools to understand the ice binding activity of the Arctic-yeast-originating extracellular ice binding glycoprotein (LeIBP) isolated from Leucosporidium sp. AY30. From the DSC results, an increase in the specific heat capacity was confirmed for 1 mg/mL LeIBP, which suggested that additional heat flow was required for the change in temperature. In addition, the temperature corresponding to the phase change of the solution was measured, and Raman spectroscopy was carried out on the frozen and molten phases, respectively. From the results of Raman analysis, we confirmed that the helical vibrations related to the ice binding sites on LeIBP were dramatically suppressed when the LeIBP solution was frozen. Furthermore, principal component analysis (PCA) of the Raman spectra yielded the contrast factor between the freezing and melting states. Both DSC and Raman spectroscopy are widely used to study the ice binding activity and the structural changes associated with molecular vibrations in cryobiology.
Collapse
|
52
|
Weng L, Swei A, Toner M. Role of synthetic antifreeze agents in catalyzing ice nucleation. Cryobiology 2018; 84:91-94. [DOI: 10.1016/j.cryobiol.2018.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/17/2023]
|
53
|
Prokkola JM, Nikinmaa M. Circadian rhythms and environmental disturbances – underexplored interactions. J Exp Biol 2018; 221:221/16/jeb179267. [DOI: 10.1242/jeb.179267] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT
Biological rhythms control the life of virtually all organisms, impacting numerous aspects ranging from subcellular processes to behaviour. Many studies have shown that changes in abiotic environmental conditions can disturb or entrain circadian (∼24 h) rhythms. These expected changes are so large that they could impose risks to the long-term viability of populations. Climate change is a major global stressor affecting the fitness of animals, partially because it challenges the adaptive associations between endogenous clocks and temperature – consequently, one can posit that a large-scale natural experiment on the plasticity of rhythm–temperature interactions is underway. Further risks are posed by chemical pollution and the depletion of oxygen levels in aquatic environments. Here, we focused our attention on fish, which are at heightened risk of being affected by human influence and are adapted to diverse environments showing predictable changes in light conditions, oxygen saturation and temperature. The examined literature to date suggests an abundance of mechanisms that can lead to interactions between responses to hypoxia, pollutants or pathogens and regulation of endogenous rhythms, but also reveals gaps in our understanding of the plasticity of endogenous rhythms in fish and in how these interactions may be disturbed by human influence and affect natural populations. Here, we summarize research on the molecular mechanisms behind environment–clock interactions as they relate to oxygen variability, temperature and responses to pollutants, and propose ways to address these interactions more conclusively in future studies.
Collapse
Affiliation(s)
- Jenni M. Prokkola
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
54
|
Wainwright PC, Longo SJ. Functional Innovations and the Conquest of the Oceans by Acanthomorph Fishes. Curr Biol 2018; 27:R550-R557. [PMID: 28586692 DOI: 10.1016/j.cub.2017.03.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The world's oceans are home to many fantastic creatures, including about 16,000 species of actinopterygian, or ray-finned, fishes. Notably, 85% of marine fish species come from a single actinopterygian subgroup, the acanthomorph or spiny-rayed fishes. Here, we review eight functional innovations found in marine acanthomorphs that have been instrumental in the adaptive radiation of this group in the marine realm. Jaw protrusion substantially enhances the suction feeding mechanism found in all fish. Fin spines serve as a major deterrent to predators and enhance the locomotor function of fins. Pharyngognathy, a specialization of the second pair of jaws in the pharynx, enhances the ability of fishes to process hard and tough prey. Endothermy allows fishes to function at high levels of physiological performance in cold waters and facilitates frequent movement across strong thermal gradients found in the open ocean. Intramandibular joints enhance feeding for fishes that bite and scrape prey attached to hard surfaces. Antifreeze proteins prevent ice crystal growth in extracellular fluids, allowing fish to function in cold waters that would otherwise freeze them. Air-breathing allowed fishes at the water's edge to exploit terrestrial habitats. Finally, bioluminescence functions in communication, attracting prey and in hiding from predators, particularly for fishes of the deep ocean. All of these innovations have evolved multiple times in fishes. The frequent occurrence of convergent evolution of these complex functional novelties speaks to the persistence and potency of the selective forces in marine environments that challenge fishes and stimulate innovation.
Collapse
Affiliation(s)
- Peter C Wainwright
- Department of Evolution and Ecology, Center for Population Biology, University of California Davis, Davis, CA 95616, USA.
| | - Sarah J Longo
- Department of Evolution and Ecology, Center for Population Biology, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
55
|
Shimazu N, Takaiwa D, Suh D, Kawaguchi T, Fuse T, Kaneko T, Yasuoka K. Molecular Dynamics Simulation of Ice Crystal Growth Inhibition by Hexadecyl-trimethyl-ammonium Bromide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9330-9335. [PMID: 29989825 DOI: 10.1021/acs.langmuir.8b01903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent experiments have found hexadecyl-trimethyl-ammonium bromide (CTAB) to have superior ice nucleation inhibition properties [ J. Phys. Chem. B 121, 6580]. The mechanism of how the inhibition takes place remains unclear. Therefore, molecular dynamics was used to simulate ice crystallization of a water/CTAB/ice system. The ice crystallization rate for a pure water system was compared for the basal [0001], first prism [101̅0], and secondary prism plane [112̅0], where the basal plane grew the slowest followed by the first prism plane. When CTAB was added to the ice-liquid water system, crystallization was clearly impeded. Even when ice starts growing away from the CTAB molecule, the hydrophilic head would at some point protrude and get caught in the water/ice interface. Once the head of the CTAB was encapsulated in the advancing interface, the hydrophobic body would wriggle around and disrupt the formation of hydrogen bond networks that are essential for ice growth. When the interface clears the length of the body of the CTAB molecule, ice crystallization resumes at its normal pace. In summary, the inhibition of ice growth is a combination of the hydrophilic head acting as an anchor and the dynamic motion of the hydrophobic tail hindering stable hydrogen bonding for ice growth.
Collapse
Affiliation(s)
- Naoya Shimazu
- Department of Mechanical Engineering , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Daisuke Takaiwa
- Department of Mechanical Engineering , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Donguk Suh
- Department of Mechanical Engineering , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Touru Kawaguchi
- DENSO Corporation , 500-1 Minamiyama , Komenoki-cho, Nisshin-shi , Aichi 470-0111 , Japan
| | - Takuya Fuse
- DENSO Corporation , 500-1 Minamiyama , Komenoki-cho, Nisshin-shi , Aichi 470-0111 , Japan
| | - Takashi Kaneko
- DENSO Corporation , 500-1 Minamiyama , Komenoki-cho, Nisshin-shi , Aichi 470-0111 , Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| |
Collapse
|
56
|
Weng L, Stott SL, Toner M. Molecular Dynamics at the Interface between Ice and Poly(vinyl alcohol) and Ice Recrystallization Inhibition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5116-5123. [PMID: 29199836 PMCID: PMC8606117 DOI: 10.1021/acs.langmuir.7b03243] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ice formation is a ubiquitous process that poses serious challenges for many areas. Nature has evolved a variety of different mechanisms to regulate ice formation. For example, many cold-adapted species produce antifreeze proteins (AFPs) and/or antifreeze glycoproteins (AFGPs) to inhibit ice recrystallization. Although several synthetic substitutes for AF(G)Ps have been developed, the fundamental principles of designing AF(G)P mimics are still missing. In this study, we explored the molecular dynamics of ice recrystallization inhibition (IRI) by poly(vinyl alcohol) (PVA), a well-recognized ice recrystallization inhibitor, to shed light on the otherwise hidden ice-binding mechanisms of chain polymers. Our molecular dynamics simulations revealed a stereoscopic, geometrical match between the hydroxyl groups of PVA and the water molecules of ice, and provided microscopic evidence of the adsorption of PVA to both the basal and prism faces of ice and the incorporation of short-chain PVA into the ice lattice. The length of PVA, i.e., the number of hydroxyl groups, seems to be a key factor dictating the performance of IRI, as the PVA molecule must be large enough to prevent the joining together of adjacent curvatures in the ice front. The findings in this study will help pave the path for addressing a pressing challenge in designing synthetic ice recrystallization inhibitors rationally, by enriching our mechanistic understanding of IRI process by macromolecules.
