51
|
D’Angelo T, Arico FM, Broccio L, Ascenti G, Mazziotti S, Booz C, Martin SS, Yel I, Lanzafame LRM, Blandino A, Sofia C. Multi-Contrast Differentiation by Dual-Energy Spectral CT Angiography in a Patient with Pulmonary Barium Granulomas. Diagnostics (Basel) 2023; 13:diagnostics13050832. [PMID: 36899976 PMCID: PMC10000742 DOI: 10.3390/diagnostics13050832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Barium inhalation usually relates to accidental aspiration during radiological procedures with an oral contrast agent. When present, barium lung deposits are visible as high-density opacities on chest X-ray or CT scan due to high atomic number, and they may be indistinguishable from calcifications. Dual-layer spectral CT has shown good material differentiation capabilities, due to its increased high-Z element range and smaller spectral separation between low- and high-energy spectral data. We present the case of a 17-year-old female with a history of tracheoesophageal fistula, who underwent chest CT angiography on a dual-layer spectral platform. Despite the close Z numbers and K-edge energy levels of the two different contrast materials, spectral CT was able to identify barium lung deposits from a previous swallowing study and to clearly distinguish them from calcium and the surrounding iodine-containing structures.
Collapse
Affiliation(s)
- Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Correspondence: (T.D.); (F.M.A.)
| | - Francesco M. Arico
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
- Correspondence: (T.D.); (F.M.A.)
| | - Lydia Broccio
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Simon S. Martin
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ludovica R. M. Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Carmelo Sofia
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| |
Collapse
|
52
|
Yu HS, Keraliya A, Chakravarti S, Uyeda JW. Multienergy Computed Tomography Applications. Radiol Clin North Am 2023; 61:23-35. [DOI: 10.1016/j.rcl.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
53
|
Gao W, Zhang Y, Dou Y, Zhao L, Wu H, Yang Z, Liu A, Zhu L, Hao F. Association between extramural vascular invasion and iodine quantification using dual-energy computed tomography of rectal cancer: a preliminary study. Eur J Radiol 2023; 158:110618. [PMID: 36455337 DOI: 10.1016/j.ejrad.2022.110618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study aimed to investigate whether histopathological confirmed extramural vascular invasion (EMVI) is associated with quantitative parameters derived from dual-energy computed tomography (DECT) of rectal cancer. METHODS This retrospective study included patients with rectal cancer who underwent rectal cancer surgery and DECT (including arterial-, venous-, and delay-phase scanning) between November 2019 and November 2020. The EMVI of rectal cancer was confirmed via postoperative pathological results. Iodine concentration (IC), IC normalized to the aorta (NIC), and CT attenuation values of the three phases were measured and compared between patients with and without EMVI. Receiver operating characteristic (ROC) curves were generated to determine the diagnostic performance of these DECT quantitative parameters. RESULTS Herein, 36 patients (22 men and 14 women) with a mean age of 62 [range, 43-77] years) with (n = 13) and without (n = 23) EMVI were included. Patients with EMVI exhibited significantly higher IC in the venous and delay phases (venous-phase: 2.92 ± 0.6 vs 2.34 ± 0.48; delay-phase: 2.46 ± 0.47 vs 1.88 ± 0.35) and NIC in all the three phases (arterial-phase: 0.31 ± 0.12 vs 0.24 ± 0.06; venous-phase: 0.58 ± 0.11 vs 0.41 ± 0.07; delay-phase: 0.68 ± 0.10 vs 0.46 ± 0.08) than patients without EMVI. Among them, the highest area under the ROC curve (AUC) was obtained in the delay-phase NIC (AUC = 0.983). IC in the arterial-phase and CT attenuation in all the three phases did not significantly differ between patients with and without EMVI (p = 0.205-0.869). CONCLUSION Iodine quantification using dual-energy CT, especially the NIC of the tumor, differs between the EMVI-positive and EMVI-negative groups and seems to help predict the EMVI of rectal cancer in this preliminary study; however, a larger sample size study is warranted in the future.
