51
|
Nagayama Y, Goto M, Sakabe D, Emoto T, Shigematsu S, Oda S, Tanoue S, Kidoh M, Nakaura T, Funama Y, Uchimura R, Takada S, Hayashi H, Hatemura M, Hirai T. Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study. AJR Am J Roentgenol 2022; 219:315-324. [PMID: 35195431 DOI: 10.2214/ajr.21.27255] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND. Deep learning-based reconstruction (DLR) may facilitate CT radiation dose reduction, but a paucity of literature has compared lower-dose DLR images with standard-dose iterative reconstruction (IR) images or explored application of DLR to low-tube-voltage scanning in children. OBJECTIVE. The purpose of this study was to assess whether DLR can be used to reduce radiation dose while maintaining diagnostic image quality in comparison with hybrid IR (HIR) and model-based IR (MBIR) for low-tube-voltage pediatric CT. METHODS. This retrospective study included children 6 years old or younger who underwent contrast-enhanced 80-kVp CT with a standard-dose or lower-dose protocol. Standard images were reconstructed with HIR, and lower-dose images were reconstructed with HIR, MBIR, and DLR. Size-specific dose estimate (SSDE) was calculated for both protocols. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were quantified. Two radiologists independently evaluated noise magnitude, noise texture, streak artifact, edge sharpness, and overall quality. Interreader agreement was assessed, and mean values were calculated. To evaluate task-based object detection performance, a phantom was imaged with 80-kVp CT at six doses (SSDE, 0.6-5.3 mGy). Detectability index (d') was calculated from the noise power spectrum and task-based transfer function. Reconstruction methods were compared. RESULTS. Sixty-five children (mean age, 25.0 ± 25.2 months) who underwent CT with standard- (n = 31) or lower-dose (n = 34) protocol were included. SSDE was 54% lower for the lower-dose than for the standard-dose group (1.9 ± 0.4 vs 4.1 ± 0.8 mGy). Lower-dose DLR and MBIR yielded lower image noise and higher SNR and CNR than standard-dose HIR (p < .05). Interobserver agreement on subjective features ranged from a kappa coefficient of 0.68 to 0.78. The readers subjectively scored noise texture, edge sharpness, and overall quality lower for lower-dose MBIR than for standard-dose HIR (p < .001), though higher for lower-dose DLR than for standard-dose HIR (p < .001). In the phantom, DLR provided higher d' than HIR and MBIR at each dose. Object detectability was greater for 2.0-mGy DLR than for 4.0-mGy HIR for low-contrast (3.67 vs 3.57) and high-contrast (1.20 vs 1.04) objects. CONCLUSION. Compared with IR algorithms, DLR results in substantial dose reduction with preserved or even improved image quality for low-tube-voltage pediatric CT. CLINICAL IMPACT. Use of DLR at 80 kVp allows greater dose reduction for pediatric CT than do current IR techniques.
Collapse
Affiliation(s)
- Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Makoto Goto
- Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | - Daisuke Sakabe
- Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | - Takafumi Emoto
- Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | - Shinsuke Shigematsu
- Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shota Tanoue
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yoshinori Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Uchimura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Sentaro Takada
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hidetaka Hayashi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Masahiro Hatemura
- Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
52
|
Greffier J, Durand Q, Frandon J, Si-Mohamed S, Loisy M, de Oliveira F, Beregi JP, Dabli D. Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study. Eur Radiol 2022; 33:699-710. [PMID: 35864348 DOI: 10.1007/s00330-022-09003-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To assess the impact of a new artificial intelligence deep-learning reconstruction (Precise Image; AI-DLR) algorithm on image quality against a hybrid iterative reconstruction (IR) algorithm in abdominal CT for different clinical indications. METHODS Acquisitions on phantoms were performed at 5 dose levels (CTDIvol: 13/11/9/6/1.8 mGy). Raw data were reconstructed using level 4 of iDose4 (i4) and 3 levels of AI-DLR (Smoother/Smooth/Standard). Noise power spectrum (NPS), task-based transfer function (TTF) and detectability index (d') were computed: d' modelled detection of a liver metastasis (LM) and hepatocellular carcinoma at portal (HCCp) and arterial (HCCa) phases. Image quality was subjectively assessed on an anthropomorphic phantom by 2 radiologists. RESULTS From Standard to Smoother levels, noise magnitude and average NPS spatial frequency decreased and the detectability (d') of all simulated lesions increased. For both inserts, TTF values were similar for all three AI-DLR levels from 13 to 6 mGy but decreased from Standard to Smoother levels at 1.8 mGy. Compared to the i4 used in clinical practice, d' values were higher using the Smoother and Smooth levels and close for the Standard level. For all dose levels, except at 1.8 mGy, radiologists considered images satisfactory for clinical use for the 3 levels of AI-DLR, but rated images too smooth using the Smoother level. CONCLUSION Use of the Smooth and Smoother levels of AI-DLR reduces the image noise and improves the detectability of lesions and spatial resolution for standard and low-dose levels. Using the Smooth level is apparently the best compromise between the lowest dose level and adequate image quality. KEY POINTS • Evaluation of the impact of a new artificial intelligence deep-learning reconstruction (AI-DLR) on image quality and dose compared to a hybrid iterative reconstruction (IR) algorithm. • The Smooth and Smoother levels of AI-DLR reduced the image noise and improved the detectability of lesions and spatial resolution for standard and low-dose levels. • The Smooth level seems the best compromise between the lowest dose level and adequate image quality.
Collapse
Affiliation(s)
- Joël Greffier
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, EA 2992, Bd. Prof Robert Debré, 30029, Nîmes Cedex 9, France.
| | - Quentin Durand
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, EA 2992, Bd. Prof Robert Debré, 30029, Nîmes Cedex 9, France
| | - Julien Frandon
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, EA 2992, Bd. Prof Robert Debré, 30029, Nîmes Cedex 9, France
| | - Salim Si-Mohamed
- University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621, 7 Avenue Jean Capelle O, 69100, Villeurbanne, France
- Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500, Bron, France
| | - Maeliss Loisy
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, EA 2992, Bd. Prof Robert Debré, 30029, Nîmes Cedex 9, France
| | - Fabien de Oliveira
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, EA 2992, Bd. Prof Robert Debré, 30029, Nîmes Cedex 9, France
| | - Jean-Paul Beregi
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, EA 2992, Bd. Prof Robert Debré, 30029, Nîmes Cedex 9, France
| | - Djamel Dabli
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, EA 2992, Bd. Prof Robert Debré, 30029, Nîmes Cedex 9, France
| |
Collapse
|
53
|
Ng CKC. Artificial Intelligence for Radiation Dose Optimization in Pediatric Radiology: A Systematic Review. CHILDREN 2022; 9:children9071044. [PMID: 35884028 PMCID: PMC9320231 DOI: 10.3390/children9071044] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/19/2023]
Abstract
Radiation dose optimization is particularly important in pediatric radiology, as children are more susceptible to potential harmful effects of ionizing radiation. However, only one narrative review about artificial intelligence (AI) for dose optimization in pediatric computed tomography (CT) has been published yet. The purpose of this systematic review is to answer the question “What are the AI techniques and architectures introduced in pediatric radiology for dose optimization, their specific application areas, and performances?” Literature search with use of electronic databases was conducted on 3 June 2022. Sixteen articles that met selection criteria were included. The included studies showed deep convolutional neural network (CNN) was the most common AI technique and architecture used for dose optimization in pediatric radiology. All but three included studies evaluated AI performance in dose optimization of abdomen, chest, head, neck, and pelvis CT; CT angiography; and dual-energy CT through deep learning image reconstruction. Most studies demonstrated that AI could reduce radiation dose by 36–70% without losing diagnostic information. Despite the dominance of commercially available AI models based on deep CNN with promising outcomes, homegrown models could provide comparable performances. Future exploration of AI value for dose optimization in pediatric radiology is necessary due to small sample sizes and narrow scopes (only three modalities, CT, positron emission tomography/magnetic resonance imaging and mobile radiography, and not all examination types covered) of existing studies.
