51
|
Chao CM, El Agha E, Tiozzo C, Minoo P, Bellusci S. A breath of fresh air on the mesenchyme: impact of impaired mesenchymal development on the pathogenesis of bronchopulmonary dysplasia. Front Med (Lausanne) 2015; 2:27. [PMID: 25973420 PMCID: PMC4412070 DOI: 10.3389/fmed.2015.00027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/11/2015] [Indexed: 12/14/2022] Open
Abstract
The early mouse embryonic lung, with its robust and apparently reproducible branching pattern, has always fascinated developmental biologists. They have extensively used this embryonic organ to decipher the role of mammalian orthologs of Drosophila genes in controlling the process of branching morphogenesis. During the early pseudoglandular stage, the embryonic lung is formed mostly of tubes that keep on branching. As the branching takes place, progenitor cells located in niches are also amplified and progressively differentiate along the proximo-distal and dorso-ventral axes of the lung. Such elaborate processes require coordinated interactions between signaling molecules arising from and acting on four functional domains: the epithelium, the endothelium, the mesenchyme, and the mesothelium. These interactions, quite well characterized in a relatively simple lung tubular structure remain elusive in the successive developmental and postnatal phases of lung development. In particular, a better understanding of the process underlying the formation of secondary septa, key structural units characteristic of the alveologenesis phase, is still missing. This structure is critical for the formation of a mature lung as it allows the subdivision of saccules in the early neonatal lung into alveoli, thereby considerably expanding the respiratory surface. Interruption of alveologenesis in preterm neonates underlies the pathogenesis of chronic neonatal lung disease known as bronchopulmonary dysplasia. De novo formation of secondary septae appears also to be the limiting factor for lung regeneration in human patients with emphysema. In this review, we will therefore focus on what is known in terms of interactions between the different lung compartments and discuss the current understanding of mesenchymal cell lineage formation in the lung, focusing on secondary septae formation.
Collapse
Affiliation(s)
- Cho-Ming Chao
- Department of General Pediatrics and Neonatology, University Children's Hospital Giessen , Giessen , Germany ; Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center , Giessen , Germany ; Member of the German Center for Lung Research (DZL) , Giessen , Germany
| | - Elie El Agha
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center , Giessen , Germany ; Member of the German Center for Lung Research (DZL) , Giessen , Germany
| | - Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, Columbia University , New York, NY , USA
| | - Parviz Minoo
- Division of Newborn Medicine, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center , Giessen , Germany ; Member of the German Center for Lung Research (DZL) , Giessen , Germany ; Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA ; Kazan Federal University , Kazan , Russia
| |
Collapse
|
52
|
Ghosh M, Smith RW, Runkle CM, Hicks DA, Helm KM, Reynolds SD. Regulation of trachebronchial tissue-specific stem cell pool size. Stem Cells 2015; 31:2767-78. [PMID: 23712882 DOI: 10.1002/stem.1440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/22/2013] [Accepted: 03/18/2013] [Indexed: 02/05/2023]
Abstract
Tissue-specific stem cell (TSC) number is tightly regulated in normal individuals but can change following severe injury. We previously showed that tracheobronchial epithelial TSC number increased after severe naphthalene (NA) injury and then returned to normal. This study focused on the fate of the supernumerary TSC and the signals that regulate TSC pool size. We used the Keratin 5-rTA/Histone 2B:green fluorescent protein (GFP) model to purify basal cells that proliferated infrequently (GFP(bright) ) or frequently (GFP(dim) ) after NA injury. Both populations contained TSC but TSCs were 8.5-fold more abundant in the GFP(bright) population. Interestingly, both populations also contained a unipotential basal progenitor (UPB), a mitotic basal cell subtype whose daughters were terminally differentiated basal cells. The ratio of TSC to UPB was 5:1 in the GFP(bright) population and 1:5 in the GFP(dim) population. These data suggested that TSC proliferation in vivo promoted TSC-to-UPB differentiation. To evaluate this question, we cloned TSC from the GFP(bright) and GFP(dim) populations and passaged the clones seven times. We found that TSC number decreased and UPB number increased at each passage. Reciprocal changes in TSC and UPB frequency were more dramatic in the GFP(dim) lineage. Gene expression analysis showed that β-catenin and Notch pathway genes were differentially expressed in freshly isolated TSC derived from GFP(bright) and GFP(dim) populations. We conclude that (a) TSC and UPB are members of a single lineage; (b) TSC proliferation in vivo or in vitro promotes TSC-to-UPB differentiation; and (c) an interaction between the β-catenin and Notch pathways regulates the TSC-to-UPB differentiation process.
Collapse
Affiliation(s)
- Moumita Ghosh
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|
53
|
Volckaert T, De Langhe SP. Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn 2014; 244:342-66. [PMID: 25470458 DOI: 10.1002/dvdy.24234] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The adaptation to terrestrial life required the development of an organ capable of efficient air-blood gas exchange. To meet the metabolic load of cellular respiration, the mammalian respiratory system has evolved from a relatively simple structure, similar to the two-tube amphibian lung, to a highly complex tree-like system of branched epithelial airways connected to a vast network of gas exchanging units called alveoli. The development of such an elaborate organ in a relatively short time window is therefore an extraordinary feat and involves an intimate crosstalk between mesodermal and endodermal cell lineages. RESULTS This review describes the molecular processes governing lung development with an emphasis on the current knowledge on the role of Wnt and FGF signaling in lung epithelial differentiation. CONCLUSIONS The Wnt and FGF signaling pathways are crucial for the dynamic and reciprocal communication between epithelium and mesenchyme during lung development. In addition, some of this developmental crosstalk is reemployed in the adult lung after injury to drive regeneration, and may, when aberrantly or chronically activated, result in chronic lung diseases. Novel insights into how the Wnt and FGF pathways interact and are integrated into a complex gene regulatory network will not only provide us with essential information about how the lung regenerates itself, but also enhance our understanding of the pathogenesis of chronic lung diseases, as well as improve the controlled differentiation of lung epithelium from pluripotent stem cells.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | | |
Collapse
|
54
|
Schilders K, Ochieng JK, van de Ven CP, Gontan C, Tibboel D, Rottier RJ. Role of SOX2 in foregut development in relation to congenital abnormalities. World J Med Genet 2014; 4:94-104. [DOI: 10.5496/wjmg.v4.i4.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/14/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
The uptake of the two essential ingredients for life, oxygen and nutrients, occurs primarily through the oral cavity, but these two lifelines need to be separated with high accuracy once inside the body. The two systems, the gas exchange pulmonary system and the gastro-intestinal feeding system, are derived from the same primitive embryonic structure during development, the foregut, which need to be separated before birth. In certain newborns, this separation occurs not or insufficiently, leading to life threatening conditions, sometimes incompatible with life. The development of the foregut, trachea and lungs is influenced and coordinated by a multitude of signaling cascades and transcription factors. In this review, we will highlight the development of the foregut and pulmonary system and focus on associated congenital abnormalities in light of known genetic alterations with specific attention to the transcription factor SOX2.
Collapse
|
55
|
El Agha E, Bellusci S. Walking along the Fibroblast Growth Factor 10 Route: A Key Pathway to Understand the Control and Regulation of Epithelial and Mesenchymal Cell-Lineage Formation during Lung Development and Repair after Injury. SCIENTIFICA 2014; 2014:538379. [PMID: 25298902 PMCID: PMC4178922 DOI: 10.1155/2014/538379] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/07/2014] [Indexed: 06/04/2023]
Abstract
Basic research on embryonic lung development offers unique opportunities to make important discoveries that will impact human health. Developmental biologists interested in the molecular control of branching morphogenesis have intensively studied the developing lung, with its complex and seemingly stereotyped ramified structure. However, it is also an organ that is linked to a vast array of clinical problems in humans such as bronchopulmonary dysplasia in premature babies and emphysema, chronic obstructive pulmonary disease, fibrosis, and cancer in adults. Epithelial stem/progenitor cells reside in niches where they interact with specific extracellular matrices as well as with mesenchymal cells; the latter are still poorly characterized. Interactions of epithelial stem/progenitor cells with their microenvironments are usually instructive, controlling quiescence versus activation, proliferation, differentiation, and migration. During the past 18 years, Fgf10 has emerged not only as a marker for the distal lung mesenchyme during early lung development, but also as a key player in branching morphogenesis and a critical component of the niche for epithelial stem cells. In this paper, we will present the current knowledge regarding the lineage tree in the lung, with special emphasis on cell-lineage decisions in the lung mesenchyme and the role of Fgf10 in this context.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Klinikstraße 36, 35392 Giessen, Hessen, Germany
- Member of the German Center for Lung Research (DZL), 35392 Giessen, Hessen, Germany
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Klinikstraße 36, 35392 Giessen, Hessen, Germany
- Member of the German Center for Lung Research (DZL), 35392 Giessen, Hessen, Germany
- Developmental Biology and Regenerative Program of the Saban Research Institute at Childrens Hospital Los Angeles and University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
56
|
Nakayama S, Sng N, Carretero J, Welner R, Hayashi Y, Yamamoto M, Tan AJ, Yamaguchi N, Yasuda H, Li D, Soejima K, Soo RA, Costa DB, Wong KK, Kobayashi SS. β-catenin contributes to lung tumor development induced by EGFR mutations. Cancer Res 2014; 74:5891-902. [PMID: 25164010 DOI: 10.1158/0008-5472.can-14-0184] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The discovery of somatic mutations in EGFR and development of EGFR tyrosine kinase inhibitors (TKI) have revolutionized treatment for lung cancer. However, resistance to TKIs emerges in almost all patients and currently no effective treatment is available. Here, we show that β-catenin is essential for development of EGFR-mutated lung cancers. β-Catenin was upregulated and activated in EGFR-mutated cells. Mutant EGFR preferentially bound to and tyrosine phosphorylated β-catenin, leading to an increase in β-catenin-mediated transactivation, particularly in cells harboring the gefitinib/erlotinib-resistant gatekeeper EGFR-T790M mutation. Pharmacologic inhibition of β-catenin suppressed EGFR-L858R-T790M mutated lung tumor growth, and genetic deletion of the β-catenin gene dramatically reduced lung tumor formation in EGFR-L858R-T790M transgenic mice. These data suggest that β-catenin plays an essential role in lung tumorigenesis and that targeting the β-catenin pathway may provide novel strategies to prevent lung cancer development or overcome resistance to EGFR TKIs.
