51
|
Ren AH, Du JB, Yang DW, Zhao PF, Wang ZC, Yang ZH. The role of ancillary features for diagnosing hepatocellular carcinoma on CT: based on the Liver Imaging Reporting and Data System version 2017 algorithm. Clin Radiol 2020; 75:478.e25-478.e35. [DOI: 10.1016/j.crad.2019.08.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
|
52
|
Zech CJ, Ba-Ssalamah A, Berg T, Chandarana H, Chau GY, Grazioli L, Kim MJ, Lee JM, Merkle EM, Murakami T, Ricke J, B. Sirlin C, Song B, Taouli B, Yoshimitsu K, Koh DM. Consensus report from the 8th International Forum for Liver Magnetic Resonance Imaging. Eur Radiol 2020; 30:370-382. [PMID: 31385048 PMCID: PMC6890618 DOI: 10.1007/s00330-019-06369-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The 8th International Forum for Liver Magnetic Resonance Imaging (MRI), held in Basel, Switzerland, in October 2017, brought together clinical and academic radiologists from around the world to discuss developments in and reach consensus on key issues in the field of gadoxetic acid-enhanced liver MRI since the previous Forum held in 2013. METHODS Two main themes in liver MRI were considered in detail at the Forum: the use of gadoxetic acid for contrast-enhanced MRI in patients with liver cirrhosis and the technical performance of gadoxetic acid-enhanced liver MRI, both opportunities and challenges. This article summarises the expert presentations and the delegate voting on consensus statements discussed at the Forum. RESULTS AND CONCLUSIONS It was concluded that gadoxetic acid-enhanced MRI has higher sensitivity for the diagnosis of hepatocellular carcinoma (HCC), when compared with multidetector CT, by utilising features of hyperenhancement in the arterial phase and hypointensity in the hepatobiliary phase (HBP). Recent HCC management guidelines recognise an increasing role for gadoxetic acid-enhanced MRI in early diagnosis and monitoring post-resection. Additional research is needed to define the role of HBP in predicting microvascular invasion, to better define washout during the transitional phase in gadoxetic acid-enhanced MRI for HCC diagnosis, and to reduce the artefacts encountered in the arterial phase. Technical developments are being directed to shortening the MRI protocol for reducing time and patient discomfort and toward utilising faster imaging and non-Cartesian free-breathing approaches that have the potential to improve multiphasic dynamic imaging. KEY POINTS • Gadoxetic acid-enhanced MRI provides higher diagnostic sensitivity than CT for diagnosing HCC. • Gadoxetic acid-enhanced MRI has roles in early-HCC diagnosis and monitoring post-resection response. • Faster imaging and free-breathing approaches have potential to improve multiphasic dynamic imaging.
Collapse
Affiliation(s)
- Christoph J. Zech
- grid.410567.1Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Ahmed Ba-Ssalamah
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Berg
- grid.411339.d0000 0000 8517 9062Section of Hepatology, Clinic for Neurology; Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Hersh Chandarana
- grid.137628.90000 0004 1936 8753Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016 USA
- grid.137628.90000 0004 1936 8753Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016 USA
| | - Gar-Yang Chau
- grid.260770.40000 0001 0425 5914Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, 112 Taiwan
| | - Luigi Grazioli
- grid.412725.7Department of Radiology, Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Myeong-Jin Kim
- grid.15444.300000 0004 0470 5454Department of Radiology, Yonsei University College of Medicine, Seoul, 120-752 South Korea
| | - Jeong Min Lee
- grid.412484.f0000 0001 0302 820XDepartment of Radiology, Seoul National University Hospital, Seoul, 110-744 South Korea
| | - Elmar M. Merkle
- grid.410567.1Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Takamichi Murakami
- grid.31432.370000 0001 1092 3077Department of Diagnostic and Interventional Radiology, Kobe University Graduate School of Medicine, Kobe, 650-0017 Japan
| | - Jens Ricke
- grid.5252.00000 0004 1936 973XKlinik und Poliklinik für Radiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Claude B. Sirlin
- grid.266100.30000 0001 2107 4242Liver Imaging Group, University of California San Diego, San Diego, CA 92093-0888 USA
| | - Bin Song
- grid.13291.380000 0001 0807 1581Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Bachir Taouli
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574 USA
| | - Kengo Yoshimitsu
- grid.411497.e0000 0001 0672 2176Department of Radiology, Fukuoka University Faculty of Medicine, Fukuoka City, 801-1011 Japan
| | - Dow-Mu Koh
- grid.18886.3f0000 0001 1271 4623Department of Radiology, Royal Marsden Hospital and The Institute of Cancer Research, London, SM2 5NG UK
| |
Collapse
|
53
|
Lalwani N. Invited Commentary on “Hyperintense Liver Masses at Hepatobiliary Phase Gadoxetic Acid–enhanced MRI”. Radiographics 2020; 40:94-97. [DOI: 10.1148/rg.2020190200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Neeraj Lalwani
- Department of Radiology, Wake Forest University and Baptist Health Winston-Salem, North Carolina
| |
Collapse
|
54
|
Lee S, Kim MJ, Kim SS, Shin H, Kim DY, Choi JY, Park MS, Mitchell DG. Retrospective comparison of EASL 2018 and LI-RADS 2018 for the noninvasive diagnosis of hepatocellular carcinoma using magnetic resonance imaging. Hepatol Int 2019; 14:70-79. [PMID: 31802388 DOI: 10.1007/s12072-019-10002-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/02/2019] [Indexed: 12/12/2022]
|
55
|
Personalized 3D-Printed Transparent Liver Model Using the Hepatobiliary Phase MRI: Usefulness in the Lesion-by-Lesion Imaging-Pathologic Matching of Focal Liver Lesions-Preliminary Results. Invest Radiol 2019; 54:138-145. [PMID: 30379728 DOI: 10.1097/rli.0000000000000521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study was to investigate the usefulness of a personalized, 3-dimensional (3D)-printed, transparent liver model with focal liver lesions (FLLs) for lesion-by-lesion imaging-pathologic matching. MATERIALS AND METHODS This preliminary, prospective study was approved by our institutional review board, and written informed consent was obtained. Twenty patients (male-to-female ratio, 13:7; mean age, 56 years) with multiple FLLs, including at least one presumed malignant, or an indeterminate lesion 10 mm or less on the preoperative gadoxetic acid-enhanced magnetic resonance imaging (MRI), were included. After digital segmentation of hepatobiliary phase MRI, a transparent, 3D-printed liver model with colored anatomical structures and FLLs was produced. During the gross examination of the liver specimen, the per-lesion detection rates were compared between those without (routine protocol) and those with the aid of the 3D-printed liver model. RESULTS Among 98 MRI-detected FLLs (11.5 ± 12.5 mm), the per-lesion detection rate on gross examination using the 3D-printed liver model was 99.0% (97/98), which was significantly higher than that obtained on routine examination (82.7% [81/98]; P < 0.001). In the subgroup analysis, according to the tumor size, 23.9% (16/67) of FLLs 10 mm or less were additionally detected using the liver model, whereas none were additionally detected in greater than 10 mm. The additionally detected 16 FLLs in 12 patients included histologic diagnoses of viable metastases, pathologic complete response of metastases, hepatocellular carcinomas, focal nodular hyperplasia-like nodules, and hemangiomas. CONCLUSIONS A personalized, 3D-printed liver model with FLLs may improve the lesion-by-lesion imaging-pathologic matching for small FLLs, thus leading to accurate pathologic tumor staging and obtaining a reliable reference for imaging-detected FLLs.