Collapse
Affiliation(s)
- Lindong Weng
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Shannon L. Stott
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, United States
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
- To whom correspondence should be addressed. (SLS) and (MT)
| | - Mehmet Toner
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
- Shriners Hospital for Children, Boston, MA 02114, United States
- To whom correspondence should be addressed. (SLS) and (MT)
| |
Collapse
|
57
|
Ammar AY, El Nahas AF, Mahmoud S, Barakat ME, Hassan AM. Characterization of type IV antifreeze gene in Nile tilapia (Oreochromis niloticus) and influence of cold and hot weather on its expression and some immune-related genes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:515-525. [PMID: 29234908 DOI: 10.1007/s10695-017-0450-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work is to study the effect of the thermal stress of ambient temperature during winter and summer on the expression of type IV antifreeze gene (ANF IV) in different tissues of Nile tilapia (Oreochromis niloticus) as well as some immune-related genes. At first, genomic ANF IV gene was characterized from one fish; 124 amino acids were identified with 92.7% similarity with that on the gene bank. Expression of ANF IV and immune-related genes were done twice, once at the end of December (winter sample, temperature 14 °C) and the other at August (summer sample, temperature 36 °C). Assessment of ANF IV gene expression in different organs of fish was done; splenic mRNA was used for assessment of immune-related gene transcripts (CXCl2 chemokine, cc-chemokine, INF-3A, and MHC IIβ). Winter expression analysis of AFP IV in O. niloticus revealed significant upregulation of mRNA transcript levels in the intestine, gills, skin, spleen, liver, and brain with 324.03-, 170.06-, 107.63-, 97.61-, 94.35-, and 27.85-folds, respectively. Furthermore, upregulation in the gene was observed in some organs during summer: in the liver, gills, skin, intestine, and brain with lower levels compared with winter. The level of expression of immune-related genes in winter is significantly higher than summer in all assessed genes. Cc-chemokine gene expression was the most affected in both winter and summer. Variable expression profile of ANF IV in different organs and in different seasons together with its amino acid similarity of N-terminal and C-terminal with apolipoprotein (lipid binder) and form of high-density lipoprotein (HDL) suggests a different role for this protein which may be related to lipid metabolism.
Collapse
Affiliation(s)
- Asmma Y Ammar
- Biotechnology department, Animal Health Research Institute, Kafr El Sheikh, Egypt
| | - Abeer F El Nahas
- Animal Husbandry and Animal Wealth Department, Faculty of Veterinary Medicine, Alexandria University, Edfina, Behera, 22758, Egypt.
| | - Shawky Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Kafer El Sheikh University, Kafr El Sheikh, Egypt
| | - Mohamed E Barakat
- Biotechnology Department, Animal Health Research Institute, Kafer El Sheik, Egypt
| | - Asmaa M Hassan
- Biotechnology department, Animal Health Research Institute, Kafr El Sheikh, Egypt
| |
Collapse
|
58
|
Lherminier P. [Informative predation: Towards a new species concept]. C R Biol 2018; 341:209-218. [PMID: 29606595 DOI: 10.1016/j.crvi.2018.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
We distinguish two types of predations: the predation of matter-energy equals the food chain, and the informative predation is the capture of the information brought by the sexual partners. The cell or parent consumes energy and matter to grow, multiply and produce offspring. A fixed amount of resources is divided by the number of organisms, so individual growth and numerical multiplication are limited by depletion resources of the environment. Inversely, fertilization does not destroy information, but instead produces news. The information is multiplied by the number of partners and children, since each fertilization gives rise to a new genome following a combinatorial process that continues without exhaustion. The egg does not swallow the sperm to feed, but exchange good food for quality information. With the discovery of sex, that is, 1.5 Ga ago, life added soft predation to hard predation, i.e. information production within each species to matter-energy flow between species. Replicative and informative structures are subject to two competing biological constraints: replicative fidelity promotes proliferation, but limits adaptive evolution. On the contrary, the offspring of a couple obviously cannot be a copy of both partners, they are a new production, a re-production. Sexual recombination allows the exponential enrichment of the genetic diversity, thus promoting indefinite adaptive and evolutionary capacities. Evolutionary history illustrates this: the bacteria proliferate but have remained at the first purely nutritive stage in which most of the sensory functions, mobility, defense, and feeding have experienced almost no significant novelty in three billion years. Another world appeared with the sexual management of information. Sexual reproduction actually combines two functions: multiplicative by "vertical transfer" and informative by "horizontal transfer". This distinction is very common: polypus - medusa alternations, parasite multiplication cycles, the lytochal and deuterotochal parthenogenesis of aphids, and the innumerable para- and pseudo-sexual strategies of plants opportunistically combine the two modes of asexual replication and sexual combination. However, for the majority of animals and multicellular plants that produce many gametes, numerical proliferation by descendants and informative diversity by sexuality are mutually implicated, for example in the seed. The true discovery of eukaryotes may not be the "true nucleus", as their name implies, but an orderly informative function. The field of recombinations circumscribes a class of partners genetically compatible with each other, each simultaneously prey and predator of the DNA of the other. The mythical Maxwell demon capable of tracing entropy by sorting molecules according to their state does exist: each mate is the other's Maxwell's demon. While a sexless bacterium is simply divided into two cells, two sexual parents work together to produce a single offspring a time. Added to this are the burdens involved in meiosis and crossing-over, cellular diploidy, and mating. Sex produces an information gain that is paid for by a cost of energy-material, and this barter must be fair to survive. The domains of sexual intercourse are very diverse: uniparental reproduction, alternation of asexual proliferation and sexual information, self-fertilization, endogamy, exogamy, panmixis, diffuse or structured polymorphism, fertile or sterile hybridization, horizontal transfers. Each species is a recombination field between two domains, cloning and hybridization. Multiplicative descent and informative fertilization are organically distinct, but selectively associated: the information produced by the parents' sexuality favors the predation of matter-energy and therefore the proliferation of offspring, and this proliferation in turn favors the sexed producers of information. The equation specific to each species is: enough energy to proliferate, enough information to diversify. Alternatively, two other reproductive modes obtain or transmit less information at lower cost: not enough recombinations=repetitive clonal proliferation, and too many recombinations=disordered hybridization. But these marginal modes have poor prospects, as the model of the species is successfully attractive. Better discriminate to better inform. In bacteria, the exchanged and incorporated DNA segments are directly identified by the parity of the complementary strands, which determines simultaneously the similarity, the offspring, and the pairing. In eukaryotes, on the contrary, somatic growth and germinal information are segregated. During speciation, adaptive information is compacted, delocalized, codified and published to inform the species about its own state: the prezygotic relationship governs viable mating. Under the effect of sexual selection, the runaway and the reinforcement of the characters related to courtship testifies to their identifying function, which explains the paradox of the singularity and luxuriance of the sexual hypertrophies. The speciation discretizes a balanced recombination field and validates the informative relations. The species is without degree. Mates of a species recognize each other quickly and well because the logic of coding disengages from the ecological game of adaptations. The system of mate recognition has a function of cohesion and its regularity allows the adaptations of the less regular being, it is neither elitist nor normative, it is subjected neither to a level of aptitudes, nor to sexual performances, but permissive; it protects the variability and polymorphism. Two mutually irreducible relationships triggered the debate between the taxonomists who support the phyletic definition of the species by the descendance, and the proponents of the definition by interfertility. Such a taxonomic disagreement is not insurmountable, but the issue is deeper than taxonomic concepts, because these concepts relate to two different modes of evolution. According to the phyletic model, each species is a lineage passively isolated by external circumstances; on the contrary, in the sexual model each species is actively produced by an internal process of adjustment between replicative costs and informative gains. Each species develops a solution of the equation that matches material-energy expenditures with informative gains. A species concept based on a lasting relationship between these two quantities or on the limits of certain values or their equilibrium is therefore legitimate. It is this equilibrium that all couples resolve, without our formulation being as clearly as biology desires and as physics demands. Energy expenditures and informative gains in sexuality are almost impossible to measure, yet observation and experience allow an approximate ranking of the energy/information ratio. For example, endogamy is more economical, but less diversifying than exogamy, polymorphism increases information, the reinforcement of sexual isolation limits the rate of unproductive fertilization, between neighboring species hybridization allows certain genetic contributions, etc. A closed species evolves naturally towards another just as closed. On the contrary, the artificial transfer of DNA opens the species. The natural boundaries that isolate the species are easily trespassed as energy costs and constraints of sexual recognition are easily controlled; and the perspectives of manipulations are visible, whereas natural selection never anticipates and thus works blindly. Informative, artificially directed predation stimulates the evolution of species.
