51
|
Qiu Z, Ming H, Zhang Y, Yu Y, Lei S, Xia ZY. The Protective Role of Bmal1-Regulated Autophagy Mediated by HDAC3/SIRT1 Pathway in Myocardial Ischemia/Reperfusion Injury of Diabetic Rats. Cardiovasc Drugs Ther 2021; 36:229-243. [PMID: 33620678 DOI: 10.1007/s10557-021-07159-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Histone deacetylase 3 (HDAC3) and silent information regulator 1 (SIRT1) are histone deacetylases that regulate important metabolic pathways and play important roles in diabetes and myocardial ischemia/reperfusion (IR) injury. In this study, we explored the protective mechanism of Bmal1-regulated autophagy mediated by the HDAC3/SIRT1 pathway in myocardial IR injury of diabetic rats. METHODS AND RESULTS Type 1 diabetes was established by administering an intraperitoneal injection of streptozotocin. After 8 weeks, the left anterior descending coronary artery was ligated for 30 min and reperfused for 120 min to establish a myocardial IR injury model in diabetic rats. H9c2 cardiomyocytes were exposed to high glucose concentration (30 mM) and hypoxia/reoxygenation (H/R) stimulation in vitro. The myocardial infarct size and levels of serum cTn-I, CK-MB, and LDH in diabetic rats subjected to myocardial IR injury were significantly higher. Upregulated HDAC3 and downregulated SIRT1 expression were observed in diabetic and IR hearts, along with a lower Bmal1 level. Autophagy was rapidly increased in the hearts of diabetic or non-diabetic rats in the IR group compared with the sham group, but significantly attenuated in the hearts of diabetic rats compared with the hearts of non-diabetic rats after IR insult. Consistent with decreased autophagy, we observed increased HDAC3 expression and decreased SIRT1 and Bmal1 levels in the myocardial tissue of diabetic rats after IR. Inhibition of HDAC3 by the inhibitor RGFP966 and activation of SIRT1 by the agonist SRT1720 could significantly attenuate myocardial IR injury in diabetic rats by restoring Bmal1-regulated autophagy. CONCLUSION Based on these findings, the disordered HDAC3/SIRT1 circuit (upregulated HDAC3 and downregulated SIRT1 levels) plays an important role in aggravating myocardial IR injury in diabetic rats by downregulating Bmal1-mediated autophagy. Treatments targeting HDAC3/SIRT1 to activate the autophagy may represent a novel strategy to alleviate myocardial IR injury in diabetes.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hao Ming
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yanli Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
52
|
Tu YH, Guo Y, Ji S, Shen JL, Fei GH. The Influenza A Virus H3N2 Triggers the Hypersusceptibility of Airway Inflammatory Response via Activating the lncRNA TUG1/miR-145-5p/NF-κB Pathway in COPD. Front Pharmacol 2021; 12:604590. [PMID: 33841139 PMCID: PMC8029562 DOI: 10.3389/fphar.2021.604590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Patients with chronic obstructive pulmonary disease (COPD) are more susceptible to influenza A virus (IAV) with more severe symptoms, yet the underlying molecular mechanisms of the hypersusceptibility of airway inflammatory response remain unclear. Methods: The primary human bronchial epithelial cells (pHBECs) were isolated from normal and COPD bronchial tissues (NHBE and DHBE) and cultured with/without IAV infection in vitro. DHBE cells were exposed to IAV for 24 h after knockdown of lncRNA TUG1 with short hairpin RNA (shRNA). Gain-of-function assays were performed with the miR-145-5p inhibitor and NF-κBp65 transfection. The expressions of lncRNA TUG1, miR-145-5p, phospho-NF-κBp65, NF-κBp65, TNF-α, and (Interleukin) IL-1β were examined with qRT-PCR, Western blotting, and ELISA. The interactions of lncRNA TUG1, miR-145-5p, and NF-κB were verified with luciferase reporter assay. Results: The expressions of lncRNA TUG1, phospho-NF-κBp65, TNF-α, and IL-1β were increased significantly in pHBECs after being infected with IAV for 24 h (all p0.05). The detailed time analysis revealed that the NF-κBp65 in DHBE was activated earlier than that in NHBE by Western blotting and immunofluorescence. Knockdown of lncRNA TUG1 and miR-145-5p mimic attenuated the expressions of NF-κBp65, TNF-α, and IL-1β significantly. The miR-145-5p inhibitor and NF-κBp65 transfection reversed the attenuated expressions of NF-κBp65, TNF-α, and IL-1β. Conclusion: The IAV causes the hypersusceptibility of airway inflammatory response, which may be closely associated with more severe symptoms in AECOPD patients. The lncRNA TUG1 inhibitor may be a promising therapeutic strategy for AECOPD caused by IAV.
