51
|
Intoh A, Suzuki N, Koszka K, Eggan K. SLC52A3, A Brown-Vialetto-van Laere syndrome candidate gene is essential for mouse development, but dispensable for motor neuron differentiation. Hum Mol Genet 2016; 25:1814-23. [PMID: 26976849 DOI: 10.1093/hmg/ddw053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Riboflavin, also known as vitamin B2, is essential for cellular reduction-oxidation reactions, but is not readily synthesized by mammalian cells. It has been proposed that riboflavin absorption occurs through solute carrier family 52 members (SLC52) A1, A2 and A3. These transporters are also candidate genes for the childhood onset-neural degenerative syndrome Brown-Vialetto-Van Laere (BVVL). Although riboflavin is an essential nutrient, why mutations in its transporters result in a neural cell-specific disorder remains unclear. Here, we provide evidence that Slc52a3 is the mouse ortholog of SLC52A3 and show that Slc52a3 deficiency results in early embryonic lethality. Loss of mutant embryos was associated with both defects in placental formation and increased rates of apoptosis in embryonic cells. In contrast, Slc52a3 -/- embryonic stem cell lines could be readily established and differentiated into motor neurons, suggesting that this transporter is dispensable for neural differentiation and short-term maintenance. Consistent with this finding, examination of Slc52a3 gene products in adult tissues revealed expression in the testis and intestine but little or none in the brain and spinal cord. Our results suggest that BVVL patients with SCL52A3 mutations may be good candidates for riboflavin replacement therapy and suggests that either the mutations these individuals carry are hypomorphic, or that in these cases alternative transporters act during human embryogenesis to allow full-term development.
Collapse
Affiliation(s)
- Atsushi Intoh
- Department of Stem Cell and Regenerative Biology, The Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Building, 7 Divinity Avenue, Cambridge, MA 02138, USA and
| | - Naoki Suzuki
- Department of Stem Cell and Regenerative Biology, The Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Building, 7 Divinity Avenue, Cambridge, MA 02138, USA and
| | - Kathryn Koszka
- Department of Stem Cell and Regenerative Biology, The Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Building, 7 Divinity Avenue, Cambridge, MA 02138, USA and
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, The Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Building, 7 Divinity Avenue, Cambridge, MA 02138, USA and The Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
52
|
Beztsinna N, Solé M, Taib N, Bestel I. Bioengineered riboflavin in nanotechnology. Biomaterials 2016; 80:121-133. [DOI: 10.1016/j.biomaterials.2015.11.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/16/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
|
53
|
Wu AML, Dedina L, Dalvi P, Yang M, Leon-Cheon J, Earl B, Harper PA, Ito S. Riboflavin uptake transporter Slc52a2 (RFVT2) is upregulated in the mouse mammary gland during lactation. Am J Physiol Regul Integr Comp Physiol 2016; 310:R578-85. [PMID: 26791833 DOI: 10.1152/ajpregu.00507.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/16/2016] [Indexed: 12/13/2022]
Abstract
While it is well recognized that riboflavin accumulates in breast milk as an essential vitamin for neonates, transport mechanisms for its milk excretion are not well characterized. The multidrug efflux transporter ABCG2 in the apical membrane of milk-producing mammary epithelial cells (MECs) is involved with riboflavin excretion. However, it is not clear whether MECs possess other riboflavin transport systems, which may facilitate its basolateral uptake into MECs. We report here that transcripts encoding the second (SLC52A2) and third (SLC52A3) member of the recently discovered family of SLC52A riboflavin uptake transporters are expressed in milk fat globules from human breast milk. Furthermore, Slc52a2 and Slc52a3 mRNA are upregulated in the mouse mammary gland during lactation. Importantly, the induction ofSlc52a2, which was the major Slc52a riboflavin transporter in the lactating mammary gland, was also observed at the protein level. Subcellular localization studies showed that green fluorescent protein-tagged mouse SLC52A2 mainly localized to the cell membrane, with no preferential distribution to the apical or basolateral membrane in polarized kidney MDCK cells. These results strongly implicate a potential role for SLC52A2 in riboflavin uptake by milk-producing MECs, a critical step in the transfer of riboflavin into breast milk.
Collapse
Affiliation(s)
- Alex Man Lai Wu
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; and
| | - Liana Dedina
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; and
| | - Pooja Dalvi
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Mingdong Yang
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - John Leon-Cheon
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; and
| | - Brian Earl
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Patricia A Harper
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; and
| | - Shinya Ito
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; and Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
54
|
Jayapaul J, Arns S, Bunker M, Weiler M, Rutherford S, Comba P, Kiessling F. In vivo evaluation of riboflavin receptor targeted fluorescent USPIO in mice with prostate cancer xenografts. NANO RESEARCH 2016; 9:1319-1333. [PMID: 27738498 DOI: 10.1007/s12274-016-1028-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 05/21/2023]
Abstract
UNLABELLED Riboflavin (Rf) receptors bind and translocate Rf and its phosphorylated forms (e.g. flavin mononucleotide, FMN) into cells where they mediate various cellular metabolic pathways. Previously, we showed that FMN-coated ultrasmall superparamagnetic iron oxide (FLUSPIO) nanoparticles are suitable for labeling metabolically active cancer and endothelial cells in vitro. In this study, we focused on the in vivo application of FLUSPIO using prostate cancer xenografts. Size, charge, and chemical composition of FLUSPIO were evaluated. We explored the in vitro specificity of FLUSPIO for its cellular receptors using magnetic resonance imaging (MRI) and Prussian blue staining. Competitive binding experiments were performed in vivo by injecting free FMN in excess. Bio-distribution of FLUSPIO was determined by estimating iron content in organs and tumors using a colorimetric assay. AFM analysis and zeta potential measurements revealed a particulate morphology approximately 20-40 nm in size and a negative zeta potential (-24.23 ± 0.15 mV) in water. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry data confirmed FMN present on the USPIO nanoparticle surface. FLUSPIO uptake in prostate cancer cells and human umbilical vein endothelial cells was significantly higher than that of control USPIO, while addition of excess of free FMN reduced accumulation. Similarly, in vivo MRI and histology showed specific FLUSPIO uptake by prostate cancer cells, tumor endothelial cells, and tumor-associated macrophages. Besides prominent tumor accumulation, FLUSPIO accumulated in the liver, spleen, lung, and skin. Hence, our data strengthen our hypothesis that targeting riboflavin receptors is an efficient approach to accumulate nanomedicines in tumors opening perspectives for the development of diagnostic and therapeutic systems. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available for this article at 10.1007/s12274-016-1028-7 and is accessible for authorized users.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074 Germany ; Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg, 69120 Germany ; Molecular Imaging Group, Department of Structural Biology, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin, 13125 Germany
| | - Susanne Arns
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074 Germany
| | - Matt Bunker
- AstraZeneca, Pharmaceutical Development, Charter Way, Macclesfield, Cheshire, SK10 2NA UK ; Molecular Profiles Ltd., 8 Orchard Place, Nottingham Business Park, Nottingham, NG8 6PX UK
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074 Germany
| | - Sandra Rutherford
- Molecular Profiles Ltd., 8 Orchard Place, Nottingham Business Park, Nottingham, NG8 6PX UK
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg, 69120 Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074 Germany
| |
Collapse
|
55
|
Tsvetkova Y, Beztsinna N, Jayapaul J, Weiler M, Arns S, Shi Y, Lammers T, Kiessling F. Refinement of adsorptive coatings for fluorescent riboflavin-receptor-targeted iron oxide nanoparticles. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:47-54. [PMID: 26265388 DOI: 10.1002/cmmi.1657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/31/2015] [Accepted: 06/14/2015] [Indexed: 12/14/2022]
Abstract
Flavin mononucleotide (FMN) is a riboflavin derivative that can be exploited to target the riboflavin transporters (RFTs) and the riboflavin carrier protein (RCP) in cells with high metabolic activity. In this study we present the synthesis of different FMN-coated ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) and their efficiency as targeting contrast agents. Since FMN alone cannot stabilize the nanoparticles, we used adenosine phosphates--AMP, ADP and ATP--as spacers to obtain colloidally stable nanoparticles. Nucleotides with di- and triphosphate groups were intended to increase the USPIO charge and thus improve zeta potential and stability. However, all nanoparticles formed negatively charged clusters with similar properties in terms of zeta potential (-28 ± 2 mV), relaxivity (228-259 mM(-1) s(-1) at 3 T) and hydrodynamic radius (53-85 nm). Molecules with a higher number of phosphate groups, such as ADP and ATP, have a higher adsorption affinity towards iron oxide, which, instead of providing more charge, led to partial desorption and replacement of FMN. Hence, we obtained USPIOs carrying different amounts of targeting agent, which significantly influenced the nanoparticles' uptake. The nanoparticles' uptake by different cancer cells and HUVECs was evaluated photometrically and with MR relaxometry, showing that the cellular uptake of the USPIOs increases with the FMN amount on their surface. Thus, for USPIOs targeted with riboflavin derivatives the use of spacers with increasing numbers of phosphate groups does not improve either zeta potential or the particles' stability, but rather detaches the targeting moieties from their surface, leading to lower cellular uptake.