Collapse
Affiliation(s)
- Curtise K. C. Ng
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; or ; Tel.: +61-8-9266-7314; Fax: +61-8-9266-2377
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
54
|
Son W, Kim M, Hwang JY, Kim YW, Park C, Choo KS, Kim TU, Jang JY. Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT. Korean J Radiol 2022; 23:752-762. [PMID: 35695313 PMCID: PMC9240291 DOI: 10.3348/kjr.2021.0466] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/26/2022] [Accepted: 03/29/2022] [Indexed: 11/15/2022] Open
Abstract
Objective To compare a deep learning-based reconstruction (DLR) algorithm for pediatric abdominopelvic computed tomography (CT) with filtered back projection (FBP) and iterative reconstruction (IR) algorithms. Materials and Methods Post-contrast abdominopelvic CT scans obtained from 120 pediatric patients (mean age ± standard deviation, 8.7 ± 5.2 years; 60 males) between May 2020 and October 2020 were evaluated in this retrospective study. Images were reconstructed using FBP, a hybrid IR algorithm (ASiR-V) with blending factors of 50% and 100% (AV50 and AV100, respectively), and a DLR algorithm (TrueFidelity) with three strength levels (low, medium, and high). Noise power spectrum (NPS) and edge rise distance (ERD) were used to evaluate noise characteristics and spatial resolution, respectively. Image noise, edge definition, overall image quality, lesion detectability and conspicuity, and artifacts were qualitatively scored by two pediatric radiologists, and the scores of the two reviewers were averaged. A repeated-measures analysis of variance followed by the Bonferroni post-hoc test was used to compare NPS and ERD among the six reconstruction methods. The Friedman rank sum test followed by the Nemenyi-Wilcoxon-Wilcox all-pairs test was used to compare the results of the qualitative visual analysis among the six reconstruction methods. Results The NPS noise magnitude of AV100 was significantly lower than that of the DLR, whereas the NPS peak of AV100 was significantly higher than that of the high- and medium-strength DLR (p < 0.001). The NPS average spatial frequencies were higher for DLR than for ASiR-V (p < 0.001). ERD was shorter with DLR than with ASiR-V and FBP (p < 0.001). Qualitative visual analysis revealed better overall image quality with high-strength DLR than with ASiR-V (p < 0.001). Conclusion For pediatric abdominopelvic CT, the DLR algorithm may provide improved noise characteristics and better spatial resolution than the hybrid IR algorithm.
Collapse
Affiliation(s)
- Wookon Son
- Department of Radiology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - MinWoo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Busan, Korea
| | - Jae-Yeon Hwang
- Department of Radiology, Pusan National University Yangsan Hospital, Yangsan, Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, College of Medicine, Pusan National University, Yangsan, Korea.
| | - Yong-Woo Kim
- Department of Radiology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Chankue Park
- Department of Radiology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ki Seok Choo
- Department of Radiology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Tae Un Kim
- Department of Radiology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Joo Yeon Jang
- Department of Radiology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
55
|
Jensen CT. Image Quality Evaluation in Dual Energy CT of the Chest, Abdomen and Pelvis in Obese Patients with Deep Learning Image Reconstruction. J Comput Assist Tomogr 2022; 46:612-613. [PMID: 35759780 DOI: 10.1097/rct.0000000000001353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Corey T Jensen
- From the Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
56
|
Greffier J, Si-Mohamed S, Frandon J, Loisy M, de Oliveira F, Beregi JP, Dabli D. Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study. Med Phys 2022; 49:5052-5063. [PMID: 35696272 PMCID: PMC9544990 DOI: 10.1002/mp.15807] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/26/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022] Open
Abstract
Background Recently, computed tomography (CT) manufacturers have developed deep‐learning‐based reconstruction algorithms to compensate for the limitations of iterative reconstruction (IR) algorithms, such as image smoothing and the spatial resolution's dependence on contrast and dose levels. Purpose To assess the impact of an artificial intelligence deep‐learning reconstruction (AI‐DLR) algorithm on image quality and dose reduction compared with a hybrid IR algorithm in chest CT for different clinical indications. Methods Acquisitions on the CT American College of Radiology (ACR) 464 and CT Torso CTU‐41 phantoms were performed at five dose levels (CTDIvol: 9.5/7.5/6/2.5/0.4 mGy) used for chest CT conditions. Raw data were reconstructed using filtered backprojection, two levels of IR (iDose4 levels 4 (i4) and 7 (i7)), and five levels of AI‐DLR (Precise Image; Smoother, Smooth, Standard, Sharp, Sharper). Noise power spectrum (NPS), task‐based transfer function, and detectability index (d′) were computed: d′‐modeled detection of a soft tissue mediastinal nodule (low‐contrast soft tissue chest nodule within the mediastinum [LCN]), ground‐glass opacity (GGO), or high‐contrast pulmonary (HCP) lesion. The subjective image quality of chest anthropomorphic phantom images was independently evaluated by two radiologists. They assessed image noise, image smoothing, contrast between vessels and fat in the mediastinum for mediastinal images, visual border detection between bronchus and lung parenchyma for parenchymal images, and overall image quality using a commonly used four‐ or five‐point scale. Results From Standard to Smoother levels, on average, the noise magnitude decreased (for all dose levels: −66.3% ± 0.5% for mediastinal images and −63.1% ± 0.1% for parenchymal images), the average NPS spatial frequency decreased (for all dose levels: −35.3% ± 2.2% for mediastinal images and −13.3% ± 2.2% for parenchymal images), and the detectability (d′) of the three lesions increased. The opposite pattern was found from Standard to Sharper levels. From Smoother to Sharper levels, the spatial resolution increased for the low‐contrast polyethylene insert and the opposite for the high‐contrast air insert. Compared to the i4 used in clinical practice, d′ values were higher using Smoother (mean for all dose levels: 338.7% ± 29.4%), Smooth (103.4% ± 11.2%), and Standard (34.1% ± 6.6%) levels for the LCN on mediastinal images and Smoother (169.5% ± 53.2% for GGO and 136.9% ± 1.6% for HCP) and Smooth (36.4% ± 22.1% and 24.1% ± 0.9%, respectively) levels for parenchymal images. Radiologists considered the images satisfactory for clinical use at these levels, but adaptation to the dose level of the protocol is required. Conclusion With AI‐DLR, the smoothest levels reduced the noise and improved the detectability of chest lesions but increased the image smoothing. The opposite was found with the sharpest levels. The choice of level depends on the dose level and type of image: mediastinal or parenchymal.
Collapse
Affiliation(s)
- Joël Greffier
- IMAGINE, UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, Nîmes, France
| | - Salim Si-Mohamed
- University of Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Villeurbanne, France.,Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Julien Frandon
- IMAGINE, UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, Nîmes, France
| | - Maeliss Loisy
- IMAGINE, UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, Nîmes, France
| | - Fabien de Oliveira
- IMAGINE, UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, Nîmes, France
| | - Jean Paul Beregi
- IMAGINE, UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, Nîmes, France
| | - Djamel Dabli
- IMAGINE, UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
57
|
Zhang K, Shi X, Xie SS, Sun JH, Liu ZH, Zhang S, Song JY, Shen W. Deep learning image reconstruction in pediatric abdominal and chest computed tomography: a comparison of image quality and radiation dose. Quant Imaging Med Surg 2022; 12:3238-3250. [PMID: 35655845 PMCID: PMC9131348 DOI: 10.21037/qims-21-936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/18/2022] [Indexed: 08/27/2023]
Abstract
BACKGROUND Studies on the application of deep learning image reconstruction (DLIR) in pediatric computed tomography (CT) are limited and have so far been mostly based on phantom. The purpose of this study was to compare the image quality and radiation dose of DLIR with that of adaptive statistical iterative reconstruction-Veo (ASiR-V) during abdominal and chest CT for the pediatric population. METHODS A pediatric phantom was used for the pilot study, and 20 children were recruited for clinical verification. The preset scan parameter noise index (NI) was 5, 8, 11, 13, 15, and 18 for the phantom study, and 8 and 13 for the clinical pediatric study. We reconstructed CT images with ASiR-V 30%, ASiR-V 70%, DLIR-M (medium) and DLIR-H (high). The regions of interest (ROI) were marked on the organs of the abdomen (liver, kidney, and subcutaneous fat) and the chest (lung, mediastinum, and spine). The CT dose index volume (CTDIvol), CT value, image noise (N), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured and calculated. The subjective image quality was assessed by 3 radiologists blindly using a 5-point scale. The dose reduction efficiency of DLIR was estimated. RESULTS In the phantom study, the interobserver assessment of the data measurement demonstrated good agreement [intraclass correlation coefficient (ICC) =0.814 for abdomen, 0.801 for chest]. Within the same dose level, the N, SNR, and CNR were statistically different among reconstructions, while the CT value remained the same. The N increased and SNR decreased as the radiation dose decreased. The DLIR-H performed better than ASiR-V when the radiation dose was reduced, without sacrificing image quality. In the patient study, the interobserver assessment of the data measurement demonstrated good agreement (ICC =0.774 for abdomen, 0.751 for chest). DLIR-H had the highest subjective and objective scores in the abdomen. CONCLUSIONS Application of DLIR could help to reduce radiation dose without sacrificing the image quality of pediatric CT scans. Further clinical validation is required.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Xiang Shi
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Shuang-Shuang Xie
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Ji-Hang Sun
- Imaging Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhuo-Heng Liu
- GE Healthcare, Computed Tomography Research Center, Beijing, China
| | - Shuai Zhang
- GE Healthcare, Computed Tomography Research Center, Beijing, China
| | - Jia-Yang Song
- GE Healthcare, Computed Tomography Research Center, Beijing, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
58
|
Noda Y, Kawai N, Kawamura T, Kobori A, Miyase R, Iwashima K, Kaga T, Miyoshi T, Hyodo F, Kato H, Matsuo M. Radiation and iodine dose reduced thoraco-abdomino-pelvic dual-energy CT at 40 keV reconstructed with deep learning image reconstruction. Br J Radiol 2022; 95:20211163. [PMID: 35230135 PMCID: PMC10996425 DOI: 10.1259/bjr.20211163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate the feasibility of a simultaneous reduction of radiation and iodine doses in dual-energy thoraco-abdomino-pelvic CT reconstructed with deep learning image reconstruction (DLIR). METHODS Thoraco-abdomino-pelvic CT was prospectively performed in 111 participants; 52 participants underwent a standard-dose single-energy CT with a standard iodine dose (600 mgI/kg; SD group), while 59 underwent a low-dose dual-energy CT with a reduced iodine dose [300 mgI/kg; double low-dose (DLD) group]. CT data were reconstructed with a hybrid iterative reconstruction in the SD group and a high-strength level of DLIR at 40 keV in the DLD group. Two radiologists measured the CT numbers of the descending and abdominal aorta, portal vein, hepatic vein, inferior vena cava, liver, pancreas, spleen, and kidney, and background noise. Two other radiologists assessed diagnostic acceptability using a 5-point scale. The CT dose-index volume (CTDIvol), iodine weight, CT numbers of anatomical structures, background noise, and diagnostic acceptability were compared between the two groups using Mann-Whitney U test. RESULTS The median CTDIvol [10 mGy; interquartile range (IQR), 9-13 mGy vs 4 mGy; IQR, 4-5 mGy] and median iodine weight (35 g; IQR, 31-38 g vs 16 g; IQR, 14-18 g) were lower in the DLD group than in the SD group (p < 0.001 for each). The CT numbers of all anatomical structures and background noise were higher in the DLD group than in the SD group (p < 0.001 for all). The diagnostic image quality was obtained in 100% (52/52) of participants in the SD group and 95% (56/59) of participants in the DLD group. CONCLUSION Virtual monochromatic images at 40 keV reconstructed with DLIR could achieve half doses of radiation and iodine while maintaining diagnostic image quality. ADVANCES IN KNOWLEDGE Virtual monochromatic images at 40 keV reconstructed with DLIR algorithm allowed to reduce the doses of radiation and iodine while maintaining diagnostic image quality.