Collapse
Affiliation(s)
- Sohei Nakayama
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Natasha Sng
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Julian Carretero
- Department of Physiology, University of Valencia, Burjassot, Spain
| | - Robert Welner
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yuichiro Hayashi
- Department of Pathology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Mihoko Yamamoto
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Alistair J Tan
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Norihiro Yamaguchi
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Hiroyuki Yasuda
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts. Department of Pulmonary Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Danan Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kenzo Soejima
- Department of Pulmonary Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Ross A Soo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore. Department of Haematology-Oncology, National University Health System, Singapore
| | - Daniel B Costa
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Susumu S Kobayashi
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts. Harvard Stem Cell Institute, Cambridge, Massachusetts.
| |
Collapse
|
57
|
Rims CR, McGuire JK. Matrilysin (MMP-7) catalytic activity regulates β-catenin localization and signaling activation in lung epithelial cells. Exp Lung Res 2014; 40:126-36. [PMID: 24624896 DOI: 10.3109/01902148.2014.890681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Matrix metalloproteinase-7 (matrilysin, MMP-7) expression is increased in epithelium by bacterial infection, inflammation, fibrosis, and in a myriad of carcinomas. It functions to degrade extracellular matrix and other pericellular substrates including the adherens junction protein E-cadherin to promote wound healing and tissue remodeling. β-catenin functions as both a structural component of adherens junctions and as an intracellular signaling molecule. To assess if matrilysin-mediated disassembly of adherens junctions regulates β-catenin function, we assessed effects of matrilysin catalytic activity on β-catenin localization and signaling activity in A549 cells and in bleomycin-induced lung injury in mice. We determined that matrilysin activity releases β-catenin from the cell membrane after which it is degraded in the cytosol. However, in the presence of a β-catenin stabilizing Wnt signal, β-catenin accumulated in the cytosol and activated a β-catenin luciferase promoter. Furthermore, β-catenin nuclear translocation and activation was impaired in matrilysin-null mice when compared to wild-type mice after bleomycin-induced lung injury. These results show identify matrilysin as a regulator of β-catenin function in injured lung epithelium and may link extracellular proteolytic activity to cell junction disassembly and intracellular signaling.
Collapse
Affiliation(s)
- Cliff R Rims
- Department of Pediatrics and Center for Lung Biology, University of Washington , Seattle, Washington , USA
| | | |
Collapse
|
58
|
Lee H, Kim SR, Oh Y, Cho SH, Schleimer RP, Lee YC. Targeting insulin-like growth factor-I and insulin-like growth factor-binding protein-3 signaling pathways. A novel therapeutic approach for asthma. Am J Respir Cell Mol Biol 2014; 50:667-77. [PMID: 24219511 PMCID: PMC5455301 DOI: 10.1165/rcmb.2013-0397tr] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/05/2013] [Indexed: 02/04/2023] Open
Abstract
Insulin-like growth factor (IGF)-I has been recognized to play critical roles in the pathogenesis of asthma, whereas IGF-binding protein (IGFBP)-3 blocks crucial physiologic manifestations of asthma. IGF-I enhances subepithelial fibrosis, airway inflammation, airway hyperresponsiveness, and airway smooth muscle hyperplasia by interacting with various inflammatory mediators and complex signaling pathways, such as intercellular adhesion molecule-1, and the hypoxia-inducible factor/vascular endothelial growth factor axis. On the other hand, IGFBP-3 decreases airway inflammation and airway hyperresponsiveness through IGFBP-3 receptor-mediated activation of caspases, which subsequently inhibits NF-κB signaling pathway. It also inhibits the IGF-I/hypoxia-inducible factor/vascular endothelial growth factor axis via IGF-I-dependent and/or IGF-I-independent mechanisms. This Translational Review summarizes the role of IGF-I and IGFBP-3 in the context of allergic airway disease, and discusses the therapeutic potential of various strategies targeting the IGF-I and IGFBP-3 signaling pathways for the management of asthma.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| | - So Ri Kim
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| | - Youngman Oh
- Department of Pathology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia; and
| | - Seong Ho Cho
- Division of Allergy–Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Robert P. Schleimer
- Division of Allergy–Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Yong Chul Lee
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| |
Collapse
|
59
|
Park JH, Tanaka Y, Arango NA, Zhang L, Benedict LA, Roh MI, Donahoe PK, Teixeira JM. Induction of WNT inhibitory factor 1 expression by Müllerian inhibiting substance/antiMullerian hormone in the Müllerian duct mesenchyme is linked to Müllerian duct regression. Dev Biol 2013; 386:227-36. [PMID: 24362065 DOI: 10.1016/j.ydbio.2013.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 01/07/2023]
Abstract
A key event during mammalian sexual development is regression of the Müllerian ducts (MDs) in the bipotential urogenital ridges (UGRs) of fetal males, which is caused by the expression of Müllerian inhibiting substance (MIS) in the Sertoli cells of the differentiating testes. The paracrine signaling mechanisms involved in MD regression are not completely understood, particularly since the receptor for MIS, MISR2, is expressed in the mesenchyme surrounding the MD, but regression occurs in both the epithelium and mesenchyme. Microarray analysis comparing MIS signaling competent and Misr2 knockout embryonic UGRs was performed to identify secreted factors that might be important for MIS-mediated regression of the MD. A seven-fold increase in the expression of Wif1, an inhibitor of WNT/β-catenin signaling, was observed in the Misr2-expressing UGRs. Whole mount in situ hybridization of Wif1 revealed a spatial and temporal pattern of expression consistent with Misr2 during the window of MD regression in the mesenchyme surrounding the MD epithelium that was absent in both female UGRs and UGRs knocked out for Misr2. Knockdown of Wif1 expression in male UGRs by Wif1-specific siRNAs beginning on embryonic day 13.5 resulted in MD retention in an organ culture assay, and exposure of female UGRs to added recombinant human MIS induced Wif1 expression in the MD mesenchyme. Knockdown of Wif1 led to increased expression of β-catenin and its downstream targets TCF1/LEF1 in the MD mesenchyme and to decreased apoptosis, resulting in partial to complete retention of the MD. These results strongly suggest that WIF1 secretion by the MD mesenchyme plays a role in MD regression in fetal males.
Collapse
Affiliation(s)
- Joo Hyun Park
- Vincent Center of Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Yoshihiro Tanaka
- Vincent Center of Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Nelson A Arango
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Lihua Zhang
- Vincent Center of Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States
| | - L Andrew Benedict
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Mi In Roh
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Jose M Teixeira
- Vincent Center of Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
60
|
Insulin and the lung: connecting asthma and metabolic syndrome. J Allergy (Cairo) 2013; 2013:627384. [PMID: 24204385 PMCID: PMC3800560 DOI: 10.1155/2013/627384] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/08/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023] Open
Abstract
Obesity, metabolic syndrome, and asthma are all rapidly increasing globally. Substantial emerging evidence suggests that these three conditions are epidemiologically and mechanistically linked. Since the link between obesity and asthma appears to extend beyond mechanical pulmonary disadvantage, molecular understanding is necessary. Insulin resistance is a strong, independent risk factor for asthma development, but it is unknown whether a direct effect of insulin on the lung is involved. This review summarizes current knowledge regarding the effect of insulin on cellular components of the lung and highlights the molecular consequences of insulin-related metabolic signaling cascades that could adversely affect lung structure and function. Examples include airway smooth muscle proliferation and contractility and regulatory signaling networks that are associated with asthma. These aspects of insulin signaling provide mechanistic insight into the clinical evidence for the links between obesity, metabolic syndrome, and airway diseases, setting the stage for novel therapeutic avenues targeting these conditions.
Collapse
|
61
|
E-cadherin controls bronchiolar progenitor cells and onset of preneoplastic lesions in mice. Neoplasia 2013; 14:1164-77. [PMID: 23308049 DOI: 10.1593/neo.121088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 01/06/2023] Open
Abstract
Although progenitor cells of the conducting airway have been spatially localized and some insights have been gained regarding their molecular phenotype, relatively little is known about the mechanisms regulating their maintenance, activation, and differentiation. This study investigates the potential roles of E-cadherin in mouse Clara cells, as these cells were shown to represent the progenitor/stem cells of the conducting airways and have been implicated as the cell of origin of human non-small cell lung cancer. Postnatal inactivation of E-cadherin affected Clara cell differentiation and compromised airway regeneration under injury conditions. In steady-state adult lung, overexpression of the dominant negative E-cadherin led to an expansion of the bronchiolar stem cells and decreased differentiation concomitant with canonical Wnt signaling activation. Expansion of the bronchiolar stem cell pool was associated with an incessant proliferation of neuroepithelial body.associated Clara cells that ultimately gave rise to bronchiolar hyperplasia. Despite progressive hyperplasia, only a minority of the mice developed pulmonary solid tumors, suggesting that the loss of E-cadherin function leads to tumor formation when additional mutations are sustained. The present study reveals that E-cadherin plays a critical role in the regulation of proliferation and homeostasis of the epithelial cells lining the conducting airways.
Collapse
|
62
|
Inhibition of LRP5/6-mediated Wnt/β-catenin signaling by Mesd attenuates hyperoxia-induced pulmonary hypertension in neonatal rats. Pediatr Res 2013; 73:719-25. [PMID: 23481549 DOI: 10.1038/pr.2013.42] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Hyperoxia-induced neonatal lung injury is associated with activation of Wnt/β-catenin signaling. Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) are Wnt coreceptors that bind to Wnt ligands and mediate canonical Wnt/β-catenin signaling. We hypothesized that inhibition of LRP5/6 by their universal inhibitor, Mesd, would attenuate hyperoxia-induced lung injury. METHODS Newborn rat pups were randomly exposed to normoxia or hyperoxia at 90% FiO2 and injected intraperitoneally with placebo or Mesd every other day for 14 d. On day 15, phosphorylation of LRP5/6 (pLRP5/6), expression of Wnt/β-catenin target genes, cyclin D1 and Wnt-induced signaling protein-1 (WISP-1), right-ventricular systolic pressure (RVSP), right-ventricular hypertrophy (RVH), pulmonary vascular remodeling, alveolarization, and vascularization were measured. RESULTS Hyperoxia exposure markedly induced pLRP5/6, cyclin D1, and WISP-1 expression in the lungs of placebo animals, but they were significantly attenuated by the administration of Mesd. Mesd also significantly attenuated hyperoxia-induced pulmonary hypertension (PH) and pulmonary vascular remodeling. However, there was no effect on alveolarization or vascularization after Mesd administration. CONCLUSION This study demonstrates that LRP5/6 mediates pulmonary vascular remodeling and PH in hyperoxia-induced neonatal lung injury, thereby suggesting a potential therapeutic target to alleviate PH in neonates with severe bronchopulmonary dysplasia.