Collapse
Affiliation(s)
- Yoanna Tsvetkova
- Department of Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Nataliia Beztsinna
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR 5248, University of Bordeaux, Allée Geoffroy St Hilaire, Bâtiment B14, 33600, Pessac, France
| | - Jabadurai Jayapaul
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Marek Weiler
- Department of Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Susanne Arns
- Department of Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Yang Shi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508, Utrecht, TB, The Netherlands
| | - Twan Lammers
- Department of Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
56
|
Yadav S, Karthikeyan S. Structural and biochemical characterization of GTP cyclohydrolase II from Helicobacter pylori reveals its redox dependent catalytic activity. J Struct Biol 2015; 192:100-15. [PMID: 26272484 DOI: 10.1016/j.jsb.2015.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/01/2015] [Accepted: 08/10/2015] [Indexed: 01/10/2023]
Abstract
GTP cyclohydrolase II (GCHII), catalyzes the conversion of GTP to 2,5-diamino-6-β-ribosyl-4(3H)-pyrimidinone-5'-phosphate and has been shown to be essential for pathogens. Here we describe the biochemical, kinetic and structural characterization of GCHII from Helicobacter pylori (hGCHII). The crystal structure of hGCHII, unlike other GCHII structures, revealed that cysteines at the active site existed in oxidized state forming two disulfide bonds and lacked Zn(2+) that was shown to be indispensable for catalytic activity in other species. However, incubation of hGCHII with hydrogen peroxide, an oxidizing agent, followed by PAR-assay showed that Zn(2+) was intrinsically present, indicating that all cysteines at the catalytic site remained in reduced state. Moreover, site directed mutagenesis of catalytic site cysteines revealed that only three, out of four cysteines were essential for hGCHII activity. These results, though, indicated that hGCHII crystallized in oxidized form, the expulsion of Zn(2+) upon oxidation of catalytic cysteines revealed its ability to act in response to the redox environment. Exploring further, incubation of hGCHII with reversible thiol modifying agent S-methyl-methane-thiosulfonate resulted in loss of GCHII activity due to oxidation of its cysteine residues as revealed by mass spectrometry studies. However, addition of reducing agent DTT partially restored the hGCHII catalytic activity. Taken together, these results demonstrate that hGCHII can regulate its catalytic activity depending on the redox environment, a function hitherto unknown for GCHII.
Collapse
Affiliation(s)
- Savita Yadav
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160 036, India
| | - Subramanian Karthikeyan
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160 036, India.
| |
Collapse
|
57
|
Poulsen NA, Rybicka I, Larsen LB, Buitenhuis AJ, Larsen MK. Short communication: Genetic variation of riboflavin content in bovine milk. J Dairy Sci 2015; 98:3496-501. [DOI: 10.3168/jds.2014-8829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/28/2015] [Indexed: 12/30/2022]
|
58
|
Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 2015; 6:148. [PMID: 25941533 PMCID: PMC4403557 DOI: 10.3389/fgene.2015.00148] [Citation(s) in RCA: 456] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/30/2015] [Indexed: 01/08/2023] Open
Abstract
The human gut microbiota supplies its host with essential nutrients, including B-vitamins. Using the PubSEED platform, we systematically assessed the genomes of 256 common human gut bacteria for the presence of biosynthesis pathways for eight B-vitamins: biotin, cobalamin, folate, niacin, pantothenate, pyridoxine, riboflavin, and thiamin. On the basis of the presence and absence of genome annotations, we predicted that each of the eight vitamins was produced by 40-65% of the 256 human gut microbes. The distribution of synthesis pathways was diverse; some genomes had all eight biosynthesis pathways, whereas others contained no de novo synthesis pathways. We compared our predictions to experimental data from 16 organisms and found 88% of our predictions to be in agreement with published data. In addition, we identified several pairs of organisms whose vitamin synthesis pathway pattern complemented those of other organisms. This analysis suggests that human gut bacteria actively exchange B-vitamins among each other, thereby enabling the survival of organisms that do not synthesize any of these essential cofactors. This result indicates the co-evolution of the gut microbes in the human gut environment. Our work presents the first comprehensive assessment of the B-vitamin synthesis capabilities of the human gut microbiota. We propose that in addition to diet, the gut microbiota is an important source of B-vitamins, and that changes in the gut microbiota composition can severely affect our dietary B-vitamin requirements.
Collapse
Affiliation(s)
- Stefanía Magnúsdóttir
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Dmitry Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences and Genetics Institute, University of FloridaGainesville, FL, USA
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| |
Collapse
|
59
|
Genetic diversity of koala retroviral envelopes. Viruses 2015; 7:1258-70. [PMID: 25789509 PMCID: PMC4379569 DOI: 10.3390/v7031258] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 01/03/2023] Open
Abstract
Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.
Collapse
|
60
|
Subramanian VS, Kapadia R, Ghosal A, Said HM. Identification of residues/sequences in the human riboflavin transporter-2 that is important for function and cell biology. Nutr Metab (Lond) 2015; 12:13. [PMID: 25798182 PMCID: PMC4367879 DOI: 10.1186/s12986-015-0008-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/18/2015] [Indexed: 11/26/2022] Open
Abstract
Background Riboflavin (RF) is essential for normal cellular metabolic activities. Human cells obtain RF from their surroundings via a carrier-mediated process that involves RF transporters -1, -2 & -3 (hRFVT -1, -2 & -3; products of SLC52A1, -A2 and -A3 genes, respectively). Little is known about the structural features of these transporters that are important for their function/cell biology. Our aim in this study was to address these issues for the hRFVT-2, a transporter linked to the neurodegenerative disorder Brown-Vialetto-Van Laere Syndrome (BVVLS). Methods We used comparative protein-structure modelling to predict residues that interact with two amino acids known to be critical for hRFVT-2 function (the clinical mutants L123 and L339), site-directed mutagenesis, and truncation approach in the human-derived brain U87 cell model. Results First we showed that the defect in the function of the L123 and L339 hRFVT-2 clinical mutants is related to a reduction in protein stability/translation efficiency and to retention of the protein in the ER. Mutating V120 and L121 (residues predicted to interact with L123) and L342 (a residue predicted to interact with L339) also led to a significant inhibition in hRFVT-2 function (with no change in membrane expression); this inhibition was associated with changes in protein stability/translation efficiency (in the case of V120A and L342A) and an impairment in transport function (in the case of L121). Truncating the N- and C- terminals of hRFVT-2 led to significant inhibition in RF uptake, which was associated with changes in protein stability/translation efficiency (it was also associated with a partial impairment in membrane targeting in the case of the N-terminal truncation). Conclusion These investigations report on identification of residues/sequences in the hRFVT-2 protein that is important for its physiological function and cell biology.
Collapse
Affiliation(s)
- Veedamali S Subramanian
- Departments of Medicine, Physiology/Biophysics, University of California, Irvine, CA 92697 USA ; Department of Veterans Affairs Medical Center, Long Beach, CA 90822 USA
| | - Rubina Kapadia
- Departments of Medicine, Physiology/Biophysics, University of California, Irvine, CA 92697 USA ; Department of Veterans Affairs Medical Center, Long Beach, CA 90822 USA
| | - Abhisek Ghosal
- Departments of Medicine, Physiology/Biophysics, University of California, Irvine, CA 92697 USA ; Department of Veterans Affairs Medical Center, Long Beach, CA 90822 USA
| | - Hamid M Said
- Departments of Medicine, Physiology/Biophysics, University of California, Irvine, CA 92697 USA ; Department of Veterans Affairs Medical Center, Long Beach, CA 90822 USA
| |
Collapse
|
61
|
Ghosal A, Sabui S, Said HM. Identification and characterization of the minimal 5'-regulatory region of the human riboflavin transporter-3 (SLC52A3) in intestinal epithelial cells. Am J Physiol Cell Physiol 2014; 308:C189-96. [PMID: 25394472 DOI: 10.1152/ajpcell.00342.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The human riboflavin (RF) transporter-3 (product of the SLC52A3 gene) plays an important role in intestinal RF absorption. Our aims in this study were to identify the minimal 5'-regulatory region of the SLC52A3 gene and the regulatory element(s) involved in its activity in intestinal epithelial cells, as well as to confirm promoter activity and establish physiological relevance in vivo in transgenic mice. With the use of transiently transfected human intestinal epithelial HuTu 80 cells and 5'-deletion analysis, the minimal SLC52A3 promoter was found to be encoded between -199 and +8 bp (using the start of the transcription start site as position 1). Although several putative cis-regulatory elements were predicted in this region, only the stimulating protein-1 (Sp1) binding site (at position -74/-71 bp) was found to play a role in promoter activity, as indicated by mutational analysis. Binding of Sp1 to the minimal SLC52A3 promoter was demonstrated by means of EMSA and supershift assays and by chromatin immunoprecipitation analysis. Studies with Drosophila SL2 cells (which lack Sp activity) confirmed the importance of Sp1 in driving the activity of the SLC52A3 minimal promoter; they further showed that Sp3 can also do the activation. Finally, with the use of luciferase gene fusions, the activity of the cloned SLC52A3 promoter was confirmed in vivo in transgenic mice. These studies report, for the first time, on the identification and characterization of the SLC52A3 promoter and also demonstrate the importance of Sp1 in regulating its activity in intestinal epithelial cells.
Collapse
Affiliation(s)
- Abhisek Ghosal
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Subrata Sabui
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
62
|
Sabui S, Ghosal A, Said HM. Identification and characterization of 5'-flanking region of the human riboflavin transporter 1 gene (SLC52A1). Gene 2014; 553:49-56. [PMID: 25284511 DOI: 10.1016/j.gene.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/16/2022]
Abstract
The human SLC52A1 gene encodes the riboflavin transporter-1 (RFVT-1), a plasma membrane protein that transports vitamin B2 (riboflavin, RF) into cells, and thus, plays a role in controlling cellular homeostasis of RF in those tissues that express the carrier protein (e.g. placenta and intestine). Currently, there is nothing known about transcriptional regulation of the SLC52A1 gene, therefore, we aimed to clone and characterize its 5'-flanking region. Using rapid amplification of the cDNA ends (5'-RACE), we identified one transcription start site (TSS). A 579 bp segment of the 5'-flanking region of this gene was cloned which exhibited robust promoter activity upon transfection in human intestinal epithelial cells. Deletion analysis revealed that the core promoter activity to be embedded in a region between -234 and -23 that lacked TATA element, was GC-rich, and harbored several putative cis-regulatory sites including KLFs, AP-2, EGRF and Sp-1. Mutating each of these sites led to a significant decrease in promoter activity (which was highest for the Sp-1 site), suggesting their possible involvement in regulating SLC52A1 transcription. Focusing on the Sp-1 site, EMSA, super-shift and ChIP analysis was performed that established the interaction of the Sp-1 transcription factor with the SLC52A1 promoter; also, co-transfection of the minimal SLC52A1 promoter with an Sp-1 containing vector in Drosophila SL-2 cells led to significant promoter activation. These results are the first to reveal the identity of the minimal SLC52A1 promoter and to establish an important role for Sp-1 in its activity.