Collapse
Affiliation(s)
- Wei Gao
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Yuqi Zhang
- Graduate School of the First Clinical Medical College, Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Yana Dou
- Siemens Healthineers, Wangjing Zhonghuan South Road, Chaoyang District, Beijing 1000102, China
| | - Lei Zhao
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Hui Wu
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Zhenxing Yang
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Aishi Liu
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Lu Zhu
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Fene Hao
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China.
| |
Collapse
|
54
|
Choi H, Ryu J, Lee S, Kim YJ, Bang S. [Detection of Monosodium Urate Crystal of Hand and Wrist in Suspected Gouty Arthritis Patients on Dual-Energy CT and Relationship with Serum Urate Level]. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2023; 84:212-225. [PMID: 36818719 PMCID: PMC9935968 DOI: 10.3348/jksr.2021.0003n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/24/2022] [Accepted: 05/17/2022] [Indexed: 02/10/2023]
Abstract
Purpose We retrospectively investigated the characteristics of patients with monosodium urate (MSU) deposits of the hand and wrist on dual-energy CT (DECT) compared to those without. We also attempted to determine the pattern of MSU distribution in DECT. Materials and Methods In total, 93 patients were included who had undergone DECT for evaluation of the hand or wrist pain under the clinical impression of gouty arthritis. The total volume of MSU deposits on DECT was calculated and the pattern of MSU distribution on DECT was analyzed. Also, the level of the serum urate at the time of DECT and the highest level of the serum urate of the patients were obtained from their records and the relationship between MSU and serum urate level was evaluated. Results The range of the volume of MSU deposits on DECT was 0.01-16.11 cm3 (average: 1.07 cm3). The average level of serum urate was significantly higher in the MSU positive group than that in the MSU negative group. MSU deposits were most frequently observed in the wrists followed by fingers and digitorum tendons. Conclusion On DECT, MSU deposits were most frequently detected in the wrist and related with high serum urate level.
Collapse
Affiliation(s)
- Hana Choi
- Department of Radiology, Hanyang University School of Medicine, Guri Hospital, Guri, Korea
| | - Jeongah Ryu
- Department of Radiology, Hanyang University School of Medicine, Guri Hospital, Guri, Korea
| | - Seunghun Lee
- Department of Radiology, Hanyang University School of Medicine, Seoul Hospital, Seoul, Korea
| | - Yeo Ju Kim
- Department of Radiology, Hanyang University School of Medicine, Seoul Hospital, Seoul, Korea
| | - Soyoung Bang
- Department of Rheumatology, Hanyang University School of Medicine, Guri Hospital, Guri, Korea
| |
Collapse
|
55
|
Neuroendocrine neoplasm imaging: protocols by site of origin. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:4081-4095. [PMID: 36307597 DOI: 10.1007/s00261-022-03713-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 01/18/2023]
Abstract
With the relatively low incidence of neuroendocrine neoplasms (NEN), most radiologists are not familiar with their optimal imaging techniques. The imaging protocols for NENs should be tailored to the site of origin to accurately define local extension of NEN at time of staging. Patterns of spread and recurrence should be taken into consideration when choosing protocols for detection of recurrence and metastases. This paper will present the recommended CT and MRI imaging protocols for gastro-enteric and pancreatic NENs based on site of origin or predominant pattern of metastatic disease, and explain the rationale for MRI contrast type, contrast timing, as well as specific sequences in MRI. We will also briefly comment on PET/CT and PET/MRI imaging protocols.
Collapse
|
56
|
Gong H, Baffour F, Glazebrook KN, Rhodes NG, Tiegs-Heiden CA, Thorne JE, Cook JM, Kumar S, Fletcher JG, McCollough CH, Leng S. Deep learning-based virtual noncalcium imaging in multiple myeloma using dual-energy CT. Med Phys 2022; 49:6346-6358. [PMID: 35983992 PMCID: PMC9588661 DOI: 10.1002/mp.15934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dual-energy CT with virtual noncalcium (VNCa) images allows the evaluation of focal intramedullary bone marrow involvement in patients with multiple myeloma. However, current commercial VNCa techniques suffer from excessive image noise and artifacts due to material decomposition used in synthesizing VNCa images. OBJECTIVES In this work, we aim to improve VNCa image quality for the assessment of focal multiple myeloma, using an Artificial intelligence based Generalizable Algorithm for mulTi-Energy CT (AGATE) method. MATERIALS AND METHODS AGATE method used a custom dual-task convolutional neural network (CNN) that concurrently carries out material classification and quantification. The material classification task provided an auxiliary regularization to the material quantification task. CNN parameters were optimized using custom loss functions that involved cross-entropy, physics-informed constraints, structural redundancy