Collapse
|
63
|
Ghosh MC, Gorantla V, Makena PS, Luellen C, Sinclair SE, Schwingshackl A, Waters CM. Insulin-like growth factor-I stimulates differentiation of ATII cells to ATI-like cells through activation of Wnt5a. Am J Physiol Lung Cell Mol Physiol 2013; 305:L222-8. [PMID: 23709620 DOI: 10.1152/ajplung.00014.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alveolar type II (ATII) epithelial cells play a crucial role in the repair and remodeling of the lung following injury. ATII cells have the capability to proliferate and differentiate into alveolar type I (ATI) cells in vivo and into an ATI-like phenotype in vitro. While previous reports indicate that the differentiation of ATII cells into ATI cells is a complex biological process, the underlying mechanism responsible for differentiation is not fully understood. To investigate factors involved in this differentiation in culture, we used a PCR array and identified several genes that were either up- or downregulated in ATI-like cells (day 6 in culture) compared with day 2 ATII cells. Insulin-like growth factor-I (IGF-I) mRNA was increased nearly eightfold. We found that IGF-I was increased in the culture media of ATI-like cells and demonstrated a significant role in the differentiation process. Treatment of ATII cells with recombinant IGF-I accelerated the differentiation process, and this effect was abrogated by the IGF-I receptor blocker PQ401. We found that Wnt5a, a member of the Wnt-Frizzled pathway, was activated during IGF-I-mediated differentiation. Both protein kinase C and β-catenin were transiently activated during transdifferentiation. Knocking down Wnt5a using small-interfering RNA abrogated the differentiation process as indicated by changes in the expression of an ATII cell marker (prosurfactant protein-C). Treatment of wounded cells with either IGF-I or Wnt5a stimulated wound closure. These results suggest that IGF-I promotes differentiation of ATII to ATI cells through the activation of a noncanonical Wnt pathway.
Collapse
Affiliation(s)
- Manik C Ghosh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Lawson WE, Blackwell TS. β-Catenin and CCNs in lung epithelial repair. Am J Physiol Lung Cell Mol Physiol 2013; 304:L579-81. [PMID: 23525784 PMCID: PMC3652019 DOI: 10.1152/ajplung.00073.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
65
|
Li A, Chan B, Felix JC, Xing Y, Li M, Brody SL, Borok Z, Li C, Minoo P. Tissue-dependent consequences of Apc inactivation on proliferation and differentiation of ciliated cell progenitors via Wnt and notch signaling. PLoS One 2013; 8:e62215. [PMID: 23646120 PMCID: PMC3639955 DOI: 10.1371/journal.pone.0062215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/17/2013] [Indexed: 11/26/2022] Open
Abstract
The molecular signals that control decisions regarding progenitor/stem cell proliferation versus differentiation are not fully understood. Differentiation of motile cilia from progenitor/stem cells may offer a simple tractable model to investigate this process. Wnt and Notch represent two key signaling pathways in progenitor/stem cell behavior in a number of tissues. Adenomatous Polyposis Coli, Apc is a negative regulator of the Wnt pathway and a well known multifunctional protein. Using the cre-LoxP system we inactivated the Apc locus via Foxj1-cre, which is expressed in cells committed to ciliated cell lineage. We then characterized the consequent phenotype in two select tissues that bear motile cilia, the lung and the testis. In the lung, Apc deletion induced β-catenin accumulation and Jag1 expression in ciliated cells and by lateral induction, triggered Notch signaling in adjacent Clara cells. In the bronchiolar epithelium, absence of Apc blocked the differentiation of a subpopulation of cells committed to the ciliogenesis program. In the human pulmonary adenocarcinoma cells, Apc over-expression inhibited Jag1 expression and promoted motile ciliogenic gene expression program including Foxj1, revealing the potential mechanism. In the testis, Apc inactivation induced β-catenin accumulation in the spermatogonia, but silenced Notch signaling and depleted spermatogonial stem cells, associated with reduced proliferation, resulting in male infertility. In sum, the present comparative analysis reveals the tissue-dependent consequences of Apc inactivation on proliferation and differentiation of ciliated cell progenitors by coordinating Wnt and Notch signaling.
Collapse
Affiliation(s)
- Aimin Li
- Division of Newborn Medicine, Department of Pediatrics, Los Angeles County+University of Southern California Medical Center, Keck School of Medicine of USC, Los Angeles, California, United States of America
| | - Belinda Chan
- Division of Newborn Medicine, Department of Pediatrics, Los Angeles County+University of Southern California Medical Center, Keck School of Medicine of USC, Los Angeles, California, United States of America
| | - Juan C. Felix
- Department of Pathology, Los Angeles County+University of Southern California Medical Center, Los Angeles, California, United States of America
| | - Yiming Xing
- Division of Newborn Medicine, Department of Pediatrics, Los Angeles County+University of Southern California Medical Center, Keck School of Medicine of USC, Los Angeles, California, United States of America
- The State Key Laboratory for Agro-biotechnology, China Agricultural University, Beijing, China
| | - Min Li
- Division of Newborn Medicine, Department of Pediatrics, Los Angeles County+University of Southern California Medical Center, Keck School of Medicine of USC, Los Angeles, California, United States of America
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, and Department of Biochemistry and Molecular Biology, University of Southern California, Keck School of Medicine of USC, Los Angeles, California, United States of America
| | - Changgong Li
- Division of Newborn Medicine, Department of Pediatrics, Los Angeles County+University of Southern California Medical Center, Keck School of Medicine of USC, Los Angeles, California, United States of America
| | - Parviz Minoo
- Division of Newborn Medicine, Department of Pediatrics, Los Angeles County+University of Southern California Medical Center, Keck School of Medicine of USC, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
66
|
Liu AR, Liu L, Chen S, Yang Y, Zhao HJ, Liu L, Guo FM, Lu XM, Qiu HB. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro. J Cell Physiol 2013; 228:1270-83. [PMID: 23154940 DOI: 10.1002/jcp.24282] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 11/02/2012] [Indexed: 01/31/2023]
Abstract
The differentiation of mesenchymal stem cells (MSCs) into type II alveolar epithelial (AT II) cells in vivo and in vitro, is critical for reepithelization and recovery in acute lung injury (ALI), but the mechanisms responsible for differentiation are unclear. In the present study, we investigated the role of the canonical wnt pathway in the differentiation of mouse bone marrow-derived MSCs (mMSCs) into AT II cells. Using a modified co-culture system with murine lung epithelial-12 (MLE-12) cells and small airway growth media (SAGM) to efficiently drive mMSCs differentiation, we found that GSK 3β and β-catenin in the canonical wnt pathway were up-regulated during differentiation. The levels of surfactant protein (SP) C, SPB, and SPD, the specific markers of AT II cells, correspondingly increased in mMSCs when Wnt3a or LiCl was added to the co-culture system to activate wnt/β-catenin signaling. The expression of these factors was depressed to some extent by inhibiting the pathway with the addition of DKK 1. The differentiation rate of mMSCs also depends on their abilities to accumulate and survive in inflammatory tissue. Our results suggested that the activation of wnt/β-catenin signaling promoted mMSCs migration towards ALI mouse-derived lung tissue in a Transwell assay, and ameliorated the cell death and the reduction of Bcl-2/Bax induced by H(2) O(2), which simultaneously caused reduced GSK 3β and β-catenin in mMSCs. These data supports a potential mechanism for the differentiation of mMSCs into AT II cells involving canonical wnt pathway activation, which may be significant to their application in ALI.
Collapse
Affiliation(s)
- Ai-Ran Liu
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Wang Y, Huang C, Reddy Chintagari N, Bhaskaran M, Weng T, Guo Y, Xiao X, Liu L. miR-375 regulates rat alveolar epithelial cell trans-differentiation by inhibiting Wnt/β-catenin pathway. Nucleic Acids Res 2013; 41:3833-44. [PMID: 23396279 PMCID: PMC3616718 DOI: 10.1093/nar/gks1460] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alveolar epithelial cell (AEC) trans-differentiation is a process where type II alveolar epithelial cells (AEC II) trans-differentiate into type I alveolar epithelial cells (AEC I) during lung recovery after various injuries, in which AEC I are damaged. This process is critical for lung tissue repair. MicroRNAs are a group of small RNAs that regulate gene expression at the post-transcriptional level. They have the potential to regulate almost every aspect of cell physiology. However, whether AEC trans-differentiation is regulated by microRNAs is completely unknown. In this study, we found that miR-375 was downregulated during AEC trans-differentiation. The overexpression of miR-375 with an adenoviral vector inhibited alveolar epithelial trans-differentiation as indicated by an increase in the AEC II marker, surfactant protein C, and decreases in the AEC I markers, T1α and advanced glycosylation end product-specific receptor. miR-375 also inhibited the Wnt/β-catenin pathway. The constitutively activation of Wnt/β-catenin signaling with a stabilized form of β-catenin blocked the miR-375 effects. Frizzled 8 was identified as a target of miR-375. In summary, our results demonstrate that miR-375 regulates AEC trans-differentiation through the Wnt/β-catenin pathway. This discovery may provide new targets for therapeutic intervention to benefit lung recovery from injuries.
Collapse
Affiliation(s)
- Yang Wang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Heme oxygenase-1 regulates postnatal lung repair after hyperoxia: role of β-catenin/hnRNPK signaling. Redox Biol 2013; 1:234-43. [PMID: 24024157 PMCID: PMC3757689 DOI: 10.1016/j.redox.2013.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/25/2013] [Accepted: 01/27/2013] [Indexed: 12/12/2022] Open
Abstract
In the newborn, alveolarization continues postnatally and can be disrupted by hyperoxia, leading to long-lasting consequences on lung function. We wanted to better understand the role of heme oxygenase (HO)-1, the inducible form of the rate-limiting enzyme in heme degradation, in neonatal hyperoxic lung injury and repair. Although it was not observed after 3 days of hyperoxia alone, when exposed to hyperoxia and allowed to recover in air (O2/air recovered), neonatal HO-1 knockout (KO) mice had enlarged alveolar spaces and increased lung apoptosis as well as decreased lung protein translation and dysregulated gene expression in the recovery phase of the injury. Associated with these changes, KO had sustained low levels of active β-catenin and lesser lung nuclear heterogeneous nuclear ribonucleoprotein K (hnRNPK) protein levels, whereas lung nuclear hnRNPK was increased in transgenic mice over-expressing nuclear HO-1. Disruption of HO-1 may enhance hnRNPK-mediated inhibition of protein translation and subsequently impair the β-catenin/hnRNPK regulated gene expression required for coordinated lung repair and regeneration.