Collapse
|
56
|
Puhr-Westerheide D, Cyran CC, Sargsyan-Bergmann J, Todica A, Gildehaus FJ, Kunz WG, Stahl R, Spitzweg C, Ricke J, Kazmierczak PM. The added diagnostic value of complementary gadoxetic acid-enhanced MRI to 18F-DOPA-PET/CT for liver staging in medullary thyroid carcinoma. Cancer Imaging 2019; 19:73. [PMID: 31727170 PMCID: PMC6857128 DOI: 10.1186/s40644-019-0263-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
Background A high proportion of patients with advanced stages of medullary thyroid carcinoma (MTC) present with liver metastasis metastases. The aim of our study was to investigate the added diagnostic value of complementary gadoxetic acid-enhanced MRI to 18F-DOPA-PET/CT for liver staging in MTC. Methods Thirty-six patients (14 female, median age 55 years) with histologically confirmed MTC undergoing gadoxetic acid-enhanced liver MRI within 1 month of matching contrast-enhanced 18F-DOPA-PET/CT between 2010 and 2016 were selected for this IRB-approved retrospective study. 18F-DOPA-PET/CT and multiparametric MRI data sets were read consecutively and liver lesions were categorised on a 5-point Likert scale (1–definitely benign; 2–probably benign; 3–intermediate risk for metastasis; 4–probably metastasis; 5–definitely metastasis). It was noted if gadoxetic acid-enhanced MRI detected additional, 18F-DOPA-PET/CT-occult metastases (category 5) or if gadoxetic acid-enhanced MRI allowed for a definite classification (categories 1 and 5) of lesions for which 18F-DOPA-PET/CT remained inconclusive (categories 2–4). Follow-up PET/CT and MRI examinations were used as a reference standard. Results A total of 207 liver lesions (18F-DOPA-PET/CT 149, MRI 207; 152 metastases, 37 benign cysts, 18 hemangiomas) were analysed. Fifty-eight additional lesions were detected by MRI, of which 54 were metastases (median diameter 0.5 cm [interquartile range 0.4–0.7 cm]) occult on 18F-DOPA-PET/CT. MRI allowed for a definite lesion classification (categories 1 and 5) in 92% (190/207) whereas 18F-DOPA-PET/CT allowed for a definite lesion classification in 76% (113/149). MRI lead to a change in lesion categorisation in 14% (21/149). Conclusion Gadoxetic acid-enhanced MRI allows for a more precise liver staging in MTC patients compared to 18F-DOPA-PET/CT alone, particularly for 18F-DOPA-negative metastases and lesions < 1 cm.
Collapse
Affiliation(s)
- Daniel Puhr-Westerheide
- Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Josef Sargsyan-Bergmann
- Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Franz-Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Robert Stahl
- Department of Neuroradiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Philipp M Kazmierczak
- Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|
57
|
Motosugi U. Improving Postsurgical Outcome in Patients with HCC by Using a Hepatobiliary Contrast Agent. Radiology 2019; 293:605-606. [PMID: 31596183 DOI: 10.1148/radiol.2019191990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Utaroh Motosugi
- From the Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| |
Collapse
|
58
|
Lee SM, Lee JM, Ahn SJ, Kang HJ, Yang HK, Yoon JH. LI-RADS Version 2017 versus Version 2018: Diagnosis of Hepatocellular Carcinoma on Gadoxetate Disodium–enhanced MRI. Radiology 2019; 292:655-663. [DOI: 10.1148/radiol.2019182867] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
59
|
Ayuso C, Forner A, Darnell A, Rimola J, García-Criado Á, Bianchi L, Vilana R, Oliveira R, Llarch N, Bruix J. Prospective evaluation of gadoxetic acid magnetic resonance for the diagnosis of hepatocellular carcinoma in newly detected nodules ≤2 cm in cirrhosis. Liver Int 2019; 39:1281-1291. [PMID: 31077539 DOI: 10.1111/liv.14133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 05/03/2019] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Most of the published studies about the diagnostic accuracy of gadoxetic acid-enhanced magnetic resonance (EOB-MR) for the non-invasive diagnosis of hepatocellular carcinoma (HCC) have had a retrospective design. Thus, we aimed to prospectively evaluate the diagnostic accuracy of EOB-MR for the non-invasive diagnosis of HCC in nodules ≤2 cm detected by screening ultrasound (US) in patients with cirrhosis. METHODS Between July 2012 and October 2015, 62 consecutive asymptomatic Child-Pugh A-B cirrhotic patients with newly US-detected solitary nodules between 1 and 2 cm were prospectively included in the study. Hepatic extracellular contrast-enhanced MR (ECCE-MR) followed by EOB-MR were obtained in less than 1-month interval. Two independent radiologists blindly reviewed the EOB-MR studies, and the diagnosis of HCC was assigned when the lesion showed arterial enhancement followed by portal venous phase washout and/or hypointensity on the hepatobiliary phase (HBP). The final HCC diagnosis was made by ECCE-MR according to the accepted non-invasive criteria, or by biopsy in lesions with atypical vascular profile. RESULTS Final diagnoses were as follows: HCC (n = 41), intrahepatic cholangiocarcinoma (n = 2), colorectal metastases (n = 1) and benign conditions (n = 18). The sensitivity and specificity of EOB-MR for HCC diagnosis were 56.1% (95% CI: 39.7-71.5) and 90.5% (95% CI: 69.6-98.8), respectively, while sensitivity of ECCE-MR was 63.4% (95% CI: 46.9-77.9). The low rate of hypointense HCCs in the HBP and suboptimal liver uptake of contrast agent justify the low sensitivity of EOB-MR for HCC diagnosis. CONCLUSION EOB-MR does not surpass the diagnostic accuracy of ECCE-MR for non-invasive diagnosis of HCC in nodules ≤2 cm in cirrhotic patients.