in spectral and material images, and texture information in spectral images. For training data, CT phantoms (diameters 30 to 45 cm) with tissue-mimicking inserts were scanned on a third generation dual-source CT system. Scans were performed at routine dose and half of the routine dose. Small image patches (i.e., 40 × 40 pixels) of tissue-mimicking inserts with known basis material densities were extracted for training samples. Numerically simulated insert materials with various shapes increased diversity of training samples. Generalizability of AGATE was evaluated using CT images from phantoms and patients. In phantoms, material decomposition accuracy was estimated using mean-absolute-percent-error (MAPE), using physical inserts that were not used during the training. Noise power spectrum (NPS) and modulation transfer function (MTF) were compared across phantom sizes and radiation dose levels. Five patients with multiple myeloma underwent dual-energy CT, with VNCa images generated using a commercial method and AGATE. Two fellowship-trained musculoskeletal radiologists reviewed the VNCa images (commercial and AGATE) side-by-side using a dual-monitor display, blinded to VNCa type, rating the image quality for focal multiple myeloma lesion visualization using a 5-level Likert comparison scale (-2 = worse visualization and diagnostic confidence, -1 = worse visualization but equivalent diagnostic confidence, 0 = equivalent visualization and diagnostic confidence, 1 = improved visualization but equivalent diagnostic confidence, 2 = improved visualization and diagnostic confidence). A post hoc assignment of comparison ratings was performed to rank AGATE images in comparison to commercial ones. RESULTS AGATE demonstrated consistent material quantification accuracy across phantom sizes and radiation dose levels, with MAPE ranging from 0.7% to 4.4% across all testing materials. Compared to commercial VNCa images, the AGATE-synthesized VNCa images yielded considerably lower image noise (50-77% noise reduction) without compromising noise texture or spatial resolution across different phantom sizes and two radiation doses. AGATE VNCa images had markedly reduced area under NPS curves and maintained NPS peak frequency (0.7 lp/cm to 1.0 lp/cm), with similar MTF curves (50% MTF at 3.0 lp/cm). In patients, AGATE demonstrated reduced image noise and artifacts with improved delineation of focal multiple myeloma lesions (all readers comparison scores indicating improved overall diagnostic image quality [scores 1 or 2]). CONCLUSIONS AGATE demonstrated reduced noise and artifacts in VNCa images and ability to improve visualization of bone marrow lesions for assessing multiple myeloma.
Collapse
Affiliation(s)
- Hao Gong
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | - Joselle M. Cook
- Department of Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Shaji Kumar
- Department of Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
57
|
Singh R, Rai R, Mroueh N, Kambadakone A. Role of Dual Energy Computed Tomography in Inflammatory Bowel Disease. Semin Ultrasound CT MR 2022; 43:320-332. [PMID: 35738817 DOI: 10.1053/j.sult.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dual-energy computed tomography (DECT), which allows material-based differential X-ray absorption behavior from near simultaneously acquired low- and high-kilovolt datasets is finding increasing applications in the evaluation of bowel diseases. In patients with inflammatory bowel disease, DECT techniques permit both qualitative and quantitative assessment. Particularly in patients with Crohn's disease, monoenergetic and iodine specific images have been explored. This article focuses on the principles and applications of DECT in inflammatory bowel disease along with review of its limitations and challenges.
Collapse
Affiliation(s)
- Ramandeep Singh
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Rubal Rai
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Nayla Mroueh
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | | |
Collapse
|
58
|
Farag A, Fielding J, Catanzano T. Role of Dual-energy Computed Tomography in Diagnosis of Acute Pulmonary Emboli, a Review. Semin Ultrasound CT MR 2022; 43:333-343. [PMID: 35738818 DOI: 10.1053/j.sult.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prompt diagnosis of pulmonary embolism is essential to avert morbidity and mortality. There are a number of diagnostic options for identification of a pulmonary embolism, including laboratory and imaging investigations. While computed tomography pulmonary angiography (CTPA) has largely supplanted nuclear medicine ventilation/perfusion studies, there remain significant limitations in the optimal performance of CTPA. Dual-energy computed tomography has the ability to overcome many of the limitations of standard of care CTPA, including rescue of poor contrast boluses and the ability to evaluate pulmonary perfusion defects.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Radiology, UMass Chan Medical School-Baystate, Springfield, MA
| | - Jordan Fielding
- Department of Radiology, UMass Chan Medical School-Baystate, Springfield, MA
| | - Tara Catanzano
- Department of Radiology, UMass Chan Medical School-Baystate, Springfield, MA.