Collapse
Affiliation(s)
| | | | | | | | - Rena Miyase
- Department of Radiology, Gifu University,
Gifu, Japan
| | - Ken Iwashima
- Department of Radiology, Gifu University,
Gifu, Japan
| | - Tetsuro Kaga
- Department of Radiology, Gifu University,
Gifu, Japan
| | - Toshiharu Miyoshi
- Department of Radiology Services, Gifu University
Hospital, Gifu,
Japan
| | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, Gifu
University, Gifu,
Japan
| | - Hiroki Kato
- Department of Radiology, Gifu University,
Gifu, Japan
| | | |
Collapse
|
59
|
Kim J, Kim G, Li L, Zhang P, Kim JY, Kim Y, Kim HH, Wang LV, Lee S, Kim C. Deep learning acceleration of multiscale superresolution localization photoacoustic imaging. LIGHT, SCIENCE & APPLICATIONS 2022; 11:131. [PMID: 35545614 PMCID: PMC9095876 DOI: 10.1038/s41377-022-00820-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 05/02/2023]
Abstract
A superresolution imaging approach that localizes very small targets, such as red blood cells or droplets of injected photoacoustic dye, has significantly improved spatial resolution in various biological and medical imaging modalities. However, this superior spatial resolution is achieved by sacrificing temporal resolution because many raw image frames, each containing the localization target, must be superimposed to form a sufficiently sampled high-density superresolution image. Here, we demonstrate a computational strategy based on deep neural networks (DNNs) to reconstruct high-density superresolution images from far fewer raw image frames. The localization strategy can be applied for both 3D label-free localization optical-resolution photoacoustic microscopy (OR-PAM) and 2D labeled localization photoacoustic computed tomography (PACT). For the former, the required number of raw volumetric frames is reduced from tens to fewer than ten. For the latter, the required number of raw 2D frames is reduced by 12 fold. Therefore, our proposed method has simultaneously improved temporal (via the DNN) and spatial (via the localization method) resolutions in both label-free microscopy and labeled tomography. Deep-learning powered localization PA imaging can potentially provide a practical tool in preclinical and clinical studies requiring fast temporal and fine spatial resolutions.
Collapse
Affiliation(s)
- Jongbeom Kim
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Gyuwon Kim
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 138-78, Pasadena, CA, 91125, USA
| | - Pengfei Zhang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jin Young Kim
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Opticho, 532, CHANGeUP GROUND, 87 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk, 37673, Republic of Korea
| | - Yeonggeun Kim
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyung Ham Kim
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 138-78, Pasadena, CA, 91125, USA.
| | - Seungchul Lee
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Chulhong Kim
- Departments of Electrical Engineering, Mechanical Engineering, Convergence IT Engineering, and Interdisciplinary Bioscience and Bioengineering, Graduate School of Artificial Intelligence, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
- Opticho, 532, CHANGeUP GROUND, 87 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk, 37673, Republic of Korea.
| |
Collapse
|
60
|
Tamura A, Mukaida E, Ota Y, Nakamura I, Arakita K, Yoshioka K. Deep learning reconstruction allows low-dose imaging while maintaining image quality: comparison of deep learning reconstruction and hybrid iterative reconstruction in contrast-enhanced abdominal CT. Quant Imaging Med Surg 2022; 12:2977-2984. [PMID: 35502368 PMCID: PMC9014148 DOI: 10.21037/qims-21-1216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 09/19/2023]
Abstract
We aimed to compare the radiation dose and image quality of a low-dose abdominal computed tomography (CT) protocol reconstructed with deep learning reconstruction (DLR) with those of a routine-dose protocol reconstructed with hybrid-iterative reconstruction. This retrospective study enrolled 71 patients [61 men; average age, 71.9 years; mean body mass index (BMI), 24.3 kg/m2] who underwent both low-dose abdominal CT with DLR [advanced intelligent clear-IQ engine (AiCE)] and routine-dose abdominal CT with hybrid-iterative reconstruction [adaptive iterative dose reduction 3D (AIDR 3D)]. Radiation dose parameters included volume CT dose index (CTDIvol), effective dose (ED), and size-specific dose estimate (SSDE). Mean image noise and contrast-to-noise ratio (CNR) were calculated. Image noise was measured in the hepatic parenchyma and bilateral erector spinae muscles. Moreover, subjective assessment of perceived image quality and diagnostic acceptability was performed. The low-dose protocol helped reduce the CTDIvol by 44.3%, ED by 43.7%, and SSDE by 44.9%. Moreover, the noise was significantly lower and CNR significantly higher with the low-dose protocol than with the normal-dose protocol (P<0.001). In the subjective assessment of image quality, there was no significant difference between the protocols with regard to image noise. Overall, AiCE was superior to AIDR 3D in terms of diagnostic acceptability (P=0.001). The use of AiCE can reduce overall radiation dose by more than 40% without loss of image quality compared to routine-dose abdominal CT with AIDR 3D.
Collapse
Affiliation(s)
- Akio Tamura
- Department of Radiology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Eisuke Mukaida
- Department of Radiology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Yoshitaka Ota
- Division of Central Radiology, Iwate Medical University Hospital, Iwate, Japan
| | - Iku Nakamura
- Iwate Medical University School of Medicine, Iwate, Japan
| | - Kazumasa Arakita
- Healthcare IT Development Center, Canon Medical Systems Corporation, Otawara, Japan
| | - Kunihiro Yoshioka
- Department of Radiology, Iwate Medical University School of Medicine, Iwate, Japan
| |
Collapse
|
61
|
Artificial Intelligence (Enhanced Super-Resolution Generative Adversarial Network) for Calcium Deblooming in Coronary Computed Tomography Angiography: A Feasibility Study. Diagnostics (Basel) 2022; 12:diagnostics12040991. [PMID: 35454039 PMCID: PMC9027004 DOI: 10.3390/diagnostics12040991] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/22/2022] Open
Abstract
Background: The presence of heavy calcification in the coronary artery always presents a challenge for coronary computed tomography angiography (CCTA) in assessing the degree of coronary stenosis due to blooming artifacts associated with calcified plaques. Our study purpose was to use an advanced artificial intelligence (enhanced super-resolution generative adversarial network [ESRGAN]) model to suppress the blooming artifact in CCTA and determine its effect on improving the diagnostic performance of CCTA in calcified plaques. Methods: A total of 184 calcified plaques from 50 patients who underwent both CCTA and invasive coronary angiography (ICA) were analysed with measurements of coronary lumen on the original CCTA, and three sets of ESRGAN-processed images including ESRGAN-high-resolution (ESRGAN-HR), ESRGAN-average and ESRGAN-median with ICA as the reference method for determining sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Results: ESRGAN-processed images improved the specificity and PPV at all three coronary arteries (LAD-left anterior descending, LCx-left circumflex and RCA-right coronary artery) compared to original CCTA with ESRGAN-median resulting in the highest values being 41.0% (95% confidence interval [CI]: 30%, 52.7%) and 26.9% (95% CI: 22.9%, 31.4%) at LAD; 41.7% (95% CI: 22.1%, 63.4%) and 36.4% (95% CI: 28.9%, 44.5%) at LCx; 55% (95% CI: 38.5%, 70.7%) and 47.1% (95% CI: 38.7%, 55.6%) at RCA; while corresponding values for original CCTA were 21.8% (95% CI: 13.2%, 32.6%) and 22.8% (95% CI: 20.8%, 24.9%); 12.5% (95% CI: 2.6%, 32.4%) and 27.6% (95% CI: 24.7%, 30.7%); 17.5% (95% CI: 7.3%, 32.8%) and 32.7% (95% CI: 29.6%, 35.9%) at LAD, LCx and RCA, respectively. There was no significant effect on sensitivity and NPV between the original CCTA and ESRGAN-processed images at all three coronary arteries. The area under the receiver operating characteristic curve was the highest with ESRGAN-median images at the RCA level with values being 0.76 (95% CI: 0.64, 0.89), 0.81 (95% CI: 0.69, 0.93), 0.82 (95% CI: 0.71, 0.94) and 0.86 (95% CI: 0.76, 0.96) corresponding to original CCTA and ESRGAN-HR, average and median images, respectively. Conclusions: This feasibility study shows the potential value of ESRGAN-processed images in improving the diagnostic value of CCTA for patients with calcified plaques.