Collapse
Affiliation(s)
- Subrata Sabui
- Department of Medicine and Physiology/Biophysics, University of California-Irvine, Irvine, CA 92697, USA; Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | - Abhisek Ghosal
- Department of Medicine and Physiology/Biophysics, University of California-Irvine, Irvine, CA 92697, USA; Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | - Hamid M Said
- Department of Medicine and Physiology/Biophysics, University of California-Irvine, Irvine, CA 92697, USA; Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822, USA.
| |
Collapse
|
63
|
|
64
|
Grünert SC. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydrogenase deficiency. Orphanet J Rare Dis 2014; 9:117. [PMID: 25200064 PMCID: PMC4222585 DOI: 10.1186/s13023-014-0117-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder caused by deficiency of electron transfer flavoprotein or electron transfer flavoprotein dehydrogenase. The clinical picture of late-onset forms is highly variable with symptoms ranging from acute metabolic decompensations to chronic, mainly muscular problems or even asymptomatic cases. METHODS All 350 cases of late-onset MADD reported in the literature to date have been analyzed and evaluated with respect to age at presentation, diagnostic delay, biochemical features and diagnostic parameters as well as response to treatment. RESULTS Mean age at onset was 19.2 years. The mean delay between onset of symptoms and diagnosis was 3.9 years. Chronic muscular symptoms were more than twice as common as acute metabolic decompensations (85% versus 33% of patients, respectively). 20% had both acute and chronic symptoms. 5% of patients had died at a mean age of 5.8 years, while 3% of patients have remained asymptomatic until a maximum age of 14 years. Diagnosis may be difficult as a relevant number of patients do not display typical biochemical patterns of urine organic acids and blood acylcarnitines during times of wellbeing. The vast majority of patients carry mutations in the ETFDH gene (93%), while mutations in the ETFA (5%) and ETFB (2%) genes are the exceptions. Almost all patients with late-onset MADD (98%) are clearly responsive to riboflavin. CONCLUSIONS Late-onset MADD is probably an underdiagnosed disease and should be considered in all patients with acute or chronic muscular symptoms or acute metabolic decompensation with hypoglycemia, acidosis, encephalopathy and hepatopathy. This may not only prevent patients from invasive diagnostic procedures such as muscle biopsies, but also help to avoid fatal metabolic decompensations.
Collapse
Affiliation(s)
- Sarah C Grünert
- Center of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
65
|
Li J, Cousin C, Tinkler H, Touhami J, Petit V, Thomas N. Profiling of Nutrient Transporter Expression in Human Stem Cell–Derived Cardiomyocytes Exposed to Tyrosine Kinase Inhibitor Anticancer Drugs Using RBD Ligands. ACTA ACUST UNITED AC 2014; 19:1185-92. [DOI: 10.1177/1087057114533724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/08/2014] [Indexed: 02/03/2023]
Abstract
We applied a novel profiling approach using receptor binding domain (RBD) ligands to cell surface domains of a panel of nutrient transporters to characterize the impact of a number of tyrosine kinase inhibitor anticancer drugs on human stem cell–derived cardiomyocytes. High-content screening and flow cytometry analysis showed diagnostic changes in nutrient transporter expression correlating with glycolysis and oxidative phosphorylation–based cell metabolism in glucose and galactose media. Cluster analysis of RBD binding signatures of drug-treated cells cultured in glucose medium showed good correlation with sensitization of mitochondrial toxicity in cells undergoing oxidative phosphorylation in galactose medium. These data demonstrate the potential for RBD ligands as profiling tools to improve the clinical predictivity of in vitro cell assays for drug toxicity.
Collapse
Affiliation(s)
- Jianliang Li
- GE Healthcare, The Maynard Centre, Forest Farm, Whitchurch, Cardiff, UK
| | | | - Hayley Tinkler
- GE Healthcare, The Maynard Centre, Forest Farm, Whitchurch, Cardiff, UK
| | - Jawida Touhami
- METAFORA Biosystems, Pépinière Genopole Entreprises, Evry, France
| | - Vincent Petit
- METAFORA Biosystems, Pépinière Genopole Entreprises, Evry, France
| | - Nick Thomas
- GE Healthcare, The Maynard Centre, Forest Farm, Whitchurch, Cardiff, UK
| |
Collapse
|
66
|
Fallon AM, Baldridge GD, Carroll EM, Kurtz CM. Depletion of host cell riboflavin reduces Wolbachia levels in cultured mosquito cells. In Vitro Cell Dev Biol Anim 2014; 50:707-13. [PMID: 24789726 DOI: 10.1007/s11626-014-9758-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/07/2014] [Indexed: 02/03/2023]
Abstract
Wolbachia is an obligate intracellular alphaproteobacterium that occurs in arthropod and nematode hosts. Wolbachia presumably provides a fitness benefit to its hosts, but the basis for its retention and spread in host populations remains unclear. Wolbachia genomes retain biosynthetic pathways for some vitamins, and the possibility that these vitamins benefit host cells provides a potential means of selecting for Wolbachia-infected cell lines. To explore whether riboflavin produced by Wolbachia is available to its host cell, we established that growth of uninfected C7-10 mosquito cells decreases in riboflavin-depleted culture medium. A well-studied inhibitor of riboflavin uptake, lumiflavin, further inhibits growth of uninfected C7-10 cells with an LC50 of approximately 12 μg/ml. Growth of C/wStr1 mosquito cells, infected with Wolbachia from the planthopper, Laodelphax striatellus, was enhanced in medium containing low levels of lumiflavin, but Wolbachia levels decreased. Lumiflavin-enhanced growth thus resembled the improved growth that accompanies treatment with antibiotics that deplete Wolbachia, rather than a metabolic advantage provided by the Wolbachia infection. We used the polymerase chain reaction to validate the decrease in Wolbachia abundance and evaluated our results in the context of a proteomic analysis in which we detected nearly 800 wStr proteins. Our data indicate that Wolbachia converts riboflavin to FMN and FAD for its own metabolic needs, and does not provide a source of riboflavin for its host cell.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., St. Paul, MN, 55108, USA,
| | | | | | | |
Collapse
|
67
|
Yoshimatsu H, Yonezawa A, Yao Y, Sugano K, Nakagawa S, Omura T, Matsubara K. Functional involvement of RFVT3/SLC52A3 in intestinal riboflavin absorption. Am J Physiol Gastrointest Liver Physiol 2014; 306:G102-10. [PMID: 24264046 DOI: 10.1152/ajpgi.00349.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Riboflavin, also known as vitamin B2, is transported across the biological membrane into various organs by transport systems. Riboflavin transporter RFVT3 is expressed in the small intestine and has been suggested to localize in the apical membranes of the intestinal epithelial cells. In this study, we investigated the functional involvement of RFVT3 in riboflavin absorption using intestinal epithelial T84 cells and mouse small intestine. T84 cells expressed RFVT3 and conserved unidirectional riboflavin transport corresponding to intestinal absorption. Apical [(3)H]riboflavin uptake was pH-dependent in T84 cells. This uptake was not affected by Na(+) depletion at apical pH 6.0, although it was significantly decreased at apical pH 7.4. The [(3)H]riboflavin uptake from the apical side of T84 cells was prominently inhibited by the RFVT3 selective inhibitor methylene blue and significantly decreased by transfection of RFVT3-small-interfering RNA. In the gastrointestinal tract, RFVT3 was expressed in the jejunum and ileum. Mouse jejunal and ileal permeabilities of [(3)H]riboflavin were measured by the in situ closed-loop method and were significantly reduced by methylene blue. These results strongly suggest that RFVT3 would functionally be involved in riboflavin absorption in the apical membranes of intestinal epithelial cells.
Collapse
Affiliation(s)
- Hiroki Yoshimatsu
- Dept. of Clinical Pharmacology and Therapeutics, Kyoto Univ. Hospital, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | |
Collapse
|
68
|
Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Mack M. Natural riboflavin analogs. Methods Mol Biol 2014; 1146:41-63. [PMID: 24764087 DOI: 10.1007/978-1-4939-0452-5_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Riboflavin analogs have a good potential to serve as basic structures for the development of novel anti-infectives. Riboflavin analogs have multiple cellular targets, since riboflavin (as a precursor to flavin cofactors) is active at more than one site in the cell. As a result, the frequency of developing resistance to antimicrobials based on riboflavin analogs is expected to be significantly lower. The only known natural riboflavin analog with antibiotic function is roseoflavin from the bacterium Streptomyces davawensis. This antibiotic negatively affects flavoenzymes and FMN riboswitches. Another roseoflavin producer, Streptomyces cinnabarinus, was recently identified. Possibly, flavin analogs with antibiotic activity are more widespread than anticipated. The same could be true for flavin analogs yet to be discovered, which could constitute tools for cellular chemistry, thus allowing a further extension of the catalytic spectrum of flavoenzymes.