Collapse
|
59
|
Midya US, Bandyopadhyay S. Operation of Kelvin Effect in the Activities of an Antifreeze Protein: A Molecular Dynamics Simulation Study. J Phys Chem B 2018; 122:3079-3087. [PMID: 29488381 DOI: 10.1021/acs.jpcb.8b00846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ice growth and melting inhibition activities of antifreeze proteins (AFPs) are better explained by the adsorption-inhibition mechanism. Inhibition occurs as a result of the Kelvin effect induced by adsorbed protein molecules onto the surface of seed ice crystal. However, the Kelvin effect has not been explored by the state-of-the-art experimental techniques. In this work, atomistic molecular dynamics simulations have been carried out with Tenebrio molitor antifreeze protein ( TmAFP) placed at ice-water interface to probe the Kelvin effect in the mechanism of AFPs. Simulations show that, below equilibrium melting temperature, ice growth is inhibited through the convex ice-water interface formation toward the water phase and, above equilibrium melting temperature, ice melting is inhibited through the concave ice-water interface formation inward to ice phase. Simulations further reveal that the radius of curvature of the interface formed to stop the ice growth increases with decrease in the degree of supercooling. Our results are in qualitative agreement with the theoretical prediction of the Kelvin effect and thus reveal its operation in the activities of AFPs.
Collapse
Affiliation(s)
- Uday Sankar Midya
- Molecular Modeling Laboratory, Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , India
| |
Collapse
|
60
|
Parniakov O, Bals O, Barba FJ, Mykhailyk V, Lebovka N, Vorobiev E. Application of differential scanning calorimetry to estimate quality and nutritional properties of food products. Crit Rev Food Sci Nutr 2018; 58:362-385. [PMID: 27245977 DOI: 10.1080/10408398.2016.1180502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Over the past years, both food researchers and food industry have shown an increased interest in finding techniques that can estimate modifications in quality, nutritional, and thermophysical properties of food products during processing and/or storage. For instance, differential scanning calorimetry (DSC) has attracted the interest of scientific community because only a small amount of sample is needed for analysis. Moreover, it does not require any specific sample preparation, and is a repeatable and reliable method. In addition, DSC methodology needs a short time for experiments compared with other techniques used for the same purpose. At this stage of investigation, there is a need to evaluate the commonly accepted and new emerging DSC applications to establish the optimum conditions of emerging processing. This paper reviews the current and new insights of DSC technique for the estimation of quality, nutritional, and thermophysical properties of food products during conventional and emerging processing and/or subsequent storage. The estimation of different properties in several food matrices after processing and/or storage is also discussed.
Collapse
Affiliation(s)
- Oleksii Parniakov
- a Laboratoire de Transformations Intégrées de la Matière Renouvelable , Université de Technologie de Compiègne, Sorbonne Universités, EA 4297, Centre de Recherches de Royallieu , BP 20529, 60205 Compiègne Cedex , France
| | - Olivier Bals
- a Laboratoire de Transformations Intégrées de la Matière Renouvelable , Université de Technologie de Compiègne, Sorbonne Universités, EA 4297, Centre de Recherches de Royallieu , BP 20529, 60205 Compiègne Cedex , France
| | - Francisco J Barba
- b Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26, 1958 Frederiksberg C , Denmark
| | - Viacheslav Mykhailyk
- c Institute of Engineering Thermal Physics, National Academy of Sciences of Ukraine , 2a, str. Zheljabova, Kyiv , Ukraine
| | - Nikolai Lebovka
- a Laboratoire de Transformations Intégrées de la Matière Renouvelable , Université de Technologie de Compiègne, Sorbonne Universités, EA 4297, Centre de Recherches de Royallieu , BP 20529, 60205 Compiègne Cedex , France.,d Institute of Biocolloidal Chemistry, named after F.D. Ovcharenko, NAS of Ukraine , 42, Blvr. Vernadskogo, Kyiv , Ukraine
| | - Eugene Vorobiev
- a Laboratoire de Transformations Intégrées de la Matière Renouvelable , Université de Technologie de Compiègne, Sorbonne Universités, EA 4297, Centre de Recherches de Royallieu , BP 20529, 60205 Compiègne Cedex , France
| |
Collapse
|
61
|
Peramo A. Molecular dynamics studies show solvation structure of type III antifreeze protein is disrupted at low pH. Comput Biol Chem 2018; 73:13-24. [PMID: 29413812 DOI: 10.1016/j.compbiolchem.2018.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/02/2023]
Abstract
Antifreeze proteins are a class of biological molecules of interest in many research and industrial applications due to their highly specialized function, but there is little information of their stability and properties under varied pH derived from computational studies. To gain novel insights in this area, we conducted molecular dynamics (MD) simulations with the antifreeze protein 1KDF at varied temperatures and pH. Water solvation and H-bond formation around specific residues - ASN14, THR18 and GLN44 - involved in its antifreeze activity were extensively studied. We found that at pH1 there was a disruption in water solvation around the basal and the ice binding surfaces of the molecule. This was induced by a small change in the secondary structure propensities of some titrable residues, particularly GLU35. This change explains the experimentally observed reduction in antifreeze activity previously reported for this protein at pH1. We also found that THR18 showed extremely low H-bond formation, and that the three antifreeze residues all had very low average H-bond lifetimes. Our results confirm long-standing assumptions that these small, compact molecules can maintain their antifreeze activity in a wide range of pH, while demonstrating the mechanism that may reduce antifreeze activity at low pH. This aspect is useful when considering industrial and commercial use of antifreeze proteins subject to extreme pH environments, in particular in food industrial applications.
Collapse
Affiliation(s)
- Antonio Peramo
- Escuela de Física y Matematicas, Facultad de Ciencias, Escuela Politécnica Superior del Chimborazo, Riobamba, Ecuador.
| |
Collapse
|
62
|
Nath A, Subbiah K. The role of pertinently diversified and balanced training as well as testing data sets in achieving the true performance of classifiers in predicting the antifreeze proteins. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Mahatabuddin S, Tsuda S. Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:321-337. [PMID: 30288717 DOI: 10.1007/978-981-13-1244-1_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous embryonic ice crystals are generated in water at the moment of freezing. These crystals grow and merge together to form an ice block that can be generally observed. Antifreeze protein (AFP) is capable of binding to the embryonic ice crystals, inhibiting such an ice block formation. Fish-derived AFP additionally binds to membrane lipid bilayers to prolong the lifetime of cells. These unique abilities of AFP have been studied extensively for the development of advanced techniques, such as ice recrystallization inhibitors, freeze-tolerant gels, cell preservation fluids, and high-porosity ceramics, for which mass-preparation method of the quality product of AFP utilizing fish muscle homogenates made a significant contribution. In this chapter, we present both fundamental and advanced information of fish AFPs that have been especially discovered from mid-latitude sea area, which will provide a hint to develop more advanced techniques applicable in both medical and industrial fields.
Collapse
Affiliation(s)
- Sheikh Mahatabuddin
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.
| |
Collapse
|
64
|
Khan S, Naseem I, Togneri R, Bennamoun M. RAFP-Pred: Robust Prediction of Antifreeze Proteins Using Localized Analysis of n-Peptide Compositions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:244-250. [PMID: 28113406 DOI: 10.1109/tcbb.2016.2617337] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In extreme cold weather, living organisms produce Antifreeze Proteins (AFPs) to counter the otherwise lethal intracellular formation of ice. Structures and sequences of various AFPs exhibit a high degree of heterogeneity, consequently the prediction of the AFPs is considered to be a challenging task. In this research, we propose to handle this arduous manifold learning task using the notion of localized processing. In particular, an AFP sequence is segmented into two sub-segments each of which is analyzed for amino acid and di-peptide compositions. We propose to use only the most significant features using the concept of information gain (IG) followed by a random forest classification approach. The proposed RAFP-Pred achieved an excellent performance on a number of standard datasets. We report a high Youden's index (sensitivity+specificity-1) value of 0.75 on the standard independent test data set outperforming the AFP-PseAAC, AFP_PSSM, AFP-Pred, and iAFP by a margin of 0.05, 0.06, 0.14, and 0.68, respectively. The verification rate on the UniProKB dataset is found to be 83.19 percent which is substantially superior to the 57.18 percent reported for the iAFP method.