Collapse
|
69
|
Tanjore H, Degryse AL, Crossno PF, Xu XC, McConaha ME, Jones BR, Polosukhin VV, Bryant AJ, Cheng DS, Newcomb DC, McMahon FB, Gleaves LA, Blackwell TS, Lawson WE. β-catenin in the alveolar epithelium protects from lung fibrosis after intratracheal bleomycin. Am J Respir Crit Care Med 2013; 187:630-9. [PMID: 23306543 DOI: 10.1164/rccm.201205-0972oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Alveolar epithelial cells (AECs) play central roles in the response to lung injury and the pathogenesis of pulmonary fibrosis. OBJECTIVES We aimed to determine the role of β-catenin in alveolar epithelium during bleomycin-induced lung fibrosis. METHODS Genetically modified mice were developed to selectively delete β-catenin in AECs and were crossed to cell fate reporter mice that express β-galactosidase (βgal) in cells of AEC lineage. Mice were given intratracheal bleomycin (0.04 units) and assessed for AEC death, inflammation, lung injury, and fibrotic remodeling. Mouse lung epithelial cells (MLE12) with small interfering RNA knockdown of β-catenin underwent evaluation for wound closure, proliferation, and bleomycin-induced cytotoxicity. MEASUREMENTS AND MAIN RESULTS Increased β-catenin expression was noted in lung parenchyma after bleomycin. Mice with selective deletion of β-catenin in AECs had greater AEC death at 1 week after bleomycin, followed by increased numbers of fibroblasts and enhanced lung fibrosis as determined by semiquantitative histological scoring and total collagen content. However, no differences in lung inflammation or protein levels in bronchoalveolar lavage were noted. In vitro, β-catenin-deficient AECs showed increased bleomycin-induced cytotoxicity as well as reduced proliferation and impaired wound closure. Consistent with these findings, mice with AEC β-catenin deficiency showed delayed recovery after bleomycin. CONCLUSIONS β-Catenin in the alveolar epithelium protects against bleomycin-induced fibrosis. Our studies suggest that AEC survival and wound healing are enhanced through β-catenin-dependent mechanisms. Activation of the developmentally important β-catenin pathway in AECs appears to contribute to epithelial repair after epithelial injury.
Collapse
Affiliation(s)
- Harikrishna Tanjore
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232-2650, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
De Langhe SP, Reynolds SD. Wnt signaling in lung organogenesis. Organogenesis 2012; 4:100-8. [PMID: 19279721 DOI: 10.4161/org.4.2.5856] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 01/16/2023] Open
Abstract
Reporter transgene, knockout, and misexpression studies support the notion that Wnt/beta-catenin signaling regulates aspects of branching morphogenesis, regional specialization of the epithelium and mesenchyme, and establishment of progenitor cell pools. As demonstrated for other foregut endoderm-derived organs, beta-catenin and the Wnt/beta-catenin signaling pathway contribute to control of cellular proliferation, differentiation and migration. However, the contribution of Wnt/beta-catenin signaling to these processes is shaped by other signals impinging on target tissues. In this review, we will concentrate on roles for Wnt/beta-catenin in respiratory system development, including segregation of the conducting airway and alveolar compartments, specialization of the mesenchyme, and establishment of tracheal asymmetries and tracheal glands.
Collapse
Affiliation(s)
- Stijn P De Langhe
- Department of Pediatrics; National Jewish Medical Research Center; Denver, Colorado USA
| | | |
Collapse
|
71
|
Foxm1 transcription factor is critical for proliferation and differentiation of Clara cells during development of conducting airways. Dev Biol 2012; 370:198-212. [PMID: 22885335 DOI: 10.1016/j.ydbio.2012.07.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/06/2012] [Accepted: 07/27/2012] [Indexed: 01/14/2023]
Abstract
Respiratory epithelial cells are derived from cell progenitors in the foregut endoderm that subsequently differentiate into the distinct cell types lining the conducting and alveolar regions of the lung. To identify transcriptional mechanisms regulating differentiation and maintenance of respiratory epithelial cells, we conditionally deleted Foxm1 transcription factor from the conducting airways of the developing mouse lung. Conditional deletion of Foxm1 from Clara cells, controlled by the Scgb1a1 promoter, dramatically altered airway structure and caused peribronchial fibrosis, resulting in airway hyperreactivity in adult mice. Deletion of Foxm1 inhibited proliferation of Clara cells and disrupted the normal patterning of epithelial cell differentiation in the bronchioles, causing squamous and goblet cell metaplasia, and the loss of Clara and ciliated cells. Surprisingly, conducting airways of Foxm1-deficient mice contained highly differentiated cuboidal type II epithelial cells that are normally restricted to the alveoli. Lineage tracing studies showed that the ectopic alveolar type II cells in Foxm1-deficient airways were derived from Clara cells. Deletion of Foxm1 inhibited Sox2 and Scgb1a1, both of which are critical for differentiation and function of Clara cells. In co-transfection experiments, Foxm1 directly bound to and induced transcriptional activity of Scgb1a1 and Sox2 promoters. Foxm1 is required for differentiation and maintenance of epithelial cells lining conducting airways.
Collapse
|
72
|
Foxm1 mediates cross talk between Kras/mitogen-activated protein kinase and canonical Wnt pathways during development of respiratory epithelium. Mol Cell Biol 2012; 32:3838-50. [PMID: 22826436 DOI: 10.1128/mcb.00355-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While Kras/mitogen-activated protein kinase (MAPK) and canonical Wnt/β-catenin are critical for lung morphogenesis, mechanisms integrating these important signaling pathways during lung development are unknown. Herein, we demonstrate that the Foxm1 transcription factor is a key downstream target of activated Kras(G12D). Deletion of Foxm1 from respiratory epithelial cells during lung formation prevented structural abnormalities caused by activated Kras(G12D). Kras/Foxm1 signaling inhibited the activity of canonical Wnt signaling in the developing lung in vivo. Foxm1 decreased T-cell factor (TCF) transcriptional activity induced by activated β-catenin in vitro. Depletion of Foxm1 by short interfering RNA (siRNA) increased nuclear localization of β-catenin, increased expression of β-catenin target genes, and decreased mRNA and protein levels of the β-catenin inhibitor Axin2. Axin2 mRNA was reduced in distal lung epithelium of Foxm1-deficient mice. Foxm1 directly bound to and increased transcriptional activity of the Axin2 promoter region. Foxm1 is required for Kras signaling in distal lung epithelium and provides a mechanism integrating Kras and canonical Wnt/β-catenin signaling during lung development.
Collapse
|
73
|
Wang G, Xu Z, Wang R, Al-Hijji M, Salit J, Strulovici-Barel Y, Tilley AE, Mezey JG, Crystal RG. Genes associated with MUC5AC expression in small airway epithelium of human smokers and non-smokers. BMC Med Genomics 2012; 5:21. [PMID: 22676183 PMCID: PMC3443416 DOI: 10.1186/1755-8794-5-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/01/2012] [Indexed: 12/15/2022] Open
Abstract
Background Mucus hypersecretion contributes to the morbidity and mortality of smoking-related lung diseases, especially chronic obstructive pulmonary disease (COPD), which starts in the small airways. Despite progress in animal studies, the genes and their expression pattern involved in mucus production and secretion in human airway epithelium are not well understood. We hypothesized that comparison of the transcriptomes of the small airway epithelium of individuals that express high vs low levels of MUC5AC, the major macromolecular component of airway mucus, could be used as a probe to identify the genes related to human small airway mucus production/secretion. Methods Flexible bronchoscopy and brushing were used to obtain small airway epithelium (10th to 12th order bronchi) from healthy nonsmokers (n=60) and healthy smokers (n=72). Affymetrix HG-U133 plus 2.0 microarrays were used to assess gene expression. Massive parallel sequencing (RNA-Seq) was used to verify gene expression of small airway epithelium from 5 nonsmokers and 6 smokers. Results MUC5AC expression varied 31-fold among the healthy nonsmokers. Genome-wide comparison between healthy nonsmokers (n = 60) grouped as “high MUC5AC expressors” vs “low MUC5AC expressors” identified 528 genes significantly up-regulated and 15 genes significantly down-regulated in the high vs low expressors. This strategy identified both mucus production and secretion related genes under control of a network composed of multiple transcription factors. Based on the literature, genes in the up-regulated list were used to identify a 73 “MUC5AC-associated core gene” list with 9 categories: mucus component; mucus-producing cell differentiation-related transcription factor; mucus-producing cell differentiation-related pathway or mediator; post-translational modification of mucin; vesicle transport; endoplasmic reticulum stress-related; secretory granule-associated; mucus secretion-related regulator and mucus hypersecretory-related ion channel. As a validation cohort, we assessed the MUC5AC-associated core gene list in the small airway epithelium of an independent set of healthy smokers (n = 72). There was up-regulation of MUC5AC in the small airway epithelium of smokers (2.3-fold, p < 10-8) associated with a coordinated up-regulation of MUC5AC-associated core gene expression pattern in the small airway epithelium of smokers (p < 0.01). Deep sequencing confirmed these observations. Conclusion The identification of the genes associated with increased airway mucin production in humans should be useful in understanding the pathogenesis of airway mucus hypersecretion and identifying therapeutic targets. Author summary Mucus hypersecretion contributes to the morbidity and mortality of smoking-related lung diseases, especially chronic obstructive pulmonary disease (COPD), which starts in the small airways. Little is known about the gene networks associated with the synthesis and secretion of mucins in the human small airway epithelium. Taking advantage of the knowledge that MUC5AC is a major mucin secreted by the small airway epithelium, the expression of MUC5AC in small airway epithelium is highly regulated at the transcriptional level and our observation that healthy nonsmokers have variable numbers of MUC5AC+ secretory cells in the human small airway epithelium, we compared genome-wide gene expression of the small airway epithelium of high vs low MUC5AC expressors from 60 nonsmokers to identify the genes associated with MUC5AC expression. This novel strategy enabled identification of a 73 “MUC5AC-associated core gene” list with 9 categories, which control a series of processes from mucin biosynthesis to mucus secretion. The coordinated gene expression pattern of MUC5AC-associated core genes were corroborated in an independent cohort of 72 healthy smokers. Deep sequencing of small airway epithelium RNA confirmed these observations. This finding will be useful in identifying therapeutic targets to treat small airway mucus hypersecretion.