51
|
Spencer NJ, Keating DJ. Is There a Role for Endogenous 5-HT in Gastrointestinal Motility? How Recent Studies Have Changed Our Understanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:113-22. [PMID: 27379639 DOI: 10.1007/978-3-319-27592-5_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Over the past few years, there have been dramatic changes in our understanding of the role of endogenous 5-hydroxytryptamine (5-HT) in the generation of gastrointestinal (GI) motility patterns in the small and large intestine. The idea that endogenous 5-HT played a major role in the generation of peristalsis in the small intestine was first proposed in the mid 1950s, after it was discovered that endogenous 5-HT could be released from the mucosa at a similar time that peristalsis occurred; and that exogenous 5-HT could potently stimulate peristalsis. The fact that exogenous 5-HT stimulated peristalsis and that there was a similarity in timing between the release of 5-HT from the mucosa and the onset of peristalsis led investigators to propose that release of endogenous 5-HT from the mucosa was causally related to the generation of peristalsis. In further support of this, other studies showed that selective 5-HT antagonists could inhibit or block peristalsis, and other motor patterns, such as the migrating motor complex. Taken together, based on these findings, some laboratories believed that endogenous 5-HT (synthesized in the gut wall) was an important mediator, or initiator, of different propulsive motor patterns in the lower GI tract. This notion changed dramatically in the past few years, however, after it was discovered that removal of the mucosa abolished all cyclical release of endogenous 5-HT, but did not block peristalsis, nor the cyclical migrating complex. Furthermore, other laboratories revealed that genetic deletion of the gene tryptophan hydroxylase 1 (TPH-1) (that synthesizes endogenous 5-HT in the mucosa) actually had no inhibitory effect on transit of intestinal contents in live animals. Then, perhaps one of the most startling of all observations was the discovery that selective 5-HT receptor antagonists actually have the same inhibitory effects on peristalsis and the migrating complex in segments of intestine that had been depleted of all endogenous 5-HT. Taken together, these recent findings have led to a major revision in our understanding of the functional role of endogenous 5-HT in the generation of propulsive motor patterns in the lower GI tract. This review will focus on how our understanding of endogenous 5-HT in the GI tract has changed substantially in recent times.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, SA, Australia.
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
52
|
Martin AM, Lumsden AL, Young RL, Jessup CF, Spencer NJ, Keating DJ. The nutrient-sensing repertoires of mouse enterochromaffin cells differ between duodenum and colon. Neurogastroenterol Motil 2017; 29. [PMID: 28251760 DOI: 10.1111/nmo.13046] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Enterochromaffin (EC) cells within the gastrointestinal (GI) tract provide almost all body serotonin (5-hydroxytryptamine [5-HT]). Peripheral 5-HT, released from EC cells lining the gut wall, serves diverse physiological roles. These include modulating GI motility, bone formation, hepatic gluconeogenesis, thermogenesis, insulin resistance, and regulation of fat mass. Enterochromaffin cells are nutrient sensors, but which nutrients they are responsive to and how this changes in different parts of the GI tract are poorly understood. METHODS To accurately undertake such an examination, we undertook the first isolation and purification of primary mouse EC cells from both the duodenum and colon in the same animal. This allowed us to compare, in an internally controlled manner, regional differences in the expression of nutrient sensors in EC cells using real-time PCR. KEY RESULTS Both colonic and duodenal EC cells expressed G protein-coupled receptors and facilitative transporters for sugars, free fatty acids, amino acids, and lipid amides. We find differential expression of nutrient receptor and transporters in EC cells obtained from duodenal and colonic EC cells. Duodenal EC cells have higher expression of tryptophan hydroxylase-1, sugar transporters GLUT2, GLUT5, and free fatty acid receptors 1 and 3 (FFAR1 and FFAR3). Colonic EC cells express higher levels of GLUT1, FFAR2, and FFAR4. CONCLUSIONS & INFERENCES We highlight the diversity of EC cell physiology and identify differences in the regional sensing repertoire of EC cells to an assortment of nutrients. These data indicate that not all EC cells are similar and that differences in their physiological responses are likely dependent on their location within the GI tract.
Collapse
Affiliation(s)
- A M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - A L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - R L Young
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - C F Jessup
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - N J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
53
|
Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, Keating DJ. The Diverse Metabolic Roles of Peripheral Serotonin. Endocrinology 2017; 158:1049-1063. [PMID: 28323941 DOI: 10.1210/en.2016-1839] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is a multifunctional bioamine with important signaling roles in a range of physiological pathways. Almost all of the 5-HT in our bodies is synthesized in specialized enteroendocrine cells within the gastrointestinal (GI) mucosa called enterochromaffin (EC) cells. These cells provide all of our circulating 5-HT. We have long appreciated the important contributions of 5-HT within the gut, including its role in modulating GI motility. However, evidence of the physiological and clinical significance of gut-derived 5-HT outside of the gut has recently emerged, implicating 5-HT in regulation of glucose homeostasis, lipid metabolism, bone density, and diseases associated with metabolic syndrome, such as obesity and type 2 diabetes. Although a new picture has developed in the last decade regarding the various metabolic roles of peripheral serotonin, so too has our understanding of the physiology of EC cells. Given that they are scattered throughout the lining of the GI tract within the epithelial cell layer, these cells are typically difficult to study. Advances in isolation procedures now allow the study of pure EC-cell cultures and single cells, enabling studies of EC-cell physiology to occur. EC cells are sensory cells that are capable of integrating cues from ingested nutrients, the enteric nervous system, and the gut microbiome. Thus, levels of peripheral 5-HT can be modulated by a multitude of factors, resulting in both local and systemic effects for the regulation of a raft of physiological pathways related to metabolism and obesity.
Collapse
Affiliation(s)
- Alyce M Martin
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
| | - Richard L Young
- Nutrition and Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Lex Leong
- Infection and Immunity, SAHMRI, Adelaide 5001, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University of South Australia, Adelaide 5042, Australia
| | - Geraint B Rogers
- Infection and Immunity, SAHMRI, Adelaide 5001, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University of South Australia, Adelaide 5042, Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
| | - Claire F Jessup
- Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
- Discipline of Anatomy and Histology, Flinders University of South Australia, Adelaide 5042, Australia
| | - Damien J Keating
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
| |
Collapse
|
54
|
Transanal Irrigation for Refractory Chronic Idiopathic Constipation: Patients Perceive a Safe and Effective Therapy. Gastroenterol Res Pract 2017; 2017:3826087. [PMID: 28115930 PMCID: PMC5237460 DOI: 10.1155/2017/3826087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Abstract
Background. Transanal irrigation (TAI) can successfully treat neurogenic bowel dysfunction (NBD), but patient perception of its use in chronic idiopathic constipation (CIC) is unknown. Objective. To evaluate patient perceptions of the efficacy and safety of TAI for CIC and whether there are predictive factors of perceived treatment response. Methods. Prospective data collection of baseline physiology and symptom severity; retrospective evaluation of efficacy and safety perceptions using a snapshot survey. All patients fulfilling the Rome III criteria for functional constipation with chronic idiopathic aetiology were included. The main outcome measure was the duration of patients' usage of TAI. Results. 102 patients reported 21,476 irrigations over 119 patient years, with a mean duration of therapy use of 60.5 weeks [SD 73.2 : SE 7.3]. Overall symptom improvement included general well-being (65%), rectal clearance (63%), bloating (49%), abdominal pain (48%), and bowel frequency (42%). 68 patients (67%) were "moderately better" or "very much better" on a satisfaction question. Reported complications were minor. No correlation was demonstrated between duration of therapy use and baseline measures. Conclusion. A significant proportion of CIC sufferers use TAI as a long-term or bridging therapy and perceive it as safe. This therapy demands a prospective investigation of efficacy and safety.
Collapse
|
55
|
Smith TK, Koh SD. A model of the enteric neural circuitry underlying the generation of rhythmic motor patterns in the colon: the role of serotonin. Am J Physiol Gastrointest Liver Physiol 2017; 312:G1-G14. [PMID: 27789457 PMCID: PMC5283906 DOI: 10.1152/ajpgi.00337.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/19/2016] [Indexed: 01/31/2023]
Abstract
We discuss the role of multiple cell types involved in rhythmic motor patterns in the large intestine that include tonic inhibition of the muscle layers interrupted by rhythmic colonic migrating motor complexes (CMMCs) and secretomotor activity. We propose a model that assumes these motor patterns are dependent on myenteric descending 5-hydroxytryptamine (5-HT, serotonin) interneurons. Asynchronous firing in 5-HT neurons excite inhibitory motor neurons (IMNs) to generate tonic inhibition occurring between CMMCs. IMNs release mainly nitric oxide (NO) to inhibit the muscle, intrinsic primary afferent neurons (IPANs), glial cells, and pacemaker myenteric pacemaker interstitial cells of Cajal (ICC-MY). Mucosal release of 5-HT from enterochromaffin (EC) cells excites the mucosal endings of IPANs that synapse with 5-HT descending interneurons and perhaps ascending interneurons, thereby coupling EC cell 5-HT to myenteric 5-HT neurons, synchronizing their activity. Synchronized 5-HT neurons generate a slow excitatory postsynaptic potential in IPANs via 5-HT7 receptors and excite glial cells and ascending excitatory nerve pathways that are normally inhibited by NO. Excited glial cells release prostaglandins to inhibit IMNs (disinhibition) to allow full excitation of ICC-MY and muscle by excitatory motor neurons (EMNs). EMNs release ACh and tachykinins to excite pacemaker ICC-MY and muscle, leading to the simultaneous contraction of both the longitudinal and circular muscle layers. Myenteric 5-HT neurons also project to the submucous plexus to couple motility with secretion, especially during a CMMC. Glial cells are necessary for switching between different colonic motor behaviors. This model emphasizes the importance of myenteric 5-HT neurons and the likely consequence of their coupling and uncoupling to mucosal 5-HT by IPANs during colonic motor behaviors.