Collapse
|
62
|
San José Estépar R. Artificial intelligence in functional imaging of the lung. Br J Radiol 2022; 95:20210527. [PMID: 34890215 PMCID: PMC9153712 DOI: 10.1259/bjr.20210527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
Artificial intelligence (AI) is transforming the way we perform advanced imaging. From high-resolution image reconstruction to predicting functional response from clinically acquired data, AI is promising to revolutionize clinical evaluation of lung performance, pushing the boundary in pulmonary functional imaging for patients suffering from respiratory conditions. In this review, we overview the current developments and expound on some of the encouraging new frontiers. We focus on the recent advances in machine learning and deep learning that enable reconstructing images, quantitating, and predicting functional responses of the lung. Finally, we shed light on the potential opportunities and challenges ahead in adopting AI for functional lung imaging in clinical settings.
Collapse
Affiliation(s)
- Raúl San José Estépar
- Applied Chest Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
63
|
Li W, You Y, Zhong S, Shuai T, Liao K, Yu J, Zhao J, Li Z, Lu C. Image quality assessment of artificial intelligence iterative reconstruction for low dose aortic CTA: A feasibility study of 70 kVp and reduced contrast medium volume. Eur J Radiol 2022; 149:110221. [DOI: 10.1016/j.ejrad.2022.110221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/07/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
|
64
|
Jensen CT, Gupta S, Saleh MM, Liu X, Wong VK, Salem U, Qiao W, Samei E, Wagner-Bartak NA. Reduced-Dose Deep Learning Reconstruction for Abdominal CT of Liver Metastases. Radiology 2022; 303:90-98. [PMID: 35014900 PMCID: PMC8962777 DOI: 10.1148/radiol.211838] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022]
Abstract
Background Assessment of liver lesions is constrained as CT radiation doses are lowered; evidence suggests deep learning reconstructions mitigate such effects. Purpose To evaluate liver metastases and image quality between reduced-dose deep learning image reconstruction (DLIR) and standard-dose filtered back projection (FBP) contrast-enhanced abdominal CT. Materials and Methods In this prospective Health Insurance Portability and Accountability Act-compliant study (September 2019 through April 2021), participants with biopsy-proven colorectal cancer and liver metastases at baseline CT underwent standard-dose and reduced-dose portal venous abdominal CT in the same breath hold. Three radiologists detected and characterized lesions at standard-dose FBP and reduced-dose DLIR, reported confidence, and scored image quality. Contrast-to-noise ratios for liver metastases were recorded. Summary statistics were reported, and a generalized linear mixed model was used. Results Fifty-one participants (mean age ± standard deviation, 57 years ± 13; 31 men) were evaluated. The mean volume CT dose index was 65.1% lower with reduced-dose CT (12.2 mGy) than with standard-dose CT (34.9 mGy). A total of 161 lesions (127 metastases, 34 benign lesions) with a mean size of 0.7 cm ± 0.3 were identified. Subjective image quality of reduced-dose DLIR was superior to that of standard-dose FBP (P < .001). The mean contrast-to-noise ratio for liver metastases of reduced-dose DLIR (3.9 ± 1.7) was higher than that of standard-dose FBP (3.5 ± 1.4) (P < .001). Differences in detection were identified only for lesions 0.5 cm or smaller: 63 of 65 lesions detected with standard-dose FBP (96.9%; 95% CI: 89.3, 99.6) and 47 lesions with reduced-dose DLIR (72.3%; 95% CI: 59.8, 82.7). Lesion accuracy with standard-dose FBP and reduced-dose DLIR was 80.1% (95% CI: 73.1, 86.0; 129 of 161 lesions) and 67.1% (95% CI: 59.3, 74.3; 108 of 161 lesions), respectively (P = .01). Lower lesion confidence was reported with a reduced dose (P < .001). Conclusion Deep learning image reconstruction (DLIR) improved CT image quality at 65% radiation dose reduction while preserving detection of liver lesions larger than 0.5 cm. Reduced-dose DLIR demonstrated overall inferior characterization of liver lesions and reader confidence. Clinical trial registration no. NCT03151564 © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Corey T. Jensen
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Shiva Gupta
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Mohammed M. Saleh
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Xinming Liu
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Vincenzo K. Wong
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Usama Salem
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Wei Qiao
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Ehsan Samei
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| | - Nicolaus A. Wagner-Bartak
- From the Departments of Abdominal Imaging (C.T.J., S.G., M.M.S.,
V.K.W., U.S., N.A.W.B.), Physics (X.L.), and Biostatistics (W.Q.), the
University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473,
Houston, TX 77030-4009; and Center for Virtual Imaging Trials, Carl E. Ravin
Advanced Imaging Laboratories, Clinical Imaging Physics Group, Medical Physics
Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and
Electrical and Computer Engineering, Duke University Medical Center, Durham, NC
(E.S.)
| |
Collapse
|
65
|
Value of deep learning reconstruction at ultra-low-dose CT for evaluation of urolithiasis. Eur Radiol 2022; 32:5954-5963. [PMID: 35357541 DOI: 10.1007/s00330-022-08739-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To determine the diagnostic accuracy and image quality of ultra-low-dose computed tomography (ULDCT) with deep learning reconstruction (DLR) to evaluate patients with suspected urolithiasis, compared with ULDCT with hybrid iterative reconstruction (HIR) by using low-dose CT (LDCT) with HIR as the reference standard. METHODS Patients with suspected urolithiasis were prospectively enrolled and underwent abdominopelvic LDCT, followed by ULDCT if any urinary stone was observed. Radiation exposure, stone characteristics, image noise, signal-to-noise ratio (SNR), and subjective image quality on a 5-point Likert scale were evaluated and compared. RESULTS The average effective radiation dose of ULDCT was significantly lower than that of LDCT (1.28 ± 0.34 vs. 5.49 ± 1.00 mSv, p < 0.001). According to the reference standard (LDCT-HIR), 148 urinary stones were observed in 85.0% (51/60) of patients. ULDCT-DLR detected 143 stones with a rate of 96.6%, and ULDCT-HIR detected 142 stones with a rate of 95.9%. The urinary stones that were not observed with ULDCT-DLR or ULDCT-HIR were renal calculi smaller than 3 mm. There were no significant differences in the detection of clinically significant calculi (≥ 3 mm) or stone size estimation among ULDCT-DLR, ULDCT-HIR, and LDCT-HIR. The image quality of ULDCT-DLR was better than that of ULDCT-HIR and LDCT-HIR with lower image noise, higher SNR, and higher average subjective score. CONCLUSIONS ULDCT-DLR performed comparably to LDCT-HIR in urinary stone detection and size estimation with better image quality and decreased radiation exposure. ULDCT-DLR may have potential to be considered the first-line choice to evaluate urolithiasis in practice. KEY POINTS • Ultra-low-dose computed tomography (ULDCT) has been investigated for diagnosis of urolithiasis, but stone evaluation may be adversely impacted by compromised image quality. • This study evaluated the value of novel deep learning reconstruction (DLR) at ULDCT by comparing the stone evaluation and image quality of ULDCT-DLR to the reference standard of low-dose CT (LDCT) with hybrid iterative reconstruction (HIR). • ULDCT-DLR performed comparably to LDCT-HIR in urinary stone detection and size estimation with better image quality and reduced radiation exposure.