Collapse
Affiliation(s)
- Danielle Biscaro Pedrolli
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
69
|
Said HM. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. Am J Physiol Gastrointest Liver Physiol 2013; 305:G601-10. [PMID: 23989008 PMCID: PMC3840235 DOI: 10.1152/ajpgi.00231.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review focuses on recent advances in our understanding of the mechanisms and regulation of water-soluble vitamin (WSV) transport in the large intestine and pancreas, two important organs of the digestive system that have only recently received their fair share of attention. WSV, a group of structurally unrelated compounds, are essential for normal cell function and development and, thus, for overall health and survival of the organism. Humans cannot synthesize WSV endogenously; rather, WSV are obtained from exogenous sources via intestinal absorption. The intestine is exposed to two sources of WSV: a dietary source and a bacterial source (i.e., WSV generated by the large intestinal microbiota). Contribution of the latter source to human nutrition/health has been a subject of debate and doubt, mostly based on the absence of specialized systems for efficient uptake of WSV in the large intestine. However, recent studies utilizing a variety of human and animal colon preparations clearly demonstrate that such systems do exist in the large intestine. This has provided strong support for the idea that the microbiota-generated WSV are of nutritional value to the host, and especially to the nutritional needs of the local colonocytes and their health. In the pancreas, WSV are essential for normal metabolic activities of all its cell types and for its exocrine and endocrine functions. Significant progress has also been made in understanding the mechanisms involved in the uptake of WSV and the effect of chronic alcohol exposure on the uptake processes.
Collapse
Affiliation(s)
- Hamid M. Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
70
|
A developmental stage of hyphal cells shows riboflavin overproduction instead of sporulation in Ashbya gossypii. Appl Microbiol Biotechnol 2013; 97:10143-53. [DOI: 10.1007/s00253-013-5266-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 12/11/2022]
|
71
|
Yonezawa A, Inui KI. Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol Aspects Med 2013; 34:693-701. [PMID: 23506902 DOI: 10.1016/j.mam.2012.07.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/27/2012] [Indexed: 01/21/2023]
Abstract
Riboflavin, a water-soluble vitamin also known as vitamin B2, is essential for normal cellular functions. Riboflavin transporters play important roles in its homeostasis. Recently, three novel riboflavin transporters were identified, and designated as RFT1, RFT2 and RFT3. Because the RFTs did not show similarity to other SLC transporters, and RFT1 and RFT3 are similar in sequence and function, they were assigned into a new SLC family, SLC52. Subsequently, RFT1/GPR172B, RFT3/GPR172A and RFT2/C20orf54 were renamed as RFVT1/SLC52A1, RFVT2/SLC52A2 and RFVT3/SLC52A3, respectively. In this review, we summarize recent findings on the cloning, nomenclature, functional characterization and genetic diseases of RFVT1/SLC52A1, RFVT2/SLC52A2 and RFVT3/SLC52A3.
Collapse
Affiliation(s)
- Atsushi Yonezawa
- Department of Pharmacy, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
72
|
Giancaspero TA, Busco G, Panebianco C, Carmone C, Miccolis A, Liuzzi GM, Colella M, Barile M. FAD synthesis and degradation in the nucleus create a local flavin cofactor pool. J Biol Chem 2013; 288:29069-80. [PMID: 23946482 DOI: 10.1074/jbc.m113.500066] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FAD is a redox cofactor ensuring the activity of many flavoenzymes mainly located in mitochondria but also relevant for nuclear redox activities. The last enzyme in the metabolic pathway producing FAD is FAD synthase (EC 2.7.7.2), a protein known to be localized both in cytosol and in mitochondria. FAD degradation to riboflavin occurs via still poorly characterized enzymes, possibly belonging to the NUDIX hydrolase family. By confocal microscopy and immunoblotting experiments, we demonstrate here the existence of FAD synthase in the nucleus of different experimental rat models. HPLC experiments demonstrated that isolated rat liver nuclei contain ∼300 pmol of FAD·mg(-1) protein, which was mainly protein-bound FAD. A mean FAD synthesis rate of 18.1 pmol·min(-1)·mg(-1) protein was estimated by both HPLC and continuous coupled enzymatic spectrophotometric assays. Rat liver nuclei were also shown to be endowed with a FAD pyrophosphatase that hydrolyzes FAD with an optimum at alkaline pH and is significantly inhibited by adenylate-containing nucleotides. The coordinate activity of these FAD forming and degrading enzymes provides a potential mechanism by which a dynamic pool of flavin cofactor is created in the nucleus. These data, which significantly add to the biochemical comprehension of flavin metabolism and its subcellular compartmentation, may also provide the basis for a more detailed comprehension of the role of flavin homeostasis in biologically and clinically relevant epigenetic events.
Collapse
|
73
|
Yao Y, Yonezawa A, Yoshimatsu H, Omura T, Masuda S, Matsubara K. Involvement of riboflavin transporter RFVT2/Slc52a2 in hepatic homeostasis of riboflavin in mice. Eur J Pharmacol 2013; 714:281-7. [PMID: 23911957 DOI: 10.1016/j.ejphar.2013.07.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022]
Abstract
Riboflavin (vitamin B2) acts as an intermediary during various biochemical oxidation-reduction reactions in the liver. Hepatic riboflavin homeostasis is suggested to be maintained through its transporter(s). Riboflavin transporters, RFVT2/Slc52a2 and RFVT3/Slc52a3, have been identified in rodents. However, the role of each RFVT in the hepatic homeostasis of riboflavin has not yet been fully clarified. In this study, we assessed the contribution of each RFVT to riboflavin uptake into the liver using in vitro and in vivo studies. The uptake of riboflavin by mouse primary hepatocytes increased in a time-dependent and a concentration-dependent manner. Riboflavin transport was independent of extracellular Na(+). However, the uptake decreased slightly along with the extracellular pH increases. Real-time PCR analysis revealed that the mRNA level of Slc52a2, or coding for mouse (m)RFVT2, in the mouse liver was 10 times higher than that of Slc52a3 (coding for mRFVT3). The uptake of riboflavin at pH 7.4 by primary hepatocytes was significantly decreased by the transfection of Slc52a2-small interfering RNA (siRNA), but not Slc52a3-siRNA. Furthermore, we also confirmed the contribution of riboflavin transporters in vivo. The riboflavin concentrations in plasma, but not in the liver, were significantly decreased in mice fed on a riboflavin-deficient diet for 8 weeks. The expression of Slc52a2 mRNA was significantly upregulated by riboflavin deprivation. These results strongly suggest that mRFVT2 was involved in hepatic riboflavin homeostasis.
Collapse
Affiliation(s)
- Yoshiaki Yao
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
74
|
Subramanian VS, Subramanya SB, Ghosal A, Said HM. Chronic alcohol feeding inhibits physiological and molecular parameters of intestinal and renal riboflavin transport. Am J Physiol Cell Physiol 2013; 305:C539-46. [PMID: 23804199 DOI: 10.1152/ajpcell.00089.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vitamin B2 (riboflavin, RF) is essential for normal human health. Mammals obtain RF from exogenous sources via intestinal absorption and prevent its urinary loss by reabsorption in the kidneys. Both of these absorptive events are carrier-mediated and involve specific RF transporters (RFVTs). Chronic alcohol consumption in humans is associated with a high prevalence of RF deficiency and suboptimal levels, but little is known about the effect of chronic alcohol exposure on physiological and molecular parameters of the intestinal and renal RF transport events. We addressed these issues using rats chronically fed an alcohol liquid diet and pair-fed controls as a model. The results showed that chronic alcohol feeding significantly inhibits carrier-mediated RF transport across the intestinal brush-border and basolateral membrane domains of the polarized enterocytes. This inhibition was associated with a parallel reduction in the expression of the rat RFVT-1 and -3 at the protein, mRNA, and heterogeneous nuclear RNA (hnRNA) levels. Chronic alcohol feeding also caused a significant inhibition in RF uptake in the colon. Similarly, a significant inhibition in carrier-mediated RF transport across the renal brush-border and basolateral membrane domains was observed, which again was associated with a significant reduction in the level of expression of RFVT-1 and -3 at the protein, mRNA, and hnRNA levels. These findings demonstrate that chronic alcohol exposure impairs both intestinal absorption and renal reabsorption processes of RF and that these effects are, at least in part, mediated via transcriptional mechanism(s) involving the slc52a1 and slc52a3 genes.
Collapse
Affiliation(s)
- Veedamali S Subramanian
- Department of Medicine and Physiology/Biophysics, University of California, Irvine, California, USA
| | | | | | | |
Collapse
|
75
|
Mazari PM, Roth MJ. Library screening and receptor-directed targeting of gammaretroviral vectors. Future Microbiol 2013; 8:107-21. [PMID: 23252496 DOI: 10.2217/fmb.12.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene- and cell-based therapies hold great potential for the advancement of the personalized medicine movement. Gene therapy vectors have made dramatic leaps forward since their inception. Retroviral-based vectors were the first to gain clinical attention and still offer the best hope for the long-term correction of many disorders. The fear of nonspecific transduction makes targeting a necessary feature for most clinical applications. However, this remains a difficult feature to optimize, with specificity often coming at the expense of efficiency. The aim of this article is to discuss the various methods employed to retarget retroviral entry. Our focus will lie on the modification of gammaretroviral envelope proteins with an in-depth discussion of the creation and screening of envelope libraries.