Collapse
Affiliation(s)
- Terence Keith Smith
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
56
|
Linan-Rico A, Ochoa-Cortes F, Beyder A, Soghomonyan S, Zuleta-Alarcon A, Coppola V, Christofi FL. Mechanosensory Signaling in Enterochromaffin Cells and 5-HT Release: Potential Implications for Gut Inflammation. Front Neurosci 2016; 10:564. [PMID: 28066160 PMCID: PMC5165017 DOI: 10.3389/fnins.2016.00564] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Enterochromaffin (EC) cells synthesize 95% of the body 5-HT and release 5-HT in response to mechanical or chemical stimulation. EC cell 5-HT has physiological effects on gut motility, secretion and visceral sensation. Abnormal regulation of 5-HT occurs in gastrointestinal disorders and Inflammatory Bowel Diseases (IBD) where 5-HT may represent a key player in the pathogenesis of intestinal inflammation. The focus of this review is on mechanism(s) involved in EC cell "mechanosensation" and critical gaps in our knowledge for future research. Much of our knowledge and concepts are from a human BON cell model of EC, although more recent work has included other cell lines, native EC cells from mouse and human and intact mucosa. EC cells are "mechanosensors" that respond to physical forces generated during peristaltic activity by translating the mechanical stimulus (MS) into an intracellular biochemical response leading to 5-HT and ATP release. The emerging picture of mechanosensation includes Piezo 2 channels, caveolin-rich microdomains, and tight regulation of 5-HT release by purines. The "purinergic hypothesis" is that MS releases purines to act in an autocrine/paracrine manner to activate excitatory (P2Y1, P2Y4, P2Y6, and A2A/A2B) or inhibitory (P2Y12, A1, and A3) receptors to regulate 5-HT release. MS activates a P2Y1/Gαq/PLC/IP3-IP3R/SERCA Ca2+signaling pathway, an A2A/A2B-Gs/AC/cAMP-PKA signaling pathway, an ATP-gated P2X3 channel, and an inhibitory P2Y12-Gi/o/AC-cAMP pathway. In human IBD, P2X3 is down regulated and A2B is up regulated in EC cells, but the pathophysiological consequences of abnormal mechanosensory or purinergic 5-HT signaling remain unknown. EC cell mechanosensation remains poorly understood.
Collapse
Affiliation(s)
- Andromeda Linan-Rico
- Department of Anesthesiology, Wexner Medical Center at Ohio State UniversityColumbus, OH, USA; CONACYT-Centro Universitario de Investigaciones Biomedicas, University of ColimaColima, Mexico
| | - Fernando Ochoa-Cortes
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - Suren Soghomonyan
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Alix Zuleta-Alarcon
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Vincenzo Coppola
- SBS-Cancer Biology and Genetics, Ohio State University Columbus, OH, USA
| | - Fievos L Christofi
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| |
Collapse
|
57
|
Spencer NJ. Motility patterns in mouse colon: gastrointestinal dysfunction induced by anticancer chemotherapy. Neurogastroenterol Motil 2016; 28:1759-1764. [PMID: 27891756 DOI: 10.1111/nmo.12990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 02/08/2023]
Abstract
Colon cancer is a leading cause of cancer-related death in humans. 5-Fluorouracil (5-FU), a major chemotherapy treatment, has been used for decades to fight numerous types of cancers, including breast, colon, and head and neck carcinomas. Unfortunately, a large proportion of patients treated with 5-FU develop toxicities that include diarrhea, mucositis, neutropenia, and vomiting. While the side effects of 5-FU are well known, the mechanisms underlying the induction of these unpleasant symptoms are poorly understood. The study by McQuade et al. in this issue of Neurogastroenterology & Motility provides important new potential explanations for the gastrointestinal (GI) dysfunction induced by 5-FU. These researchers carefully investigated an overlooked research area in which the symptoms of GI-motility dysfunction maybe due to an effect on the enteric nervous system. McQuade et al. delivered 5-FU treatment to mice and discovered an initial increase in GI transit (associated with acute intestinal inflammation), followed by a slowing in transit. Major differences were noted in characteristics of colonic migrating motor complexes. These effects maybe causally related to deficits in enteric ganglia or neurotransmission. Their study identified specific neurochemical classes of neurons in the myenteric plexus most affected by 5-FU. This is the first study to provide evidence that the functional intrinsic neural pathways within the enteric nervous system are likely impaired by 5-FU, leading to colonic dysmotility. This review will describe major patterns of motor activity in isolated whole mouse colon and how these patterns are modified by anticancer chemotherapy.
Collapse
Affiliation(s)
- N J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
58
|
Lumsden AL, Young RL, Pezos N, Keating DJ. Huntingtin-associated protein 1: Eutherian adaptation from a TRAK-like protein, conserved gene promoter elements, and localization in the human intestine. BMC Evol Biol 2016; 16:214. [PMID: 27737633 PMCID: PMC5064798 DOI: 10.1186/s12862-016-0780-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022] Open
Abstract
Background Huntingtin-associated Protein 1 (HAP1) is expressed in neurons and endocrine cells, and is critical for postnatal survival in mice. HAP1 shares a conserved “HAP1_N” domain with TRAfficking Kinesin proteins TRAK1 and TRAK2 (vertebrate), Milton (Drosophila) and T27A3.1 (C. elegans). HAP1, TRAK1 and TRAK2 have a degree of common function, particularly regarding intracellular receptor trafficking. However, TRAK1, TRAK2 and Milton (which have a “Milt/TRAK” domain that is absent in human and rodent HAP1) differ in function to HAP1 in that they are mitochondrial transport proteins, while HAP1 has emerging roles in starvation response. We have investigated HAP1 function by examining its evolution, and upstream gene promoter sequences. We performed phylogenetic analyses of the HAP1_N domain family of proteins, incorporating HAP1 orthologues (identified by genomic synteny) from 5 vertebrate classes, and also searched the Dictyostelium proteome for a common ancestor. Computational analyses of mammalian HAP1 gene promoters were performed to identify phylogenetically conserved regulatory motifs. Results We found that as recently as marsupials, HAP1 contained a Milt/TRAK domain and was more similar to TRAK1 and TRAK2 than to eutherian HAP1. The Milt/TRAK domain likely arose post multicellularity, as it was absent in the Dictyostelium proteome. It was lost from HAP1 in the eutherian lineage, and also from T27A3.1 in C. elegans. The HAP1 promoter from human, mouse, rat, rabbit, horse, dog, Tasmanian devil and opossum contained common sites for transcription factors involved in cell cycle, growth, differentiation, and stress response. A conserved arrangement of regulatory elements was identified, including sites for caudal-related homeobox transcription factors (CDX1 and CDX2), and myc-associated factor X (MAX) in the region of the TATA box. CDX1 and CDX2 are intestine-enriched factors, prompting investigation of HAP1 protein expression in the human duodenum. HAP1 was localized to singly dispersed mucosal cells, including a subset of serotonin-positive enterochromaffin cells. Conclusion We have identified eutherian HAP1 as an evolutionarily recent adaptation of a vertebrate TRAK protein-like ancestor, and found conserved CDX1/CDX2 and MAX transcription factor binding sites near the TATA box in mammalian HAP1 gene promoters. We also demonstrated that HAP1 is expressed in endocrine cells of the human gut. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0780-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amanda L Lumsden
- Centre for Neuroscience and Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia.
| | - Richard L Young
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Nektaria Pezos
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Damien J Keating
- Centre for Neuroscience and Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia. .,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
59
|
Kaneko Y, Onda N, Watanabe Y, Shibutani M. Identification of 5-hydroxytryptamine-producing cells by detection of fluorescence in paraffin-embedded tissue sections. Eur J Histochem 2016; 60:2684. [PMID: 27734992 PMCID: PMC5062634 DOI: 10.4081/ejh.2016.2684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/09/2016] [Accepted: 08/18/2016] [Indexed: 01/25/2023] Open
Abstract
5-Hydroxytryptamine (5-HT) produced by enterochromaffin (EC) cells is an important enteric mucosal signaling ligand and has been implicated in several gastrointestinal diseases, including inflammatory bowel disease and functional disorders such as irritable bowel syndrome. The present study reports a new, simple and rapid visualization method of 5-HT-producing EC cells utilizing detection of fluorescence in paraffin-embedded tissue sections after formalin fixation. In human samples, there was a high incidence of fluorescence+ cells in the 5-HT+ cells in the pyloric, small intestinal and colonic glands, while co-localization was lacking between fluorescence+ and gastrin+ cells in the pyloric and small intestinal glands. Fluorescence+ EC cells were detected in the colon of mice and rats. Fluorescence+ cells were also observed in 5-HT+ β cells in the pancreatic islets of Langerhans in pregnant mice, while non-pregnant mouse pancreatic islet cells showed no 5-HT immunoreactivity or fluorescence. These results suggest that fluorescence+ cells are identical to 5-HT+ cells, and the source of fluorescence may be 5-HT itself or molecules related to its synthesis or degradation. This fluorescence signal detection method may be applicable for monitoring of inflammatory status of inflammatory bowel diseases in both the experimental and clinical settings.