Collapse
|
65
|
Ice Nucleation Activity in Plants: The Distribution, Characterization, and Their Roles in Cold Hardiness Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:99-115. [PMID: 30288706 DOI: 10.1007/978-981-13-1244-1_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Control of freezing in plant tissues is a key issue in cold hardiness mechanisms. Yet freeze-regulation mechanisms remain mostly unexplored. Among them, ice nucleation activity (INA) is a primary factor involved in the initiation and regulation of freezing events in plant tissues, yet the details remain poorly understood. To address this, we developed a highly reproducible assay for determining plant tissue INA and noninvasive freeze visualization tools using MRI and infrared thermography. The results of visualization studies on plant freezing behaviors and INA survey of over 600 species tissues show that (1) freezing-sensitive plants tend to have low INA in their tissues (thus tend to transiently supercool), while wintering cold-hardy species have high INA in some specialized tissues; and (2) the high INA in cold-hardy tissues likely functions as a freezing sensor to initiate freezing at warm subzero temperatures at appropriate locations and timing, resulting in the induction of tissue-/species-specific freezing behaviors (e.g., extracellular freezing, extraorgan freezing) and the freezing order among tissues: from the primary freeze to the last tissue remaining unfrozen (likely INA level dependent). The spatiotemporal distributions of tissue INA, their characterization, and functional roles are detailed. INA assay principles, anti-nucleation activity (ANA), and freeze visualization tools are also described.
Collapse
|
66
|
Effect of Marine-Derived Ice-Binding Proteins on the Cryopreservation of Marine Microalgae. Mar Drugs 2017; 15:md15120372. [PMID: 29194380 PMCID: PMC5742832 DOI: 10.3390/md15120372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 11/17/2022] Open
Abstract
Ice-binding protein (IBPs) protect cells from cryo-injury during cryopreservation by inhibiting ice recrystallization (IR), which is a main cause of cell death. In the present study, we employed two IBPs, one, designated LeIBP from Arctic yeast, and the other, designated FfIBP from Antarctic sea ice bacterium, in the cryopreservation of three economically valuable marine microalgae, Isochrysis galbana, Pavlova viridis, and Chlamydomonas coccoides. Both of the IBPs showed IR inhibition in f/2 medium containing 10% DMSO, indicating that they retain their function in freezing media. Microalgal cells were frozen in 10% DMSO with or without IBP. Post-thaw viability exhibited that the supplementation of IBPs increased the viability of all cryopreserved cells. LeIBP was effective in P. viridis and C. coccoides, while FfIBP was in I. galbana. The cryopreservative effect was more drastic with P. viridis when 0.05 mg/mL LeIBP was used. These results clearly demonstrate that IBPs could improve the viability of cryopreserved microalgal cells.
Collapse
|
67
|
Lopez Ortiz JI, Torres P, Quiroga E, Narambuena CF, Ramirez-Pastor AJ. Adsorption of three-domain antifreeze proteins on ice: a study using LGMMAS theory and Monte Carlo simulations. Phys Chem Chem Phys 2017; 19:31377-31388. [PMID: 29155905 DOI: 10.1039/c7cp06618j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, the adsorption of three-domain antifreeze proteins on ice is studied by combining a statistical thermodynamics based theory and Monte Carlo simulations. The three-domain protein is modeled by a trimer, and the ice surface is represented by a lattice of adsorption sites. The statistical theory, obtained from the exact partition function of non-interacting trimers adsorbed in one dimension and its extension to two dimensions, includes the configuration of the molecule in the adsorbed state, and allows the existence of multiple adsorption states for the protein. We called this theory "lattice-gas model of molecules with multiple adsorption states" (LGMMAS). The main thermodynamics functions (partial and total adsorption isotherms, Helmholtz free energy and configurational entropy) are obtained by solving a non-linear system of j equations, where j is the total number of possible adsorption states of the protein. The theoretical results are contrasted with Monte Carlo simulations, and a modified Langmuir model (MLM) where the arrangement of the adsorption sites in space is immaterial. The formalism introduced here provides exact results in one-dimensional lattices, and offers a very accurate description in two dimensions (2D). In addition, the scheme is capable of predicting the proportion between coverage degrees corresponding to different conformations in the same energetic state. In contrast, the MLM does not distinguish between different adsorption states, and shows severe discrepancies with the 2D simulation results. These findings indicate that the adsorbate structure and the lattice geometry play fundamental roles in determining the statistics of multistate adsorbed molecules, and consequently, must be included in the theory.
Collapse
Affiliation(s)
- Juan Ignacio Lopez Ortiz
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, Ejército de Los Andes 950, D5700BWS San Luis, Argentina.
| | | | | | | | | |
Collapse
|
68
|
Wang C, Pakhomova S, Newcomer ME, Christner BC, Luo BH. Structural basis of antifreeze activity of a bacterial multi-domain antifreeze protein. PLoS One 2017; 12:e0187169. [PMID: 29108002 PMCID: PMC5673226 DOI: 10.1371/journal.pone.0187169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/13/2017] [Indexed: 01/05/2023] Open
Abstract
Antifreeze proteins (AFPs) enhance the survival of organisms inhabiting cold environments by affecting the formation and/or structure of ice. We report the crystal structure of the first multi-domain AFP that has been characterized. The two ice binding domains are structurally similar. Each consists of an irregular β-helix with a triangular cross-section and a long α-helix that runs parallel on one side of the β-helix. Both domains are stabilized by hydrophobic interactions. A flat plane on the same face of each domain’s β-helix was identified as the ice binding site. Mutating any of the smaller residues on the ice binding site to bulkier ones decreased the antifreeze activity. The bulky side chain of Leu174 in domain A sterically hinders the binding of water molecules to the protein backbone, partially explaining why antifreeze activity by domain A is inferior to that of domain B. Our data provide a molecular basis for understanding differences in antifreeze activity between the two domains of this protein and general insight on how structural differences in the ice-binding sites affect the activity of AFPs.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Svetlana Pakhomova
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Marcia E. Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Brent C. Christner
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Microbiology and Cell Science, Biodiversity Institute, University of Florida, Gainesville, Florida, United States of America
| | - Bing-Hao Luo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
69
|
Large-Scale Production of Glaciozyma antarctica Antifreeze Protein 1 (Afp1) by Fed-Batch Fermentation of Pichia pastoris. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2738-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
70
|
Massey SE. The identities of stop codon reassignments support ancestral tRNA stop codon decoding activity as a facilitator of gene duplication and evolution of novel function. Gene 2017; 619:37-43. [DOI: 10.1016/j.gene.2017.03.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/20/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
|
71
|
Midya US, Bandyopadhyay S. Interfacial Water Arrangement in the Ice-Bound State of an Antifreeze Protein: A Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5499-5510. [PMID: 28505449 DOI: 10.1021/acs.langmuir.7b01206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular dynamics (MD) simulations have been carried out to study the heterogeneous ice nucleation on modeled peptide surfaces. Simulations show that large peptide surfaces made by TxT (threonine-x-threonine) motifs with the arrangements of threonine (Thr) residues identical to the periodic arrangements of waters on either the basal or prism plane of ice are capable of ice nucleation. Nucleated ice plane is the (0001) basal plane of hexagonal ice (Ih) or (111) plane of cubic ice (Ic). However, due to predefined simulation cell dimensions, the ice growth is only observed on the surface where the Thr residues are arranged like the water arrangement on the basal plane of ice Ih. The γ-methyl and γ-hydroxyl groups of Thr residue are necessary for such ice formation. From this ice nucleation and growth simulation, the interfacial water arrangement in the ice-bound state of Tenebrio molitor antifreeze protein (TmAFP) has been determined. The interfacial water arrangement in the ice-bound state of TmAFP is characterized by five-membered hydrogen bonded rings, where each of the hydroxyl groups of the Thr residues on the ice-binding surface (IBS) of the protein is a ring member. It is found that the water arrangement at the protein-ice interface is distorted from that in bulk ice. Our analysis further reveals that the hydroxyl groups of Thr residues on the IBS of TmAFP form maximum three hydrogen bonds each with the waters in the bound state and methyl groups of Thr residues occupy wider spaces than the normal grooves on the (111) plane of ice Ic. Methyl groups are also located above and along the 3-fold rotational axes of the chair-formed hexagonal hydrogen bonded water rings on the (111) plane.