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Boucherat O, Chakir J, Jeannotte L. The loss of Hoxa5 function promotes Notch-dependent goblet cell metaplasia in lung airways. Biol Open 2012; 1:677-91. [PMID: 23213461 PMCID: PMC3507293 DOI: 10.1242/bio.20121701] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hox genes encode transcription factors controlling complex developmental processes in various organs. Little is known, however, about how HOX proteins control cell fate. Herein, we demonstrate that the goblet cell metaplasia observed in lung airways from Hoxa5−/− mice originates from the transdifferentiation of Clara cells. Reduced CC10 expression in Hoxa5−/− embryos indicates that altered cell specification occurs prior to birth. The loss of Hoxa5 function does not preclude airway repair after naphthalene exposure, but the regenerated epithelium presents goblet cell metaplasia and less CC10-positive cells, demonstrating the essential role of Hoxa5 for correct differentiation. Goblet cell metaplasia in Hoxa5−/− mice is a FOXA2-independent process. However, it is associated with increased Notch signaling activity. Consistent with these findings, expression levels of activated NOTCH1 and the effector gene HEY2 are enhanced in patients with chronic obstructive pulmonary disease. In vivo administration of a γ-secretase inhibitor attenuates goblet cell metaplasia in Hoxa5−/− mice, highlighting the contribution of Notch signaling to the phenotype and suggesting a potential therapeutic strategy to inhibit goblet cell differentiation and mucus overproduction in airway diseases. In summary, the loss of Hoxa5 function in lung mesenchyme impacts on epithelial cell fate by modulating Notch signaling.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec , L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec QC G1R 2J6 , Canada
| | | | | |
Collapse
|
75
|
Maniatis NA, Chernaya O, Shinin V, Minshall RD. Caveolins and lung function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012. [PMID: 22411320 DOI: 10.1007/978-1-4614-1222-911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The primary function of the mammalian lung is to facilitate diffusion of oxygen to venous blood and to ventilate carbon dioxide produced by catabolic reactions within cells. However, it is also responsible for a variety of other important functions, including host defense and production of vasoactive agents to regulate not only systemic blood pressure, but also water, electrolyte and acid-base balance. Caveolin-1 is highly expressed in the majority of cell types in the lung, including epithelial, endothelial, smooth muscle, connective tissue cells, and alveolar macrophages. Deletion of caveolin-1 in these cells results in major functional aberrations, suggesting that caveolin-1 may be crucial to lung homeostasis and development. Furthermore, generation of mutant mice that under-express caveolin-1 results in severe functional distortion with phenotypes covering practically the entire spectrum of known lung diseases, including pulmonary hypertension, fibrosis, increased endothelial permeability, and immune defects. In this Chapter, we outline the current state of knowledge regarding caveolin-1-dependent regulation of pulmonary cell functions and discuss recent research findings on the role of caveolin-1 in various pulmonary disease states, including obstructive and fibrotic pulmonary vascular and inflammatory diseases.
Collapse
Affiliation(s)
- Nikolaos A Maniatis
- 2nd Department of Critical Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | | | | |
Collapse
|
76
|
Smith RW, Hicks DA, Reynolds SD. Roles for β-catenin and doxycycline in the regulation of respiratory epithelial cell frequency and function. Am J Respir Cell Mol Biol 2012; 46:115-24. [PMID: 21852686 DOI: 10.1165/rcmb.2011-0099oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The expression of β-catenin-dependent genes can be increased through the Cre recombinase (Cre)-mediated elimination of the exon 3-encoded sequence. This mutant β-catenin is termed DE3, and promotes the expression of β-catenin-dependent genes. Our previous study used the DE3 model to demonstrate that persistent β-catenin activity inhibited bronchiolar Clara-to-ciliated cell differentiation. The present study was designed to evaluate the roles of β-catenin in regulating the tracheal progenitor cell hierarchy. However, initial experiments demonstrated that the tetracycline-responsive element-Cre transgene (TRE-Cre) was active in the absence of a reverse tetracycline transactivator driver or inducer, doxycycline (Dox). This spurious TRE-Cre transgene activity was not detected using the ROSA26-floxed STOP-LacZ reporter. To determine if the phenotype was a consequence of genotype or treatment with Dox, tracheal and lung specimens were evaluated using quantitative histomorphometric techniques. Analyses of uninduced mice demonstrated a significant effect of genotype on tracheal epithelial cell mass, involving basal, Clara-like cell types. The bronchial and bronchiolar Clara cell mass was also decreased. Paradoxically, an effect on ciliated cell mass was not detected. Activation of the β-catenin reporter transgene TOPGal demonstrated that β-catenin-dependent gene expression led to the genotype-dependent tracheal and bronchiolar phenotype. Comparative analyses of wild-type or keratin 14-rtTA(+/0)/TRE-cre(+/0)/DE3(+/+) mice receiving standard or Dox chow demonstrated an effect of treatment with Dox on basal, Clara-like, and Clara cell masses. We discuss these results in terms of cautionary notes and with regard to alterations of progenitor cell hierarchies in response to low-level injury.
Collapse
Affiliation(s)
- Russell W Smith
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | | | | |
Collapse
|
77
|
Fukumasu H, Avanzo JL, Sanches DS, Mennecier G, Mori CMC, Dagli MLZ. Higher susceptibility of spontaneous and NNK-induced lung neoplasms in connexin 43 deficient CD1 × AJ F1 mice: paradoxical expression of connexin 43 during lung carcinogenesis. Mol Carcinog 2012; 52:497-506. [PMID: 22344786 DOI: 10.1002/mc.21884] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 01/09/2012] [Accepted: 01/17/2012] [Indexed: 11/08/2022]
Abstract
Connexins (Cxs) are proteins that form the communicating gap junctions, and reportedly have a role in carcinogenesis. Here, we evaluated the importance of Connexin43 (Cx43) in spontaneous and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung carcinogenesis. Male wild-type (Cx43(+/+) ) and hemizygote (Cx43(+/-) ) CD1 × AJ F1 mice were injected with NNK or saline. After 60 weeks mice were euthanized; lung nodules were counted, measured, and fixed in formalin or snap frozen. Immunohistochemistry for Cx43 and Beta-catenin (β-catenin) was performed and Cx43 mRNA expression was evaluated by real-time PCR. Cx43 deletion significantly increased the incidence and number of spontaneous nodules in the CD1 × AJ F1 mice and the number of gross lesions and the aggressiveness of lesions in NNK-treated mice. Cx43 mRNA increased significantly and was correlated with the aggressiveness of tumors, although lesions from Cx43(+/-) mice expressed less Cx43 RNAm than their counterparts. Lung parenchyma presented a Cx43 immunostaining pattern with points or plaques between cells. In hyperplasias and adenomas, Cx43 was found in the membrane and in cytoplasm. Malignant lesions presented increased Cx43 in cytoplasm and a few membrane spots of immunostaining. β-catenin was weakly expressed in lung parenchyma. Though hyperplasias presented some cells with nuclear β-catenin, NNK-induced tumors contained a higher number of this staining pattern. Also, no difference in β-catenin occurred between both genotypes independently of the histological grade. In summary, our results indicate that Cx43 acts as a tumor suppressor gene in early lung tumorigenesis and loses this property in advanced carcinogenesis. Therefore, Cxs are better classified as conditional tumor suppressors.
Collapse
Affiliation(s)
- Heidge Fukumasu
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
78
|
Hashimoto S, Chen H, Que J, Brockway BL, Drake JA, Snyder JC, Randell SH, Stripp BR. β-Catenin-SOX2 signaling regulates the fate of developing airway epithelium. J Cell Sci 2012; 125:932-42. [PMID: 22421361 PMCID: PMC3311930 DOI: 10.1242/jcs.092734] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt-β-catenin signaling regulates cell fate during organ development and postnatal tissue maintenance, but its contribution to specification of distinct lung epithelial lineages is still unclear. To address this question, we used a Cre recombinase (Cre)-LoxP approach to activate canonical Wnt signaling ectopically in developing lung endoderm. We found that persistent activation of canonical Wnt signaling within distal lung endoderm was permissive for normal development of alveolar epithelium, yet led to the loss of developing bronchiolar epithelium and ectasis of distal conducting airways. Activation of canonical Wnt led to ectopic expression of a lymphoid-enhancing factor and a T-cell factor (LEF and TCF, respectively) and absence of SRY (sex-determining region Y)-box 2 (SOX2) and tumor protein p63 (p63) expression in proximal derivatives. Conditional loss of SOX2 in airways phenocopied epithelial differentiation defects observed with ectopic activation of canonical Wnt. Our data suggest that Wnt negatively regulates a SOX2-dependent signaling program required for developmental progression of the bronchiolar lineage.