Collapse
Affiliation(s)
- Carmen Ayuso
- Radiology Department, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Alejandro Forner
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Anna Darnell
- Radiology Department, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Jordi Rimola
- Radiology Department, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Ángeles García-Criado
- Radiology Department, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Luis Bianchi
- Radiology Department, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ramón Vilana
- Radiology Department, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Rafael Oliveira
- Radiology Department, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Neus Llarch
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jordi Bruix
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
60
|
Li J, Wang J, Lei L, Yuan G, He S. The diagnostic performance of gadoxetic acid disodium-enhanced magnetic resonance imaging and contrast-enhanced multi-detector computed tomography in detecting hepatocellular carcinoma: a meta-analysis of eight prospective studies. Eur Radiol 2019; 29:6519-6528. [PMID: 31250172 DOI: 10.1007/s00330-019-06294-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/12/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
AIM The purpose of this study was to determine the relative diagnostic benefit of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) over contrast-enhanced multi-detector computed tomography (CEMDCT) for the detection of hepatocellular carcinoma (HCC). METHODS Two investigators searched multiple databases from inception to January 8, 2019, for studies comparing Gd-EOB-DTPA-enhanced MRI with CEMDCT in adults suspected of HCC. Two reviewers independently selected studies and extracted data. RESULTS Eight studies were included enrolling 498 patients. MRI showed significantly higher sensitivity than CT (0.85 vs. 0.68). There was no significant difference in the specificity of MRI and CT (0.94 vs. 0.93). The negative likelihood ratio and positive likelihood ratio of MRI and CT were not significantly different (0.16 vs. 0.15 and 14.7 vs. 11.2, respectively). The summary receiver operating characteristics (SROC) of MRI was higher than that of CT at 0.96 vs. 0.91. In the subgroup analysis with a lesion diameter below 2 cm, the sensitivity of MRI was significantly higher than that of CT (0.79 vs. 0.46). CONCLUSION Gd-EOB-DTPA-enhanced MRI showed higher sensitivity and overall diagnostic accuracy than CEMDCT especially for hepatocellular carcinoma lesions smaller than 2 cm. KEY POINTS • Gd-EOB-DTPA-enhanced MRI can detect small lesions of hepatocellular carcinoma. • Gd-EOB-DTPA-enhanced MRI showed higher sensitivity and overall diagnostic accuracy than CEMDCT in patients with hepatocellular carcinoma. • Eight prospective studies showed that Gd-EOB-DTPA-enhanced MRI provides greater diagnostic confidence.
Collapse
Affiliation(s)
- Jiangfa Li
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jiming Wang
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Liping Lei
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Guandou Yuan
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Songqing He
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
61
|
Wattanasatesiri T, Kim HC, Choi JW, Lee JH, Joo I, Hur S, Lee M, Jae HJ, Chung JW. Cone-Beam CT-Guided Chemoembolization in Patients with Complete Response after Previous Chemoembolization but Subsequent Elevated α-Fetoprotein without Overt Hepatocellular Carcinoma. J Vasc Interv Radiol 2019; 30:1273-1280. [PMID: 31235410 DOI: 10.1016/j.jvir.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/10/2019] [Accepted: 03/17/2019] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To evaluate the performance of C-arm computed tomography (CT)-guided chemoembolization in patients with hepatocellular carcinoma (HCC) with serum α-fetoprotein (AFP) level > 20 ng/mL but with no overt tumor on CT and/or magnetic resonance imaging. MATERIALS AND METHODS From May 2010 to May 2017, 34 patients with HCC (25 men and 9 women; mean age, 59.7 y) who had elevated serum AFP levels (> 20 ng/mL) but no overt tumor on 6-mo imaging studies and had shown complete response (CR) after previous chemoembolization underwent C-arm CT-guided conventional chemoembolization. Three radiologists retrospectively reviewed the imaging studies (preprocedural images, C-arm CT scans, and follow-up images) in consensus, and clinical data including AFP levels were retrospectively obtained. Tumor detection by C-arm CT and treatment response after chemoembolization were assessed. RESULTS HCC was imaged at the time of chemoembolization in 24 of 34 patients (70.6%). C-arm CT detected tumors in 25 patients (73.5%); 23 detections were true positives, 2 were false positives, and 1 was a false negative (diaphragm metastasis). Among the 23 patients with true-positive results, the first follow-up enhanced imaging studies showed CR (n = 17), partial response (n = 1), progressive disease (n = 4), and indeterminate status (n = 1; treated by percutaneous ethanol injection). CONCLUSIONS C-arm CT-guided chemoembolization may help to detect and treat recurrent tumors in patients who have shown CR after previous chemoembolization but subsequently, during follow-up surveillance, had serum AFP levels > 20 ng/mL without an overt tumor evident on imaging studies.