Collapse
Affiliation(s)
- Uday Sankar Midya
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology , Kharagpur - 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology , Kharagpur - 721302, India
| |
Collapse
|
72
|
Bore EK, Apostel C, Halicki S, Kuzyakov Y, Dippold MA. Microbial Metabolism in Soil at Subzero Temperatures: Adaptation Mechanisms Revealed by Position-Specific 13C Labeling. Front Microbiol 2017; 8:946. [PMID: 28611748 PMCID: PMC5447017 DOI: 10.3389/fmicb.2017.00946] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
Although biogeochemical models designed to simulate carbon (C) and nitrogen (N) dynamics in high-latitude ecosystems incorporate extracellular parameters, molecular and biochemical adaptations of microorganisms to freezing remain unclear. This knowledge gap hampers estimations of the C balance and ecosystem feedback in high-latitude regions. To analyze microbial metabolism at subzero temperatures, soils were incubated with isotopomers of position-specifically 13C-labeled glucose at three temperatures: +5 (control), -5, and -20°C. 13C was quantified in CO2, bulk soil, microbial biomass, and dissolved organic carbon (DOC) after 1, 3, and 10 days and also after 30 days for samples at -20°C. Compared to +5°C, CO2 decreased 3- and 10-fold at -5 and -20°C, respectively. High 13C recovery in CO2 from the C-1 position indicates dominance of the pentose phosphate pathway at +5°C. In contrast, increased oxidation of the C-4 position at subzero temperatures implies a switch to glycolysis. A threefold higher 13C recovery in microbial biomass at -5 than +5°C points to synthesis of intracellular compounds such as glycerol and ethanol in response to freezing. Less than 0.4% of 13C was recovered in DOC after 1 day, demonstrating complete glucose uptake by microorganisms even at -20°C. Consequently, we attribute the fivefold higher extracellular 13C in soil than in microbial biomass to secreted antifreeze compounds. This suggests that with decreasing temperature, intracellular antifreeze protection is complemented by extracellular mechanisms to avoid cellular damage by crystallizing water. The knowledge of sustained metabolism at subzero temperatures will not only be useful for modeling global C dynamics in ecosystems with periodically or permanently frozen soils, but will also be important in understanding and controlling the adaptive mechanisms of food spoilage organisms.
Collapse
Affiliation(s)
- Ezekiel K. Bore
- Department of Agricultural Soil Science, University of GöttingenGöttingen, Germany
| | - Carolin Apostel
- Department of Agricultural Soil Science, University of GöttingenGöttingen, Germany
- Department of Soil Science of Temperate Ecosystems, University of GöttingenGöttingen, Germany
| | - Sara Halicki
- Department of Agricultural Soil Science, University of GöttingenGöttingen, Germany
| | - Yakov Kuzyakov
- Department of Agricultural Soil Science, University of GöttingenGöttingen, Germany
- Department of Soil Science of Temperate Ecosystems, University of GöttingenGöttingen, Germany
- Institute of Environmental Sciences, Kazan Federal UniversityKazan, Russia
| | - Michaela A. Dippold
- Department of Agricultural Soil Science, University of GöttingenGöttingen, Germany
| |
Collapse
|
73
|
Vo P, Gridi-Papp M. Low temperature tolerance, cold hardening and acclimation in tadpoles of the neotropical túngara frog ( Engystomops pustulosus ). J Therm Biol 2017; 66:49-55. [DOI: 10.1016/j.jtherbio.2017.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 03/04/2017] [Accepted: 03/24/2017] [Indexed: 11/28/2022]
|
74
|
Abstract
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
Collapse
Affiliation(s)
| | - Janet M. Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
75
|
Abed-Elmdoust A, Farahmand H, Mojazi-Amiri B, Rafiee G, Rahimi R. Metabolic changes in droplet vitrified semen of wild endangered Persian sturgeon Acipenser persicus (Borodin, 1997). Cryobiology 2017; 76:111-118. [PMID: 28341134 DOI: 10.1016/j.cryobiol.2017.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 01/26/2023]
Abstract
Comparative quantitative metabolite profiling can be used for better understanding of cell functions and dysfunctions in particular circumstances such as sperm banking which is an important approach for cryopreservation of endangered species. Cryopreservation techniques have some deleterious effects on spermatozoa which put the obtained results in controversy. Therefore, in the present study, quantitative 1H NMR (Nuclear Magnetic Resonance) based metabolite profiling was conducted to evaluate metabolite changes related to energetics and some other detected metabolites in vitrified semen of critically endangered wild Acipenser persicus. The semen was diluted with extenders containing 0, 5, 10, and 15 μM of fish antifreeze protein (AFP) type III as a cryoprotectant. Semen-extenders were vitrified and stored for two days. Based on post-thaw motility duration and motility percentage assessments, two treatments with 10 μM and 0 μM of AFP had the highest and the lowest motility percentages respectively and they were objected to 1H NMR spectroscopy investigations in order to reveal the extremes of the metabolites dynamic range. Univariate (ANOVA) and multivariate (PCA) analysis of the resulting metabolic profiles indicated significant changes (P > 0.05) in metabolites. The level of some metabolites including acetate, adenine, creatine, creatine phosphate, lactate, betaine, sarcosine, β-alanine and trimethylamine N-oxide significantly decreased in vitrified semen while some others such as creatinine, guanidinoacetate, N, N-dimethylglycine, and glycine significantly increased. There were also significant differences between vitrified treatments in levels of creatine, creatine phosphate, creatinine, glucose, guanidinoacetate, lactate, N, N-dimethylglycine, and glycine, suggesting how fish AFP type III can be effective as a cryoprotectant.
Collapse
Affiliation(s)
- Amirreza Abed-Elmdoust
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, PO Box 31585-4314, Karaj, Iran
| | - Hamid Farahmand
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, PO Box 31585-4314, Karaj, Iran.
| | - Bagher Mojazi-Amiri
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, PO Box 31585-4314, Karaj, Iran
| | - Gholamreza Rafiee
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, PO Box 31585-4314, Karaj, Iran
| | - Ruhollah Rahimi
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, PO Box 31585-4314, Karaj, Iran
| |
Collapse
|
76
|
Kim HJ, Lee JH, Hur YB, Lee CW, Park SH, Koo BW. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant. Mar Drugs 2017; 15:md15020027. [PMID: 28134801 PMCID: PMC5334608 DOI: 10.3390/md15020027] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/20/2017] [Indexed: 11/16/2022] Open
Abstract
Antifreeze proteins (AFPs) are biological antifreezes with unique properties, including thermal hysteresis(TH),ice recrystallization inhibition(IRI),and interaction with membranes and/or membrane proteins. These properties have been utilized in the preservation of biological samples at low temperatures. Here, we review the structure and function of marine-derived AFPs, including moderately active fish AFPs and hyperactive polar AFPs. We also survey previous and current reports of cryopreservation using AFPs. Cryopreserved biological samples are relatively diverse ranging from diatoms and reproductive cells to embryos and organs. Cryopreserved biological samples mainly originate from mammals. Most cryopreservation trials using marine-derived AFPs have demonstrated that addition of AFPs can improve post-thaw viability regardless of freezing method (slow-freezing or vitrification), storage temperature, and types of biological sample type.