Collapse
Affiliation(s)
- Peter M Mazari
- University of Medicine & Dentistry of NJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
76
|
Giovannini D, Touhami J, Charnet P, Sitbon M, Battini JL. Inorganic Phosphate Export by the Retrovirus Receptor XPR1 in Metazoans. Cell Rep 2013; 3:1866-73. [DOI: 10.1016/j.celrep.2013.05.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/05/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
|
77
|
Optimization of tumor xenograft dissociation for the profiling of cell surface markers and nutrient transporters. J Transl Med 2013; 93:611-21. [PMID: 23459372 DOI: 10.1038/labinvest.2013.44] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Metabolic adaptations and changes in the expression of nutrient transporters are known to accompany tumorigenic processes. Nevertheless, in the context of solid tumors, studies of metabolism are hindered by a paucity of tools allowing the identification of cell surface transporters on individual cells. Here, we developed a method for the dissociation of human breast cancer tumor xenografts combined with quantification of cell surface markers, including metabolite transporters. The expression profiles of four relevant nutrient transporters for cancer cells' metabolism, Glut1, ASCT2, PiT1 and PiT2 (participating to glucose, glutamine and inorganic phosphate, respectively), as detected by new retroviral envelope glycoprotein-derived ligands, were distinctive of each tumor, unveiling underlying differences in metabolic pathways. Our tumor dissociation procedure and nutrient transporter profiling technology provides opportunities for future basic research, clinical diagnosis, prognosis and evaluation of therapeutic responses, as well as for drug discovery and development.
Collapse
|
78
|
Subramanian VS, Ghosal A, Subramanya SB, Lytle C, Said HM. Differentiation-dependent regulation of intestinal vitamin B(2) uptake: studies utilizing human-derived intestinal epithelial Caco-2 cells and native rat intestine. Am J Physiol Gastrointest Liver Physiol 2013; 304:G741-8. [PMID: 23413253 PMCID: PMC3625875 DOI: 10.1152/ajpgi.00018.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal epithelial cells undergo differentiation as they move from the crypt to the villi, a process that is associated with up- and downregulation in expression of a variety of genes, including those involved in nutrient absorption. Whether the intestinal uptake process of vitamin B(2) [riboflavin (RF)] also undergoes differentiation-dependent regulation and the mechanism through which this occurs are not known. We used human-derived intestinal epithelial Caco-2 cells and native rat intestine as models to address these issues. Caco-2 cells showed a significantly higher carrier-mediated RF uptake in post- than preconfluent cells. This upregulation was associated with a significantly higher level of protein and mRNA expression of the RF transporters hRFVT-1 and hRFVT-3 in the post- than preconfluent cells; it was also accompanied with a significantly higher rate of transcription of the respective genes (SLC52A1 and SLC52A3), as indicated by the higher level of expression of heterogeneous nuclear RNA and higher promoter activity in post- than preconfluent cells. Studies with native rat intestine also showed a significantly higher RF uptake by epithelial cells of the villus tip than epithelial cells of the crypt; this again was accompanied by a significantly higher level of expression of the rat RFVT-1 and RFVT-3 at the protein, mRNA, and heterogeneous nuclear RNA levels. These findings show, for the first time, that the intestinal RF uptake process undergoes differentiation-dependent upregulation and suggest that this is mediated (at least in part) via transcriptional mechanisms.
Collapse
Affiliation(s)
- Veedamali S. Subramanian
- 1Departments of Medicine, Physiology, and Biophysics, University of California, Irvine, California; ,2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California; and
| | - Abhisek Ghosal
- 1Departments of Medicine, Physiology, and Biophysics, University of California, Irvine, California; ,2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California; and
| | - Sandeep B. Subramanya
- 1Departments of Medicine, Physiology, and Biophysics, University of California, Irvine, California; ,2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California; and
| | - Christian Lytle
- 3Division of Biomedical Sciences, University of California, Riverside, California
| | - Hamid M. Said
- 1Departments of Medicine, Physiology, and Biophysics, University of California, Irvine, California; ,2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California; and
| |
Collapse
|
79
|
Bareford LM, Avaritt BR, Ghandehari H, Nan A, Swaan PW. Riboflavin-Targeted Polymer Conjugates for Breast Tumor Delivery. Pharm Res 2013; 30:1799-812. [DOI: 10.1007/s11095-013-1024-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/04/2013] [Indexed: 01/11/2023]
|
80
|
Abstract
The eye is a highly protected organ, and designing an effective therapy is often considered a challenging task. The anatomical and physiological barriers result in low ocular bioavailability of drugs. Due to these constraints, less than 5% of the administered dose is absorbed from the conventional ophthalmic dosage forms. Further, physicochemical properties such as lipophilicity, molecular weight and charge modulate the permeability of drug molecules. Vision-threatening diseases such as glaucoma, diabetic macular edema, cataract, wet and dry age-related macular degeneration, proliferative vitreoretinopathy, uveitis, and cytomegalovirus retinitis alter the pathophysiological and molecular mechanisms. Understanding these mechanisms may result in the development of novel treatment modalities. Recently, transporter/receptor targeted prodrug approach has generated significant interest in ocular drug delivery. These transporters and receptors are involved in the transport of essential nutrients, vitamins, and xenobiotics across biological membranes. Several influx transporters (peptides, amino acids, glucose, lactate and nucleosides/nucleobases) and receptors (folate and biotin) have been identified on conjunctiva, cornea, and retina. Structural and functional delineation of these transporters will enable more drugs targeting the posterior segment to be successfully delivered topically. Prodrug derivatization targeting transporters and receptors expressed on ocular tissues has been the subject of intense research. Several prodrugs have been designed to target these transporters and enhance the absorption of poorly permeating parent drug. Moreover, this approach might be used in gene delivery to modify cellular function and membrane receptors. This review provides comprehensive information on ocular drug delivery, with special emphasis on the use of transporters and receptors to improve drug bioavailability.
Collapse
|
81
|
Aili A, Hasim A, Kelimu A, Guo X, Mamtimin B, Abudula A, Upur H. Association of the plasma and tissue riboflavin levels with C20orf54 expression in cervical lesions and its relationship to HPV16 infection. PLoS One 2013; 8:e79937. [PMID: 24260322 PMCID: PMC3832395 DOI: 10.1371/journal.pone.0079937] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022] Open
Abstract
Riboflavin deficiency can cause a variety of metabolic problems that lead to skin and mucosal disorders. Limited evidence suggests that high intake of riboflavin may reduce overall risks of cancer. However, association of this deficiency with cervical cancer and precancerous lesions are still not definitively known. In this study, we characterized the relationship between plasma and tissue riboflavin levels and C20orf54 protein expression in patients with cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) as well as the relationship of these levels with human papillomavirus virus 16, 18 (HPV16/18) infections. High-performance liquid chromatography (HPLC) was used to measure blood riboflavin levels in patients with CIN and CSCC, and an enzyme-linked immunosorbent assay (ELISA) was used to determine tissue riboflavin levels in patients with CSCC and matched normal mucous epithelia. The expression of C20orf54 in fresh CSCC and matched tissues were detected by qRT-PCR and western blot, respectively. And it was further confirmed by immunohistochemistry (IHC) with formalin-fixed, paraffin-embedded CIN and CSCC. An HPV genotyping chip was used to analyze HPV infection and typing. The results showed that patients with CIN and CSCC had decreased plasma riboflavin levels as compared with normal controls. There was also significantly decreased riboflavin in tissues from CSCC patients, when compared with normal cervical epithelia. C20orf54 expression were significantly up-regulated in CSCC compared to matched control on both mRNA and protein level. Tissue riboflavin levels were significantly lower in HPV16/18 positive tissue compared with HPV16/18-negative tissue, and an inverse association was found between tissue riboflavin levels and C20orf54 mRNA and protein expression in CSCC. Additionally, C20orf54 was significantly correlated with tumor stages. In conclusion, C20orf54 tend to play a protective role in Uyghur cervical carcinogenesis of which modulating riboflavin absorption, and it is also related with HPV infection.
Collapse
Affiliation(s)
- Aixingzi Aili
- Department of Gynecology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ayshamgul Hasim
- Department of Pathology of the Medical University of Xinjiang, Urumqi, Xinjiang, China
| | - Alimujiang Kelimu
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xia Guo
- Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Batur Mamtimin
- Pharmaceutical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Halmurat Upur
- Xinjiang Medical University, Urumqi, Xinjiang, China
- * E-mail:
| |
Collapse
|
82
|
Ainiwaer J, Tuerhong A, Hasim A, Chengsong D, Liwei Z, Sheyhidin I. Association of the plasma riboflavin levels and riboflavin transporter (C20orf54) gene statuses in Kazak esophageal squamous cell carcinoma patients. Mol Biol Rep 2012; 40:3769-75. [DOI: 10.1007/s11033-012-2453-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/18/2012] [Indexed: 01/08/2023]
|
83
|
Lee ES, Corfe BM, Powers HJ. Riboflavin depletion of intestinal cells in vitro leads to impaired energy generation and enhanced oxidative stress. Eur J Nutr 2012; 52:1513-21. [PMID: 23868757 DOI: 10.1007/s00394-012-0458-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Riboflavin is an essential component of the human diet, with an established role for its derivative cofactors in oxidative metabolism. Our previous in vivo data suggest that riboflavin may act as a signalling molecule in the intestinal lumen, regulating crypt development and cell turnover. Our in vitro studies in riboflavin-depleted intestinal cells in culture indicate that riboflavin depletion impairs normal mitosis. METHODS The aim of the study was to establish an improved intestinal cell model of riboflavin depletion using the structural analogue of riboflavin, lumiflavin (7,8,10-trimethyl-isoalloxazine) and to determine effects on cell function. The study was conducted using three intestinal cell lines, Caco-2, HCT116 and HT29 cells. RESULTS Cell growth was inhibited in all three cell lines, in a lumiflavin concentration-dependent manner. Riboflavin depletion was confirmed through a significant decrease in intracellular riboflavin concentrations in Caco-2 and HT29 cell lines and a significant increase in the activation coefficient for the flavin adenine dinucleotide-dependent enzyme glutathione reductase. Riboflavin depletion led to a significant reduction in intracellular ATP concentration, and an enhanced generation of reactive oxygen species was also observed in response to riboflavin depletion, in all cell lines; effects were at least fivefold greater in Caco-2 cells than other cells. Riboflavin-depleted Caco-2 and HCT116 cells also showed an irreversible loss of proliferative potential. CONCLUSIONS A model system of intracellular riboflavin depletion in intestinal epithelial cells has been developed. Riboflavin depletion induced by lumiflavin results in oxidative stress and a disruption of energy generation, which may contribute to observed effects on cell proliferation.