Collapse
|
66
|
Hoshika M, Nakaura T, Oda S, Kidoh M, Nagayama Y, Sakabe D, Hirai T, Funama Y. Comparison of the effects of varying tube voltage and iodinated concentration on increasing the iodinated radiation dose in computed tomography. Phys Med 2022; 95:57-63. [DOI: 10.1016/j.ejmp.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
|
67
|
Greffier J, Si-Mohamed S, Guiu B, Frandon J, Loisy M, de Oliveira F, Douek P, Beregi JP, Dabli D. Comparison of virtual monoenergetic imaging between a rapid kilovoltage switching dual-energy computed tomography with deep-learning and four dual-energy CTs with iterative reconstruction. Quant Imaging Med Surg 2022; 12:1149-1162. [PMID: 35111612 DOI: 10.21037/qims-21-708] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
Background To assess the spectral performance of rapid kV switching dual-energy CT (KVSCT-Canon) equipped with a Deep-Learning spectral reconstruction algorithm on virtual-monoenergetic images at low-energy levels and to compare its performances with four other dual-energy CT (DECT) platforms equipped with iterative reconstruction algorithms. Methods Two CT phantoms were scanned on five DECT platforms: KVSCT-Canon, fast kV-switching CT (KVSCT-GE), split filter CT, dual-source CT (DSCT), and dual-layer CT (DLCT). The classical parameters of abdomen-pelvic examinations were used for all phantom acquisitions, and a CTDIvol close to 10 mGy. For KVSCT-Canon, virtual-monoenergetic images were reconstructed with a clinical slice thickness of 0.5 and 1.5 mm to be close to other platforms. Noise power spectrum (NPS) and task-based transfer function (TTF) were evaluated from 40 to 80 keV of virtual-monoenergetic images. A detectability index (d') was computed to model the detection task of two contrast-enhanced lesions as function of keV. Results For KVSCT-Canon, the noise magnitude and average NPS spatial frequency (fav) decreased from 40 to 70 keV and increased thereafter. Similar noise magnitude outcomes were found for KVSCT-GE but the opposite for fav. For the other DECT platforms, the noise magnitude decreased as the keV increased. For split filter CT, DSCT and DLCT, the fav values increased from 40 to 80 keV. For all DECT platforms, TTF at 50% (f50) decreased as the keV increased, decreasing spatial resolution. For KVSCT-Canon, d' values peaked at 60 and 70 keV for both simulated lesions and from 50 to 70 keV for KVSCT-GE. d' decreased between 40 and 70 keV for DSCT, DLCT and split filter CT. For KVSCT-Canon, the increase in slice thickness decreases noise magnitude, fav and f50 and increases d' values. The highest d' values were found for DLCT at 40 and 50 keV and for KVSCT-Canon at 1.5 mm for other keV. Conclusions For KVSCT-Canon, the detectability of contrast-enhanced lesions was highest at 60 keV. The highest d' values were found for DLCT at 40 and 50 keV and for KVSCT-Canon at 1.5 mm for other keV.
Collapse
Affiliation(s)
- Joël Greffier
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, Nîmes, France
| | - Salim Si-Mohamed
- Department of Radiology, Hospices Civils de Lyon, Lyon, France.,INSA-Lyon, Université Lyon, Université Claude-Bernard Lyon 1, UJM-Saint-Étienne, CNRS, Inserm, CREATIS UMR 5220, Lyon, France
| | - Boris Guiu
- Saint-Eloi University Hospital, Montpellier, France
| | - Julien Frandon
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, Nîmes, France
| | - Maeliss Loisy
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, Nîmes, France
| | - Fabien de Oliveira
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, Nîmes, France
| | - Philippe Douek
- Department of Radiology, Hospices Civils de Lyon, Lyon, France.,INSA-Lyon, Université Lyon, Université Claude-Bernard Lyon 1, UJM-Saint-Étienne, CNRS, Inserm, CREATIS UMR 5220, Lyon, France
| | - Jean-Paul Beregi
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, Nîmes, France
| | - Djamel Dabli
- Department of Medical Imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, Nîmes, France
| |
Collapse
|
68
|
Sartoretti T, Landsmann A, Nakhostin D, Eberhard M, Röeren C, Mergen V, Higashigaito K, Raupach R, Alkadhi H, Euler A. Quantum Iterative Reconstruction for Abdominal Photon-counting Detector CT Improves Image Quality. Radiology 2022; 303:339-348. [PMID: 35103540 DOI: 10.1148/radiol.211931] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background An iterative reconstruction (IR) algorithm was introduced for clinical photon-counting detector (PCD) CT. Purpose To investigate the image quality and the optimal strength level of a quantum IR algorithm (QIR; Siemens Healthcare) for virtual monoenergetic images and polychromatic images (T3D) in a phantom and in patients undergoing portal venous abdominal PCD CT. Materials and Methods In this retrospective study, noise power spectrum (NPS) was measured in a water-filled phantom. Consecutive oncologic patients who underwent portal venous abdominal PCD CT between March and April 2021 were included. Virtual monoenergetic images at 60 keV and T3D were reconstructed without QIR (QIR-off; reference standard) and with QIR at four levels (QIR 1-4; index tests). Global noise index, contrast-to-noise ratio (CNR), and voxel-wise CT attenuation differences were measured. Noise and texture, artifacts, diagnostic confidence, and overall quality were assessed qualitatively. Conspicuity of hypodense liver lesions was rated by four readers. Parametric (analyses of variance, paired t tests) and nonparametric tests (Friedman, post hoc Wilcoxon signed-rank tests) were used to compare quantitative and qualitative image quality among reconstructions. Results In the phantom, NPS showed unchanged noise texture across reconstructions with maximum spatial frequency differences of 0.01 per millimeter. Fifty patients (mean age, 59 years ± 16 [standard deviation]; 31 women) were included. Global noise index was reduced from QIR-off to QIR-4 by 45% for 60 keV and by 44% for T3D (both, P < .001). CNR of the liver improved from QIR-off to QIR-4 by 74% for 60 keV and by 69% for T3D (both, P < .001). No evidence of difference was found in mean attenuation of fat and liver (P = .79-.84) and on a voxel-wise basis among reconstructions. Qualitatively, QIR-4 outperformed all reconstructions in every category for 60 keV and T3D (P value range, <.001 to .01). All four readers rated QIR-4 superior to other strengths for lesion conspicuity (P value range, <.001 to .04). Conclusion In portal venous abdominal photon-counting detector CT, an iterative reconstruction algorithm (QIR; Siemens Healthcare) at high strength levels improved image quality by reducing noise and improving contrast-to-noise ratio and lesion conspicuity without compromising image texture or CT attenuation values. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Sinitsyn in this issue.
Collapse
Affiliation(s)
- Thomas Sartoretti
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Anna Landsmann
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Dominik Nakhostin
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Matthias Eberhard
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Christian Röeren
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Victor Mergen
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Kai Higashigaito
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Rainer Raupach
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - Hatem Alkadhi
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| | - André Euler
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (T.S., A.L., D.N., M.E., C.R., V.M., K.H., H.A., A.E.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands (T.S.); and Siemens Healthcare, Forchheim, Germany (R.R.)
| |
Collapse
|
69
|
Greffier J, Dabli D, Hamard A, Belaouni A, Akessoul P, Frandon J, Beregi JP. Effect of a new deep learning image reconstruction algorithm for abdominal computed tomography imaging on image quality and dose reduction compared with two iterative reconstruction algorithms: a phantom study. Quant Imaging Med Surg 2022; 12:229-243. [PMID: 34993074 DOI: 10.21037/qims-21-215] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/03/2021] [Indexed: 11/06/2022]
Abstract
Background New reconstruction algorithms based on deep learning have been developed to correct the image texture changes related to the use of iterative reconstruction algorithms. The purpose of this study was to evaluate the impact of a new deep learning image reconstruction [Advanced intelligent Clear-IQ Engine (AiCE)] algorithm on image-quality and dose reduction compared to a hybrid iterative reconstruction (AIDR 3D) algorithm and a model-based iterative reconstruction (FIRST) algorithm. Methods Acquisitions were carried out using the ACR 464 phantom (and its body ring) at six dose levels (volume computed tomography dose index 15/10/7.5/5/2.5/1 mGy). Raw data were reconstructed using three levels (Mild/Standard/Strong) of AIDR 3D, of FIRST and AiCE. Noise-power-spectrum (NPS) and task-based transfer function (TTF) were computed. Detectability index was computed to model the detection of a small calcification (1.5-mm diameter and 500 HU) and a large mass in the liver (25-mm diameter and 120 HU). Results NPS peaks were lower with AiCE than with AIDR 3D (-41%±6% for all levels) or FIRST (-15%±6% for Strong level and -41%±11% for both other levels). The average NPS spatial frequency was lower with AICE than AIDR 3D (-9%±2% using Mild and -3%±2% using Strong) but higher than FIRST for Standard (6%±3%) and Strong (25%±3%) levels. For acrylic insert, values of TTF at 50 percent were higher with AICE than AIDR 3D and FIRST, except for Mild level (-6%±6% and -13%±3%, respectively). For bone insert, values of TTF at 50 percent were higher with AICE than AIDR 3D but lower than FIRST (-19%±14%). For both simulated lesions, detectability index values were higher with AICE than AIDR 3D and FIRST (except for Strong level and for the small feature; -21%±14%). Using the Standard level, dose could be reduced by -79% for the small calcification and -57% for the large mass using AICE compared to AIDR 3D. Conclusions The new deep learning image reconstruction algorithm AiCE generates an image-quality with less noise and/or less smudged/smooth images and a higher detectability than the AIDR 3D or FIRST algorithms. The outcomes of our phantom study suggest a good potential of dose reduction using AiCE but it should be confirmed clinically in patients.