Collapse
Affiliation(s)
- Shuichi Hashimoto
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, 106 Research Drive, 2075 MSRBII, DUMC Box 103000, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Box 3709, Durham, NC, 27710, USA
| | - Huaiyong Chen
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, 106 Research Drive, 2075 MSRBII, DUMC Box 103000, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Box 3709, Durham, NC, 27710, USA
| | - Jianwen Que
- Department of Cell Biology, Duke University Medical Center, Box 3709, Durham, NC, 27710, USA
| | - Brian L. Brockway
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, 106 Research Drive, 2075 MSRBII, DUMC Box 103000, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Box 3709, Durham, NC, 27710, USA
| | - Jeffrey A. Drake
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, 106 Research Drive, 2075 MSRBII, DUMC Box 103000, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Box 3709, Durham, NC, 27710, USA
| | - Joshua C. Snyder
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, 106 Research Drive, 2075 MSRBII, DUMC Box 103000, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Box 3709, Durham, NC, 27710, USA
| | - Scott H. Randell
- Departments of Cell and Molecular Physiology and Medicine, The University of North Carolina at Chapel Hill, 111 Mason Farm Road, 5200 Medical Biomolecular Research Building, CB 7545 Chapel Hill, NC, 27599-7545, USA
| | - Barry R. Stripp
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, 106 Research Drive, 2075 MSRBII, DUMC Box 103000, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Box 3709, Durham, NC, 27710, USA
- Author for correspondence ()
| |
Collapse
|
79
|
Giangreco A, Lu L, Vickers C, Teixeira VH, Groot KR, Butler CR, Ilieva EV, George PJ, Nicholson AG, Sage EK, Watt FM, Janes SM. β-Catenin determines upper airway progenitor cell fate and preinvasive squamous lung cancer progression by modulating epithelial-mesenchymal transition. J Pathol 2012; 226:575-87. [PMID: 22081448 PMCID: PMC3434372 DOI: 10.1002/path.3962] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/22/2022]
Abstract
Human lung cancers, including squamous cell carcinoma (SCC) are a leading cause of death and, whilst evidence suggests that basal stem cells drive SCC initiation and progression, the mechanisms regulating these processes remain unknown. In this study we show that β-catenin signalling regulates basal progenitor cell fate and subsequent SCC progression. In a cohort of preinvasive SCCs we established that elevated basal cell β-catenin signalling is positively associated with increased disease severity, epithelial proliferation and reduced intercellular adhesiveness. We demonstrate that transgene-mediated β-catenin inhibition within keratin 14-expressing basal cells delayed normal airway repair while basal cell-specific β-catenin activation increased cell proliferation, directed differentiation and promoted elements of early epithelial-mesenchymal transition (EMT), including increased Snail transcription and reduced E-cadherin expression. These observations are recapitulated in normal human bronchial epithelial cells in vitro following both pharmacological β-catenin activation and E-cadherin inhibition, and mirrored our findings in preinvasive SCCs. Overall, the data show that airway basal cell β-catenin determines cell fate and its mis-expression is associated with the development of human lung cancer. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Adam Giangreco
- Centre for Respiratory Research, University College London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
The primary function of the mammalian lung is to facilitate diffusion of oxygen to venous blood and to ventilate carbon dioxide produced by catabolic reactions within cells. However, it is also responsible for a variety of other important functions, including host defense and production of vasoactive agents to regulate not only systemic blood pressure, but also water, electrolyte and acid-base balance. Caveolin-1 is highly expressed in the majority of cell types in the lung, including epithelial, endothelial, smooth muscle, connective tissue cells, and alveolar macrophages. Deletion of caveolin-1 in these cells results in major functional aberrations, suggesting that caveolin-1 may be crucial to lung homeostasis and development. Furthermore, generation of mutant mice that under-express caveolin-1 results in severe functional distortion with phenotypes covering practically the entire spectrum of known lung diseases, including pulmonary hypertension, fibrosis, increased endothelial permeability, and immune defects. In this Chapter, we outline the current state of knowledge regarding caveolin-1-dependent regulation of pulmonary cell functions and discuss recent research findings on the role of caveolin-1 in various pulmonary disease states, including obstructive and fibrotic pulmonary vascular and inflammatory diseases.
Collapse
|
81
|
Gupta D, Harvey SAK, Kaminski N, Swamynathan SK. Mouse conjunctival forniceal gene expression during postnatal development and its regulation by Kruppel-like factor 4. Invest Ophthalmol Vis Sci 2011; 52:4951-62. [PMID: 21398290 DOI: 10.1167/iovs.10-7068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To identify the changes in postnatal mouse conjunctival forniceal gene expression and their regulation by Klf4 during the eye-opening stage when the goblet cells first appear. METHODS Laser microdissection (LMD) was used to collect conjunctival forniceal cells from postnatal (PN) day 9, PN14 and PN20 wild-type (WT), and PN14 Klf4-conditional null (Klf4CN) mice, in which goblet cells are absent, developing, present, and missing, respectively. Microarrays were used to compare gene expression among these groups. Expression of selected genes was validated by quantitative RT-PCR, and spatiotemporal expression was assessed by in situ hybridization. RESULTS This study identified 668, 251, 1160, and 139 transcripts that were increased and 492, 377, 1419, and 57 transcripts that were decreased between PN9 and PN14, PN14 and PN20, PN9 and PN20, and PN14 WT and Klf4CN conjunctiva, respectively. Transcripts encoding transcription factors Spdef, FoxA1, and FoxA3 that regulate goblet cell development in other mucosal epithelia, and epithelium-specific Ets (ESE) transcription factor family members were increased during conjunctival development. Components of pathways related to the mesenchymal-epithelial transition, glycoprotein biosynthesis, mucosal immunity, signaling, and endocytic and neural regulation were increased during conjunctival development. Conjunctival Klf4 target genes differed significantly from the previously identified corneal Klf4 target genes, implying tissue-dependent regulatory targets for Klf4. CONCLUSIONS The changes in gene expression accompanying mouse conjunctival development were identified, and the role of Klf4 in this process was determined. This study provides new probes for examining conjunctival development and function and reveals that the gene regulatory network necessary for goblet cell development is conserved across different mucosal epithelia.
Collapse
Affiliation(s)
- Divya Gupta
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Eye and Ear Institute, 203 Lothrop Street, Pittsburgh PA 15213, USA
| | | | | | | |
Collapse
|
82
|
Liu Y, Sadikot RT, Adami GR, Kalinichenko VV, Pendyala S, Natarajan V, Zhao YY, Malik AB. FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa. ACTA ACUST UNITED AC 2011; 208:1473-84. [PMID: 21708928 PMCID: PMC3135362 DOI: 10.1084/jem.20102041] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The alveolar epithelium is composed of the flat type I cells comprising 95% of the gas-exchange surface area and cuboidal type II cells comprising the rest. Type II cells are described as facultative progenitor cells based on their ability to proliferate and trans-differentiate into type I cells. In this study, we observed that pneumonia induced by intratracheal instillation of Pseudomonas aeruginosa (PA) in mice increased the expression of the forkhead transcription factor FoxM1 in type II cells coincidentally with the induction of alveolar epithelial barrier repair. FoxM1 was preferentially expressed in the Sca-1(+) subpopulation of progenitor type II cells. In mice lacking FoxM1 specifically in type II cells, type II cells showed decreased proliferation and impaired trans-differentiation into type I cells. Lungs of these mice also displayed defective alveolar barrier repair after injury. Expression of FoxM1 in the knockout mouse lungs partially rescued the defective trans-differentiation phenotype. Thus, expression of FoxM1 in type II cells is essential for their proliferation and transition into type I cells and for restoring alveolar barrier homeostasis after PA-induced lung injury.
Collapse
Affiliation(s)
- Yuru Liu
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Alapati D, Rong M, Chen S, Hehre D, Rodriguez MM, Lipson KE, Wu S. Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats. Am J Respir Cell Mol Biol 2011; 45:1169-77. [PMID: 21659659 DOI: 10.1165/rcmb.2011-0023oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in neonatal intensive care and surfactant therapy, bronchopulmonary dysplasia (BPD) continues to be one of the most common long-term pulmonary complications associated with preterm birth. Clinical efforts to prevent and treat BPD have been largely unsuccessful due to its multifactorial nature and poorly understood disease process. Connective tissue growth factor (CTGF) is a matricellular protein that plays an important role in tissue development and remodeling. Previous studies have demonstrated that hyperoxia exposure up-regulates CTGF expression in neonatal rat lungs. Whether CTGF overexpression plays a role in the pathogenesis of BPD, and whether CTGF antagonism has a therapeutic potential for BPD, are unknown. In the present study, we examined CTGF expression in lung autopsy specimens from patients with BPD and control subjects with no BPD. We assessed the effect of a CTGF-neutralizing monoclonal antibody (CTGF Ab) on preventing hyperoxia-induced lung injury in neonatal rats. Our study demonstrates that CTGF expression is increased in BPD lungs. In newborn rats, exposure to 90% oxygen for 14 days resulted in activation of β-catenin signaling, decreased alveolarization and vascular development, and physiological and histological evidence of pulmonary hypertension (PH). However, treatment with CTGF Ab prevented β-catenin signaling activation, improved alveolarization and vascular development, and attenuated PH during hyperoxia. These data indicate that CTGF-β-catenin signaling plays a critical role in the pathogenesis of experimental BPD. CTGF antagonism may offer a novel therapeutic strategy to alleviate BPD and PH in neonates.
Collapse
Affiliation(s)
- Deepthi Alapati
- Department of Pediatrics, Division of Neonatology, Batchelor Children’s Research Institute, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Teisanu RM, Chen H, Matsumoto K, McQualter JL, Potts E, Foster WM, Bertoncello I, Stripp BR. Functional analysis of two distinct bronchiolar progenitors during lung injury and repair. Am J Respir Cell Mol Biol 2011; 44:794-803. [PMID: 20656948 PMCID: PMC3135841 DOI: 10.1165/rcmb.2010-0098oc] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Air spaces of the mammalian lung are lined by a specialized epithelium that is maintained by endogenous progenitor cells. Within bronchioles, the abundance and distribution of progenitor cells that contribute to epithelial homeostasis change as a function of maintenance versus repair. It is unclear whether functionally distinct progenitor pools or a single progenitor cell type maintain the epithelium and how the behavior is regulated in normal or disease states. To address these questions, we applied fractionation methods for the enrichment of distal airway progenitors. We show that bronchiolar progenitor cells can be subdivided into two functionally distinct populations that differ in their susceptibility to injury and contribution to repair. The proliferative capacity of these progenitors is confirmed in a novel in vitro assay. We show that both populations give rise to colonies with a similar dependence on stromal cell interactions and regulation by TGF-β. These findings provide additional insights into mechanisms of epithelial remodeling in the setting of chronic lung disease and offer hope that pharmacologic interventions may be developed to mitigate tissue remodeling.