Collapse
Affiliation(s)
- Eun-Sook Lee
- Human Nutrition Unit, Department of Oncology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
84
|
Ghosal A, Said HM. Mechanism and regulation of vitamin B2 (riboflavin) uptake by mouse and human pancreatic β-cells/islets: physiological and molecular aspects. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1052-8. [PMID: 22917629 PMCID: PMC3517668 DOI: 10.1152/ajpgi.00314.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Riboflavin (RF) is essential for the normal metabolic activities of pancreatic β-cells and provides protection against oxidative stress. Very little is known about the mechanism of RF uptake by these cells and how the process is regulated. We addressed these issues using mouse-derived pancreatic β-TC-6 cells and freshly isolated primary mouse and human pancreatic islets. Our results showed (3)H-RF uptake by β-TC-6 cells is Na(+) independent, cis inhibited by RF-related compounds, trans stimulated by unlabeled RF, and saturable as a function of concentration (apparent K(m) of 0.17 ± 0.02 μM). The latter findings suggest involvement of a carrier-mediated process. Similarly, RF uptake by primary mouse and human pancreatic islets was via carrier-mediated process. RF transporters 1, 2, and 3 (RFVT-1, -3, and -2) were all expressed in mouse and human pancreatic β-cells/islets, with RFVT-1 being the predominant transporter expressed in the mouse and RFVT-3 in the human. Specific knockdown of RFVT-1 with gene-specific small interfering RNA leads to a significant inhibition in RF uptake by β-TC-6 cells. RF uptake by β-TC-6 cells was also found to be adaptively upregulated in RF deficiency via a transcriptional mechanism(s). Also, the process appears to be under the regulation of a Ca(2+)/calmodulin-mediated regulatory pathway. Results of these studies demonstrate, for the first time, the involvement of a carrier-mediated process for RF uptake by mouse and human pancreatic β-cells/islets. Furthermore, the process appears to be regulated by extracellular and intracellular factors.
Collapse
Affiliation(s)
- Abhisek Ghosal
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M. Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
85
|
Haack TB, Makowski C, Yao Y, Graf E, Hempel M, Wieland T, Tauer U, Ahting U, Mayr JA, Freisinger P, Yoshimatsu H, Inui K, Strom TM, Meitinger T, Yonezawa A, Prokisch H. Impaired riboflavin transport due to missense mutations in SLC52A2 causes Brown-Vialetto-Van Laere syndrome. J Inherit Metab Dis 2012; 35:943-8. [PMID: 22864630 PMCID: PMC3470687 DOI: 10.1007/s10545-012-9513-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 05/30/2012] [Accepted: 06/26/2012] [Indexed: 11/30/2022]
Abstract
Brown-Vialetto-Van Laere syndrome (BVVLS [MIM 211530]) is a rare neurological disorder characterized by infancy onset sensorineural deafness and ponto-bulbar palsy. Mutations in SLC52A3 (formerly C20orf54), coding for riboflavin transporter 2 (hRFT2), have been identified as the molecular genetic correlate in several individuals with BVVLS. Exome sequencing of just one single case revealed that compound heterozygosity for two pathogenic mutations in the SLC52A2 gene coding for riboflavin transporter 3 (hRFT3), another member of the riboflavin transporter family, is also associated with BVVLS. Overexpression studies confirmed that the gene products of both mutant alleles have reduced riboflavin transport activities. While mutations in SLC52A3 cause decreased plasma riboflavin levels, concordant with a role of SLC52A3 in riboflavin uptake from food, the SLC52A2-mutant individual had normal plasma riboflavin concentrations, a finding in line with a postulated function of SLC52A2 in riboflavin uptake from blood into target cells. Our results contribute to the understanding of human riboflavin metabolism and underscore its role in the pathogenesis of BVVLS, thereby providing a rational basis for a high-dose riboflavin treatment.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Biological Transport, Active/genetics
- Bulbar Palsy, Progressive/diagnosis
- Bulbar Palsy, Progressive/genetics
- Bulbar Palsy, Progressive/metabolism
- Child, Preschool
- DNA Mutational Analysis
- Female
- Hearing Loss, Sensorineural/diagnosis
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Humans
- Membrane Transport Proteins/deficiency
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Models, Biological
- Molecular Sequence Data
- Mutation, Missense
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Riboflavin/metabolism
- Sequence Homology, Amino Acid
- Syndrome
Collapse
Affiliation(s)
- Tobias B. Haack
- Institute of Human Genetics, Technische Universität München, Trogerstrasse 22, München, 81675 Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, 85764 Germany
| | - Christine Makowski
- Department of Pediatrics, Technische Universität München, Munich, 80804 Germany
| | - Yoshiaki Yao
- Department of Pharmacy, Kyoto University Hospital, Kyoto, 606-8507 Japan
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, 85764 Germany
| | - Maja Hempel
- Institute of Human Genetics, Technische Universität München, Trogerstrasse 22, München, 81675 Germany
| | - Thomas Wieland
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, 85764 Germany
| | - Ulrike Tauer
- Department of Pediatrics, Technische Universität München, Munich, 80804 Germany
| | - Uwe Ahting
- Department of Clinical Chemistry, Städtisches Klinikum München, Munich, 80804 Germany
| | - Johannes A. Mayr
- Department of Paediatrics, Paracelsus Medical University Salzburg, Salzburg, 5020 Austria
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, Reutlingen, 72764 Germany
| | - Hiroki Yoshimatsu
- Department of Pharmacy, Kyoto University Hospital, Kyoto, 606-8507 Japan
| | - Ken Inui
- Department of Pharmacy, Kyoto University Hospital, Kyoto, 606-8507 Japan
- Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8414 Japan
| | - Tim M. Strom
- Institute of Human Genetics, Technische Universität München, Trogerstrasse 22, München, 81675 Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, 85764 Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Trogerstrasse 22, München, 81675 Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, 85764 Germany
| | - Atsushi Yonezawa
- Department of Pharmacy, Kyoto University Hospital, Kyoto, 606-8507 Japan
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, Trogerstrasse 22, München, 81675 Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, 85764 Germany
| |
Collapse
|
86
|
A mutually inhibitory feedback loop between the 20S proteasome and its regulator, NQO1. Mol Cell 2012; 47:76-86. [PMID: 22793692 DOI: 10.1016/j.molcel.2012.05.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 02/14/2012] [Accepted: 05/31/2012] [Indexed: 01/18/2023]
Abstract
NAD(P)H:quinone-oxidoreductase-1 (NQO1) is a cytosolic enzyme that catalyzes the reduction of various quinones using flavin adenine dinucleotide (FAD) as a cofactor. NQO1 has been also shown to rescue proteins containing intrinsically unstructured domains, such as p53 and p73, from degradation by the 20S proteasome through an unknown mechanism. Here, we studied the nature of interaction between NQO1 and the 20S proteasome. Our study revealed a double negative feedback loop between NQO1 and the 20S proteasome, whereby NQO1 prevents the proteolytic activity of the 20S proteasome and the 20S proteasome degrades the apo form of NQO1. Furthermore, we demonstrate, both in vivo and in vitro, that NQO1 levels are highly dependent on FAD concentration. These observations suggest a link between 20S proteolysis and the metabolic cellular state. More generally, the results may represent a regulatory mechanism by which associated cofactors dictate the stability of proteins, thus coordinating protein levels with the metabolic status.
Collapse
|
87
|
Eli M, Li DS, Zhang WW, Kong B, Du CS, Wumar M, Mamtimin B, Sheyhidin I, Hasim A. Decreased blood riboflavin levels are correlated with defective expression of RFT2 gene in gastric cancer. World J Gastroenterol 2012; 18:3112-8. [PMID: 22791947 PMCID: PMC3386325 DOI: 10.3748/wjg.v18.i24.3112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/05/2012] [Accepted: 03/09/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between blood riboflavin levels and riboflavin transporter 2 (RFT2) gene expression in gastric carcinoma (GC) development.
METHODS: High-performance liquid chromatography was used to detect blood riboflavin levels in patients with GC. Real-time fluorogenic quantitative polymerase chain reaction and immunohistochemistry were used to analyze the expression of RFT2 mRNA and protein in samples from 60 GC patients consisting of both tumor and normal tissue.
RESULTS: A significant decrease in the RFT2 mRNA levels was detected in GC samples compared with those in the normal mucous membrane (0.398 ± 0.149 vs 1.479 ± 0.587; P = 0.040). Tumors exhibited low RFT2 protein expression (75%, 16.7%, 8.3% and 0% for no RFT2 staining, weak staining, medium staining and strong staining, respectively), which was significantly lower than that in the normal mucous membrane (10%, 16.7%, 26.7% and 46.7% for no RFT2 staining, weak staining, medium staining and strong staining, respectively; P < 0.05). Tumors with low RFT2 expression were significantly associated with tumor stage and histological grade. Moreover, a significantly decrease in Uyghur patients was observed compared with Han patients. However, other parameters-gender, tumor location and lymph node metastasis-showed no significant relationship with RFT2 expression. Blood riboflavin levels were reverse correlated with development of GC (1.2000 ± 0.97 569 ng/mL in high tumor stage patients vs 2.5980 ± 1.31 129 ng/mL in low tumor stage patients; P < 0.05). A positive correlation of plasma riboflavin levels with defective expression of RFT2 protein was found in GC patients (χ2 = 2.619; P = 0.019).