Collapse
Affiliation(s)
- You-Hui Tu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuang Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ji-Long Shen
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
53
|
Li K, Zhang J, Zhang M, Wu Y, Lu X, Zhu Y. miR-378a-5p inhibits the proliferation of colorectal cancer cells by downregulating CDK1. World J Surg Oncol 2021; 19:54. [PMID: 33608020 PMCID: PMC7896405 DOI: 10.1186/s12957-021-02166-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play an important role in tumor occurrence. The role of miR-378a-5p and CDK1 in colorectal cancer (CRC) was investigated in this study. METHODS Investigation of TCGA database and the detection of miR-378a-5p expression in colorectal cancer pathological tissues and colorectal cancer cell lines were undertaken by using qRT-PCR. We performed cell function experiments (CCK-8 assay, EdU assay, colony formation assay, wound healing assay, transwell assay, cell apoptosis assessment, and cell cycle assessment) and nude mouse tumor formation experiments to evaluate the effects of miR-378a-5p on proliferation, metastasis, and invasion to explore the role of miR-378a-5p in vivo and in vitro. Next, through TCGA database, immunohistochemical staining of pathological tissues, and cell function experiments, the role of the target gene CDK1 of miR-378a-5p was verified by database prediction, and dual luciferase reporter gene experiments in colorectal cancer cells were performed. Finally, whether upregulation of CDK1 restores the inhibitory effect of overexpression of miR-378a-5p on the proliferation of CRC cells was studied by overexpression of CDK1. RESULTS Bioinformatic analysis showed significant downregulation of miR-378a-5p levels in colorectal cancer (CRC). Cell function experiments and tumor xenograft mouse models confirmed the low expression of miR-378a-5p within CRC tissues, which indicated the tumor suppressive role of miR-378a-5p in CRC. To better explore the regulation of miR-378a-5p in CRC, we predicted and validated cell cycle-dependent protein kinase 1 (CDK1) as the miR-378a-5p target gene and observed that miR-378a-5p suppressed CRC cell proliferation by targeting CDK1. CONCLUSION The results of this study help to elucidate the mechanism by which miR-378a-5p can be used as a tumor marker to inhibit the growth of colorectal cancer and CDK1, which is related to the prognosis of colorectal cancer patients. MiR-378a-5p inhibits CRC cell proliferation by suppressing CDK1 expression, which may become a possible therapeutic target for treatment of CRC.