Collapse
Affiliation(s)
- Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Young Baek Hur
- Tidal Flat Research Institute, National Fisheries Research and Development Institute, Gunsan, Jeonbuk 54014, Korea.
| | - Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Sun-Ha Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Bon-Won Koo
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
77
|
Nguyen H, Le L. Investigation of changes in structure and thermodynamic of spruce budworm antifreeze protein under subfreezing temperature. Sci Rep 2017; 7:40032. [PMID: 28106056 PMCID: PMC5247755 DOI: 10.1038/srep40032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/30/2016] [Indexed: 11/29/2022] Open
Abstract
The aim of this theoretical work is to investigate of the changes in structure and thermodynamics of spruce budworm antifreeze protein (sbAFP) at low temperatures by using molecular dynamics simulation. The aqueous solution will form ice crystal network under the vaguely hexagonal shape at low temperature and fully represented the characteristics of hydrophobic interaction. Like ice crystal network, the cyclohexane region (including cyclohexane molecules) have enough of the characteristics of hydrophobic interaction. Therefore, in this research the cyclohexane region will be used as a representation of ice crystal network to investigate the interactions of sbAFP and ice crystal network at low temperature. The activity of sbAFP in subfreezing environment, therefore, can be clearly observed via the changes of the hydrophobic (cyclohexane region) and hydrophilic (water region) interactions. The obtained results from total energies, hydrogen bond lifetime correlation C(t), radial distribution function, mean square deviation and snapshots of sbAFP complexes indicated that sbAFP has some special changes in structure and interaction with water and cyclohexane regions at 278 K, as being transition temperature point of water molecules in sbAFP complex at low temperatures, which is more structured and support the experimental observation that the sbAFP complex becomes more rigid as the temperature is lowered.
Collapse
Affiliation(s)
- Hung Nguyen
- Open Lab, Institute for Computational Sciences and Technology at Ho Chi Minh City, Vietnam
| | - Ly Le
- Open Lab, Institute for Computational Sciences and Technology at Ho Chi Minh City, Vietnam.,School of Biotechnology, International University, Vietnam National University at Ho Chi Minh, Vietnam
| |
Collapse
|
78
|
Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. Int J Biol Macromol 2017; 98:748-776. [PMID: 28111295 DOI: 10.1016/j.ijbiomac.2017.01.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement.
Collapse
Affiliation(s)
- Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Arooj Kanwal
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
79
|
Jang TH, Park SC, Yang JH, Kim JY, Seok JH, Park US, Choi CW, Lee SR, Han J. Cryopreservation and its clinical applications. Integr Med Res 2017; 6:12-18. [PMID: 28462139 PMCID: PMC5395684 DOI: 10.1016/j.imr.2016.12.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
Cryopreservation is a process that preserves organelles, cells, tissues, or any other biological constructs by cooling the samples to very low temperatures. The responses of living cells to ice formation are of theoretical interest and practical relevance. Stem cells and other viable tissues, which have great potential for use in basic research as well as for many medical applications, cannot be stored with simple cooling or freezing for a long time because ice crystal formation, osmotic shock, and membrane damage during freezing and thawing will cause cell death. The successful cryopreservation of cells and tissues has been gradually increasing in recent years, with the use of cryoprotective agents and temperature control equipment. Continuous understanding of the physical and chemical properties that occur in the freezing and thawing cycle will be necessary for the successful cryopreservation of cells or tissues and their clinical applications. In this review, we briefly address representative cryopreservation processes, such as slow freezing and vitrification, and the available cryoprotective agents. In addition, some adverse effects of cryopreservation are mentioned.
Collapse
Affiliation(s)
| | | | - Ji Hyun Yang
- College of Medicine, Inje University, Busan, Korea
| | | | | | - Ui Seo Park
- College of Medicine, Inje University, Busan, Korea
| | | | - Sung Ryul Lee
- Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Korea
| |
Collapse
|
80
|
Ando Y, Nei D, Kono S, Nabetani H. Current State and Future Issues of Technology Development Concerned with Freezing and Thawing of Foods. J JPN SOC FOOD SCI 2017. [DOI: 10.3136/nskkk.64.391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | - Shinji Kono
- Research and Development Center, Mayekawa Mfg. Co., Ltd
| | | |
Collapse
|
81
|
Bredow M, Vanderbeld B, Walker VK. Ice-binding proteins confer freezing tolerance in transgenic Arabidopsis thaliana. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:68-81. [PMID: 27317906 PMCID: PMC5253476 DOI: 10.1111/pbi.12592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 05/07/2023]
Abstract
Lolium perenne is a freeze-tolerant perennial ryegrass capable of withstanding temperatures below -13 °C. Ice-binding proteins (IBPs) presumably help prevent damage associated with freezing by restricting the growth of ice crystals in the apoplast. We have investigated the expression, localization and in planta freezing protection capabilities of two L. perenne IBP isoforms, LpIRI2 and LpIRI3, as well as a processed IBP (LpAFP). One of these isoforms, LpIRI2, lacks a conventional signal peptide and was assumed to be a pseudogene. Nevertheless, both LpIRI2 and LpIRI3 transcripts were up-regulated following cold acclimation. LpIRI2 also demonstrated ice-binding activity when produced recombinantly in Escherichia coli. Both the LpIRI3 and LpIRI2 isoforms appeared to accumulate in the apoplast of transgenic Arabidopsis thaliana plants. In contrast, the fully processed isoform, LpAFP, remained intracellular. Transgenic plants expressing either LpIRI2 or LpIRI3 showed reduced ion leakage (12%-39%) after low-temperature treatments, and significantly improved freezing survival, while transgenic LpAFP-expressing lines did not confer substantial subzero protection. Freeze protection was further enhanced by with the introduction of more than one IBP isoform; ion leakage was reduced 26%-35% and 10% of plants survived temperatures as low as -8 °C. Our results demonstrate that apoplastic expression of multiple L. perenne IBP isoforms shows promise for providing protection to crops susceptible to freeze-induced damage.
Collapse
Affiliation(s)
| | | | - Virginia K. Walker
- Department of BiologyQueen's UniversityKingstonONCanada
- Department of Biomedical and Molecular Sciences and School of Environmental StudiesQueen's UniversityKingstonONCanada
| |
Collapse
|
82
|
Bredow M, Walker VK. Ice-Binding Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:2153. [PMID: 29312400 PMCID: PMC5744647 DOI: 10.3389/fpls.2017.02153] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/05/2017] [Indexed: 05/04/2023]
Abstract
Sub-zero temperatures put plants at risk of damage associated with the formation of ice crystals in the apoplast. Some freeze-tolerant plants mitigate this risk by expressing ice-binding proteins (IBPs), that adsorb to ice crystals and modify their growth. IBPs are found across several biological kingdoms, with their ice-binding activity and function uniquely suited to the lifestyle they have evolved to protect, be it in fishes, insects or plants. While IBPs from freeze-avoidant species significantly depress the freezing point, plant IBPs typically have a reduced ability to lower the freezing temperature. Nevertheless, they have a superior ability to inhibit the recrystallization of formed ice. This latter activity prevents ice crystals from growing larger at temperatures close to melting. Attempts to engineer frost-hardy plants by the controlled transfer of IBPs from freeze-avoiding fish and insects have been largely unsuccessful. In contrast, the expression of recombinant IBP sequences from freeze-tolerant plants significantly reduced electrolyte leakage and enhanced freezing survival in freeze-sensitive plants. These promising results have spurred additional investigations into plant IBP localization and post-translational modifications, as well as a re-evaluation of IBPs as part of the anti-stress and anti-pathogen axis of freeze-tolerant plants. Here we present an overview of plant freezing stress and adaptation mechanisms and discuss the potential utility of IBPs for the generation of freeze-tolerant crops.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Biology, Queen’s University, Kingston, ON, Canada
- *Correspondence: Melissa Bredow,
| | - Virginia K. Walker
- Department of Biomedical and Molecular Sciences, and School of Environmental Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
83
|
Lillywhite HB, Shine R, Jacobson E, DeNardo DF, Gordon MS, Navas CA, Wang T, Seymour RS, Storey KB, Heatwole H, Heard D, Brattstrom B, Burghardt GM. Anesthesia and Euthanasia of Amphibians and Reptiles Used in Scientific Research: Should Hypothermia and Freezing Be Prohibited? Bioscience 2016. [DOI: 10.1093/biosci/biw143] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
84
|
Choi SR, Seo YJ, Kim M, Eo Y, Ahn HC, Lee AR, Park CJ, Ryu KS, Cheong HK, Lee SS, Jin E, Lee JH. NMR study of the antifreeze activities of active and inactive isoforms of a type III antifreeze protein. FEBS Lett 2016; 590:4202-4212. [PMID: 27718246 DOI: 10.1002/1873-3468.12451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/23/2016] [Accepted: 09/30/2016] [Indexed: 11/06/2022]
Abstract
The quaternary-amino-ethyl 1 (QAE1) isoforms of type III antifreeze proteins (AFPs) prevent the growth of ice crystals within organisms living in polar regions. We determined the antifreeze activity of wild-type and mutant constructs of the Japanese notched-fin eelpout (Zoarces elongates Kner) AFP8 (nfeAFP8) and characterized the structural and dynamics properties of their ice-binding surface using NMR. We found that the three constructs containing the V20G mutation were incapable of stopping the growth of ice crystals and exhibited structural changes, as well as increased conformational flexibility, in the first 310 helix (residues 18-22) of the sequence. Our results suggest that the inactive nfeAFP8s are incapable of anchoring water molecules due to the unusual and flexible backbone conformation of their primary prism plane-binding surface.