Collapse
|
60
|
Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ, Kashyap P, Grover M, Oeckler R, Gottlieb PA, Li HJ, Leiter AB, Farrugia G, Beyder A. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol 2016; 595:79-91. [PMID: 27392819 DOI: 10.1113/jp272718] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS The gastrointestinal epithelial enterochromaffin (EC) cell synthesizes the vast majority of the body's serotonin. As a specialized mechanosensor, the EC cell releases this serotonin in response to mechanical forces. However, the molecular mechanism of EC cell mechanotransduction is unknown. In the present study, we show, for the first time, that the mechanosensitive ion channel Piezo2 is specifically expressed by the human and mouse EC cells. Activation of Piezo2 by mechanical forces results in a characteristic ionic current, the release of serotonin and stimulation of gastrointestinal secretion. Piezo2 inhibition by drugs or molecular knockdown decreases mechanosensitive currents, serotonin release and downstream physiological effects. The results of the present study suggest that the mechanosensitive ion channel Piezo2 is specifically expressed by the EC cells of the human and mouse small bowel and that it is important for EC cell mechanotransduction. ABSTRACT The enterochromaffin (EC) cell in the gastrointestinal (GI) epithelium is the source of nearly all systemic serotonin (5-hydroxytryptamine; 5-HT), which is an important neurotransmitter and endocrine, autocrine and paracrine hormone. The EC cell is a specialized mechanosensor, and it is well known that it releases 5-HT in response to mechanical forces. However, the EC cell mechanotransduction mechanism is unknown. The present study aimed to determine whether Piezo2 is involved in EC cell mechanosensation. Piezo2 mRNA was expressed in human jejunum and mouse mucosa from all segments of the small bowel. Piezo2 immunoreactivity localized specifically within EC cells of human and mouse small bowel epithelium. The EC cell model released 5-HT in response to stretch, and had Piezo2 mRNA and protein, as well as a mechanically-sensitive inward non-selective cation current characteristic of Piezo2. Both inward currents and 5-HT release were inhibited by Piezo2 small interfering RNA and antagonists (Gd3+ and D-GsMTx4). Jejunum mucosal pressure increased 5-HT release and short-circuit current via submucosal 5-HT3 and 5-HT4 receptors. Pressure-induced secretion was inhibited by the mechanosensitive ion channel antagonists gadolinium, ruthenium red and D-GsMTx4. We conclude that the EC cells in the human and mouse small bowel GI epithelium selectively express the mechanosensitive ion channel Piezo2, and also that activation of Piezo2 by force leads to inward currents, 5-HT release and an increase in mucosal secretion. Therefore, Piezo2 is critical to EC cell mechanosensitivity and downstream physiological effects.
Collapse
Affiliation(s)
- Fan Wang
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 300 Yanchang Middle Road, Shanghai, PR China
| | - Kaitlyn Knutson
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Constanza Alcaino
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - David R Linden
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Simon J Gibbons
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Purna Kashyap
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Madhusudan Grover
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Richard Oeckler
- Division of Pulmonary and Critical Care, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Philip A Gottlieb
- Department of Physiology and Biophysics, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY, USA
| | - Hui Joyce Li
- Department of Medicine, Division of Gastroenterology, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA, USA
| | - Andrew B Leiter
- Department of Medicine, Division of Gastroenterology, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA, USA
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| |
Collapse
|
61
|
Spencer NJ, Dinning PG, Brookes SJ, Costa M. Insights into the mechanisms underlying colonic motor patterns. J Physiol 2016; 594:4099-116. [PMID: 26990133 PMCID: PMC4967752 DOI: 10.1113/jp271919] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/26/2016] [Indexed: 12/28/2022] Open
Abstract
In recent years there have been significant technical and methodological advances in our ability to record the movements of the gastrointestinal tract. This has led to significant changes in our understanding of the different types of motor patterns that exist in the gastrointestinal tract (particularly the large intestine) and in our understanding of the mechanisms underlying their generation. Compared with other tubular smooth muscle organs, a rich variety of motor patterns occurs in the large intestine. This reflects a relatively autonomous nervous system in the gut wall, which has its own unique population of sensory neurons. Although the enteric nervous system can function independently of central neural inputs, under physiological conditions bowel motility is influenced by the CNS: if spinal pathways are disrupted, deficits in motility occur. The combination of high resolution manometry and video imaging has improved our knowledge of the range of motor patterns and provided some insight into the neural and mechanical factors underlying propulsion of contents. The neural circuits responsible for the generation of peristalsis and colonic migrating motor complexes have now been identified to lie within the myenteric plexus and do not require inputs from the mucosa or submucosal ganglia for their generation, but can be modified by their activity. This review will discuss the recent advances in our understanding of the different patterns of propagating motor activity in the large intestine of mammals and how latest technologies have led to major changes in our understanding of the mechanisms underlying their generation.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Phil G Dinning
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
- Departments of Gastroenterology and Surgery, Flinders Medical Centre, Adelaide, Australia
| | - Simon J Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Marcello Costa
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
62
|
Spencer NJ, Sia TC, Brookes SJ, Costa M, Keating DJ. CrossTalk opposing view: 5-HT is not necessary for peristalsis. J Physiol 2016; 593:3229-31. [PMID: 26228548 DOI: 10.1113/jp270183] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/06/2015] [Indexed: 01/12/2023] Open
Affiliation(s)
- Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Tiong Cheng Sia
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Simon J Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Marcello Costa
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
63
|
Smith TK, Gershon MD. CrossTalk proposal: 5-HT is necessary for peristalsis. J Physiol 2016; 593:3225-7. [PMID: 26228547 DOI: 10.1113/jp270182] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/06/2015] [Indexed: 12/31/2022] Open
Affiliation(s)
- Terence K Smith
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
64
|
Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 2016; 21:738-48. [PMID: 27090305 PMCID: PMC4879184 DOI: 10.1038/mp.2016.50] [Citation(s) in RCA: 615] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023]
Abstract
The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.
Collapse
Affiliation(s)
- G B Rogers
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - D J Keating
- South Australian Health and Medical Research Institute, Centre for Neuroscience and Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - R L Young
- South Australian Health and Medical Research Institute, Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - M-L Wong
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - J Licinio
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - S Wesselingh
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
65
|
Thorn P, Zorec R, Rettig J, Keating DJ. Exocytosis in non-neuronal cells. J Neurochem 2016; 137:849-59. [PMID: 26938142 DOI: 10.1111/jnc.13602] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/02/2016] [Accepted: 03/01/2016] [Indexed: 12/18/2022]
Abstract
Exocytosis is the process by which stored neurotransmitters and hormones are released via the fusion of secretory vesicles with the plasma membrane. It is a dynamic, rapid and spatially restricted process involving multiple steps including vesicle trafficking, tethering, docking, priming and fusion. For many years great steps have been undertaken in our understanding of how exocytosis occurs in different cell types, with significant focus being placed on synaptic release and neurotransmission. However, this process of exocytosis is an essential component of cell signalling throughout the body and underpins a diverse array of essential physiological pathways. Many similarities exist between different cell types with regard to key aspects of the exocytosis pathway, such as the need for Ca(2+) to trigger it or the involvement of members of the N-ethyl maleimide-sensitive fusion protein attachment protein receptor protein families. However, it is also equally clear that non-neuronal cells have acquired highly specialized mechanisms to control the release of their own unique chemical messengers. This review will focus on several important non-neuronal cell types and discuss what we know about the mechanisms they use to control exocytosis and how their specialized output is relevant to the physiological role of each individual cell type. These include enteroendocrine cells, pancreatic β cells, astrocytes, lactotrophs and cytotoxic T lymphocytes. Non-neuronal cells have acquired highly specialized mechanisms to control the release of unique chemical messengers, such as polarised fusion of insulin granules in pancreatic β cells targeted towards the vasculature (top). This review discusses mechanisms used in several important non-neuronal cell types to control exocytosis, and the relevance of intermediate vesicle fusion pore states (bottom) and their specialized output to the physiological role of each cell type. These include enteroendocrine cells, pancreatic β cells, astrocytes, lactotrophs and cytotoxic T lymphocytes. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015).
Collapse
Affiliation(s)
- Peter Thorn
- Charles Perkins Centre, John Hopkins Drive, The University of Sydney, Camperdown, NSW, Australia
| | - Robert Zorec
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|
66
|
Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil 2016; 28:620-30. [PMID: 26691223 PMCID: PMC4842178 DOI: 10.1111/nmo.12754] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Specialized endoderm-derived epithelial cells, that is, enteroendocrine cells (EECs), are widely distributed throughout the gastrointestinal (GI) tract. Enteroendocrine cells form the largest endocrine organ in the body and play a key role in the control of GI secretion and motility, the regulation of food intake, postprandial glucose levels and metabolism. EECs sense luminal content and release signaling molecules that can enter the circulation to act as classic hormones on distant targets, act locally on neighboring cells and on distinct neuronal pathways including enteric and extrinsic neurons. Recent studies have shed light on EEC sensory transmission by showing direct connections between EECs and the nervous system via axon-like processes that form a well-defined neuroepithelial circuits through which EECs can directly communicate with the neurons innervating the GI tract to initiate appropriate functional responses. PURPOSE This review will highlight the role played by the EECs in the complex and integrated sensory information responses, and discuss the new findings regarding EECs in the brain-gut axis bidirectional communication.