Collapse
Affiliation(s)
- Kai Li
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241002, China.,Department of Clinical medicine, Wannan Medical College, Wuhu, 241002, China.,Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241002, China
| | - Jieling Zhang
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241002, China.,Department of Clinical medicine, Wannan Medical College, Wuhu, 241002, China.,Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241002, China
| | - Mingkang Zhang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241002, China
| | - Yaohua Wu
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241002, China
| | - Xinyu Lu
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241002, China
| | - Yiping Zhu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
54
|
Liu B, Wang B, Zhang X, Lock R, Nash T, Vunjak-Novakovic G. Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 2021; 13:eabd0914. [PMID: 33568517 PMCID: PMC8848299 DOI: 10.1126/scitranslmed.abd0914] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Current interventions fail to recover injured myocardium after infarction and prompt the need for development of cardioprotective strategies. Of increasing interest is the therapeutic use of microRNAs to control gene expression through specific targeting of mRNAs. In this Review, we discuss current microRNA-based therapeutic strategies, describing the outcomes and limitations of key microRNAs with a focus on target cell types and molecular pathways. Last, we offer a perspective on the outlook of microRNA therapies for myocardial infarction, highlighting the outstanding challenges and emerging strategies.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor Nash
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
55
|
Colpaert RMW, Calore M. Epigenetics and microRNAs in cardiovascular diseases. Genomics 2021; 113:540-551. [PMID: 33482325 DOI: 10.1016/j.ygeno.2020.12.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/12/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are among the leading causes of mortality worldwide. Besides environmental and genetic changes, these disorders can be influenced by processes which do not affect DNA sequence yet still play an important role in gene expression and which can be inherited. These so-called 'epigenetic' changes include DNA methylation, histone modifications, and ATP-dependent chromatin remodeling enzymes, which influence chromatin remodeling and gene expression. Next to these, microRNAs are non-coding RNA molecules that silence genes post-transcriptionally. Both epigenetic factors and microRNAs are known to influence cardiac development and homeostasis, in an individual fashion but also in a complex regulatory network. In this review, we will discuss how epigenetic factors and microRNAs interact with each other and how together they can influence cardiovascular diseases.
Collapse
Affiliation(s)
- Robin M W Colpaert
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Faculty of Science and Engineering, Maastricht University, the Netherlands
| | - Martina Calore
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Faculty of Science and Engineering, Maastricht University, the Netherlands.
| |
Collapse
|
56
|
Gong C, Zhou X, Lai S, Wang L, Liu J. Long Noncoding RNA/Circular RNA-miRNA-mRNA Axes in Ischemia-Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8838524. [PMID: 33299883 PMCID: PMC7710414 DOI: 10.1155/2020/8838524] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Ischemia-reperfusion injury (IRI) elicits tissue injury involved in a wide range of pathologies. Multiple studies have demonstrated that noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), participate in the pathological development of IRI, and they may act as biomarkers, therapeutic targets, or prognostic indicators. Nonetheless, the specific molecular mechanisms of ncRNAs in IRI have not been completely elucidated. Regulatory networks among lncRNAs/circRNAs, miRNAs, and mRNAs have been the focus of attention in recent years. Studies on the underlying molecular mechanisms have contributed to the discovery of therapeutic targets or strategies in IRI. In this review, we comprehensively summarize the current research on the lncRNA/circRNA-miRNA-mRNA axes and highlight the important role of these axes in IRI.
Collapse
Affiliation(s)
- Chengwu Gong
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xueliang Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Songqing Lai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lijun Wang
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jichun Liu
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
57
|
Song K, Li L, Quan Q, Wei Y, Hu S. Inhibited histone deacetylase 3 ameliorates myocardial ischemia-reperfusion injury in a rat model by elevating microRNA-19a-3p and reducing cyclin-dependent kinase 2. IUBMB Life 2020; 72:2696-2709. [PMID: 33217223 DOI: 10.1002/iub.2402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Over the years, the roles of microRNAs (miRNAs) and histone deacetylase 3 (HDAC3) in human diseases have been investigated. This study focused on the effect of miR-19a-3p and HDAC3 in myocardial ischemia-reperfusion (I/R) injury (MIRI) by targeting cyclin-dependent kinase 2 (CDK2). METHODS The I/R rat models were established by coronary artery ligation, which were then treated with RGFP966 (an inhibitor of HDAC3), miR-19a-3p agomir or antagomir, or silenced CDK2 to explore their roles in the cardiac function, pathological changes of myocardial tissues, myocardial infarction area, inflammatory factors and oxidative stress factors in rats with MIRI. The expression of miR-19a-3p, HDAC3, and CDK2 was determined by RT-qPCR and western blot assay, and the interaction among which was also verified by online prediction, luciferase activity assay and ChIP assay. RESULTS The results indicated that HDAC3 and CDK2 were upregulated while miR-19a-3p was downregulated in myocardial tissues of I/R rats. The inhibited HDAC3/CDK2 or elevated miR-19a-3p could promote cardiac function, attenuate pathological changes, inflammatory reaction, oxidative stress, myocardial infarction area and apoptosis of myocardial tissues. HDAC3 mediates miR-19a-3p and CDK2 is targeted by miR-19a-3p. CONCLUSION Inhibited HDAC3 ameliorates MIRI in a rat model by elevating miR-19a-3p and reducing CDK2, which may contribute to the treatment of MIRI.