Collapse
Affiliation(s)
| | - Hyo-Cheol Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Jin Woo Choi
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Saebeom Hur
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Myungsu Lee
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Hwan Jun Jae
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Jin Wook Chung
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| |
Collapse
|
62
|
Chou YC, Lao IH, Hsieh PL, Su YY, Mak CW, Sun DP, Sheu MJ, Kuo HT, Chen TJ, Ho CH, Kuo YT. Gadoxetic acid-enhanced magnetic resonance imaging can predict the pathologic stage of solitary hepatocellular carcinoma. World J Gastroenterol 2019; 25:2636-2649. [PMID: 31210715 PMCID: PMC6558433 DOI: 10.3748/wjg.v25.i21.2636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although important for determining long-term outcome, pathologic stage of hepatocellular carcinoma (HCC) is difficult to predict before surgery. Current state-of-the-art magnetic resonance imaging (MRI) using gadoxetic acid provides many imaging features that could potentially be used to classify single HCC as pT1 or pT2.
AIM To determine which gadoxetic acid-enhanced MRI (EOB-MRI) findings predict pathologic stage T2 in patients with solitary HCC (cT1).
METHODS Pre-operative EOB-MRI findings were reviewed in a retrospective cohort of patients with solitary HCC. The following imaging features were examined: Hyperintensity in unenhanced T2-weighted images, hypointensity in unenhanced T1-weighted images, arterial enhancement, corona enhancement, washout appearance, capsular appearance, hypointensity in the tumor tissue during the hepatobiliary (HB) phase, peritumoral hypointensity in the HB phase, hypointense rim in the HB phase, intratumoral fat, hyperintensity on diffusion-weighted imaging, hypointensity on apparent diffusion coefficient map, mosaic appearance, nodule-in-nodule appearance, and the margin (smooth or irregular). Surgical pathology was used as the reference method for tumor staging. Univariate and multivariate analyses were performed to identify predictors of microvascular invasion or satellite nodules.
RESULTS There were 39 (34.2%; 39 of 114) and 75 (65.8%; 75 of 114) pathological stage T2 and T1 HCCs, respectively. Large tumor size (≥ 2.3 cm) and two MRI findings, i.e., corona enhancement [odds ratio = 2.67; 95% confidence interval: 1.101-6.480] and peritumoral hypointensity in HB phase images (odds ratio = 2.203; 95% confidence interval: 0.961-5.049) were associated with high risk of pT2 HCC. The positive likelihood ratio was 6.25 (95% confidence interval: 1.788-21.845), and sensitivity of EOB-MRI for detecting pT2 HCC was 86.2% when two or three of these MRI features were present. Small tumor size and hypointense rim in the HB phase were regarded as benign features. Small HCCs with hypointense rim but not associated with aggressive features were mostly pT1 lesions (specificity, 100%).
CONCLUSION Imaging features on EOB-MRI could potentially be used to predict the pathologic stage of solitary HCC (cT1) as pT1 or pT2.
Collapse
Affiliation(s)
- Yi-Chen Chou
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
| | - I-Ha Lao
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
- Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Ling Hsieh
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ying-Ying Su
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Chee-Wai Mak
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ding-Ping Sun
- Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Ming-Jen Sheu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Medicinal Chemistry, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Hsing-Tao Kuo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi-Mei Medical Center, Tainan 710, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Yu-Ting Kuo
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Radiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
63
|
Introduction to the Liver Imaging Reporting and Data System for Hepatocellular Carcinoma. Clin Gastroenterol Hepatol 2019; 17:1228-1238. [PMID: 30326302 DOI: 10.1016/j.cgh.2018.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
The Liver Imaging Reporting And Data System (LI-RADS) was created with the support of the American College of Radiology (ACR) to standardize the acquisition, interpretation, reporting, and data collection for imaging examinations in patients at risk for hepatocellular carcinoma (HCC). A comprehensive and rigorous system developed by radiologists, hepatologists, pathologists, and surgeons, LI-RADS addresses a wide range of imaging contexts. Currently, 4 algorithms are available publicly on the ACR website: ultrasound for HCC surveillance, computed tomography and magnetic resonance imaging for HCC diagnosis and tumor staging, contrast-enhanced ultrasound for HCC diagnosis, and computed tomography/magnetic resonance imaging for treatment response assessment. Each algorithm is supported by a decision tree, categorization table, lexicon, atlas, technical requirements, and reporting and management guidance. Category codes reflecting the relative probability of HCC and malignancy are assigned to imaging-detected liver observations, with emerging evidence suggesting that LI-RADS accurately stratifies HCC and malignancy probabilities. LI-RADS is an evolving system and has been updated and refined iteratively since 2011 based on scientific evidence, expert opinion, and user feedback, with input from the American Association for the Study of Liver Diseases and the Organ Procurement Transplantation Network/United Network for Organ Sharing. Concurrent with its most recent update, LI-RADS was integrated into the American Association for the Study of Liver Diseases HCC guidance released in 2018. We anticipate continued refinement of LI-RADS and progressive adoption by radiologists worldwide, with the eventual goal of culminating in a single unified system for international use.