Collapse
Affiliation(s)
- R Latorre
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C Sternini
- CURE Digestive Diseases Research Center, Division of Digestive Diseases and Departments of Medicine and Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - R De Giorgio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
67
|
Electrochemical fecal pellet sensor for simultaneous real-time ex vivo detection of colonic serotonin signalling and motility. Sci Rep 2016; 6:23442. [PMID: 27000971 PMCID: PMC4802304 DOI: 10.1038/srep23442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/07/2016] [Indexed: 12/21/2022] Open
Abstract
Various investigations have focused on understanding the relationship between mucosal serotonin (5-HT) and colonic motility, however contradictory studies have questioned the importance of this intestinal transmitter. Here we described the fabrication and use of a fecal pellet electrochemical sensor that can be used to simultaneously detect the release of luminal 5-HT and colonic motility. Fecal pellet sensor devices were fabricated using carbon nanotube composite electrodes that were housed in 3D printed components in order to generate a device that had shape and size that mimicked a natural fecal pellet. Devices were fabricated where varying regions of the pellet contained the electrode. Devices showed that they were stable and sensitive for ex vivo detection of 5-HT, and no differences in the fecal pellet velocity was observed when compared to natural fecal pellets. The onset of mucosal 5-HT was observed prior to the movement of the fecal pellet. The release of mucosal 5-HT occurred oral to the fecal pellet and was linked to the contraction of the bowel wall that drove pellet propulsion. Taken, together these findings provide new insights into the role of mucosal 5-HT and suggest that the transmitter acts as a key initiator of fecal pellet propulsion.
Collapse
|
68
|
Kendig DM, Hurst NR, Grider JR. Spatiotemporal Mapping of Motility in Ex Vivo Preparations of the Intestines. J Vis Exp 2016:e53263. [PMID: 26863156 PMCID: PMC4781693 DOI: 10.3791/53263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multiple approaches have been used to record and evaluate gastrointestinal motility including: recording changes in muscle tension, intraluminal pressure, and membrane potential. All of these approaches depend on measurement of activity at one or multiple locations along the gut simultaneously which are then interpreted to provide a sense of overall motility patterns. Recently, the development of video recording and spatiotemporal mapping (STmap) techniques have made it possible to observe and analyze complex patterns in ex vivo whole segments of colon and intestine. Once recorded and digitized, video records can be converted to STmaps in which the luminal diameter is converted to grayscale or color [called diameter maps (Dmaps)]. STmaps can provide data on motility direction (i.e., stationary, peristaltic, antiperistaltic), velocity, duration, frequency and strength of contractile motility patterns. Advantages of this approach include: analysis of interaction or simultaneous development of different motility patterns in different regions of the same segment, visualization of motility pattern changes over time, and analysis of how activity in one region influences activity in another region. Video recordings can be replayed with different timescales and analysis parameters so that separate STmaps and motility patterns can be analyzed in more detail. This protocol specifically details the effects of intraluminal fluid distension and intraluminal stimuli that affect motility generation. The use of luminal receptor agonists and antagonists provides mechanistic information on how specific patterns are initiated and how one pattern can be converted into another pattern. The technique is limited by the ability to only measure motility that causes changes in luminal diameter, without providing data on intraluminal pressure changes or muscle tension, and by the generation of artifacts based upon experimental setup; although, analysis methods can account for these issues. When compared to previous techniques the video recording and STmap approach provides a more comprehensive understanding of gastrointestinal motility.
Collapse
Affiliation(s)
- Derek M Kendig
- Department of Physiology and Biophysics, Virginia Commonwealth University; Department of Biology, Loyola University Maryland;
| | - Norm R Hurst
- Department of Physiology and Biophysics, Virginia Commonwealth University
| | - John R Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University
| |
Collapse
|
69
|
Spencer NJ. Constitutively Active 5-HT Receptors: An Explanation of How 5-HT Antagonists Inhibit Gut Motility in Species Where 5-HT is Not an Enteric Neurotransmitter? Front Cell Neurosci 2015; 9:487. [PMID: 26732863 PMCID: PMC4683187 DOI: 10.3389/fncel.2015.00487] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022] Open
Abstract
Antagonists of 5-Hydroxytryptamine (5-HT) receptors are well known to inhibit gastrointestinal (GI)-motility and transit in a variety of mammals, including humans. Originally, these observations had been interpreted by many investigators (including us) as evidence that endogenous 5-HT plays a major role in GI motility. This seemed a logical assumption. However, the story changed dramatically after recent studies revealed that 5-HT antagonists still blocked major GI motility patterns (peristalsis and colonic migrating motor complexes) in segments of intestine depleted of all 5-HT. Then, these results were further supported by Dr. Gershons' laboratory, which showed that genetic deletion of all genes that synthesizes 5-HT had minor, or no inhibitory effects on GI transit in vivo. If 5-HT was essential for GI motility patterns and transit, then one would expect major disruptions in motility and transit when 5-HT synthesis was genetically ablated. This does not occur. The inhibitory effects of 5-HT antagonists on GI motility clearly occur independently of any 5-HT in the gut. Evidence now suggests that 5-HT antagonists act on 5-HT receptors in the gut which are constitutively active, and don't require 5-HT for their activation. This would explain a long-standing mystery of how 5-HT antagonists inhibit gut motility in species like mice, rats, and humans where 5-HT is not an enteric neurotransmitter. Studies are now increasingly demonstrating that the presence of a neurochemical in enteric neurons does not mean they function as neurotransmitters. Caution should be exercised when interpreting any inhibitory effects of 5-HT antagonists on GI motility.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia Adelaide, SA, Australia
| |
Collapse
|
70
|
Zelkas L, Raghupathi R, Lumsden AL, Martin AM, Sun E, Spencer NJ, Young RL, Keating DJ. Serotonin-secreting enteroendocrine cells respond via diverse mechanisms to acute and chronic changes in glucose availability. Nutr Metab (Lond) 2015; 12:55. [PMID: 26673561 PMCID: PMC4678665 DOI: 10.1186/s12986-015-0051-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/09/2015] [Indexed: 01/11/2023] Open
Abstract
Background Enteroendocrine cells collectively constitute our largest endocrine tissue, with serotonin (5-HT) secreting enterochromaffin (EC) cells being the largest component (~50 %). This gut-derived 5-HT has multiple paracrine and endocrine roles. EC cells are thought to act as nutrient sensors and luminal glucose is the major absorbed form of carbohydrate in the gut and activates secretion in an array of cell types. It is unknown whether EC cells release 5-HT in response to glucose in primary EC cells. Furthermore, fasting augments 5-HT synthesis and release into the circulation. However, which nutrients cause fasting-induced synthesis of EC cell 5-HT is unknown. Here we examine the effects of acute and chronic changes in glucose availability on 5-HT release from intact tissue and single EC cells. Methods We utilised established approaches in our laboratories measuring 5-HT release in intact mouse colon with amperometry. We then examined single EC cells function using our published protocol in guinea-pig colon. Single cell Ca2+ imaging and amperometry were used with these cells. Real-time PCR was used along with amperometry, on primary EC cells cultured for 24 h in 5 or 25 mM glucose. Results We demonstrate that acute increases in glucose, at levels found in the gut lumen rather than in plasma, trigger 5-HT release from intact colon, and cause Ca2+ entry and 5-HT release in primary EC cells. Single cell amperometry demonstrates that high glucose increases the amount of 5-HT released from individual vesicles as they undergo exocytosis. Finally, 24 h incubation of EC cells in low glucose causes an increase in the transcription of the 5-HT synthesising enzyme Tph1 as well as increasing in 5-HT secretion in EC cells. Conclusions We demonstrate that primary EC cells respond to acute changes in glucose availability through increases in intracellular Ca2+ the activation of 5-HT secretion, but respond to chronic changes in glucose levels through the transcriptional regulation of Tph1 to alter 5-HT synthesis.
Collapse
Affiliation(s)
- Leah Zelkas
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia
| | - Ravi Raghupathi
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia ; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5001 Australia
| | - Amanda L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia ; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5001 Australia
| | - Alyce M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia ; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5001 Australia
| | - Emily Sun
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia ; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5001 Australia
| | - Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia
| | - Richard L Young
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5001 Australia ; Discipline of Medicine, University of Adelaide, Adelaide, SA 5001 Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia ; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5001 Australia
| |
Collapse
|
71
|
Raghupathi R, Jessup CF, Lumsden AL, Keating DJ. Fusion Pore Size Limits 5-HT Release From Single Enterochromaffin Cell Vesicles. J Cell Physiol 2015; 231:1593-600. [PMID: 26574734 DOI: 10.1002/jcp.25256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022]
Abstract
Enterochromaffin cells are the major site of serotonin (5-HT) synthesis and secretion providing ∼95% of the body's total 5-HT. 5-HT can act as a neurotransmitter or hormone and has several important endocrine and paracrine roles. We have previously demonstrated that EC cells release small amounts of 5-HT per exocytosis event compared to other endocrine cells. We utilized a recently developed method to purify EC cells to demonstrate the mechanisms underlying 5-HT packaging and release. Using the fluorescent probe FFN511, we demonstrate that EC cells express VMAT and that VMAT plays a functional role in 5-HT loading into vesicles. Carbon fiber amperometry studies illustrate that the amount of 5-HT released per exocytosis event from EC cells is dependent on both VMAT and the H(+)-ATPase pump, as demonstrated with reserpine or bafilomycin, respectively. We also demonstrate that increasing the amount of 5-HT loaded into EC cell vesicles does not result in an increase in quantal release. As this indicates that fusion pore size may be a limiting factor involved, we compared pore diameter in EC and chromaffin cells by assessing the vesicle capture of different-sized fluorescent probes to measure the extent of fusion pore dilation. This identified that EC cells have a reduced fusion pore expansion that does not exceed 9 nm in diameter. These results demonstrate that the small amounts of 5-HT released per fusion event in EC cells can be explained by a smaller fusion pore that limits 5-HT release capacity from individual vesicles.