Collapse
Affiliation(s)
- Joël Greffier
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| | - Djamel Dabli
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| | - Aymeric Hamard
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| | - Asmaa Belaouni
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| | - Philippe Akessoul
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| | - Julien Frandon
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| | - Jean-Paul Beregi
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| |
Collapse
|
70
|
Thapaliya S, Brady SL, Somasundaram E, Anton CG, Coley BD, Towbin AJ, Zhang B, Dillman JR, Trout AT. Detection of urinary tract calculi on CT images reconstructed with deep learning algorithms. Abdom Radiol (NY) 2022; 47:265-271. [PMID: 34605964 DOI: 10.1007/s00261-021-03274-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Deep learning Computed Tomography (CT) reconstruction (DLR) algorithms promise to improve image quality but the impact on clinical diagnostic performance remains to be demonstrated. We aimed to compare DLR to standard iterative reconstruction for detection of urolithiasis by unenhanced CT in children and young adults. METHODS This was an IRB approved retrospective study involving post-hoc reconstruction of clinically acquired unenhanced abdomen/pelvis CT scans. Images were reconstructed with six different manufacturer-standard DLR algorithms and reformatted in 3 planes (axial, sagittal, and coronal) at 3 mm intervals. De-identified reconstructions were loaded as independent examinations for review by 3 blinded radiologists (R1, R2, R3) tasked with identifying and measuring all stones. Results were compared to the clinical iterative reconstruction images as a reference standard. IntraClass correlation coefficients and kappa (k) statistics were used to quantify agreement. RESULTS CT data for 14 patients (mean age: 17.3 ± 3.4 years, 5 males and 9 females, weight class: 31-70 kg (n = 6), 71-100 kg (n = 7), > 100 kg (n = 1)) were reconstructed into 84 total exams. 7 patients had urinary tract calculi. Interobserver agreement on the presence of any urinary tract calculus was substantial to almost perfect (k = 0.71-1) for all DLR algorithms. Agreement with the reference standard on number of calculi was excellent (ICC = 0.78-0.96) and agreement on the size of the largest calculus was fair to excellent (ICC = 0.51-0.97) depending on reviewer and DLR algorithm. CONCLUSION Deep learning reconstruction of unenhanced CT images allows similar renal stone detectability compared to iterative reconstruction.
Collapse
Affiliation(s)
- Samjhana Thapaliya
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, Cincinnati, OH, 45229, USA
| | - Samuel L Brady
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elanchezhian Somasundaram
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christopher G Anton
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brian D Coley
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander J Towbin
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bin Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5031, Cincinnati, OH, 45229, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
71
|
Njølstad T, Jensen K, Dybwad A, Salvesen Ø, Andersen HK, Schulz A. Low-contrast detectability and potential for radiation dose reduction using deep learning image reconstruction—A 20-reader study on a semi-anthropomorphic liver phantom. Eur J Radiol Open 2022; 9:100418. [PMID: 35391822 PMCID: PMC8980706 DOI: 10.1016/j.ejro.2022.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Background A novel deep learning image reconstruction (DLIR) algorithm for CT has recently been clinically approved. Purpose To assess low-contrast detectability and dose reduction potential for CT images reconstructed with the DLIR algorithm and compare with filtered back projection (FBP) and hybrid iterative reconstruction (IR). Material and methods A customized upper-abdomen phantom containing four cylindrical liver inserts with low-contrast lesions was scanned at CT dose indexes of 5, 10, 15, 20 and 25 mGy. Images were reconstructed with FBP, 50% hybrid IR (IR50), and DLIR of low strength (DLL), medium strength (DLM) and high strength (DLH). Detectability was assessed by 20 independent readers using a two-alternative forced choice approach. Dose reduction potential was estimated separately for each strength of DLIR using a fitted model, with the detectability performance of FBP and IR50 as reference. Results For the investigated dose levels of 5 and 10 mGy, DLM improved detectability compared to FBP by 5.8 and 6.9 percentage points (p.p.), and DLH improved detectability by 9.6 and 12.3 p.p., respectively (all p < .007). With IR50 as reference, DLH improved detectability by 5.2 and 9.8 p.p. for the 5 and 10 mGy dose level, respectively (p < .03). With respect to this low-contrast detectability task, average dose reduction potential relative to FBP was estimated to 39% for DLM and 55% for DLH. Relative to IR50, average dose reduction potential was estimated to 21% for DLM and 42% for DLH. Conclusions: Low-contrast detectability performance is improved when applying a DLIR algorithm, with potential for radiation dose reduction. Deep learning image reconstruction improves low-contrast detectability in CT. Performance improved with increasing strength of deep learning image reconstruction. Results suggest potential for CT radiation dose reduction.
Collapse
|
72
|
Bie Y, Yang S, Li X, Zhao K, Zhang C, Zhong H. Impact of deep learning-based image reconstruction on image quality compared with adaptive statistical iterative reconstruction-Veo in renal and adrenal computed tomography. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:409-418. [PMID: 35124575 PMCID: PMC9108564 DOI: 10.3233/xst-211105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To evaluate image quality of deep learning-based image reconstruction (DLIR) in contrast-enhanced renal and adrenal computed tomography (CT) compared with adaptive statistical iterative reconstruction-Veo (ASiR-V). METHODS We prospectively recruited 52 patients. All images were reconstructed with ASiR-V 30%, ASiR-V 70%, and DLIR at low, medium, and high reconstruction strengths. CT number, noise, noise reduction rate, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured and calculated within the region of interest (ROI) on subcutaneous fat, bilateral renal cortices, renal medulla, renal arteries, and adrenal glands. For qualitative analyses, the differentiation of the renal cortex and medulla, conspicuity of the adrenal gland boundary, sharpness, artifacts, and subjective noise were assessed. The overall image quality was calculated on a scale from 0 (worst) to 15 (best) based on the five values above and the score≥9 was acceptable. RESULTS CT number does not significantly differ between the reconstruction datasets. Noise does not significantly differ between ASiR-V 30% and DLIR-L, but it is significantly lower using ASiR-V 70%, DLIR-M, and DLIR-H. The noise reduction rate relative to ASiR-V 30% is significantly different between the DLIR groups and ASiR-V 70%, and DLIR-H yields the highest noise reduction rate (61.6%). SNR and CNR are higher for DLIR-M, DLIR-H, and ASiR-V 70% than for ASiR-V 30% and DLIR-L. DLIR-H shows the best SNR and CNR. The overall image quality yields the same pattern for DLIR-H, with the highest score. Percentages of cases with overall image quality score≥9 are 100% (DLIR-H), 94.23% (DLIR-M), 90.38% (ASiR-V70%), 67.31% (DLIR-L), and 63.46% (ASiR-V30%), respectively. CONCLUSIONS DLIR significantly improved the objective and subjective image quality of renal and adrenal CTs, yielding superior noise reduction compared with ASiR-V.
Collapse
Affiliation(s)
- Yifan Bie
- Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuo Yang
- Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingchao Li
- Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kun Zhao
- Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Changlei Zhang
- Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hai Zhong
- Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
73
|
Noda Y, Nakamura F, Kawamura T, Kawai N, Kaga T, Miyoshi T, Kato H, Hyodo F, Matsuo M. Deep-learning image-reconstruction algorithm for dual-energy CT angiography with reduced iodine dose: preliminary results. Clin Radiol 2021; 77:e138-e146. [PMID: 34782114 DOI: 10.1016/j.crad.2021.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/15/2021] [Indexed: 01/24/2023]
Abstract
AIM To evaluate the computed tomography (CT) attenuation values, background noise, arterial depiction, and image quality in whole-body dual-energy CT angiography (DECTA) at 40 keV with a reduced iodine dose using deep-learning image reconstruction (DLIR) and compare them with hybrid iterative reconstruction (IR). MATERIAL AND METHODS Whole-body DECTA with a reduced iodine dose (200 mg iodine/kg) was performed in 22 patients, and DECTA data at 1.25-mm section thickness with 50% overlap were reconstructed at 40 keV using 40% adaptive statistical iterative reconstruction with Veo (hybrid-IR group), and DLIR at medium and high levels (DLIR-M and DLIR-H groups). The CT attenuation values of the thoracic and abdominal aortas and iliac artery and background noise were measured. Arterial depiction and image quality on axial, multiplanar reformatted (MPR), and volume-rendered (VR) images were assessed by two readers. Quantitative and qualitative parameters were compared between the hybrid-IR, DLIR-M, and DLIR-H groups. RESULTS The vascular CT attenuation values were almost comparable between the three groups (p=0.013-0.97), but the background noise was significantly lower in the DLIR-H group than in the hybrid-IR and DLIR-M groups (p<0.001). The arterial depictions on axial and MPR images and in almost all arteries on VR images were comparable (p=0.14-1). The image quality of axial, MPR, and VR images was significantly better in the DLIR-H group (p<0.001-0.015). CONCLUSION DLIR significantly reduced background noise and improved image quality in DECTA at 40 keV compared with hybrid-IR, while maintaining the arterial depiction in almost all arteries.