CONCLUSION: Defective expression of RFT2 is associated with the development of GC and this may represent a mechanism underlying the decreased plasma riboflavin levels in GC.
Collapse
|
88
|
Nakaya Y, Shimode S, Kobayashi T, Imakawa K, Miyazawa T. Binding of transcription factor activating protein 2 γ on the 5'-proximal promoter region of human porcine endogenous retrovirus subgroup A receptor 2/GPR172B. Xenotransplantation 2012; 19:177-85. [PMID: 22702469 DOI: 10.1111/j.1399-3089.2012.00701.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Xenotransplantation is one of the solutions for the shortage of organ donors, and pigs have been considered to be the most suitable animal donors. Specific pathogen-free pigs are utilized in the xenotransplantation; however, pigs have infectious gammaretroviruses, named porcine endogenous retroviruses (PERVs) in their genome. Of them, PERV-A and PERV-B can infect human cells in vitro and potentially induce diseases like other gammaretroviruses. The human cellular receptors for PERV-A were identified and named human PERV-A receptor (HuPAR)-1 and HuPAR-2 (also called as GPR172A and GPR172B, respectively). We have recently reported that HuPAR-2 expression was regulated by epigenetic modification and preferentially expressed in placenta. However, the detailed mechanisms of HuPAR-2 expression have not been fully characterized. In this study, we analyzed molecular mechanisms associated with HuPAR-2 transcription through the identification of transcription factors that bind to the promoter region of HuPAR-2. METHODS In situ hybridization was performed to identify the cells expressing HuPAR-2 in placental tissues. Transcriptional activities were measured by dual-luciferase reporter assay using serial deletion mutants of HuPAR-2 5'-flanking region. To identify the transcription factors bound to the promoter region, in silico analysis, electrophoresis mobility shift assay, and chromatin immunoprecipitation assay were conducted. The effect of the transcription factor transcription factor activator protein (TFAP)-2γ on the promoter activities was investigated by overexpression of the factor. RESULTS We identified that HuPAR-2 was specifically expressed in villous trophoblast cells. We also identified that a region spanning from -126 to -32 had proximal promoter activities and TFAP-2γ bound to a region spanning from -58 to -35 in vitro and in vivo. The overexpression of TFAP-2γ also augmented the proximal promoter activity. CONCLUSION We demonstrated that TFAP-2γ is one of the transcription factors involved in the HuPAR-2 expression in human villous trophoblast cells. By studying transcriptional factors involved in the expression of HuPAR-2, we may find a clue to control the potential risks caused by PERV-A infection in xenotransplantation.
Collapse
Affiliation(s)
- Yuki Nakaya
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
89
|
Mazari PM, Argaw T, Valdivieso L, Zhang X, Marcucci KT, Salomon DR, Wilson CA, Roth MJ. Comparison of the convergent receptor utilization of a retargeted feline leukemia virus envelope with a naturally-occurring porcine endogenous retrovirus A. Virology 2012; 427:118-26. [PMID: 22405627 DOI: 10.1016/j.virol.2012.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 12/12/2011] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
In vitro screening of randomized FeLV Envelope libraries identified the CP isolate, which enters cells through HuPAR-1, one of two human receptors utilized by porcine endogenous retrovirus-A (PERV-A), a distantly related gammaretrovirus. The CP and PERV-A Envs however, share little amino acid homology. Their receptor utilization was examined to define the common receptor usage of these disparate viral Envs. We demonstrate that the receptor usage of CP extends to HuPAR-2 but not to the porcine receptor PoPAR, the cognate receptor for PERV-A. Reciprocal interference between virus expressing CP and PERV-A Envs was observed on human cells. Amino acid residues localized to within the putative second extracellular loop (ECL-2) of PAR-1 and PAR-2 are found to be critical for CP envelope function. Through a panel of receptor chimeras and point mutations, this area was also found to be responsible for the differential usage of the PoPAR receptor between CP and PERV-A.
Collapse
Affiliation(s)
- Peter M Mazari
- University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Department of Biochemistry, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Silencing of FAD synthase gene in Caenorhabditis elegans upsets protein homeostasis and impacts on complex behavioral patterns. Biochim Biophys Acta Gen Subj 2012; 1820:521-31. [PMID: 22306247 DOI: 10.1016/j.bbagen.2012.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 01/18/2012] [Accepted: 01/22/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND FAD synthase is a ubiquitous enzyme that catalyses the last step of FAD biosynthesis, allowing for the biogenesis of several flavoproteins. In humans different isoforms are generated by alternative splicing, isoform 1 being localized in mitochondria. Homology searching in Caenorabditis elegans leads to the identification of two human FAD synthase homologues, coded by the single copy gene R53.1. METHODS The C. elegans R53.1 gene was silenced by feeding. The expression level of transcripts was established by semi-quantitative RT-PCR. Overall protein composition was evaluated by two-dimensional electrophoresis. Enzymatic activities were measured by spectrophotometry and oxygen consumption by polarography on isolated mitochondria. RESULTS From R53.1 two transcripts are generated by trans-splicing. Reducing by 50% the transcription efficiency of R53.1 by RNAi results in a 50% reduction in total flavin with decrease in ATP content and increase in ROS level. Significant phenotypical changes are noticed in knock-down nematodes. Among them, a significant impairment in locomotion behaviour possibly due to altered cholinergic transmission. At biochemical level, impairment of flavoenzyme activities and of some KCN-insensitive oxygen-consuming enzymes is detected. At proteomic level, at least 15 abundant proteins are affected by R53.1 gene silencing, among which superoxide dismutases. CONCLUSION AND GENERAL SIGNIFICANCE For the first time we addressed the existence of different isoforms of FAD-metabolizing enzymes in nematodes. A correlation between FAD synthase silencing and flavoenzyme derangement, energy shortage and redox balance impairment is apparent. In this aspect R53.1-interfered nematodes could provide an animal model system for studying human pathologies with alteration in flavin homeostasis/flavoenzyme biogenesis.
Collapse
|
91
|
Pedrolli DB, Nakanishi S, Barile M, Mansurova M, Carmona EC, Lux A, Gärtner W, Mack M. The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase. Biochem Pharmacol 2011; 82:1853-9. [PMID: 21924249 DOI: 10.1016/j.bcp.2011.08.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 11/26/2022]
Abstract
The non-pathogenic Gram-positive soil bacterium Streptomyces davawensis synthesizes the riboflavin (vitamin B(2)) analogs roseoflavin (RoF) and 8-demethyl-8-amino-riboflavin (AF). Both compounds are antibiotics. Notably, a number of other riboflavin analogs are currently under investigation with regard to the development of novel antiinfectives. As a first step towards understanding the metabolism of riboflavin analogs in humans, the key enzymes flavokinase (EC 2.7.1.26) and FAD synthetase (EC 2.7.7.2) were studied. Human flavokinase efficiently converted RoF and AF to roseoflavin mononucleotide (RoFMN) and 8-demethyl-8-amino-riboflavin mononucleotide (AFMN), respectively. Human FAD synthetase accepted RoFMN but not AFMN as a substrate. Consequently, roseoflavin adenine dinucleotide (RoFAD) was synthesized by the latter enzyme but not 8-demethyl-8-amino-riboflavin adenine dinucleotide (AFAD). The cofactor analogs RoFMN, AFMN and RoFAD have different physicochemical properties as compared to FMN and FAD. Thus, the cofactor analogs have the potential to render flavoenzymes inactive, which may negatively affect human metabolism. RoF, but not AF, was found to inhibit human flavokinase. In summary, we suggest that AF has a lower toxic potential and may be better suited as a lead structure to develop antimicrobial compounds.
Collapse
Affiliation(s)
- Danielle B Pedrolli
- Institut für Technische Mikrobiologie, Hochschule Mannheim, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Subramanian VS, Subramanya SB, Rapp L, Marchant JS, Ma TY, Said HM. Differential expression of human riboflavin transporters -1, -2, and -3 in polarized epithelia: a key role for hRFT-2 in intestinal riboflavin uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:3016-21. [PMID: 21854757 DOI: 10.1016/j.bbamem.2011.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022]
Abstract
Transport of riboflavin (RF) across both the brush border membrane (BBM) and basolateral membrane (BLM) of the polarized enterocyte occurs via specific carrier-mediated mechanisms. Although, three human riboflavin transporters (hRFTs), i.e., hRFT-1, hRFT-2 and hRFT-3 are expressed in the intestine, little is known about the cell surface domain(s) at which these specific hRFTs are expressed. Here, we used live cell confocal imaging of intestinal epithelial Caco-2 and renal MDCK cells to show that the hRFT-1 is mainly expressed at the BLM, hRFT-2 is exclusively expressed at the apical membrane, while hRFT-3 is mostly localized inside intracellular vesicular structures (with some expression at the BLM). Further the level of hRFT-2 mRNA expression in Caco-2 cells and in native human intestine is significantly higher than that of hRFT-1 and -3; hRFT-2 was also more efficient in transporting 3H-RF than hRFT-1 and -3. These findings implied an important role for hRFT-2 in intestinal RF uptake, a conclusion that was further supported by findings of hRFT-2 gene-specific siRNA knockdown investigation. These results show that members of the hRFT family are differentially expressed in polarized epithelia, and that the apically expressed hRFT-2 plays a key role in intestinal RF accumulation.