Collapse
Affiliation(s)
- Ravinarayan Raghupathi
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Claire F Jessup
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Amanda L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
72
|
Browning KN. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology. Front Neurosci 2015; 9:413. [PMID: 26578870 PMCID: PMC4625078 DOI: 10.3389/fnins.2015.00413] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022] Open
Abstract
Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine Hershey, PA, USA
| |
Collapse
|
73
|
Kendig DM, Grider JR. Serotonin and colonic motility. Neurogastroenterol Motil 2015; 27:899-905. [PMID: 26095115 PMCID: PMC4477275 DOI: 10.1111/nmo.12617] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022]
Abstract
The role of serotonin (5-hydroxytryptamine [5-HT]) in gastrointestinal motility has been studied for over 50 years. Most of the 5-HT in the body resides in the gut wall, where it is located in subsets of mucosal cells (enterochromaffin cells) and neurons (descending interneurons). Many studies suggest that 5-HT is important to normal and dysfunctional gut motility and drugs affecting 5-HT receptors, especially 5-HT3 and 5-HT4 receptors, have been used clinically to treat motility disorders; however, cardiovascular side effects have limited the use of these drugs. Recently studies have questioned the importance and necessity of 5-HT in general and mucosal 5-HT in particular for colonic motility. Recent evidence suggests the importance of 5-HT3 and 5-HT4 receptors for initiation and generation of one of the key colonic motility patterns, the colonic migrating motor complex (CMMC), in rat. The findings suggest that 5-HT3 and 5-HT4 receptors are differentially involved in two different types of rat CMMCs: the long distance contraction (LDC) and the rhythmic propulsive motor complex (RPMC). The understanding of the role of serotonin in colonic motility has been influenced by the specific motility pattern(s) studied, the stimulus used to initiate the motility (spontaneous vs induced), and the route of administration of drugs. All of these considerations contribute to the understanding and the controversy that continues to surround the role of serotonin in the gut.
Collapse
Affiliation(s)
- D. M. Kendig
- Virginia Commonwealth University Program in Enteric Neuromuscular Sciences; Department of Physiology and Biophysics; Virginia Commonwealth University; Richmond VA USA
| | - J. R. Grider
- Virginia Commonwealth University Program in Enteric Neuromuscular Sciences; Department of Physiology and Biophysics; Virginia Commonwealth University; Richmond VA USA
| |
Collapse
|
74
|
Pustovit RV, Furness JB, Rivera LR. A ghrelin receptor agonist is an effective colokinetic in rats with diet-induced constipation. Neurogastroenterol Motil 2015; 27:610-7. [PMID: 25616061 DOI: 10.1111/nmo.12517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/24/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Despite constipation being a common problem, the treatments that are available have side effects and are only partly effective. Recent studies show that centrally penetrant ghrelin receptor agonists cause defecation in humans and other species. Here, we describe some features of a rat model of low fiber-induced constipation, and investigate the effectiveness of the ghrelin agonist, capromorelin. METHODS Rats were given low-fiber diets for 5 weeks. Their colorectal responsiveness to distension and to a behavioral test, water avoidance and colon histology were compared to those of rats on a standard diet. KEY RESULTS After the low-fiber diet, distension of the colon produced fewer propulsive contractions, behaviorally induced defecation was reduced, and the lining of the colorectum was inflamed. However, capromorelin was similarly effective in causing defecation in constipated and non-constipated rats. CONCLUSIONS & INFERENCES Low-fiber diet in rats produces a constipation phenotype, characterized by reduced responsiveness of the colorectum to distension and to a behavioral stimulus of defecation, water avoidance. The effectiveness of capromorelin suggests that centrally penetrant ghrelin receptor stimulants may be effective in treating constipation.
Collapse
Affiliation(s)
- R V Pustovit
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | | | | |
Collapse
|
75
|
Smith TK, Park KJ, Hennig GW. Colonic migrating motor complexes, high amplitude propagating contractions, neural reflexes and the importance of neuronal and mucosal serotonin. J Neurogastroenterol Motil 2014; 20:423-46. [PMID: 25273115 PMCID: PMC4204412 DOI: 10.5056/jnm14092] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/15/2022] Open
Abstract
The colonic migrating motor complex (CMMC) is a critical neurally mediated rhythmic propulsive contraction observed in the large intestine of many mammals. It seems to be equivalent to the high amplitude propagating contractions (HAPCs) in humans. This review focuses on the probable neural mechanisms involved in producing the CMMC or HAPC, their likely dependence on mucosal and neuronal serotonin and pacemaker insterstitial cells of Cajal networks and how intrinsic neural reflexes affect them. Discussed is the possibility that myenteric 5-hydroxytryptamine (5-HT) neurons are not only involved in tonic inhibition of the colon, but are also involved in generating the CMMC and modulation of the entire enteric nervous system, including coupling motility to secretion and blood flow. Mucosal 5-HT appears to be important for the initiation and effective propagation of CMMCs, although this mechanism is a longstanding controversy since the 1950s, which we will address. We argue that the slow apparent propagation of the CMMC/HAPC down the colon is unlikely to result from a slowly conducting wave front of neural activity, but more likely because of an interaction between ascending excitatory and descending (serotonergic) inhibitory neural pathways interacting both within the myenteric plexus and at the level of the muscle. That is, CMMC/HAPC propagation appears to be similar to esophageal peristalsis. The suppression of inhibitory (neuronal nitric oxide synthase) motor neurons and mucosal 5-HT release by an upregulation of prostaglandins has important implications in a number of gastrointestinal disorders, especially slow transit constipation.
Collapse
Affiliation(s)
- Terence K Smith
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Kyu Joo Park
- Department of Surgery, School of Medicine, Seoul National University, Seoul Korea
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
76
|
Gwynne RM, Clarke AJ, Furness JB, Bornstein JC. Both exogenous 5-HT and endogenous 5-HT, released by fluoxetine, enhance distension evoked propulsion in guinea-pig ileum in vitro. Front Neurosci 2014; 8:301. [PMID: 25285066 PMCID: PMC4168689 DOI: 10.3389/fnins.2014.00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/03/2014] [Indexed: 12/11/2022] Open
Abstract
The roles of 5-HT3 and 5-HT4 receptors in the modulation of intestinal propulsion by luminal application of 5-HT and augmentation of endogenous 5-HT effects were studied in segments of guinea-pig ileum in vitro. Persistent propulsive contractions evoked by saline distension were examined using a modified Trendelenburg method. When 5-HT (30 nM), fluoxetine (selective serotonin reuptake inhibitor; 1 nM), 2-methyl-5-HT (5-HT3 receptor agonist; 1 mM), or RS 67506 (5-HT4 receptor agonist, 1 μM) was infused into the lumen, the pressure needed to initiate persistent propulsive activity fell significantly. A specific 5-HT4 receptor antagonist, SB 207266 (10 nM in lumen), abolished the effects of 5-HT, fluoxetine, and RS 67506, but not those of 2-methyl-5-HT. Granisetron (5-HT3 receptor antagonist; 1 μM in lumen) abolished the effect of 5-HT, fluoxetine, RS 67506, and 2-methyl-5-HT. The NK3 receptor antagonist SR 142801 (100 nM in lumen) blocked the effects of 5-HT, fluoxetine, and 2-methyl-5-HT. SB 207266, granisetron, and SR 142801 had no effect by themselves. Higher concentrations of fluoxetine (100 and 300 nM) and RS 67506 (3 and 10 μM) had no effect on the distension threshold for propulsive contractions. These results indicate that luminal application of exogenous 5-HT, or increased release of endogenous mucosal 5-HT above basal levels, acts to lower the threshold for propulsive contractions in the guinea-pig ileum via activation of 5-HT3 and 5-HT4 receptors and the release of tachykinins. The results further indicate that basal release of 5-HT is insufficient to alter the threshold for propulsive motor activity.
Collapse
Affiliation(s)
- Rachel M Gwynne
- Department of Physiology, University of Melbourne Parkville, VIC, Australia
| | - Amanda J Clarke
- Department of Physiology, University of Melbourne Parkville, VIC, Australia
| | - John B Furness
- Departments of Anatomy and Cell Biology, University of Melbourne Parkville, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
77
|
Dinning PG, Wiklendt L, Omari T, Arkwright JW, Spencer NJ, Brookes SJH, Costa M. Neural mechanisms of peristalsis in the isolated rabbit distal colon: a neuromechanical loop hypothesis. Front Neurosci 2014; 8:75. [PMID: 24795551 PMCID: PMC3997013 DOI: 10.3389/fnins.2014.00075] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/26/2014] [Indexed: 11/13/2022] Open
Abstract
Propulsive contractions of circular muscle are largely responsible for the movements of content along the digestive tract. Mechanical and electrophysiological recordings of isolated colonic circular muscle have demonstrated that localized distension activates ascending and descending interneuronal pathways, evoking contraction orally and relaxation anally. These polarized enteric reflex pathways can theoretically be sequentially activated by the mechanical stimulation of the advancing contents. Here, we test the hypothesis that initiation and propagation of peristaltic contractions involves a neuromechanical loop; that is an initial gut distension activates local and oral reflex contraction and anal reflex relaxation, the subsequent movement of content then acts as new mechanical stimulus triggering sequentially reflex contractions/relaxations at each point of the gut resulting in a propulsive peristaltic contraction. In fluid filled isolated rabbit distal colon, we combined spatiotemporal mapping of gut diameter and intraluminal pressure with a new analytical method, allowing us to identify when and where active (neurally-driven) contraction or relaxation occurs. Our data indicate that gut dilation is associated with propagating peristaltic contractions, and that the associated level of dilation is greater than that preceding non-propagating contractions (2.7 ± 1.4 mm vs. 1.6 ± 1.2 mm; P < 0.0001). These propagating contractions lead to the formation of boluses that are propelled by oral active neurally driven contractions. The propelled boluses also activate neurally driven anal relaxations, in a diameter dependent manner. These data support the hypothesis that neural peristalsis is the consequence of the activation of a functional loop involving mechanical dilation which activates polarized enteric circuits. These produce propulsion of the bolus which activates further anally, polarized enteric circuits by distension, thus closing the neuromechanical loop.