Collapse
Affiliation(s)
- Kaiyou Song
- Cardiovascular Department, Linyi People's Hospital, Linyi, China
| | - Lianting Li
- Internal Medicine Department, Junan County Hospital of Traditional Chinese Medicine, Linyi, China
| | - Qingqing Quan
- Department of Respiratory Medicine, Linyi People's Hospital, Linyi, China
| | - Yanjin Wei
- Cardiovascular Department, Linyi People's Hospital, Linyi, China
| | - Shunpeng Hu
- Cardiovascular Department, Linyi People's Hospital, Linyi, China
| |
Collapse
|
58
|
Wu X, Liu Y, Mo S, Wei W, Ye Z, Su Q. LncRNA TUG1 competitively binds to miR-340 to accelerate myocardial ischemia-reperfusion injury. FASEB J 2020; 35:e21163. [PMID: 33164260 DOI: 10.1096/fj.202000827rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
The aberrant expression of long noncoding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) has been previously associated with myocardial ischemia-reperfusion injury (MIRI), but the underlying molecular mechanisms remain elusive. The current study aimed to clarify the functional role of TUG1/microRNA (miR)-340/histone deacetylase 4 (HDAC4)/β-catenin/glucose transporter type 1 (GLUT1) axes in MIRI. The database-based analyses performed predicted the downstream factors of lncRNA TUG1. In the MIRI mouse models and hypoxia/reoxygenation (H/R)-induced cardiomyocyte models, the expression of TUG1/miR-340/HDAC4/β-catenin/GLUT1 was manipulated to examine their effects on the infarction area, cardiomyocyte viability and apoptosis employing the Evans blue/TTC double staining, CCK-8 and TUNEL assays. Furthermore, the dual luciferase reporter and RIP assays verified the binding affinity of miR-340 to TUG1 and HDAC4. Subsequently, a negative correlation between miR-340 and TUG1 or HDAC4 expression was identified in myocardial tissues of MIRI mice and H/R-induced cardiomyocyte models, along with a positive correlation between TUG1 and HDAC4. Additionally, it was established that TUG1 bound to miR-340, and miR-340 targeted HDAC4. TUG1 upregulated HDAC4 expression, thereby promoting MIRI in the mouse models. HDAC4 was proven to repress the expression of β-catenin and its target gene GLUT1. Moreover, the in vivo experiments validated that the inhibition of TUG1/miR-340/HDAC4/β-catenin/GLUT1 axes alleviated MIRI in mice. Collectively, the current study uncovered the role of TUG1/miR-340/HDAC4/β-catenin/GLUT1 axes in MIRI mouse models and H/R-induced cardiomyocyte models which may be a potential therapeutic target for MIRI treatment.