Collapse
|
93
|
Abstract
Riboflavin or vitamin B(2) is one of the constituents of energy drinks. Although this compound is known to be absorbed in the intestine and that it circulates throughout the body and is excreted in urine, the transporter(s) responsible for the process was only recently identified. Yamamoto et al. identified this transporter through functional expression of rat orthologues of a putative bacterial riboflavin transporter.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan.
| |
Collapse
|
94
|
Abstract
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events.
Collapse
Affiliation(s)
- Hamid M Said
- School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
95
|
Subramanian VS, Rapp L, Marchant JS, Said HM. Role of cysteine residues in cell surface expression of the human riboflavin transporter-2 (hRFT2) in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G100-9. [PMID: 21512156 PMCID: PMC3129935 DOI: 10.1152/ajpgi.00120.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The water-soluble vitamin B2 (riboflavin, RF) is an essential micronutrient for normal cell function and survival. Recent studies have identified a role for the human riboflavin transporter-2 (hRFT2) in normal intestinal RF absorption. However, little is known about the cell biology of this transporter and specifically about the molecular determinant(s) that dictate its cell surface expression in human intestinal epithelial cells. Here we show that the full-length hRFT2 protein fused to green fluorescent protein (GFP) (GFP-hRFT2) is expressed exclusively at the apical membrane domain of Caco-2 cells. COOH-terminal sequence was essential in dictating cell surface expression with a specific role for conserved cysteine residues (C463 and C467). Mutation of C463 and C467 ablated RF uptake, explained by retention of the constructs within the endoplasmic reticulum. Modeling analysis suggested a potential disulfide bridge between C463 and C386. Consistent with this prediction, mutating the C386 site in the context of the full-length transporter resulted in intracellular retention, whereas mutation of another conserved cysteine (C326A) was without effect on hRFT2 targeting. Intracellular trafficking of hRFT2 was also examined and appeared to involve distinct vesicular structures, the motility of vesicles critically dependent on an intact microtubule network. These results demonstrate a potential role for specific cysteine residues in the cell surface expression of the hRFT2 in human intestinal epithelial cells.
Collapse
Affiliation(s)
- Veedamali S. Subramanian
- 1Departments of Medicine and Physiology/Biophysics, University of California Medical School, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California;
| | - Laramie Rapp
- 3Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jonathan S. Marchant
- 3Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Hamid M. Said
- 1Departments of Medicine and Physiology/Biophysics, University of California Medical School, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California;
| |
Collapse
|
96
|
Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 2011; 75:321-60. [PMID: 21646432 PMCID: PMC3122625 DOI: 10.1128/mmbr.00030-10] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Riboflavin [7,8-dimethyl-10-(1'-d-ribityl)isoalloxazine, vitamin B₂] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP.
Collapse
Affiliation(s)
| | - Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Lviv 79005, Ukraine
- University of Rzeszow, Rzeszow 35-601, Poland
| |
Collapse
|
97
|
Ouyang M, Ma J, Zou M, Guo J, Wang L, Lu C, Zhang L. The photosensitive phs1 mutant is impaired in the riboflavin biogenesis pathway. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1466-1476. [PMID: 20580123 DOI: 10.1016/j.jplph.2010.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 05/27/2023]
Abstract
A photosensitive (phs1) mutant of Arabidopsis thaliana was isolated and characterized. The PHS1 gene was cloned using a map-based approach. The gene was found to encode a protein containing a deaminase-reductase domain that is involved in the riboflavin pathway. The phenotype and growth of the phs1 mutant were comparable to that of the wild-type when the plants were grown under low light conditions. When the light intensity was increased, the mutant was characterized by stunted growth and bleached leaves as well as a decrease in FNR activity. The NADPH levels declined, whereas the NADP(+) levels increased, leading to a decrease in the NADPH/NADP(+) ratio. The mutant suffered from severe photooxidative damage with an increase in antioxidant enzyme activity and a drastic reduction in the levels of chlorophyll and photosynthetic proteins. Supplementing the mutant with exogenous FAD rescued the photosensitive phenotype, even under increasing light intensity. The riboflavin pathway therefore plays an important role in protecting plants from photooxidative damage.
Collapse
Affiliation(s)
- Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
98
|
Nakaya Y, Shojima T, Yasuda J, Imakawa K, Miyazawa T. Epigenetic regulation on the 5'-proximal CpG island of human porcine endogenous retrovirus subgroup A receptor 2/GPR172B. Microbes Infect 2010; 13:49-57. [PMID: 20951222 DOI: 10.1016/j.micinf.2010.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 11/19/2022]
Abstract
Porcine endogenous retroviruses (PERVs) have been considered one of the major risks of xenotransplantation from pigs to humans. PERV-A efficiently utilizes human PERV-A receptor 2 (HuPAR-2)/GPR172B to infect human cells; however, there has been no study on the regulation mechanisms of HuPAR-2/GPR172B expression. In this study, we examined the expression of HuPAR-2/GPR172B from the standpoint of epigenetic regulation and discussed the risks of PERV-A infection in xenotransplantation. Quantitative real-time RT-PCR revealed that HuPAR-2 mRNA was preferentially expressed in placental tissue, whereas it was highly suppressed in BeWo cells (a human choriocarcinoma cell line) and HEK293 cells. A CpG island containing the HuPAR-2 transcription starting site was identified by in silico analysis. The DNA methylation ratio (the relative quantity of methylcytosine to total cytosine) and histone modification (H3K9me3) levels in the CpG island measured by bisulfite genomic sequencing and ChIP assay, respectively, were inversely correlated with the mRNA levels. Both HuPAR-2 mRNA and HuPAR-2 protein were up-regulated in HEK293 cells by inhibiting DNA methylation and histone deacetylation. Additionally, promoter/enhancer activities within the CpG island were suppressed by in vitro DNA methylation. Our results demonstrated that epigenetic modification regulates HuPAR-2 expression.
Collapse
Affiliation(s)
- Yuki Nakaya
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
99
|
Bonzo JA, Patterson AD, Krausz KW, Gonzalez FJ. Metabolomics identifies novel Hnf1alpha-dependent physiological pathways in vivo. Mol Endocrinol 2010; 24:2343-55. [PMID: 20943816 DOI: 10.1210/me.2010-0130] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutations in the HNF1A gene cause maturity-onset diabetes of the young type 3, one of the most common genetic causes of non-insulin-dependent (type 2) diabetes mellitus. Although the whole-body Hnf1a-null mouse recapitulates the low insulin levels and high blood glucose observed in human maturity-onset diabetes of the young type 3 patients, these mice also suffer from Laron dwarfism and aminoaciduria, suggesting a role for hepatocyte nuclear factor 1α (Hnf1α) in pathophysiologies distinct from non-insulin-dependent (type 2) diabetes mellitus. In an effort to identify pathways associated with inactivation of Hnf1α, an ultraperformance liquid chromatography coupled to mass spectrometry-based metabolomics study was conducted on urine samples from wild-type and Hnf1a-null mice. An increase in phenylalanine metabolites is in agreement with the known regulation of the phenylalanine hydroxylase gene by Hnf1α. This metabolomic approach also identified urinary biomarkers for three tissue-specific dysfunctions previously unassociated with Hnf1α function. 1) Elevated indolelactate coupled to decreased xanthurenic acid also indicated defects in the indole and kynurenine pathways of tryptophan metabolism, respectively. 2) An increase in the neutral amino acid proline in the urine of Hnf1a-null mice correlated with loss of renal apical membrane transporters of the Slc6a family. 3) Further investigation into the mechanism of aldosterone increase revealed an overactive adrenal gland in Hnf1a-null mice possibly due to inhibition of negative feedback regulation. Although the phenotype of the Hnf1a-null mouse is complex, metabolomics has opened the door to investigation of several physiological systems in which Hnf1α may be a critical regulatory component.
Collapse
Affiliation(s)
- Jessica A Bonzo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
100
|
Fujimura M, Yamamoto S, Murata T, Yasujima T, Inoue K, Ohta KY, Yuasa H. Functional characteristics of the human ortholog of riboflavin transporter 2 and riboflavin-responsive expression of its rat ortholog in the small intestine indicate its involvement in riboflavin absorption. J Nutr 2010; 140:1722-7. [PMID: 20724488 DOI: 10.3945/jn.110.128330] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Riboflavin transporter (RFT) 2 has recently been identified as a transporter that may be, mainly based on the functional characteristics of its rat ortholog (rRFT2), involved in the intestinal absorption of riboflavin. The present study was conducted to further examine such a possible role of RFT2, focusing on the functional characteristics of its human ortholog (hRFT2) and the response of rRFT2 expression in the small intestine to deprivation of dietary riboflavin. When transiently expressed in human embryonic kidney 293 cells, hRFT2 could transport riboflavin efficiently in a pH-sensitive manner, favoring acidic pH and without requiring Na(+). Riboflavin transport by hRFT2 was saturable with a Michaelis constant of 0.77 μmol/L at pH 6.0, and inhibited by some riboflavin derivatives, such as lumiflavin. It was also inhibited, to a lesser extent, by some cationic compounds, such as ethidium. Thus, hRFT2 was suggested to, together with a finding that its mRNA is highly expressed in the small intestine, have characteristics as an intestinal RFT. Furthermore, feeding rats a riboflavin-deficient diet caused an upregulation of the expression of rRFT2 mRNA in the small intestine, presumably as an adaptive response to enhance riboflavin absorption, which would involve rRFT2, and its apically localized characteristic was suggested by the observation of rRFT2 tagged with green fluorescent protein stably expressed in polarized Madin-Darby canine kidney II cells. All these results combined indicate that RFT2 is a transporter involved in the epithelial uptake of riboflavin in the small intestine for its nutritional utilization.
Collapse
Affiliation(s)
- Misaki Fujimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | | | | | | | | | | | |
Collapse
|