Collapse
Affiliation(s)
- Phil G Dinning
- Department of Gastroenterology and Surgery, Flinders Medical Centre, Flinders University Bedford Park, SA, Australia ; Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| | - Lukasz Wiklendt
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| | - Taher Omari
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia ; Gastroenterology Unit, Child, Youth and Women's Health Service Adelaide, SA, Australia
| | | | - Nick J Spencer
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| | - Simon J H Brookes
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| | - Marcello Costa
- Department of Human Physiology, School of Medicine, Flinders University Bedford Park, SA, Australia
| |
Collapse
|
78
|
Okamoto T, Barton MJ, Hennig GW, Birch GC, Grainger N, Corrigan RD, Koh SD, Sanders KM, Smith TK. Extensive projections of myenteric serotonergic neurons suggest they comprise the central processing unit in the colon. Neurogastroenterol Motil 2014; 26:556-70. [PMID: 24460867 DOI: 10.1111/nmo.12302] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/12/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND 5-Hydroxytryptamine (5-HT, serotonin) is an important regulator of colonic motility and secretion; yet the role of serotonergic neurons in the colon is controversial. METHODS We used immunohistochemical techniques to examine their projections throughout the enteric nervous system and interstitial cells of Cajal (ICC) networks in the murine proximal to mid colon. KEY RESULTS Serotonergic neurons, which were mainly calbindin positive, occurred only in myenteric ganglia (1 per 3 ganglia). They were larger than nNOS neurons but similar in size to Dogiel Type II (AH) neurons. 5-HT neurons, appeared to make numerous varicose contacts with each other, most nNOS neurons, Dogiel Type II/AH neurons and glial cells. 5-HT, calbindin and nNOS nerve fibers also formed a thin perimuscular nerve plexus that was associated with ganglia, which contained both nNOS positive and negative neurons, which lay directly upon the submucosal pacemaker ICC network. Neurons in perimuscular ganglia were surrounded by 5-HT varicosities. Submucous ganglia contained nNOS positive and negative neurons, and calbindin positive neurons, which also appeared richly supplied by serotonergic nerve varicosities. Serotonergic nerve fibers ran along submucosal arterioles, but not veins. Varicosities of serotonergic nerve fibers were closely associated with pacemaker ICC networks and with intramuscular ICC (ICC-IM). 5-HT2B receptors were found on a subpopulation of non-5-HT containing myenteric neurons and their varicosities, pacemaker ICC-MY and ICC-IM. CONCLUSIONS & INFERENCES Myenteric serotonergic neurons, whose axons exhibit considerable divergence, regulate the entire enteric nervous system and are important in coordinating motility with secretion. They are not just interneurons, as regularly assumed, but possibly also motor neurons to ICC and blood vessels, and some may even be sensory neurons.
Collapse
Affiliation(s)
- T Okamoto
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Martín-Cano FE, Camello PJ, Pozo MJ. Characterization of the motor inhibitory role of colonic mucosa under chemical stimulation in mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G614-21. [PMID: 24525019 DOI: 10.1152/ajpgi.00208.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The main roles of the colonic mucosa are the absorption of water and electrolytes and the barrier function that preserves the integrity of the colonic wall. The mediators and mechanisms to accomplish these functions are under continuous investigation, but little attention has been paid to a possible control of colonic motility by the mucosa that would fine tune the relationship between absorption and motility. The purpose of this study was to establish the role of the mucosa in the control of induced colonic contractility. Young ICR-CD1 mice (3-5 mo old) were studied. Isometric tension transducers were used to record contractility in full-thickness (FT) and mucosa-free (MF) strips from proximal colon. Proximal FT strips showed lower KCl- and bethanechol-induced responses than MF strips. The difference was not due to mechanical artefacts since the contractile response of FT strips to electrical field stimulation was around 50% lower than in MF. The inhibitory effects of the mucosa on FT strips were mimicked by immersion of separate strips of mucosa in the organ bath but not by addition of mucosal extract, suggesting gaseous molecules as mediators of this effect. Incubation of MF strips with synthase inhibitors of nitric oxide, carbon monoxide, and hydrogen sulfide abolished the inhibition caused by addition of the mucosal strip, indicating that mucosal gasotransmitters are the mediators of these effects. This suggests that the control of colonic motility exerted by the mucosa could fine tune the balance between transit and absorption.
Collapse
Affiliation(s)
- Francisco E Martín-Cano
- Faculty of Nursing and Occupational Therapy, Department of Physiology, University of Extremadura, Caceres, Spain
| | | | | |
Collapse
|
80
|
Raghupathi R, Duffield MD, Zelkas L, Meedeniya A, Brookes SJH, Sia TC, Wattchow DA, Spencer NJ, Keating DJ. Identification of unique release kinetics of serotonin from guinea-pig and human enterochromaffin cells. J Physiol 2013; 591:5959-75. [PMID: 24099799 PMCID: PMC3872764 DOI: 10.1113/jphysiol.2013.259796] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/02/2013] [Indexed: 12/21/2022] Open
Abstract
The major source of serotonin (5-HT) in the body is the enterochromaffin (EC) cells lining the intestinal mucosa of the gastrointestinal tract. Despite the fact that EC cells synthesise ∼95% of total body 5-HT, and that this 5-HT has important paracrine and endocrine roles, no studies have investigated the mechanisms of 5-HT release from single primary EC cells. We have developed a rapid primary culture of guinea-pig and human EC cells, allowing analysis of single EC cell function using electrophysiology, electrochemistry, Ca(2+) imaging, immunocytochemistry and 3D modelling. Ca(2+) enters EC cells upon stimulation and triggers quantal 5-HT release via L-type Ca(2+) channels. Real time amperometric techniques reveal that EC cells release 5-HT at rest and this release increases upon stimulation. Surprisingly for an endocrine cell storing 5-HT in large dense core vesicles (LDCVs), EC cells release 70 times less 5-HT per fusion event than catecholamine released from similarly sized LDCVs in endocrine chromaffin cells, and the vesicle release kinetics instead resembles that observed in mammalian synapses. Furthermore, we measured EC cell density along the gastrointestinal tract to create three-dimensional (3D) simulations of 5-HT diffusion using the minimal number of variables required to understand the physiological relevance of single cell 5-HT release in the whole-tissue milieu. These models indicate that local 5-HT levels are likely to be maintained around the activation threshold for mucosal 5-HT receptors and that this is dependent upon stimulation and location within the gastrointestinal tract. This is the first study demonstrating single cell 5-HT release in primary EC cells. The mode of 5-HT release may represent a unique mode of exocytosis amongst endocrine cells and is functionally relevant to gastrointestinal sensory and motor function.
Collapse
Affiliation(s)
- Ravinarayan Raghupathi
- D. Keating: Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Road, Adelaide, 5001, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Sia TC, Brookes SJ, Dinning PG, Wattchow DA, Spencer NJ. Peristalsis and propulsion of colonic content can occur after blockade of major neuroneuronal and neuromuscular transmitters in isolated guinea pig colon. Am J Physiol Gastrointest Liver Physiol 2013; 305:G933-9. [PMID: 24113766 DOI: 10.1152/ajpgi.00257.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We recently identified hexamethonium-resistant peristalsis in the guinea pig colon. We showed that, following acute blockade of nicotinic receptors, peristalsis recovers, leading to normal propagation velocities of fecal pellets along the colon. This raises the fundamental question: what mechanisms underlie hexamethonium-resistant peristalsis? We investigated whether blockade of the major receptors that underlie excitatory neuromuscular transmission is required for hexamethonium-resistant peristalsis. Video imaging of colonic wall movements was used to make spatiotemporal maps and determine the velocity of peristalsis. Propagation of artificial fecal pellets in the guinea pig distal colon was studied in hexamethonium, atropine, ω-conotoxin (GVIA), ibodutant (MEN-15596), and TTX. Hexamethonium and ibodutant alone did not retard peristalsis. In contrast, ω-conotoxin abolished peristalsis in some preparations and reduced the velocity of propagation in all remaining specimens. Peristalsis could still occur in some animals in the presence of hexamethonium + atropine + ibodutant + ω-conotoxin. Peristalsis never occurred in the presence of TTX. The major finding of the current study is the unexpected observation that peristalsis can occur after blockade of the major excitatory neuroneuronal and neuromuscular transmitters. Also, the colon retained an intrinsic polarity in the presence of these antagonists and was only able to expel pellets in an aboral direction. The nature of the mechanism(s)/neurotransmitter(s) that generate(s) peristalsis and facilitate(s) natural fecal pellet propulsion, after blockade of major excitatory neurotransmitters, at the neuroneuronal and neuromuscular junction remains to be identified.