Collapse
Affiliation(s)
- Roxana M. Teisanu
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Huaiyong Chen
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Keitaro Matsumoto
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Jonathan L. McQualter
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Erin Potts
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | | | - Ivan Bertoncello
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Barry R. Stripp
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
85
|
Zhang H, Xia T, Meng H, Xue M, George S, Ji Z, Wang X, Liu R, Wang M, France B, Rallo R, Damoiseaux R, Cohen Y, Bradley KA, Zink JI, Nel AE. Differential expression of syndecan-1 mediates cationic nanoparticle toxicity in undifferentiated versus differentiated normal human bronchial epithelial cells. ACS NANO 2011; 5:2756-2769. [PMID: 21366263 PMCID: PMC3896548 DOI: 10.1021/nn200328m] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most in vitro toxicity studies on engineered nanomaterials (ENMs) use transformed rather than primary cells for logistical reasons. However, primary cells may provide a more appropriate connection to in vivo toxicity because these cells maintain their phenotypic fidelity and are also capable of differentiating into lineages that may be differently affected by potentially hazardous ENMs. Few studies to date have focused on the role of cellular differentiation in determining ENM toxicity. We compared the response of undifferentiated and differentiated primary human bronchial epithelial (NHBE) cells to cationic mesoporous silica nanoparticles (MSNPs) that are coated with polyethyleneimine (PEI) since this polymer is known to exert differential cytotoxicity depending on its molecular weight and cationic density. The attachment of cationic PEI polymers to the MSNP surface was used to assess these materials' toxicological potential in undifferentiated and differentiated human bronchial epithelial cells, using a multiparametric assay that screens for an integrated set of sublethal and lethal response outcomes. MSNPs coated with high molecular weight (10 and 25 kD) polymers were more toxic in differentiated cells than particles coated with shorter length polymers. The increased susceptibility of the differentiated cells is in agreement with more abundant expression of a proteoglycan, syndecan-1, which contains copious heparin sulfate side chains. Pretreatment with heparinase to remove the negatively charged sulfates decreased MSNP-PEI binding to the cell surface and lowered the cytotoxic potential of the cationic particles. These data demonstrate the importance of studying cellular differentiation as an important variable in the response of primary cells to toxic ENM properties.
Collapse
Affiliation(s)
- Haiyuan Zhang
- California NanoSystems Institute at University of California, Los Angeles, California
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, California, Los Angeles, California
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, California, Los Angeles, California
| | - Min Xue
- Department of Chemistry & Biochemistry, California, Los Angeles, California
| | - Saji George
- California NanoSystems Institute at University of California, Los Angeles, California
- Division of NanoMedicine, Department of Medicine, California, Los Angeles, California
| | - Zhaoxia Ji
- California NanoSystems Institute at University of California, Los Angeles, California
| | - Xiang Wang
- California NanoSystems Institute at University of California, Los Angeles, California
| | - Rong Liu
- Department of Chemical & Biomolecular Engineering, California, Los Angeles, California
| | - Meiying Wang
- Division of NanoMedicine, Department of Medicine, California, Los Angeles, California
| | - Bryan France
- Department of Microbiology, Immunology & Molecular Genetics, California, Los Angeles, California
| | - Robert Rallo
- Department of Chemical & Biomolecular Engineering, California, Los Angeles, California
| | - Robert Damoiseaux
- California NanoSystems Institute at University of California, Los Angeles, California
- Molecular Shared Screening Resources, California, Los Angeles, California
| | - Yoram Cohen
- Department of Chemical & Biomolecular Engineering, California, Los Angeles, California
| | - Kenneth A. Bradley
- California NanoSystems Institute at University of California, Los Angeles, California
- Department of Microbiology, Immunology & Molecular Genetics, California, Los Angeles, California
| | - Jeffrey I. Zink
- Department of Chemistry & Biochemistry, California, Los Angeles, California
| | - Andre E. Nel
- California NanoSystems Institute at University of California, Los Angeles, California
- Division of NanoMedicine, Department of Medicine, California, Los Angeles, California
- Corresponding Author: Andre Nel, M.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 825-6620, Fax: (310) 206-8107
| |
Collapse
|
86
|
E-cadherin: gatekeeper of airway mucosa and allergic sensitization. Trends Immunol 2011; 32:248-55. [PMID: 21493142 DOI: 10.1016/j.it.2011.03.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/04/2011] [Accepted: 03/08/2011] [Indexed: 12/25/2022]
Abstract
The airway epithelium plays a role in immune regulation during environmental challenge, which is intertwined with its barrier function and capacity to limit submucosal access of environmental factors. In asthma, mucosal barrier function is often compromised, with disrupted expression of the adhesion molecule E-cadherin. Recent progress suggests that E-cadherin contributes to the structural and immunological function of airway epithelium, through the regulation of epithelial junctions, proliferation, differentiation, and production of growth factors and proinflammatory mediators that can modulate the immune response. Here, we discuss this novel role for E-cadherin in mediating the crucial immunological decision between maintenance of tolerance versus induction of innate and adaptive immunity.
Collapse
|
87
|
Wang R, Ahmed J, Wang G, Hassan I, Strulovici-Barel Y, Hackett NR, Crystal RG. Down-regulation of the canonical Wnt β-catenin pathway in the airway epithelium of healthy smokers and smokers with COPD. PLoS One 2011; 6:e14793. [PMID: 21490961 PMCID: PMC3072378 DOI: 10.1371/journal.pone.0014793] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 02/14/2011] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The Wnt pathway mediates differentiation of epithelial tissues; depending on the tissue types, Wnt can either drive or inhibit the differentiation process. We hypothesized that key genes in the Wnt pathway are suppressed in the human airway epithelium under the stress of cigarette smoking, a stress associated with dysregulation of the epithelial differentiated state. METHODOLOGY/PRINCIPAL FINDINGS Microarrays were used to assess the expression of Wnt-related genes in the small airway epithelium (SAE) obtained via bronchoscopy and brushing of healthy nonsmokers, healthy smokers, and smokers with COPD. Thirty-three of 56 known Wnt-related genes were expressed in the SAE. Wnt pathway downstream mediators β-catenin and the transcription factor 7-like 1 were down-regulated in healthy smokers and smokers with COPD, as were many Wnt target genes. Among the extracellular regulators that suppress the Wnt pathway, secreted frizzled-related protein 2 (SFRP2), was up-regulated 4.3-fold in healthy smokers and 4.9-fold in COPD smokers, an observation confirmed by TaqMan Real-time PCR, Western analysis and immunohistochemistry. Finally, cigarette smoke extract mediated up-regulation of SFRP2 and down-regulation of Wnt target genes in airway epithelial cells in vitro. CONCLUSIONS/SIGNIFICANCE Smoking down-regulates the Wnt pathway in the human airway epithelium. In the context that Wnt pathway plays an important role in differentiation of epithelial tissues, the down-regulation of Wnt pathway may contribute to the dysregulation of airway epithelium differentiation observed in smoking-related airway disorders.
Collapse
Affiliation(s)
- Rui Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Joumana Ahmed
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Guoqing Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ibrahim Hassan
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Yael Strulovici-Barel
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Neil R. Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
88
|
Love D, Li FQ, Burke MC, Cyge B, Ohmitsu M, Cabello J, Larson JE, Brody SL, Cohen JC, Takemaru KI. Altered lung morphogenesis, epithelial cell differentiation and mechanics in mice deficient in the Wnt/β-catenin antagonist Chibby. PLoS One 2010; 5:e13600. [PMID: 21049041 PMCID: PMC2963606 DOI: 10.1371/journal.pone.0013600] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 10/01/2010] [Indexed: 12/21/2022] Open
Abstract
The canonical Wnt/β-catenin pathway plays crucial roles in various aspects of lung morphogenesis and regeneration/repair. Here, we examined the lung phenotype and function in mice lacking the Wnt/β-catenin antagonist Chibby (Cby). In support of its inhibitory role in canonical Wnt signaling, expression of β-catenin target genes is elevated in the Cby−/− lung. Notably, Cby protein is prominently associated with the centrosome/basal body microtubule structures in embryonic lung epithelial progenitor cells, and later enriches as discrete foci at the base of motile cilia in airway ciliated cells. At birth, Cby−/− lungs are grossly normal but spontaneously develop alveolar airspace enlargement with reduced proliferation and abnormal differentiation of lung epithelial cells, resulting in altered pulmonary function. Consistent with the Cby expression pattern, airway ciliated cells exhibit a marked paucity of motile cilia with apparent failure of basal body docking. Moreover, we demonstrate that Cby is a direct downstream target for the master ciliogenesis transcription factor Foxj1. Collectively, our results demonstrate that Cby facilitates proper postnatal lung development and function.
Collapse
Affiliation(s)
- Damon Love
- Department of Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Feng-Qian Li
- Department of Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Michael C. Burke
- Medical Scientist Program (MSTP), SUNY at Stony Brook, Stony Brook, New York, United States of America
- Graduate Program in Genetics, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Benjamin Cyge
- Department of Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Masao Ohmitsu
- Department of Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Jeffrey Cabello
- Department of Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Janet E. Larson
- Section of Neonatology, Department of Pediatrics, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Steven L. Brody
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - J. Craig Cohen
- Section of Neonatology, Department of Pediatrics, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, SUNY at Stony Brook, Stony Brook, New York, United States of America
- Graduate Program in Genetics, SUNY at Stony Brook, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
89
|
Pan J, Zhang Q, Wang Y, You M. 26S proteasome activity is down-regulated in lung cancer stem-like cells propagated in vitro. PLoS One 2010; 5:e13298. [PMID: 20949018 PMCID: PMC2952619 DOI: 10.1371/journal.pone.0013298] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 09/17/2010] [Indexed: 11/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cancer cells capable of self-renewal and tumor maintenance. Eradicating cancer stem cells, the root of tumor origin and recurrence, has emerged as one promising approach to improve lung cancer survival. Cancer stem cells are reported to reside in the side population (SP) of cultured lung cancer cells. We report here the coexistence of a distinct population of non-SP (NSP) cells that have equivalent self-renewal capacity compared to SP cells in a lung tumor sphere assay. Compared with the corresponding cells in monolayer cultures, lung tumor spheres, formed from human non-small cell lung carcinoma cell lines A549 or H1299, showed marked morphologic differences and increased expression of the stem cell markers CD133 and OCT3/4. Lung tumor spheres also exhibited increased tumorigenic potential as only 10,000 lung tumor sphere cells were required to produce xenografts tumors in nude mice, whereas the same number of monolayer cells failed to induce tumors. We also demonstrate that lung tumor spheres showed decreased 26S proteasome activity compared to monolayer. By using the ZsGreen-cODC (C-terminal sequence that directs degradation of Ornithine Decarboxylase) reporter assay in NSCLC cell lines, only less than 1% monolayer cultures were ZsGreen positive indicating low 26S proteasome, whereas lung tumor sphere showed increased numbers of ZsGreen-positive cells, suggesting the enrichment of CSCs in sphere cultures.