Collapse
|
64
|
Chernyak V, Fowler KJ, Heiken JP, Sirlin CB. Use of gadoxetate disodium in patients with chronic liver disease and its implications for liver imaging reporting and data system (LI-RADS). J Magn Reson Imaging 2019; 49:1236-1252. [PMID: 30609194 DOI: 10.1002/jmri.26540] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 01/04/2025] Open
Abstract
Use of gadoxetate disodium, a hepatobiliary gadolinium-based agent, in patients with chronic parenchymal liver disease offers the advantage of improved sensitivity for detecting hepatocellular carcinoma (HCC). Imaging features of liver observations on gadoxetate-enhanced MRI may also serve as biomarkers of recurrence-free and overall survival following definitive treatment of HCC. A number of technical and interpretative pitfalls specific to gadoxetate exist, however, and needs to be recognized when protocoling and interpreting MRI exams with this agent. This article reviews the advantages and pitfalls of gadoxetate use in patients at risk for HCC, and the potential impact on Liver Imaging Reporting and Data System (LI-RADS) imaging feature assessment and categorization. Level of Evidence: 5 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;49:1236-1252.
Collapse
Affiliation(s)
- Victoria Chernyak
- Department of Radiology, Montefiore Medical Center, Bronx, New York, USA
| | - Kathryn J Fowler
- Liver Imaging Group, Department of Radiology, University of California - San Diego, California, USA
| | - Jay P Heiken
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California - San Diego, California, USA
| |
Collapse
|
65
|
Forner A, Da Fonseca LG, Díaz-González Á, Sanduzzi-Zamparelli M, Reig M, Bruix J. Controversies in the management of hepatocellular carcinoma. JHEP Rep 2019; 1:17-29. [PMID: 32039350 PMCID: PMC7001551 DOI: 10.1016/j.jhepr.2019.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 02/07/2023] Open
Abstract
The management of hepatocellular carcinoma (HCC) has evolved considerably over the last decade. Surveillance of cirrhotic patients and refinements to imaging techniques have enabled a relevant proportion of patients to be diagnosed at an early stage, when effective therapies are feasible. Resection, transplantation and ablation are all options in patients with early stage HCC. Thus, there is some controversy regarding which is the best treatment approach in challenging scenarios. There have also been major developments in locoregional therapies, particularly in intra-arterial approaches. Finally, the systemic treatment for HCC has changed dramatically following the demonstration of a survival benefit with sorafenib; there are currently several first-line (sorafenib and lenvatinib) and second-line (regorafenib, cabozantinib and ramucirumab) treatments that have shown a survival benefit. Expectations for immune checkpoint inhibitors are high, with the results of the ongoing phase III trials eagerly awaited. In this review we discuss some of the controversies in the management of HCC, focussing in particular on systemic therapy.
Collapse
Affiliation(s)
- Alejandro Forner
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Leonardo G Da Fonseca
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Spain
| | - Álvaro Díaz-González
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Spain
| | - Marco Sanduzzi-Zamparelli
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Spain
| | - María Reig
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Jordi Bruix
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| |
Collapse
|
66
|
van der Pol CB, Lim CS, Sirlin CB, McGrath TA, Salameh JP, Bashir MR, Tang A, Singal AG, Costa AF, Fowler K, McInnes MDF. Accuracy of the Liver Imaging Reporting and Data System in Computed Tomography and Magnetic Resonance Image Analysis of Hepatocellular Carcinoma or Overall Malignancy-A Systematic Review. Gastroenterology 2019; 156:976-986. [PMID: 30445016 DOI: 10.1053/j.gastro.2018.11.020] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The Liver Imaging Reporting and Data System (LI-RADS) categorizes observations from imaging analyses of high-risk patients based on the level of suspicion for hepatocellular carcinoma (HCC) and overall malignancy. The categories range from definitely benign (LR-1) to definitely HCC (LR-5), malignancy (LR-M), or tumor in vein (LR-TIV) based on findings from computed tomography or magnetic resonance imaging. However, the actual percentage of HCC and overall malignancy within each LI-RADS category is not known. We performed a systematic review to determine the percentage of observations in each LI-RADS category for computed tomography and magnetic resonance imaging that are HCCs or malignancies. METHODS We searched the MEDLINE, Embase, Cochrane CENTRAL, and Scopus databases from 2014 through 2018 for studies that reported the percentage of observations in each LI-RADS v2014 and v2017 category that were confirmed as HCCs or other malignancies based on pathology, follow-up imaging analyses, or response to treatment (reference standard). Data were assessed on a per-observation basis. Random-effects models were used to determine the pooled percentages of HCC and overall malignancy for each LI-RADS category. Differences between categories were compared by analysis of variance of logit-transformed percentage of HCC and overall malignancy. Risk of bias and concerns about applicability were assessed with the Quality Assessment of Diagnostic Accuracy Studies 2 tool. RESULTS Of 454 studies identified, 17 (all retrospective studies) were included in the final analysis, consisting of 2760 patients, 3556 observations, and 2482 HCCs. The pooled percentages of observations confirmed as HCC and overall malignancy, respectively, were 94% (95% confidence interval [CI] 92%-96%) and 97% (95% CI 95%-99%) for LR-5, 74% (95% CI 67%-80%) and 80% (95% CI 75%-85%) for LR-4, 38% (95% CI 31%-45%) and 40% (95% CI 31%-50%) for LR-3, 13% (95% CI 8%-22%) and 14% (95% CI 9%-21%) for LR-2, 79% (95% CI 63%-89%) and 92% (95% CI 77%-98%) for LR-TIV, and 36% (95% CI 26%-48%) and 93% (95% CI 87%-97%) for LR-M. No malignancies were found in the LR-1 group. The percentage of HCCs and overall malignancies confirmed differed significantly among LR groups 2-5 (P < .00001). Patient selection was the most frequent factor that affected bias risk, because of verification bias and case-control study design. CONCLUSIONS In a systematic review, we found that increasing LI-RADS categories contained increasing percentages of HCCs and overall malignancy based on reference standard confirmation. Of observations categorized as LR-M, 93% were malignancies and 36% were confirmed as HCCs. The percentage of HCCs found in the LR-2 and LR-3 categories indicate the need for a more active management strategy than currently recommended. Prospective studies are needed to validate these findings. PROSPERO number CRD42018087441.