Collapse
Affiliation(s)
- T C Sia
- Dept. of Human Physiology, School of Medicine, Flinders Univ., Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
82
|
Heredia DJ, Gershon MD, Koh SD, Corrigan RD, Okamoto T, Smith TK. Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1. J Physiol 2013; 591:5939-57. [PMID: 24127620 DOI: 10.1113/jphysiol.2013.256230] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although there is general agreement that mucosal 5-hydroxytryptamine (5-HT) can initiate peristaltic reflexes in the colon, recent studies have differed as to whether or not the role of mucosal 5-HT is critical. We therefore tested the hypothesis that the secretion of 5-HT from mucosal enterochromaffin (EC) cells is essential for the manifestation of murine colonic peristaltic reflexes. To do so, we analysed the mechanisms underlying faecal pellet propulsion in isolated colons of mice lacking tryptophan hydroxylase 1 (Tph1(-/-) mice), which is the rate-limiting enzyme in the biosynthesis of mucosal but not neuronal 5-HT. We used video analysis of faecal pellet propulsion, tension transducers to record colonic migrating motor complexes (CMMCs) and intracellular microelectrodes to record circular muscle activity occurring spontaneously or following intraluminal distension. When compared with control (Tph1(+/+)) mice, Tph1(-/-) animals exhibited: (1) an elongated colon; (2) larger faecal pellets; (3) orthograde propulsion followed by retropulsion (not observed in Tph1(+/+) colon); (4) slower in vitro propulsion of larger faecal pellets (28% of Tph1(+/+)); (5) CMMCs that infrequently propagated in an oral to anal direction because of impaired descending inhibition; (6) reduced CMMCs and inhibitory responses to intraluminal balloon distension; (7) an absence of reflex activity in response to mucosal stimulation. In addition, (8) thin pellets that propagated along the control colon failed to do so in Tph1(-/-) colon; and (9) the 5-HT3 receptor antagonist ondansetron, which reduced CMMCs and blocked their propagation in Tph1(+/+) mice, failed to alter CMMCs in Tph1(-/-) animals. Our observations suggest that mucosal 5-HT is essential for reflexes driven by mucosal stimulation and is also important for normal propagation of CMMCs and propulsion of pellets in the isolated colon.
Collapse
Affiliation(s)
- Dante J Heredia
- T. K. Smith: Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Keating DJ, Peiris H, Kyloh M, Brookes SJH, Spencer NJ. The presence of 5-HT in myenteric varicosities is not due to uptake of 5-HT released from the mucosa during dissection: use of a novel method for quantifying 5-HT immunoreactivity in myenteric ganglia. Neurogastroenterol Motil 2013; 25:849-53. [PMID: 23901879 DOI: 10.1111/nmo.12189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 06/23/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Quantifying the relative abundance of different neurotransmitters in the myenteric plexus has proved challenging using conventional immunocytochemical approaches. Here, we present a new method of quantifying neurotransmitter content of an important enteric signalling molecule, serotonin (5-HT), in the myenteric plexus of guinea pig colon under different experimental conditions. METHODS Sections of guinea pig distal colon were exposed to different conditions including changes in temperature, dissection protocol, stimulation with faecal pellet distension and exogenous 5-HT. Sections were fixed and immuno-labelled for 5-HT. 5-HT staining density was quantified within myenteric plexus ganglia using defined settings and an analysis approach that uses threshold settings allowing for variances in background and tissue staining intensities and which calculates the area of tissue containing 5-HT above these thresholds. KEY RESULTS No differences were found in 5-HT immunoreactivity in the myenteric plexus when compared between tissues that were freshly fixed, undissected, or with mucosa and submucous plexus dissected away at either 4 or 37 °C. Increased myenteric plexus 5-HT density was observed in preparations repeatedly stimulated using faecal pellet stimulation prior to fixation. Furthermore, exogenous 5-HT also increased 5-HT density. CONCLUSIONS & INFERENCES We demonstrate that quantitative differences in 5-HT immunoreactivity can be characterized using immunohistochemistry. This approach may be applied to measuring other neurotransmitter(s) within the enteric nervous system. While 5-HT is present in the guinea-pig enteric ganglia, this is not due to accumulation via in vitro handling and release from the mucosa, and furthermore, repeated colonic stimulation via distension increases 5-HT in the myenteric plexus.
Collapse
Affiliation(s)
- D J Keating
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
84
|
Sia TC, Whiting M, Kyloh M, Nicholas SJ, Oliver J, Brookes SJ, Dinning PG, Wattchow DA, Spencer NJ. 5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in guinea-pig distal colon by mechanisms independent of endogenous 5-HT. Front Neurosci 2013; 7:136. [PMID: 23935564 PMCID: PMC3732893 DOI: 10.3389/fnins.2013.00136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/15/2013] [Indexed: 11/23/2022] Open
Abstract
Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI) transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT) receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon. In control animals, repetitive peristaltic contractions of the circular muscle were evoked in response to fixed fecal pellet distension. Distension-evoked peristaltic contractions were unaffected in animals with mucosa and submucosal plexus removed, that were also treated with reserpine (to deplete neuronal 5-HT). In control animals, peristaltic contractions were blocked temporarily by ondansetron (1–10 μM) and SDZ-205–557 (1–10 μM) in many animals. Interestingly, after this temporary blockade, and whilst in the continued presence of these antagonists, peristaltic contractions recovered, with characteristics no different from controls. Surprisingly, similar effects were seen in mucosa-free preparations, which had no detectable 5-HT, as detected by mass spectrometry. In summary, distension-evoked peristaltic reflex contractions of the circular muscle layer of the guinea-pig colon can be inhibited temporarily, or permanently, in the same preparation by selective 5-HT3 and 5-HT4 antagonists, depending on the concentration of the antagonists applied. These effects also occur in preparations that lack any detectable 5-HT. We suggest caution should be exercised when interpreting the effects of 5-HT3 and 5-HT4 antagonists; and the role of endogenous 5-HT, in the generation of distension-evoked colonic peristalsis.
Collapse
Affiliation(s)
- Tiong C Sia
- Discipline of Human Physiology and Center for Neuroscience, Flinders University Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Serotonin (5-HT) has been recognized for decades as an important signalling molecule in the gut, but it is still revealing its secrets. Novel gastrointestinal functions of 5-HT continue to be discovered, as well as distant actions of gut-derived 5-HT, and we are learning how 5-HT signalling is altered in gastrointestinal disorders. Conventional functions of 5-HT involving intrinsic reflexes include stimulation of propulsive and segmentation motility patterns, epithelial secretion and vasodilation. Activation of extrinsic vagal and spinal afferent fibres results in slowed gastric emptying, pancreatic secretion, satiation, pain and discomfort, as well as nausea and vomiting. Within the gut, 5-HT also exerts nonconventional actions such as promoting inflammation and serving as a trophic factor to promote the development and maintenance of neurons and interstitial cells of Cajal. Platelet 5-HT, originating in the gut, promotes haemostasis, influences bone development and serves many other functions. 5-HT3 receptor antagonists and 5-HT4 receptor agonists have been used to treat functional disorders with diarrhoea or constipation, respectively, and the synthetic enzyme tryptophan hydroxylase has also been targeted. Emerging evidence suggests that exploiting epithelial targets with nonabsorbable serotonergic agents could provide safe and effective therapies. We provide an overview of these serotonergic actions and treatment strategies.
Collapse
|
86
|
Szczesniak MM, Fuentealba SE, Zhang T, Cook IJ. Modulation of esophageal afferent pathways by 5-HT3 receptor inhibition. Neurogastroenterol Motil 2013; 25:383-8, e293. [PMID: 23360084 DOI: 10.1111/nmo.12074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The study aims were to investigate whether neural pathways involving 5-HT3 receptors mediate: (i) distension-induced upper esophageal sphincter (UES) relaxation reflex, (ii) esophageal sensitivity to acid and electrical stimuli, and (iii) viserosomatic sensitization following acid exposure. METHODS In Study I, in a double-blind crossover trial (n = 9) esophageal sensory and pain thresholds to electrical stimulation were measured in the esophagus, midsternum, and the foot, before subjects were randomized to receive either Ondansetron (8 mg i.v.) or NaCl (0.9% w/v). HCl (0.15 mol L(-1)) was then infused into distal esophagus and electrical thresholds were reassessed. Following electrical sensory threshold testing, subjects received a second esophageal infusion of HCl to evaluate esophageal sensitivity to acid. In Study II (N = 10), frequencies of distension-induced UES relaxation responses were scored before and after treatment with Ondansetron and NaCl in a double-blind crossover trial. KEY RESULTS In Study I, ondansetron had no effect on esophageal sensitivity to HCl or acid-induced sensitization. However, blockade of 5-HT3 receptors did reduce midsternum somatic pain thresholds. Sixty minutes after esophageal acid exposure, pain thresholds were significantly lower in the ondansetron arm (mean Δ-1.36 ± 0.4 mA) when compared with NaCl (mean Δ-0.14 ± 0.58 mA) (P < 0.05). In Study II, 5-HT3 receptor blockade had no significant effect on UES relaxation reflex. CONCLUSIONS & INFERENCES This study does not support the hypothesis that in health, 5-HT3 receptors play a significant role in esophago-UES distention-induced relaxation reflex and esophageal sensitivity to acid or electrical stimulation. It does provide new evidence for involvement of 5-HT3 receptors in viscerosomatic sensitization.