Collapse
Affiliation(s)
- Seo-Ree Choi
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, Korea
| | - Yeo-Jin Seo
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, Korea
| | - Minjae Kim
- Department of Life Science, Hanyang University, Seoul, Korea
| | - Yumi Eo
- College of Pharmacy, Dongguk University, Gyeonggi, Korea
| | - Hee-Chul Ahn
- College of Pharmacy, Dongguk University, Gyeonggi, Korea
| | - Ae-Ree Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, Korea
| | | | | | | | - Shim Sung Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, Korea
| | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul, Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, Korea.,Division of Magnetic Resonance, KBSI, Chungbuk, Korea
| |
Collapse
|
85
|
Cao L, Huang Q, Wu Z, Cao DD, Ma Z, Xu Q, Hu P, Fu Y, Shen Y, Chan J, Zhou CZ, Zhai W, Chen L. Neofunctionalization of zona pellucida proteins enhances freeze-prevention in the eggs of Antarctic notothenioids. Nat Commun 2016; 7:12987. [PMID: 27698404 PMCID: PMC5059455 DOI: 10.1038/ncomms12987] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/24/2016] [Indexed: 12/26/2022] Open
Abstract
The mechanisms by which the eggs of the Antarctic notothenioid fishes avoid freezing are not fully understood. Zona pellucida proteins (ZPs) are constituents of the chorion which forms a protective matrix surrounding the egg. Here we report occurrence of freezing temperature-related gene expansion and acquisition of unusual ice melting-promoting (IMP) activity in a family of Antarctic notothenioid ZPs (AnnotoZPs). Members of AnnotoZPs are shown to bind with ice and non-colligatively depress the melting point of a solution in a range of 0.26 to 0.65 °C at a moderate concentration. Eggs of zebrafishes expressing an AnnotoZP transgene show improved melting point depression and enhanced survival in freezing conditions. Mutational analyses in a representative AnnotoZP indicate the ZP domain and patches of acidic residues are essential structures for the IMP activity. AnnotoZPs, therefore, represent a group of macromolecules that prevent freezing by a unique ZP-ice interaction mechanism distinct from the known antifreeze proteins.
Collapse
Affiliation(s)
- Lixue Cao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiao Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Dong-dong Cao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhanling Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qianghua Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yanxia Fu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Shen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiulin Chan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Cong-zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wanying Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
86
|
Narambuena CF, Sanchez Varretti FO, Ramirez-Pastor AJ. Adsorption thermodynamics of two-domain antifreeze proteins: theory and Monte Carlo simulations. Phys Chem Chem Phys 2016; 18:24549-59. [PMID: 27539563 DOI: 10.1039/c6cp03924c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper we develop the statistical thermodynamics of two-domain antifreeze proteins adsorbed on ice. We use a coarse-grained model and a lattice network in order to represent the protein and ice, respectively. The theory is obtained by combining the exact analytical expression for the partition function of non-interacting linear k-mers adsorbed in one dimension, and its extension to higher dimensions. The total and partial adsorption isotherms, and the coverage and temperature dependence of the Helmholtz free energy and configurational entropy are given. The formalism reproduces the classical Langmuir equation, leads to the exact statistical thermodynamics of molecules adsorbed in one dimension, and provides a close approximation for two-dimensional systems. Comparisons with analytical data obtained using the modified Langmuir model (MLM) and Monte Carlo simulations in the grand canonical ensemble were performed in order to test the validity of the theoretical predictions. In the MC calculations, the different mechanisms proposed in the literature to describe the adsorption of two-domain antifreeze proteins on ice were analyzed. Indistinguishable results were obtained in all cases, which verifies the thermodynamic equivalence of these mechanisms and allows the choice of the most suitable mechanism for theoretical studies of equilibrium properties. Even though a good qualitative agreement is obtained between MLM and MC data, it is found that the new theoretical framework offers a more accurate description of the phenomenon of adsorption of two-domain antifreeze proteins.
Collapse
Affiliation(s)
- Claudio F Narambuena
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, Ejército de Los Andes 950, D5700BWS San Luis, Argentina.
| | | | | |
Collapse
|
87
|
Lotze S, Versluis J, Olijve LLC, van Schijndel L, Milroy LG, Voets IK, Bakker HJ. Communication: Probing the absolute configuration of chiral molecules at aqueous interfaces. J Chem Phys 2016; 143:201101. [PMID: 26627942 DOI: 10.1063/1.4936403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We demonstrate that the enantiomers of chiral macromolecules at an aqueous interface can be distinguished with monolayer sensitivity using heterodyne-detected vibrational sum-frequency generation (VSFG). We perform VSFG spectroscopy with a polarization combination that selectively probes chiral molecular structures. By using frequencies far detuned from electronic resonances, we probe the chiral macromolecular structures with high surface specificity. The phase of the sum-frequency light generated by the chiral molecules is determined using heterodyne detection. With this approach, we can distinguish right-handed and left-handed helical peptides at a water-air interface. We thus show that heterodyne-detected VSFG is sensitive to the absolute configuration of complex, interfacial macromolecules and has the potential to determine the absolute configuration of enantiomers at interfaces.
Collapse
Affiliation(s)
- Stephan Lotze
- FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Jan Versluis
- FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Luuk L C Olijve
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Luuk van Schijndel
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lech G Milroy
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K Voets
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Huib J Bakker
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
88
|
Kelley JL, Brown AP, Therkildsen NO, Foote AD. The life aquatic: advances in marine vertebrate genomics. Nat Rev Genet 2016; 17:523-34. [DOI: 10.1038/nrg.2016.66] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
89
|
Peramo A. Solvated and generalised Born calculations differences using GPU CUDA and multi-CPU simulations of an antifreeze protein with AMBER. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1183000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Antonio Peramo
- Facultad de Ciencias, Escuela de Física y Matemáticas, Escuela Politécnica Superior del Chimborazo, Riobamba, Ecuador
| |
Collapse
|
90
|
Ramya L, Ramakrishnan V. Interaction ofTenebrio MolitorAntifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations. Mol Inform 2016; 35:268-77. [DOI: 10.1002/minf.201600034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- L. Ramya
- Centre for Nanotechnology & Advanced Biomaterials; SASTRA University; Thanjavur-613401 Tamilnadu India
| | | |
Collapse
|
91
|
Beers JM, Jayasundara N. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures? ACTA ACUST UNITED AC 2016; 218:1834-45. [PMID: 26085661 DOI: 10.1242/jeb.116129] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antarctic notothenioids dominate the fish fauna of the Southern Ocean. Evolution for millions of years at cold and stable temperatures has led to the acquisition of numerous biochemical traits that allow these fishes to thrive in sub-zero waters. The gain of antifreeze glycoproteins has afforded notothenioids the ability to avert freezing and survive at temperatures often hovering near the freezing point of seawater. Additionally, possession of cold-adapted proteins and membranes permits them to sustain appropriate metabolic rates at exceptionally low body temperatures. The notothenioid genome is also distinguished by the disappearance of traits in some species, losses that might prove costly in a warmer environment. Perhaps the best-illustrated example is the lack of expression of hemoglobin in white-blooded icefishes from the family Channichthyidae. Loss of key elements of the cellular stress response, notably the heat shock response, has also been observed. Along with their attainment of cold tolerance, notothenioids have developed an extreme stenothermy and many species perish at temperatures only a few degrees above their habitat temperatures. Thus, in light of today's rapidly changing climate, it is critical to evaluate how these extreme stenotherms will respond to rising ocean temperatures. It is conceivable that the remarkable cold specialization of notothenioids may ultimately leave them vulnerable to future thermal increases and threaten their fitness and survival. Within this context, our review provides a current summary of the biochemical losses and gains that are known for notothenioids and examines these cold-adapted traits with a focus on processes underlying thermal tolerance and acclimation capacity.