Collapse
Affiliation(s)
- Y Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - F Nakamura
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Kawamura
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - N Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Kaga
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Miyoshi
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan
| | - H Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - F Hyodo
- Department of Radiology, Frontier Science for Imaging, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - M Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
74
|
Heinrich A, Streckenbach F, Beller E, Groß J, Weber MA, Meinel FG. Deep Learning-Based Image Reconstruction for CT Angiography of the Aorta. Diagnostics (Basel) 2021; 11:diagnostics11112037. [PMID: 34829383 PMCID: PMC8622129 DOI: 10.3390/diagnostics11112037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
To evaluate the impact of a novel, deep-learning-based image reconstruction (DLIR) algorithm on image quality in CT angiography of the aorta, we retrospectively analyzed 51 consecutive patients who underwent ECG-gated chest CT angiography and non-gated acquisition for the abdomen on a 256-dectector-row CT. Images were reconstructed with adaptive statistical iterative reconstruction (ASIR-V) and DLIR. Intravascular image noise, the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) were quantified for the ascending aorta, the descending thoracic aorta, the abdominal aorta and the iliac arteries. Two readers scored subjective image quality on a five-point scale. Compared to ASIR-V, DLIR reduced the median image noise by 51–54% for the ascending aorta and the descending thoracic aorta. Correspondingly, median CNR roughly doubled for the ascending aorta and descending thoracic aorta. There was a 38% reduction in image noise for the abdominal aorta and the iliac arteries, with a corresponding improvement in CNR. Median subjective image quality improved from good to excellent at all anatomical levels. In CT angiography of the aorta, DLIR substantially improved objective and subjective image quality beyond what can be achieved by state-of-the-art iterative reconstruction. This can pave the way for further radiation or contrast dose reductions.
Collapse
Affiliation(s)
- Andra Heinrich
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, 18057 Rostock, Germany; (A.H.); (F.S.); (E.B.); (M.-A.W.)
| | - Felix Streckenbach
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, 18057 Rostock, Germany; (A.H.); (F.S.); (E.B.); (M.-A.W.)
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, 18057 Rostock, Germany
| | - Ebba Beller
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, 18057 Rostock, Germany; (A.H.); (F.S.); (E.B.); (M.-A.W.)
| | - Justus Groß
- Division of Vascular Surgery, Department of Surgery, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, 18057 Rostock, Germany; (A.H.); (F.S.); (E.B.); (M.-A.W.)
| | - Felix G. Meinel
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, 18057 Rostock, Germany; (A.H.); (F.S.); (E.B.); (M.-A.W.)
- Correspondence: ; Tel.: +49-381-494-9275
| |
Collapse
|
75
|
Algorithmus zur Verbesserung der Bildqualität von CT-Aufnahmen. ROFO-FORTSCHR RONTG 2021. [DOI: 10.1055/a-1395-1543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
76
|
Yoon H, Kim J, Lim HJ, Lee MJ. Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction. BMC Med Imaging 2021; 21:146. [PMID: 34629049 PMCID: PMC8503996 DOI: 10.1186/s12880-021-00677-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Efforts to reduce the radiation dose have continued steadily, with new reconstruction techniques. Recently, image denoising algorithms using artificial neural networks, termed deep learning reconstruction (DLR), have been applied to CT image reconstruction to overcome the drawbacks of iterative reconstruction (IR). The purpose of our study was to compare the objective and subjective image quality of DLR and IR on pediatric abdomen and chest CT images. METHODS This retrospective study included pediatric body CT images from February 2020 to October 2020, performed on 51 patients (34 boys and 17 girls; age 1-18 years). Non-contrast chest CT (n = 16), contrast-enhanced chest CT (n = 12), and contrast-enhanced abdomen CT (n = 23) images were included. Standard 50% adaptive statistical iterative reconstruction V (ASIR-V) images were compared to images with 100% ASIR-V and DLR at medium and high strengths. Attenuation, noise, contrast to noise ratio (CNR), and signal to noise (SNR) measurements were performed. Overall image quality, artifacts, and noise were subjectively assessed by two radiologists using a four-point scale (superior, average, suboptimal, and unacceptable). A phantom scan was performed including the dose range of the clinical images used in our study, and the noise power spectrum (NPS) was calculated. Quantitative and qualitative parameters were compared using repeated-measures analysis of variance (ANOVA) with Bonferroni correction and Wilcoxon signed-rank tests. RESULTS DLR had better CNR and SNR than 50% ASIR-V in both pediatric chest and abdomen CT images. When compared with 50% ASIR-V, high strength DLR was associated with noise reduction in non-contrast chest CT (33.0%), contrast-enhanced chest CT (39.6%), and contrast-enhanced abdomen CT (38.7%) with increases in CNR at 149.1%, 105.8%, and 53.1% respectively. The subjective assessment of overall image quality and the noise was also better on DLR images (p < 0.001). However, there was no significant difference in artifacts between reconstruction methods. From NPS analysis, DLR methods showed a pattern of reducing the magnitude of noise while maintaining the texture. CONCLUSION Compared with 50% ASIR-V, DLR improved pediatric body CT images with significant noise reduction. However, artifacts were not improved by DLR, regardless of strength.
Collapse
Affiliation(s)
- Haesung Yoon
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jisoo Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyun Ji Lim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Mi-Jung Lee
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
77
|
Nagayama Y, Sakabe D, Goto M, Emoto T, Oda S, Nakaura T, Kidoh M, Uetani H, Funama Y, Hirai T. Deep Learning-based Reconstruction for Lower-Dose Pediatric CT: Technical Principles, Image Characteristics, and Clinical Implementations. Radiographics 2021; 41:1936-1953. [PMID: 34597178 DOI: 10.1148/rg.2021210105] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optimizing the CT acquisition parameters to obtain diagnostic image quality at the lowest possible radiation dose is crucial in the radiosensitive pediatric population. The image quality of low-dose CT can be severely degraded by increased image noise with filtered back projection (FBP) reconstruction. Iterative reconstruction (IR) techniques partially resolve the trade-off relationship between noise and radiation dose but still suffer from degraded noise texture and low-contrast detectability at considerably low-dose settings. Furthermore, sophisticated model-based IR usually requires a long reconstruction time, which restricts its clinical usability. With recent advances in artificial intelligence technology, deep learning-based reconstruction (DLR) has been introduced to overcome the limitations of the FBP and IR approaches and is currently available clinically. DLR incorporates convolutional neural networks-which comprise multiple layers of mathematical equations-into the image reconstruction process to reduce image noise, improve spatial resolution, and preserve preferable noise texture in the CT images. For DLR development, numerous network parameters are iteratively optimized through an extensive learning process to discriminate true attenuation from noise by using low-dose training and high-dose teaching image data. After rigorous validations of network generalizability, the DLR engine can be used to generate high-quality images from low-dose projection data in a short reconstruction time in a clinical environment. Application of the DLR technique allows substantial dose reduction in pediatric CT performed for various clinical indications while preserving the diagnostic image quality. The authors present an overview of the basic concept, technical principles, and image characteristics of DLR and its clinical feasibility for low-dose pediatric CT. ©RSNA, 2021.
Collapse
Affiliation(s)
- Yasunori Nagayama
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Daisuke Sakabe
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Makoto Goto
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Takafumi Emoto
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Seitaro Oda
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Takeshi Nakaura
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Masafumi Kidoh
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Hiroyuki Uetani
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Yoshinori Funama
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Toshinori Hirai
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| |
Collapse
|
78
|
Greffier J, Dabli D, Frandon J, Hamard A, Belaouni A, Akessoul P, Fuamba Y, Le Roy J, Guiu B, Beregi JP. Comparison of two versions of a deep learning image reconstruction algorithm on CT image quality and dose reduction: A phantom study. Med Phys 2021; 48:5743-5755. [PMID: 34418110 DOI: 10.1002/mp.15180] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To compare the impact on CT image quality and dose reduction of two versions of a Deep Learning Image Reconstruction algorithm. MATERIAL AND METHODS Acquisitions on the CT ACR 464 phantom were performed at five dose levels (CTDIvol : 10/7.5/5/2.5/1 mGy) using chest or abdomen pelvis protocol parameters. Raw data were reconstructed using the filtered-back projection (FBP), the enhanced level of AIDR 3D (AIDR 3De), and the three levels of AiCE (Mild, Standard, and Strong) for the two versions (AiCE V8 vs AiCE V10). The noise power spectrum (NPS) and task-based transfer function (TTF) for bone (high-contrast insert) and acrylic (low-contrast insert) inserts were computed. To quantify the changes of noise magnitude and texture, the square root of the area under the NPS curve and the average spatial frequency (fav ) of the NPS curve were measured. The detectability index (d') was computed to model the detectability of either a large mass in the liver or lung, or a small calcification or high contrast tissue boundaries. RESULTS The noise magnitude was lower with both AiCE versions than with AIDR 3De. The noise magnitude was lower with AiCE V10 than with AiCE V8 (-4 ± 6% for Mild, -13 ± 3% for Standard, and -48 ± 0% for Strong levels). fav and TTF50% values for both inserts shifted towards higher frequencies with AiCE than with AIDR 3De. Compared to AiCE V08, fav shifted towards higher frequencies with AiCE V10 (45 ± 4%, 36 ± 3%, and 5 ± 4% for all levels, respectively). The TTF50% values shifted towards higher frequencies with AiCE V10 as compared with AiCE V8 for both inserts, except for the Strong level for the acrylic insert. Whatever the dose and AiCE levels, d' values were higher with AiCE V10 than with AiCE V8 for the small object/calcification and for the large object/lesion. CONCLUSION As compared to AIDR 3De, lower noise magnitude and higher spatial resolution and detectability index were found with both versions of AiCE. As compared to AiCE V8, AiCE V10 reduced noise and improved spatial resolution and detectability without changing the noise texture in a simple geometric phantom, except for the Strong level. AiCE V10 seems to have a greater potential for dose reduction than AiCE V8.