Collapse
Affiliation(s)
- Christian B van der Pol
- Department of Diagnostic Imaging, Juravinski Hospital and Cancer Centre, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Christopher S Lim
- Division of Abdominal Imaging and Intervention, Department of Radiology, Brigham Women's Hospital, Harvard Medical School, Boston, Massachusetts; Liver Imaging Group, Department of Radiology, University of California-San Diego. San Diego, California
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California-San Diego. San Diego, California
| | - Trevor A McGrath
- Department of Radiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Paul Salameh
- University of Ottawa, School of Epidemiology and Public Health, The Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Ontario, Canada
| | - Mustafa R Bashir
- Department of Radiology, Center for Advanced Magnetic Resonance Development, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - An Tang
- Department of Radiology, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Amit G Singal
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas
| | - Andreu F Costa
- Department of Diagnostic Radiology, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathryn Fowler
- Department of Radiology, Washington University, St Louis, Missouri
| | - Matthew D F McInnes
- Department of Radiology and Epidemiology, University of Ottawa, and Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Ontario, Canada.
| |
Collapse
|
67
|
Kim YY, Park MS, Aljoqiman KS, Choi JY, Kim MJ. Gadoxetic acid-enhanced magnetic resonance imaging: Hepatocellular carcinoma and mimickers. Clin Mol Hepatol 2019; 25:223-233. [PMID: 30661336 PMCID: PMC6759431 DOI: 10.3350/cmh.2018.0107] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Gadoxetic acid, a hepatocyte-specific magnetic resonance imaging (MRI) contrast agent, has emerged as an important tool for hepatocellular carcinoma (HCC) diagnosis. Gadoxetic acid-enhanced MRI is useful for the evaluation of early-stage HCC, diagnosis of HCC precursor lesions, and highly sensitive diagnosis of HCC. Furthermore, functional information provided by gadoxetic acid-enhanced MRI can aid in the characterization of focal liver lesions. For example, whereas lesions lack functioning hepatocytes appear hypointense in the hepatobiliary phase, preserved or enhanced expression of organic anion transporting polypeptides in some HCCs as well as focal nodular hyperplasia lead to hyperintensity in the hepatobiliary phase; and a targetoid appearance on transitional phase or hepatobiliary phase imaging can be helpful for identifying the histopathological composition of tumors. While gadoxetic acid-enhanced MRI may improve the sensitivity of HCC diagnosis and provide new insights into the characterization of focal liver lesions, there are many challenges associated with its use. This article reviews the pros and cons of HCC diagnosis with gadoxetic acid-enhanced MRI and discuss some clues in the radiological differentiation of HCC from HCC mimickers.
Collapse
Affiliation(s)
- Yeun-Yoon Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Suk Park
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Khalid Suliman Aljoqiman
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Radiology, King Faisal University College of Medicine, Al-Ahsa, Saudi Arabia
| | - Jin-Young Choi
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Myeong-Jin Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
68
|
Bashir MR, Chernyak V. Can MRI Features of Combined Hepatocellular Carcinoma-Intrahepatic Cholangiogarcinoma Help Predict Tumor Behavior Better than Histologic Findings? Radiology 2018; 290:398-399. [PMID: 30422087 DOI: 10.1148/radiol.2018182408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mustafa R Bashir
- Form the Department of Radiology, Center for Advanced Magnetic Resonance Development, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 2301 Erwin Rd, Durham, NC 27710 (M.R.B.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| | - Victoria Chernyak
- Form the Department of Radiology, Center for Advanced Magnetic Resonance Development, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 2301 Erwin Rd, Durham, NC 27710 (M.R.B.); and Department of Radiology, Montefiore Medical Center, Bronx, NY (V.C.)
| |
Collapse
|
69
|
Chernyak V, Fowler KJ, Kamaya A, Kielar AZ, Elsayes KM, Bashir MR, Kono Y, Do RK, Mitchell DG, Singal AG, Tang A, Sirlin CB. Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients. Radiology 2018; 289:816-830. [PMID: 30251931 DOI: 10.1148/radiol.2018181494] [Citation(s) in RCA: 717] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Liver Imaging Reporting and Data System (LI-RADS) is composed of four individual algorithms intended to standardize the lexicon, as well as reporting and care, in patients with or at risk for hepatocellular carcinoma in the context of surveillance with US; diagnosis with CT, MRI, or contrast material-enhanced US; and assessment of treatment response with CT or MRI. This report provides a broad overview of LI-RADS, including its historic development, relationship to other imaging guidelines, composition, aims, and future directions. In addition, readers will understand the motivation for and key components of the 2018 update.
Collapse
Affiliation(s)
- Victoria Chernyak
- From the Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467 (V.C.); Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.K.); Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.Z.K.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.); Department of Radiology, Duke University Medical Center, Durham, NC (M.R.B.); Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Medicine and Radiology (Y.K.), and Liver Imaging Group, Department of Radiology (C.B.S.), University of California-San Diego, San Diego, Calif; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.D.); Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (D.G.M.); Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Tex (A.G.S.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada (A.T.)
| | - Kathryn J Fowler
- From the Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467 (V.C.); Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.K.); Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.Z.K.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.); Department of Radiology, Duke University Medical Center, Durham, NC (M.R.B.); Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Medicine and Radiology (Y.K.), and Liver Imaging Group, Department of Radiology (C.B.S.), University of California-San Diego, San Diego, Calif; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.D.); Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (D.G.M.); Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Tex (A.G.S.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada (A.T.)
| | - Aya Kamaya
- From the Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467 (V.C.); Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.K.); Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.Z.K.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.); Department of Radiology, Duke University Medical Center, Durham, NC (M.R.B.); Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Medicine and Radiology (Y.K.), and Liver Imaging Group, Department of Radiology (C.B.S.), University of California-San Diego, San Diego, Calif; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.D.); Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (D.G.M.); Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Tex (A.G.S.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada (A.T.)