Collapse
Affiliation(s)
- Jody M Beers
- Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, 450 Research Drive, Durham, NC 27708, USA
| |
Collapse
|
92
|
Ali F, Wharton DA. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae. PLoS One 2016; 11:e0156502. [PMID: 27227961 PMCID: PMC4882034 DOI: 10.1371/journal.pone.0156502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022] Open
Abstract
Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization.
Collapse
Affiliation(s)
- Farman Ali
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - David A Wharton
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
93
|
Ice Growth Inhibition in Antifreeze Polypeptide Solution by Short-Time Solution Preheating. PLoS One 2016; 11:e0154782. [PMID: 27152720 PMCID: PMC4859470 DOI: 10.1371/journal.pone.0154782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/19/2016] [Indexed: 11/24/2022] Open
Abstract
The objective of this study is to enhance the inhibition of ice growth in the aqueous solution of a polypeptide, which is inspired by winter flounder antifreeze protein. We carried out measurements on unidirectional freezing of the polypeptide solution. The thickness of the solution was 0.02 mm, and the concentration of polypeptide was varied from 0 to 2 mg/mL. We captured successive microscopic images of ice/solution interfaces, and measured the interface velocity from the locations of tips of the pectinate interface in the images. We also simultaneously measured the temperature by using a small thermocouple. The ice/solution interface temperature was defined by the temperature at the tips. It was found that the interface temperature was decreased with an increasing concentration of polypeptide. To try varying the activity of the polypeptide, we preheated the polypeptide solution and cooled it before carrying out the measurements. Preheating for 1–5 hours was found to cause a further decrease in the interface temperature. Furthermore, wider regions of solution and ice with inclined interfaces in the pectinate interface structure were observed, compared with the case where the solution was not preheated. Thus, the ice growth inhibition was enhanced by this preheating. To investigate the reason for this enhancement, we measured the conformation and aggregates of polypeptide in the solution. We also measured the local concentration of polypeptide. It was found that the polypeptide aggregates became larger as a result of preheating, although the polypeptide conformation was unchanged. These large aggregates caused both adsorption to the interface and the wide regions of supercooled solution in the pectinate interface structure.
Collapse
|
94
|
Dubé A, Leggiadro C, Ewart KV. Rapid amyloid fibril formation by a winter flounder antifreeze protein requires specific interaction with ice. FEBS Lett 2016; 590:1335-44. [DOI: 10.1002/1873-3468.12175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- André Dubé
- Department of Biochemistry and Molecular Biology; Dalhousie University; Halifax Canada
| | - Cindy Leggiadro
- Aquatic and Crop Resource Development; National Research Council; Halifax Canada
| | - Kathryn Vanya Ewart
- Department of Biochemistry and Molecular Biology; Dalhousie University; Halifax Canada
- Department of Biology; Dalhousie University; Halifax Canada
| |
Collapse
|
95
|
Yoshida K, Baron AQR, Uchiyama H, Tsutsui S, Yamaguchi T. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering. J Chem Phys 2016; 144:134505. [PMID: 27059578 DOI: 10.1063/1.4944987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Alfred Q R Baron
- Materials Dynamics Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroshi Uchiyama
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Satoshi Tsutsui
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Toshio Yamaguchi
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
96
|
Abstract
Ice binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing ice crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within ice or inhibit recrystallization of ice, while other types suppress freezing by blocking further ice growth. In contrast, ice nucleating proteins stimulate ice nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with ice, water and ions is examined, focusing in particular on ice growth inhibition mechanisms.
Collapse
|
97
|
Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins. Proc Natl Acad Sci U S A 2016; 113:3740-5. [PMID: 26936953 DOI: 10.1073/pnas.1524109113] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antifreeze proteins (AFPs) are a unique class of proteins that bind to growing ice crystal surfaces and arrest further ice growth. AFPs have gained a large interest for their use in antifreeze formulations for water-based materials, such as foods, waterborne paints, and organ transplants. Instead of commonly used colligative antifreezes such as salts and alcohols, the advantage of using AFPs as an additive is that they do not alter the physicochemical properties of the water-based material. Here, we report the first comprehensive evaluation of thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity of all major classes of AFPs using cryoscopy, sonocrystallization, and recrystallization assays. The results show that TH activities determined by cryoscopy and sonocrystallization differ markedly, and that TH and IRI activities are not correlated. The absence of a distinct correlation in antifreeze activity points to a mechanistic difference in ice growth inhibition by the different classes of AFPs: blocking fast ice growth requires rapid nonbasal plane adsorption, whereas basal plane adsorption is only relevant at long annealing times and at small undercooling. These findings clearly demonstrate that biomimetic analogs of antifreeze (glyco)proteins should be tailored to the specific requirements of the targeted application.
Collapse
|
98
|
Cao H, Zhao Y, Zhu YB, Xu F, Yu JS, Yuan M. Antifreeze and cryoprotective activities of ice-binding collagen peptides from pig skin. Food Chem 2016; 194:1245-53. [DOI: 10.1016/j.foodchem.2015.08.102] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 07/30/2015] [Accepted: 08/24/2015] [Indexed: 12/01/2022]
|
99
|
Kar RK, Mroue KH, Kumar D, Tejo BA, Bhunia A. Structure and Dynamics of Antifreeze Protein–Model Membrane Interactions: A Combined Spectroscopic and Molecular Dynamics Study. J Phys Chem B 2016; 120:902-14. [DOI: 10.1021/acs.jpcb.5b11164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajiv K. Kar
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| | - Kamal H. Mroue
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dinesh Kumar
- Center
of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow 226014, India
| | - Bimo A. Tejo
- Department
of Biotechnology, Surya University, Tangerang 15810, Indonesia
| | - Anirban Bhunia
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| |
Collapse
|
100
|
Nguyen H, Dac Van T, Tran N, Le L. Exploring the Effects of Subfreezing Temperature and Salt Concentration on Ice Growth Inhibition of Antarctic Gram-Negative Bacterium Marinomonas Primoryensis Using Coarse-Grained Simulation. Appl Biochem Biotechnol 2016; 178:1534-45. [PMID: 26758589 DOI: 10.1007/s12010-015-1966-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
The aim of this work is to study the freezing process of water molecules surrounding Antarctic Gram-negative bacterium Marinomonas primoryensis antifreeze protein (MpAFP) and the MpAFP interactions to the surface of ice crystals under various marine environments (at different NaCl concentrations of 0.3, 0.6, and 0.8 mol/l). Our result indicates that activating temperature region of MpAFPs reduced as NaCl concentration increased. Specifically, MpAFP was activated and functioned at 0.6 mol/l with temperatures equal or larger 278 K, and at 0.8 mol/l with temperatures equal or larger 270 K. Additionally, MpAFP was inhibited by ice crystal network from 268 to 274 K and solid-liquid hybrid from 276 to 282 K at 0.3 mol/l concentration. Our results shed lights on structural dynamics of MpAFP among different marine environments.
Collapse
Affiliation(s)
- Hung Nguyen
- Life Science Laboratory of Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam.
| | - Thanh Dac Van
- Life Science Laboratory of Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
- School of Biotechnology of Ho Chi Minh International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nhut Tran
- Life Science Laboratory of Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Ly Le
- Life Science Laboratory of Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam.
- School of Biotechnology of Ho Chi Minh International University, Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|