Collapse
Affiliation(s)
- Joël Greffier
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| | - Djamel Dabli
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| | - Julien Frandon
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| | - Aymeric Hamard
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| | - Asmaa Belaouni
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| | - Philippe Akessoul
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| | - Yannick Fuamba
- Computed Tomography Division, Canon Medical Systems France, Suresnes, France
| | - Julien Le Roy
- Medical Physics Department, Montpellier University Hospital, Montpellier, France
| | - Boris Guiu
- Saint-Eloi University Hospital, Montpellier, France
| | - Jean-Paul Beregi
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| |
Collapse
|
79
|
Comparison of 0.3-mSv CT to Standard-Dose CT for Detection of Lung Nodules in Children and Young Adults With Cancer. AJR Am J Roentgenol 2021; 217:1444-1451. [PMID: 34232694 DOI: 10.2214/ajr.21.26183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: CT is the imaging modality of choice to identify lung metastasis. Objective: The purpose of this study was to evaluate the performance of reduced-dose CT for detection of lung nodules in children and young adults with cancer. Methods: This prospective study enrolled patients 4-21 years old with known or suspected malignancy who were undergoing clinically indicated chest CT. Study participants underwent an additional investigational reduced-dose chest CT in the same imaging encounter. Separated deidentified CT examinations were reviewed in blinded fashion by three independent radiologists. One reviewer performed a subsequent secondary review to match nodules between the standard- and reduced-dose examinations. Diagnostic performance was computed for the reduced-dose examinations, using clinical examinations as reference standard. Intraobserver and interobserver agreement were calculated using Cohen's Kappa. Results: A total of 78 patients (44 male, 34 female; mean age 15.2±3.8 years) were enrolled. Mean estimated effective dose was 1.8±1.1 mSv for clinical CT and 0.3±0.1 mSv for reduced-dose CT, an 83% reduction. Forty-five (58%) patients had 162 total lung nodules (mean size 3.4±3.3 mm) detected on the clinical CT examinations. A total of 92% of nodules were visible on reduced-dose CT. Sensitivity and specificity of reduced-dose CT for nodules ranged from 63%-77% and 80%-90% respectively across the three reviewers. Intraobserver agreement between clinical and reduced-dose CT was moderate to substantial for presence of nodules (κ=0.45-0.67), and good to excellent for number of nodules (κ=0.68-0.84) and nodule size (κ=0.69-0.86). Interobserver agreement for the presence of nodules was moderate for both reduced-dose (κ=0.53) and clinical (κ=0.54) CT. A median of 1 nodule was present on clinical CT in patients with a falsely negative reduced-dose CT examination. Conclusion: Reduced-dose CT depicts greater than 90% of lung nodules in children and young adults with cancer. Reviewers identified the presence of nodules with moderate sensitivity and high specificity. Clinical Impact: CT performed at 0.3 mSv mean effective dose has acceptable diagnostic performance for lung nodule detection in children and young adults and has the potential to reduce patient dose or expand CT utilization (e.g., to replace radiography in screening or monitoring protocols).
Collapse
|
80
|
Seah J, Brady Z, Ewert K, Law M. Artificial intelligence in medical imaging: implications for patient radiation safety. Br J Radiol 2021; 94:20210406. [PMID: 33989035 DOI: 10.1259/bjr.20210406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Artificial intelligence, including deep learning, is currently revolutionising the field of medical imaging, with far reaching implications for almost every facet of diagnostic imaging, including patient radiation safety. This paper introduces basic concepts in deep learning and provides an overview of its recent history and its application in tomographic reconstruction as well as other applications in medical imaging to reduce patient radiation dose, as well as a brief description of previous tomographic reconstruction techniques. This review also describes the commonly used deep learning techniques as applied to tomographic reconstruction and draws parallels to current reconstruction techniques. Finally, this paper reviews some of the estimated dose reductions in CT and positron emission tomography in the recent literature enabled by deep learning, as well as some of the potential problems that may be encountered such as the obscuration of pathology, and highlights the need for additional clinical reader studies from the imaging community.
Collapse
Affiliation(s)
- Jarrel Seah
- Department of Radiology, Alfred Health, Melbourne, Australia.,Department of Neuroscience, Monash University, Melbourne, Australia.,Annalise.AI, Sydney, Australia
| | - Zoe Brady
- Department of Radiology, Alfred Health, Melbourne, Australia.,Department of Neuroscience, Monash University, Melbourne, Australia
| | - Kyle Ewert
- Department of Radiology, Alfred Health, Melbourne, Australia
| | - Meng Law
- Department of Radiology, Alfred Health, Melbourne, Australia.,Department of Neuroscience, Monash University, Melbourne, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Australia
| |
Collapse
|
81
|
Noda Y, Kawai N, Nagata S, Nakamura F, Mori T, Miyoshi T, Suzuki R, Kitahara F, Kato H, Hyodo F, Matsuo M. Deep learning image reconstruction algorithm for pancreatic protocol dual-energy computed tomography: image quality and quantification of iodine concentration. Eur Radiol 2021; 32:384-394. [PMID: 34131785 DOI: 10.1007/s00330-021-08121-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/05/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To evaluate the image quality and iodine concentration (IC) measurements in pancreatic protocol dual-energy computed tomography (DECT) reconstructed using deep learning image reconstruction (DLIR) and compare them with those of images reconstructed using hybrid iterative reconstruction (IR). METHODS The local institutional review board approved this prospective study. Written informed consent was obtained from all participants. Thirty consecutive participants with pancreatic cancer (PC) underwent pancreatic protocol DECT for initial evaluation. DECT data were reconstructed at 70 keV using 40% adaptive statistical iterative reconstruction-Veo (hybrid-IR) and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The diagnostic acceptability and conspicuity of PC were qualitatively assessed using a 5-point scale. IC values of the abdominal aorta, pancreas, PC, liver, and portal vein; standard deviation (SD); and coefficient of variation (CV) were calculated. Qualitative and quantitative parameters were compared between the hybrid-IR, DLIR-M, and DLIR-H groups. RESULTS The diagnostic acceptability and conspicuity of PC were significantly better in the DLIR-M group compared with those in the other groups (p < .001-.001). The IC values of the anatomical structures were almost comparable between the three groups (p = .001-.9). The SD of IC values was significantly lower in the DLIR-H group (p < .001) and resulted in the lowest CV (p < .001-.002) compared with those in the hybrid-IR and DLIR-M groups. CONCLUSIONS DLIR could significantly improve image quality and reduce the variability of IC values than could hybrid-IR. KEY POINTS Image quality and conspicuity of pancreatic cancer were the best in DLIR-M. DLIR significantly reduced background noise and improved SNR and CNR. The variability of iodine concentration was reduced in DLIR.
Collapse
Affiliation(s)
- Yoshifumi Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Nobuyuki Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shoma Nagata
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Fumihiko Nakamura
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takayuki Mori
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toshiharu Miyoshi
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Ryosuke Suzuki
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Fumiya Kitahara
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroki Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
82
|
Nakamura Y, Higaki T, Honda Y, Tatsugami F, Tani C, Fukumoto W, Narita K, Kondo S, Akagi M, Awai K. Advanced CT techniques for assessing hepatocellular carcinoma. Radiol Med 2021; 126:925-935. [PMID: 33954894 DOI: 10.1007/s11547-021-01366-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth-most common cancer in the world, and hepatic dynamic CT studies are routinely performed for its evaluation. Ongoing studies are examining advanced imaging techniques that may yield better findings than are obtained with conventional hepatic dynamic CT scanning. Dual-energy CT-, perfusion CT-, and artificial intelligence-based methods can be used for the precise characterization of liver tumors, the quantification of treatment responses, and for predicting the overall survival rate of patients. In this review, the advantages and disadvantages of conventional hepatic dynamic CT imaging are reviewed and the general principles of dual-energy- and perfusion CT, and the clinical applications and limitations of these technologies are discussed with respect to HCC. Finally, we address the utility of artificial intelligence-based methods for diagnosing HCC.
Collapse
Affiliation(s)
- Yuko Nakamura
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Toru Higaki
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yukiko Honda
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Fuminari Tatsugami
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Chihiro Tani
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Fukumoto
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Keigo Narita
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shota Kondo
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Motonori Akagi
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuo Awai
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|