| | - Ania Z Kielar
- From the Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467 (V.C.); Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.K.); Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.Z.K.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.); Department of Radiology, Duke University Medical Center, Durham, NC (M.R.B.); Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Medicine and Radiology (Y.K.), and Liver Imaging Group, Department of Radiology (C.B.S.), University of California-San Diego, San Diego, Calif; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.D.); Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (D.G.M.); Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Tex (A.G.S.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada (A.T.)
| | - Khaled M Elsayes
- From the Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467 (V.C.); Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.K.); Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.Z.K.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.); Department of Radiology, Duke University Medical Center, Durham, NC (M.R.B.); Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Medicine and Radiology (Y.K.), and Liver Imaging Group, Department of Radiology (C.B.S.), University of California-San Diego, San Diego, Calif; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.D.); Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (D.G.M.); Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Tex (A.G.S.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada (A.T.)
| | - Mustafa R Bashir
- From the Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467 (V.C.); Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.K.); Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.Z.K.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.); Department of Radiology, Duke University Medical Center, Durham, NC (M.R.B.); Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Medicine and Radiology (Y.K.), and Liver Imaging Group, Department of Radiology (C.B.S.), University of California-San Diego, San Diego, Calif; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.D.); Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (D.G.M.); Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Tex (A.G.S.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada (A.T.)
| | - Yuko Kono
- From the Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467 (V.C.); Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.K.); Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.Z.K.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.); Department of Radiology, Duke University Medical Center, Durham, NC (M.R.B.); Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Medicine and Radiology (Y.K.), and Liver Imaging Group, Department of Radiology (C.B.S.), University of California-San Diego, San Diego, Calif; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.D.); Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (D.G.M.); Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Tex (A.G.S.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada (A.T.)
| | - Richard K Do
- From the Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467 (V.C.); Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.K.); Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.Z.K.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.); Department of Radiology, Duke University Medical Center, Durham, NC (M.R.B.); Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Medicine and Radiology (Y.K.), and Liver Imaging Group, Department of Radiology (C.B.S.), University of California-San Diego, San Diego, Calif; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.D.); Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (D.G.M.); Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Tex (A.G.S.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada (A.T.)
| | - Donald G Mitchell
- From the Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467 (V.C.); Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.K.); Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.Z.K.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.); Department of Radiology, Duke University Medical Center, Durham, NC (M.R.B.); Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Medicine and Radiology (Y.K.), and Liver Imaging Group, Department of Radiology (C.B.S.), University of California-San Diego, San Diego, Calif; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.D.); Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (D.G.M.); Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Tex (A.G.S.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada (A.T.)
| | - Amit G Singal
- From the Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467 (V.C.); Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.K.); Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.Z.K.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.); Department of Radiology, Duke University Medical Center, Durham, NC (M.R.B.); Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Medicine and Radiology (Y.K.), and Liver Imaging Group, Department of Radiology (C.B.S.), University of California-San Diego, San Diego, Calif; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.D.); Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (D.G.M.); Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Tex (A.G.S.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada (A.T.)
| | - An Tang
- From the Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467 (V.C.); Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.K.); Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.Z.K.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.); Department of Radiology, Duke University Medical Center, Durham, NC (M.R.B.); Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Medicine and Radiology (Y.K.), and Liver Imaging Group, Department of Radiology (C.B.S.), University of California-San Diego, San Diego, Calif; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.D.); Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (D.G.M.); Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Tex (A.G.S.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada (A.T.)
| | - Claude B Sirlin
- From the Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467 (V.C.); Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.K.); Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.Z.K.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.); Department of Radiology, Duke University Medical Center, Durham, NC (M.R.B.); Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Medicine and Radiology (Y.K.), and Liver Imaging Group, Department of Radiology (C.B.S.), University of California-San Diego, San Diego, Calif; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.D.); Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (D.G.M.); Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Tex (A.G.S.); and Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada (A.T.)
| |
Collapse
|
70
|
Kim YY, Choi JY, Sirlin CB, An C, Kim MJ. Pitfalls and problems to be solved in the diagnostic CT/MRI Liver Imaging Reporting and Data System (LI-RADS). Eur Radiol 2018; 29:1124-1132. [PMID: 30116960 DOI: 10.1007/s00330-018-5641-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/08/2018] [Accepted: 06/29/2018] [Indexed: 01/06/2023]
Abstract
The 2017 Core of the computed tomography (CT)/magnetic resonance imaging (MRI) Liver Imaging Reporting and Data System (LI-RADS) provides clear definitions and concise explanations of the CT/MRI diagnostic algorithm. Nevertheless, there remain some practical and controversial issues that radiologists should be aware of when using the system. This article discusses pitfalls and problems which may be encountered when the version 2017 diagnostic algorithm is used for CT and MRI. The pitfalls include challenges in applying major features and assigning the LR-M category, as well as categorisation discrepancy between CT and MRI. The problems include imprecision of category codes, application of ancillary features, and regional practice variations in hepatocellular carcinoma (HCC) diagnosis. Potential solutions are presented along with these pitfalls and problems. KEY POINTS: • Although the diagnostic algorithm provides clear and detailed explanations, major feature evaluation can be subject to pitfalls and differentiation of HCC and non-HCC malignancy remains challenging. • Ancillary features are optional and equally weighted. However, features such as hepatobiliary phase hypointensity and restricted diffusion have greater impact on HCC diagnosis than other ancillary features and may merit greater emphasis or weighting. • LI-RADS was initially developed from a Western paradigm, which may limit its applicability in the East due to regional practice variations. In Eastern Asia, high sensitivity is prioritised over near-perfect specificity for HCC diagnosis in order to detect tumours at early stages.