Collapse
Affiliation(s)
- M M Szczesniak
- Department of Gastroenterology, St George Hospital, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
87
|
Ellis M, Chambers JD, Gwynne RM, Bornstein JC. Serotonin and cholecystokinin mediate nutrient-induced segmentation in guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 2013; 304:G749-61. [PMID: 23392236 DOI: 10.1152/ajpgi.00358.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Segmentation is an important process in nutrient mixing and absorption; however, the mechanisms underlying this motility pattern are poorly understood. Segmentation can be induced by luminal perfusion of fatty acid in guinea pig small intestine in vitro and mimicked by the serotonin (5-HT) reuptake inhibitor fluoxetine (300 nM) and by cholecystokinin (CCK). Serotonergic and CCK-related mechanisms underlying nutrient-induced segmentation were investigated using selective 5-HT and CCK receptor antagonists on isolated segments of small intestine luminally perfused with 1 mM decanoic acid. Motility patterns were analyzed using video imaging and spatiotemporal maps. Segmenting activity mediated by decanoic acid was depressed following luminal application of the 5-HT receptor antagonists granisetron (5-HT(3), 1 μM) and SB-207266 (5-HT(4), 10 nM) and the CCK receptor antagonists devazepide (CCK-1, 300 nM) and L-365260 (CCK-2, 300 nM), but these antagonists did not further depress segmentation when combined. The P2 receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonate (10 μM) had no effect on activity. Serosal application of 5-HT antagonists had little effect on segmentation in the duodenum but reduced activity in the jejunum when granisetron and SB-207266 were applied together. These results reveal that 5-HT(3) and 5-HT(4) receptors, as well as CCK-1 and CCK-2 receptors, are critical in regulating decanoic acid-induced segmentation. Computational simulation indicated that these data are consistent with decanoic acid activating two pathways in the mucosa that converge within the enteric neural circuitry, while contraction-induced release of 5-HT from the mucosa provides feedback into the neural circuit to set the time course of the overall contractile activity.
Collapse
Affiliation(s)
- Melina Ellis
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
88
|
Sia TC, Flack N, Robinson L, Kyloh M, Nicholas SJ, Brookes SJ, Wattchow DA, Dinning P, Oliver J, Spencer NJ. Is serotonin in enteric nerves required for distension-evoked peristalsis and propulsion of content in guinea-pig distal colon? Neuroscience 2013; 240:325-35. [PMID: 23500097 DOI: 10.1016/j.neuroscience.2013.02.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Recent studies have shown genetic deletion of the gene that synthesizes 5-HT in enteric neurons (tryptophan hydroxylase-2, Tph-2) leads to a reduction in intestinal transit. However, deletion of the Tph-2 gene also leads to major developmental changes in enteric ganglia, which could also explain changes in intestinal transit. We sought to investigate this further by acutely depleting serotonin from enteric neurons over a 24-h period, without the confounding influences induced by genetic manipulation. Guinea-pigs were injected with reserpine 24h prior to euthanasia. Video-imaging and spatio-temporal mapping was used to record peristalsis evoked by natural fecal pellets, or slow infusion of intraluminal fluid. Immunohistochemical staining for 5-HT was used to detect the presence of serotonin in the myenteric plexus. It was found that endogenous 5-HT was always detected in myenteric ganglia of control animals, but never in guinea-pigs treated with reserpine. Interestingly, peristalsis was still reliably evoked by either intraluminal fluid, or fecal pellets in reserpine-treated animals that also had their entire mucosa and submucosal plexus removed. In these 5-HT depleted animals, there was no change in the frequency of peristalsis or force generated during peristalsis. In control animals, or reserpine treated animals, high concentrations (up to 10 μM) of ondansetron and SDZ-205-557, or granisetron and SDZ-205-557 had no effect on peristalsis. In summary, acute depletion of serotonin from enteric nerves does not prevent distension-evoked peristalsis, nor propulsion of luminal content. Also, we found no evidence that 5-HT3 and 5-HT4 receptor activation is required for peristalsis, or propulsion of contents to occur. Taken together, we suggest that the intrinsic mechanisms that generate peristalsis and entrain propagation along the isolated guinea-pig distal colon are independent of 5-HT in enteric neurons or the mucosa, and do not require the activation of 5-HT3 or 5-HT4 receptors.
Collapse
Affiliation(s)
- T C Sia
- Discipline of Human Physiology & Center for Neuroscience, Flinders Medical Center, South Australia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Zagorodnyuk VP, Spencer NJ. Localization of the sensory neurons and mechanoreceptors required for stretch-evoked colonic migrating motor complexes in mouse colon. Front Physiol 2011; 2:98. [PMID: 22203805 PMCID: PMC3244083 DOI: 10.3389/fphys.2011.00098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/24/2011] [Indexed: 12/16/2022] Open
Abstract
The pacemaker and pattern generator that underlies the cyclical generation of spontaneous colonic migrating motor complexes (CMMCs) has recently been identified to lie within the myenteric plexus and/or muscularis externa. Neither the mucosa, nor the release of substances from the mucosa were found to be required for the spontaneous generation of CMMCs. However, it is known that stretch applied to the colonic wall can also evoke CMMCs and since stretch of the gut wall is known to stimulate the mucosa, it is not clear whether release of substances from the mucosa and/or submucosal plexus are required for stretch-evoked CMMCs. Therefore, the aim of this study was to determine whether circumferential stretch-evoked CMMCs require the presence of the mucosa and/or submucosal plexus in isolated mouse colon. Spontaneous CMMCs were recorded from full length sheet preparations of colon in vitro. Graded circumferential stretch (at a rate of 100 μm/s) applied to a 15-mm segment of mid–distal colon reliably evoked a CMMC, which propagated to the oral recording site. Sharp dissection to remove the mucosa and submucosal plexus from the entire colon did not prevent spontaneous CMMCs and circumferential stretch-evoked CMMCs were still reliably evoked by circumferential stretch, even at significantly lower thresholds. In contrast, in intact preparations, direct stimulation of the mucosa (without accompanying stretch) proved highly inconsistent and rarely evoked a CMMC. These observations lead to the inescapable conclusion that the sensory neurons activated by colonic stretch to initiate CMMCs lie in the myenteric plexus, while the mechanoreceptors activated by stretch, lie in the myenteric ganglia and/or muscularis externa. Stretch activation of these mechanoreceptors does not require release of any substance(s) from the mucosa, or neural inputs arising from submucosal ganglia.
Collapse
Affiliation(s)
- Vladimir P Zagorodnyuk
- Department of Human Physiology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | | |
Collapse
|
90
|
Abstract
The development of IBS symptoms – altered bowel function and abdominal cramping in a subset of adult subjects exposed to severe enteric infections opened up an unprecedented opportunity to understand the etiology of this poorly understood disorder. Perhaps, for the reasons that these symptoms follow a severe enteric infection, and mucosal biopsy tissues are readily available, the focus of most studies thus far has been to show that mild/low-grade mucosal inflammation persisting after the initial infection has subsided causes the IBS symptoms. Parallel studies in non-infectious IBS patients, who did not have prior enteritis, showed similar mild mucosal inflammation. Together, these studies examined the mucosal infiltration of specific immune cells, increase of select inflammatory mediators, mast cell and enterochromaffin cell hyperplasia, and epithelial permeability. In spite of the fact that the data on these topics were not consistent among different studies and clinical trials with prednisone, fluoxetine, and ketotifen failed to provide relief of IBS symptoms, the predominant conclusions were that mild mucosal inflammation is the cause of IBS symptoms. However, the circular smooth muscle cells, and myenteric neurons are the primary regulators of gut motility function, while primary afferent neurons and CNS play essential roles in induction of visceral hypersensitivity – no explanation was provided as to how mild mucosal inflammation causes dysfunction in cells far removed. Accumulating evidence shows that mild mucosal inflammation in IBS patients is in physiological range. It has little deleterious effects on cells within its own environment and therefore it is unlikely to affect cells in the muscularis externa. This review discusses the disconnect between the focus on mild/low-grade mucosal inflammation and the potential mechanisms and molecular dysfunctions in smooth muscle cells, myenteric neurons, and primary afferent neurons that may underlie IBS symptoms.
Collapse
Affiliation(s)
- Sushil K Sarna
- Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston Galveston, TX, USA
| |
Collapse
|
91
|
Abstract
The development of IBS symptoms - altered bowel function and abdominal cramping in a subset of adult subjects exposed to severe enteric infections opened up an unprecedented opportunity to understand the etiology of this poorly understood disorder. Perhaps, for the reasons that these symptoms follow a severe enteric infection, and mucosal biopsy tissues are readily available, the focus of most studies thus far has been to show that mild/low-grade mucosal inflammation persisting after the initial infection has subsided causes the IBS symptoms. Parallel studies in non-infectious IBS patients, who did not have prior enteritis, showed similar mild mucosal inflammation. Together, these studies examined the mucosal infiltration of specific immune cells, increase of select inflammatory mediators, mast cell and enterochromaffin cell hyperplasia, and epithelial permeability. In spite of the fact that the data on these topics were not consistent among different studies and clinical trials with prednisone, fluoxetine, and ketotifen failed to provide relief of IBS symptoms, the predominant conclusions were that mild mucosal inflammation is the cause of IBS symptoms. However, the circular smooth muscle cells, and myenteric neurons are the primary regulators of gut motility function, while primary afferent neurons and CNS play essential roles in induction of visceral hypersensitivity - no explanation was provided as to how mild mucosal inflammation causes dysfunction in cells far removed. Accumulating evidence shows that mild mucosal inflammation in IBS patients is in physiological range. It has little deleterious effects on cells within its own environment and therefore it is unlikely to affect cells in the muscularis externa. This review discusses the disconnect between the focus on mild/low-grade mucosal inflammation and the potential mechanisms and molecular dysfunctions in smooth muscle cells, myenteric neurons, and primary afferent neurons that may underlie IBS symptoms.
Collapse
Affiliation(s)
- Sushil K Sarna
- Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston Galveston, TX, USA
| |
Collapse
|