Collapse
Affiliation(s)
- Xianqiu Wu
- Department of Cardio-Thoracic Surgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, P.R. China
| | - Yang Liu
- Department of Cardiology, the Second Nanning People's Hospital (the Third Affiliated Hospital of Guangxi Medical University), Nanning, P.R. China
| | - Song Mo
- Department of Intensive Care Unit, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, P.R. China
| | - Wuli Wei
- Department of Cardio-Thoracic Surgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, P.R. China
| | - Ziliang Ye
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, P. R. China
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, P. R. China
| |
Collapse
|
59
|
Silencing of Long Noncoding RNA Zinc Finger Antisense 1 Protects Against Hypoxia/Reoxygenation-induced Injury in HL-1 Cells Through Targeting the miR-761/Cell Death Inducing p53 Target 1 Axis. J Cardiovasc Pharmacol 2020; 76:564-573. [DOI: 10.1097/fjc.0000000000000896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
60
|
Cai X, Zhang P, Wang S, Hong L, Yu S, Li B, Zeng H, Yang X, Shao L. lncRNA FGD5 antisense RNA 1 upregulates RORA to suppress hypoxic injury of human cardiomyocyte cells by inhibiting oxidative stress and apoptosis via miR‑195. Mol Med Rep 2020; 22:4579-4588. [PMID: 33174051 PMCID: PMC7646841 DOI: 10.3892/mmr.2020.11558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
FGD5 antisense RNA 1 (FGD5-AS1) is a long non-coding RNA in acute myocardial infarction (AMI), which is primarily caused by myocardial ischemia-hypoxia. Retinoid acid receptor-related orphan receptor α (RORA) is a key protector in maintaining heart function. However, the roles of FGD5-AS1 and RORA in AMI have not previously been elucidated. The present study investigated the effect and mechanism of FGD5-AS1 and RORA in human cardiomyocyte AC16 cells under hypoxia. Reverse transcription-quantitative PCR and western blotting demonstrated that FGD5-AS1 and RORA were downregulated in the serum of patients with AMI and hypoxia-challenged AC16 cells. Functional experiments were performed via assays, flow cytometry and western blotting. In response to hypoxia, superoxide dismutase (SOD) activity was inhibited, but apoptosis rate and levels of reactive oxygen species and malondialdehyde were promoted in AC16 cells, accompanied by increased Bax and cleaved caspase-3 expression levels, and decreased SOD2 and glutathione peroxidase 1 expression levels. However, hypoxia-induced oxidative stress and apoptosis in AC16 cells were attenuated by ectopic expression of FGD5-AS1 or RORA. Moreover, silencing RORA counteracted the suppressive role of FGD5-AS1 overexpression in hypoxic injury. FGD5-AS1 controlled RORA expression levels via microRNA-195-5p (miR-195), as confirmed by dual-luciferase reporter and RNA pull-down assays. Consistently, miR-195 knockdown suppressed hypoxia-induced oxidative stress and apoptosis in AC16 cells, which was abrogated by downregulating FGD5-AS1 or RORA. In conclusion, FGD5-AS1 modulated hypoxic injury in human cardiomyocytes partially via the miR-195/RORA axis, suggesting FGD5-AS1 as a potential target in interfering with the progression of AMI.