Collapse
Affiliation(s)
- Yeun-Yoon Kim
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jin-Young Choi
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California-San Diego Medical Center, 408 Dickinson St, San Diego, CA, 92103-8226, USA
| | - Chansik An
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Myeong-Jin Kim
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
71
|
Inchingolo R, Faletti R, Grazioli L, Tricarico E, Gatti M, Pecorelli A, Ippolito D. MR with Gd-EOB-DTPA in assessment of liver nodules in cirrhotic patients. World J Hepatol 2018; 10:462-473. [PMID: 30079132 PMCID: PMC6068846 DOI: 10.4254/wjh.v10.i7.462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/25/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
To date the imaging diagnosis of liver lesions is based mainly on the identification of vascular features, which are typical of overt hepatocellular carcinoma (HCC), but the hepatocarcinogenesis is a complex and multistep event during which, a spectrum of nodules develop within the liver parenchyma, including benign small and large regenerative nodule (RN), low-grade dysplastic nodule (LGDN), high-grade dysplastic nodule (HGDN), early HCC, and well differentiated HCC. These nodules may be characterised not only on the basis of their respective different blood supplies, but also on their different hepatocyte function. Recently, in liver imaging the introduction of hepatobiliary magnetic resonance imaging contrast agent offered the clinicians the possibility to obtain, at once, information not only related to the vascular changes of liver nodules but also information on hepatocyte function. For this reasons this new approach becomes the most relevant diagnostic clue for differentiating low-risk nodules (LGDN-RN) from high-risk nodules (HGDN/early HCC or overt HCC) and consequently new diagnostic algorithms for HCC have been proposed. The use of hepatobiliary contrast agents is constantly increasing and gradually changing the standard of diagnosis of HCC. The main purpose of this review is to underline the added value of Gd-EOB-DTPA in early-stage diagnoses of HCC. We also analyse the guidelines for the diagnosis and management of HCC, the key concepts of HCC development, growth and spread and the imaging appearance of precursor nodules that eventually may transform into overt HCC.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| | - Luigi Grazioli
- Department of Radiology, University of Brescia “Spedali Civili”, Brescia 25123, Italy
| | - Eleonora Tricarico
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| | - Anna Pecorelli
- Department of Diagnostic Radiology, School of Medicine, University of Milano-Bicocca, Monza 20900, Italy
| | - Davide Ippolito
- Department of Diagnostic Radiology, School of Medicine, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
72
|
Zhou B, Xiong Z, Wang P, Peng C, Shen M, Shi X. Acetylated Polyethylenimine-Entrapped Gold Nanoparticles Enable Negative Computed Tomography Imaging of Orthotopic Hepatic Carcinoma. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8701-8707. [PMID: 29958496 DOI: 10.1021/acs.langmuir.8b01669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing an effective computed tomography (CT) contrast agent is still a challenging task for precise diagnosis of hepatic carcinoma (HCC). Here, we present the use of acetylated polyethylenimine (PEI)-entrapped gold nanoparticles (Ac-PE-AuNPs) without antifouling modification for negative CT imaging of HCC. PEI was first linked to fluorescein isothiocyanate (FI) and then utilized as a vehicle for the entrapment of AuNPs. The particles were then acetylated to reduce its positive surface potential. The designed Ac-PE-AuNPs were characterized by various techniques. We find that the Ac-PE-AuNPs with a uniform size distribution (mean diameter = 2.3 nm) are colloidally stable and possess low toxicity in the studied range of concentration. Owing to the fact that the particles without additional antifouling modification were mainly gathered in liver, the Ac-PE-AuNPs could greatly improve the CT contrast enhancement of normal liver, whereas poor CT contrast enhancement appeared in liver necrosis region caused by HCC. As a result, HCC could be easily and precisely diagnosed. The designed Ac-PE-AuNPs were demonstrated to have biocompatibility through in vivo biodistribution and histological studies, hence holding an enormous potential to be adopted as an effective negative CT contrast agent for diagnosis of hepatoma carcinoma.
Collapse
Affiliation(s)
- Benqing Zhou
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Peng Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Chen Peng
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Xiangyang Shi
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
- CQM-Centro de Química da Madeira , Universidade da Madeira , Campus da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
73
|
Ippolito D, Inchingolo R, Grazioli L, Drago SG, Nardella M, Gatti M, Faletti R. Recent advances in non-invasive magnetic resonance imaging assessment of hepatocellular carcinoma. World J Gastroenterol 2018; 24:2413-2426. [PMID: 29930464 PMCID: PMC6010944 DOI: 10.3748/wjg.v24.i23.2413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/27/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance (MR) imaging of the liver is an important tool for the detection and characterization of focal liver lesions and for assessment of diffuse liver disease, having several intrinsic characteristics, represented by high soft tissue contrast, avoidance of ionizing radiation or iodinated contrast media, and more recently, by application of several functional imaging techniques (i.e., diffusion-weighted sequences, hepatobiliary contrast agents, perfusion imaging, magnetic resonance (MR)-elastography, and radiomics analysis). MR functional imaging techniques are extensively used both in routine practice and in the field of clinical and pre-clinical research because, through a qualitative rather than quantitative approach, they can offer valuable information about tumor tissue and tissue architecture, cellular biomarkers related to the hepatocellular functions, or tissue vascularization profiles related to tumor and tissue biology. This kind of approach offers in vivo physiological parameters, capable of evaluating physiological and pathological modifications of tissues, by the analysis of quantitative data that could be used in tumor detection, characterization, treatment selection, and follow-up, in addition to those obtained from standard morphological imaging. In this review we provide an overview of recent advanced techniques in MR for the diagnosis and staging of hepatocellular carcinoma, and their role in the assessment of response treatment evaluation.
Collapse
Affiliation(s)
- Davide Ippolito
- School of Medicine, University of Milano-Bicocca, Milan 20126, Italy
- Department of Diagnostic Radiology, HS Gerardo Monza, Monza (MB) 20900, Italy
| | - Riccardo Inchingolo
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Luigi Grazioli
- Department of Radiology, University of Brescia “Spedali Civili”, Brescia 25123, Italy
| | - Silvia Girolama Drago
- School of Medicine, University of Milano-Bicocca, Milan 20126, Italy
- Department of Diagnostic Radiology, HS Gerardo Monza, Monza (MB) 20900, Italy
| | - Michele Nardella
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| |
Collapse
|