| |
Collapse
|
59
|
Santos Armentia E, Martín Noguerol T, Silva Priegue N, Delgado Sánchez-Gracián C, Trinidad López C, Prada González R. Strengths, weaknesses, opportunities, and threat analysis of dual-energy CT in head and neck imaging. RADIOLOGIA 2022; 64:333-347. [DOI: 10.1016/j.rxeng.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
|
60
|
Santos Armentia E, Martín-Noguerol T, Silva Priegue N, Delgado Sánchez-Gracián C, Trinidad López C, Prada González R. Análisis de las fortalezas, oportunidades, debilidades y amenazas de la tomografía computarizada de doble energía en el diagnóstico por la imagen de la cabeza y el cuello. RADIOLOGIA 2022. [DOI: 10.1016/j.rx.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
61
|
Hepatobiliary Dual-Energy Computed Tomography. Radiol Clin North Am 2022; 60:731-743. [DOI: 10.1016/j.rcl.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
62
|
Jensen CT. Image Quality Evaluation in Dual Energy CT of the Chest, Abdomen and Pelvis in Obese Patients with Deep Learning Image Reconstruction. J Comput Assist Tomogr 2022; 46:612-613. [PMID: 35759780 DOI: 10.1097/rct.0000000000001353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Corey T Jensen
- From the Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
63
|
Diagnostic performance of dual-energy CT in nonspecific terminal ileitis. Jpn J Radiol 2022; 40:1069-1078. [DOI: 10.1007/s11604-022-01288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
64
|
Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT. Eur Radiol 2022; 32:5480-5490. [PMID: 35192011 PMCID: PMC9279234 DOI: 10.1007/s00330-022-08628-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/08/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
Objectives To evaluate inter- and intra- scan mode and scanner repeatability and reproducibility of radiomics features within and between single-energy CT (SECT) and dual-energy CT (DECT). Methods A standardized phantom with sixteen rods of clinical-relevant densities was scanned on seven DECT-capable scanners and three SECT-only scanners. The acquisition parameters were selected to present typical abdomen-pelvic examinations with the same voxel size. Images of SECT at 120 kVp and corresponding 120 kVp-like virtual monochromatic images (VMIs) in DECT which were generated according to scanners were analyzed. Regions of interest were drawn with rigid registrations to avoid variations due to segmentation. Radiomics features were extracted via Pyradiomics platform. Test-retest repeatability was evaluated by Bland-Altman analysis for repeated scans. Intra-scanner reproducibility for different scan modes was tested by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). Inter-scanner reproducibility among different scanners for same scan mode was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). Results The test-retest analysis presented that 92.91% and 87.02% of the 94 assessed features were repeatable for SECT 120kVp and DECT 120 kVp-like VMIs, respectively. The intra-scanner analysis for SECT 120kVp vs DECT 120 kVp-like VMIs demonstrated that 10.76% and 10.28% of features were with ICC > 0.90 and CCC > 0.90, respectively. The inter-scanner analysis showed that 17.09% and 27.73% of features for SECT 120kVp were with CV < 10% and QCD < 10%, and 15.16% and 32.78% for DECT 120 kVp-like VMIs, respectively. Conclusions The majority of radiomics features were non-reproducible within and between SECT and DECT. Key Points • Although the test-retest analysis showed high repeatability for radiomics features, the overall reproducibility of radiomics features within and between SECT and DECT was low. • Only about one-tenth of radiomics features extracted from SECT images and corresponding DECT images did match each other, even their average photon energy levels were considered alike, indicating that the scan mode potentially altered the radiomics features. • Less than one-fifth of radiomics features were reproducible among multiple SECT and DECT scanners, regardless of their fixed acquisition and reconstruction parameters, suggesting the necessity of scanning protocol adjustment and post-scan harmonization process. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-022-08628-3.
Collapse
|
65
|
Tatsugami F, Higaki T, Nakamura Y, Honda Y, Awai K. Dual-energy CT: minimal essentials for radiologists. Jpn J Radiol 2022; 40:547-559. [PMID: 34981319 PMCID: PMC9162973 DOI: 10.1007/s11604-021-01233-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Dual-energy CT, the object is scanned at two different energies, makes it possible to identify the characteristics of materials that cannot be evaluated on conventional single-energy CT images. This imaging method can be used to perform material decomposition based on differences in the material-attenuation coefficients at different energies. Dual-energy analyses can be classified as image data-based- and raw data-based analysis. The beam-hardening effect is lower with raw data-based analysis, resulting in more accurate dual-energy analysis. On virtual monochromatic images, the iodine contrast increases as the energy level decreases; this improves visualization of contrast-enhanced lesions. Also, the application of material decomposition, such as iodine- and edema images, increases the detectability of lesions due to diseases encountered in daily clinical practice. In this review, the minimal essentials of dual-energy CT scanning are presented and its usefulness in daily clinical practice is discussed.
Collapse
Affiliation(s)
- Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Toru Higaki
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuko Nakamura
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yukiko Honda
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
66
|
Cano Alonso R, Álvarez Vázquez A, Andreu Vázquez C, Thuissard Vasallo I, Fernández Alfonso A, Recio Rodríguez M, Martínez de Vega V. Tomografía computarizada con energía espectral en la diferenciación de los adenomas y metástasis suprarrenales: utilidad de los mapas de descomposición de materiales y de imágenes monocromáticas. RADIOLOGIA 2021. [DOI: 10.1016/j.rx.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|