Collapse
Affiliation(s)
- Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shu Wang
- Department of Gerontology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Songping Yu
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Li
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hong Zeng
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xu Yang
- Shenzhen Realomics (Biotech), Co., Ltd., Shenzhen, Guangdong 518000, P.R. China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
61
|
Ma R, Gao L, Liu Y, Du P, Chen X, Li G. LncRNA TTTY15 knockdown alleviates H 2O 2-stimulated myocardial cell injury by regulating the miR-98-5p/CRP pathway. Mol Cell Biochem 2020; 476:81-92. [PMID: 32888161 DOI: 10.1007/s11010-020-03887-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
Acute myocardial infarction (AMI) can lead to myocardial injury, and long non-coding RNA (lncRNA) has been found to play an important regulatory role in the process of myocardial injury. However, the role and potential mechanisms of lncRNA testis-specific transcript Y-linked 15 (TTTY15) in AMI-induced myocardial injury has not been fully elucidated. Hydrogen peroxide (H2O2)-induced AMI cell model was built and AMI mice model were constructed. Relative expression levels of TTTY15, miR-98-5p and C-reactive protein (CRP) were determined by quantitative real-time PCR (qRT-PCR). Cell counting kit 8 (CCK8) assay, flow cytometry and enzyme-linked immunosorbent assay (ELISA) were employed to assess cell viability, apoptosis, inflammatory response and oxidative stress. Western blot (WB) analysis was used to assess the protein expression levels. The mechanism of TTTY15 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Our results revealed that TTTY15 was upregulated and miR-98-5p was downregulated in AMI patients and H2O2-stimulated myocardial cells. Knockdown of TTTY15 could alleviate H2O2-stimulated myocardial cell injury in vitro and AMI progression in vivo. Bioinformatics analysis and the rescue experiments confirmed that TTTY15 positively regulated H2O2-induced myocardial cell injury via regulating CRP by sponging miR-98-5p. Our research proposed that lncRNA TTTY15 promoted myocardial cell injury by regulating the miR-98-5p/CRP axis, suggesting that TTTY15 might be a potential target for alleviating AMI-caused myocardial cell injury.
Collapse
Affiliation(s)
- Rufei Ma
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Lan Gao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Yanhong Liu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Pengqiang Du
- Department of Medicine, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450046, Henan, China
| | - Xiaozhen Chen
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450046, Henan, China
| | - Gang Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
62
|
Spinetti G, Sangalli E, Tagliabue E, Maselli D, Colpani O, Ferland-McCollough D, Carnelli F, Orlando P, Paccagnella A, Furlan A, Stefani PM, Sambado L, Sambataro M, Madeddu P. MicroRNA-21/PDCD4 Proapoptotic Signaling From Circulating CD34 + Cells to Vascular Endothelial Cells: A Potential Contributor to Adverse Cardiovascular Outcomes in Patients With Critical Limb Ischemia. Diabetes Care 2020; 43:1520-1529. [PMID: 32358022 PMCID: PMC7305013 DOI: 10.2337/dc19-2227] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/30/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE In patients with type 2 diabetes (T2D) and critical limb ischemia (CLI), migration of circulating CD34+ cells predicted cardiovascular mortality at 18 months after revascularization. This study aimed to provide long-term validation and mechanistic understanding of the biomarker. RESEARCH DESIGN AND METHODS The association between CD34+ cell migration and cardiovascular mortality was reassessed at 6 years after revascularization. In a new series of T2D-CLI and control subjects, immuno-sorted bone marrow CD34+ cells were profiled for miRNA expression and assessed for apoptosis and angiogenesis activity. The differentially regulated miRNA-21 and its proapoptotic target, PDCD4, were titrated to verify their contribution in transferring damaging signals from CD34+ cells to endothelial cells. RESULTS Multivariable regression analysis confirmed that CD34+ cell migration forecasts long-term cardiovascular mortality. CD34+ cells from T2D-CLI patients were more apoptotic and less proangiogenic than those from control subjects and featured miRNA-21 downregulation, modulation of several long noncoding RNAs acting as miRNA-21 sponges, and upregulation of the miRNA-21 proapoptotic target PDCD4. Silencing miR-21 in control CD34+ cells phenocopied the T2D-CLI cell behavior. In coculture, T2D-CLI CD34+ cells imprinted naive endothelial cells, increasing apoptosis, reducing network formation, and modulating the TUG1 sponge/miRNA-21/PDCD4 axis. Silencing PDCD4 or scavenging reactive oxygen species protected endothelial cells from the negative influence of T2D-CLI CD34+ cells. CONCLUSIONS Migration of CD34+ cells predicts long-term cardiovascular mortality in T2D-CLI patients. An altered paracrine signaling conveys antiangiogenic and proapoptotic features from CD34+ cells to the endothelium. This damaging interaction may increase the risk for life-threatening complications.
Collapse
|