Collapse
Affiliation(s)
- Jing Pan
- Department of Surgery, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | | |
Collapse
|
90
|
Doi T, Puri P, Bannigan J, Thompson J. Disruption of noncanonical Wnt/CA2+ pathway in the cadmium-induced omphalocele in the chick model. J Pediatr Surg 2010; 45:1645-9. [PMID: 20713214 DOI: 10.1016/j.jpedsurg.2009.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/23/2009] [Accepted: 11/26/2009] [Indexed: 12/11/2022]
Abstract
PURPOSE Cadmium (Cd) has been found to cause ventral body wall defects (VBWDs) in the chick embryo similar to human omphalocele. The earliest detectable histologic changes in Cd-induced VBWD chick model have been observed 4 hours posttreatment. The exact mechanism by which Cd acts in the early embryogenesis remains unclear. Wnt proteins play a key role during embryogenesis, and altered Wnt signaling has been linked to developmental defects. Noncanonical Wnt/Ca(2+) pathway has been implicated in regulating embryogenesis by controlling cell movement and adhesion. Wnt11 can activate protein kinase C (PKC) and calcium/calmodulin-dependent kinase II (CaMKII) in the Wnt/Ca(2+) pathway. We hypothesized that the Wnt11, PKCalpha, and CaMKII gene expression is downregulated in the Cd-induced VBWD during early embryogenesis. METHODS After 60 hours of incubation, chick embryos were harvested 1 hour (1H), 4H, and 8H after treatment of saline or cadmium and divided into 2 groups: control and Cd (n = 8 at each time-point, respectively). Real-time polymerase chain reaction was performed to evaluate the messenger RNA (mRNA) expression of Wnt11, PKCalpha, and CaMKII in the Cd-induced VBWD chick model. RESULTS The mRNA expression levels of Wnt11, PKCalpha, and CaMKII were significantly decreased at 1H in Cd group compared to controls (P < .05). However, there were no significant differences in the other time-points. CONCLUSION Downregulation of Wnt11, PKCalpha, and CaMKII gene expression during the narrow window of early embryogenesis may cause VBWD, interfering with cell movement and adhesion, disrupting Wnt/Ca(2+) pathway.
Collapse
Affiliation(s)
- Takashi Doi
- The Children's Research Center, Our Lady's Children's Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
91
|
Neumann J, Schaale K, Farhat K, Endermann T, Ulmer AJ, Ehlers S, Reiling N. Frizzled1 is a marker of inflammatory macrophages, and its ligand Wnt3a is involved in reprogramming Mycobacterium tuberculosis-infected macrophages. FASEB J 2010; 24:4599-612. [PMID: 20667980 DOI: 10.1096/fj.10-160994] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wnt/Frizzled signaling, essential for embryonic development, has also recently been implicated in the modulation of inflammatory processes. In the current study, we observed a reciprocal regulation of the Toll-like receptor (TLR)/nuclear factor-κB (NF-κB) and the Wnt/β-catenin pathway after aerosol infection of mice with Mycobacterium tuberculosis: whereas proinflammatory mediators were substantially increased, β-catenin signaling was significantly reduced. A systematic screen of Fzd homologs in infected mice identified Fzd1 mRNA to be significantly up-regulated during the course of infection. In vitro infection of murine macrophages led to a strong induction of Fzd1 that was dependent on TLRs, the myeloid differentiation response gene 88 (MyD88), and a functional NF-κB pathway. Flow cytometry demonstrated an elevated Fzd1 expression on macrophages in response to M. tuberculosis that was synergistically enhanced in the presence of IFN-γ. Addition of the Fzd1 ligand Wnt3a induced Wnt/β-catenin signaling in murine macrophages that was inhibited in the presence of a soluble Fzd1/Fc fusion protein. Furthermore, Wnt3a reduced TNF release, suggesting that Wnt3a promotes anti-inflammatory functions in murine macrophages. The current data support the notion that evolutionarily conserved Wnt/Fzd signaling is involved in balancing the inflammatory response to microbial stimulation of innate immune cells of vertebrate origin.
Collapse
Affiliation(s)
- Jan Neumann
- Division of Microbial Interface Biology, Research Center Borstel, Borstel, Germany
| | | | | | | | | | | | | |
Collapse
|
92
|
Agrawal A, Mabalirajan U, Ahmad T, Ghosh B. Emerging interface between metabolic syndrome and asthma. Am J Respir Cell Mol Biol 2010; 44:270-5. [PMID: 20656947 DOI: 10.1165/rcmb.2010-0141tr] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is growing epidemiological evidence that obesity increases the risk of developing asthma. In some studies, insulin resistance or metabolic syndrome is a stronger risk factor than body mass. The obese-asthma subphenotype is marked by a paucity of inflammation but also by marked symptoms, poor response to glucocorticoids, and peripheral airway dysfunction. Although obesity may predispose to increased Th2 inflammation or atopic tendencies, other mechanisms that are independent of inflammatory cells need to be considered. There is growing evidence of the influence of hyperglycemia, hyperinsulinemia, and insulin-like growth factors on airway structure and function. Also, studies from mouse models of asthma have highlighted the importance of nitric oxide-arginine metabolism abnormalities and oxonitrosative stress in lungs. Such changes are well established features of the metabolic syndrome and may represent an interface between these diseases that can be therapeutically targeted. Such therapies, including administration of l-arginine or statins, increasing endothelial nitric oxide synthase, or the use of arginase inhibitors, have been successful in experimental models but have not yet translated to the clinical arena. We review the current understanding of the potential mechanistic links between obesity and asthma, emphasizing the potential influence of metabolic abnormalities on asthmatic processes, therapeutic implications, and expected challenges.
Collapse
Affiliation(s)
- Anurag Agrawal
- Centre for Translational Research in Asthma & Lung disease, Institute of Genomics & Integrative Biology, Delhi, India.
| | | | | | | |
Collapse
|
93
|
Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 2010; 107:14309-14. [PMID: 20660310 DOI: 10.1073/pnas.1001520107] [Citation(s) in RCA: 378] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia is a ravaging condition of progressive lung scarring and destruction. Anti-inflammatory therapies including corticosteroids have limited efficacy in this ultimately fatal disorder. An important unmet need is to identify new agents that interact with key molecular pathways involved in the pathogenesis of pulmonary fibrosis to prevent progression or reverse fibrosis in these patients. Because aberrant activation of the Wnt/beta-catenin signaling cascade occurs in lungs of patients with IPF, we have targeted this pathway for intervention in pulmonary fibrosis using ICG-001, a small molecule that specifically inhibits T-cell factor/beta-catenin transcription in a cyclic AMP response-element binding protein binding protein (CBP)-dependent fashion. ICG-001 selectively blocks the beta-catenin/CBP interaction without interfering with the beta-catenin/p300 interaction. We report here that ICG-001 (5 mg/kg per day) significantly inhibits beta-catenin signaling and attenuates bleomycin-induced lung fibrosis in mice, while concurrently preserving the epithelium. Administration of ICG-001 concurrent with bleomycin prevents fibrosis, and late administration is able to reverse established fibrosis and significantly improve survival. Because no effective treatment for IPF exists, selective inhibition of Wnt/beta-catenin-dependent transcription suggests a potential unique therapeutic approach for pulmonary fibrosis.
Collapse
|
94
|
Weng T, Liu L. The role of pleiotrophin and beta-catenin in fetal lung development. Respir Res 2010; 11:80. [PMID: 20565841 PMCID: PMC2901351 DOI: 10.1186/1465-9921-11-80] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/18/2010] [Indexed: 12/21/2022] Open
Abstract
Mammalian lung development is a complex biological process, which is temporally and spatially regulated by growth factors, hormones, and extracellular matrix proteins. Abnormal changes of these molecules often lead to impaired lung development, and thus pulmonary diseases. Epithelial-mesenchymal interactions are crucial for fetal lung development. This paper reviews two interconnected pathways, pleiotrophin and Wnt/β-catenin, which are involved in fibroblast and epithelial cell communication during fetal lung development.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | |
Collapse
|
95
|
Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 2010; 298:L715-31. [PMID: 20363851 DOI: 10.1152/ajplung.00361.2009] [Citation(s) in RCA: 511] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recovery of an intact epithelium following lung injury is critical for restoration of lung homeostasis. The initial processes following injury include an acute inflammatory response, recruitment of immune cells, and epithelial cell spreading and migration upon an autologously secreted provisional matrix. Injury causes the release of factors that contribute to repair mechanisms including members of the epidermal growth factor and fibroblast growth factor families (TGF-alpha, KGF, HGF), chemokines (MCP-1), interleukins (IL-1beta, IL-2, IL-4, IL-13), and prostaglandins (PGE(2)), for example. These factors coordinate processes involving integrins, matrix materials (fibronectin, collagen, laminin), matrix metalloproteinases (MMP-1, MMP-7, MMP-9), focal adhesions, and cytoskeletal structures to promote cell spreading and migration. Several key signaling pathways are important in regulating these processes, including sonic hedgehog, Rho GTPases, MAP kinase pathways, STAT3, and Wnt. Changes in mechanical forces may also affect these pathways. Both localized and distal progenitor stem cells are recruited into the injured area, and proliferation and phenotypic differentiation of these cells leads to recovery of epithelial function. Persistent injury may contribute to the pathology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. For example, dysregulated repair processes involving TGF-beta and epithelial-mesenchymal transition may lead to fibrosis. This review focuses on the processes of epithelial restitution, the localization and role of epithelial progenitor stem cells, the initiating factors involved in repair, and the signaling pathways involved in these processes.
Collapse
Affiliation(s)
- Lynn M Crosby
- Departments of 1Physiology, University of Tennessee Health Science Center, Memphis, TN 38163-0001, USA
| | | |
Collapse
|
96
|
Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol 2010; 90:73-158. [PMID: 20691848 DOI: 10.1016/s0070-2153(10)90003-3] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the "molecular embryology" of the lung was first comprehensively reviewed, new challenges have emerged-and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits.
Collapse
Affiliation(s)
- David Warburton
- The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Doi T, Puri P. Up-regulation of Wnt5a gene expression in the nitrofen-induced hypoplastic lung. J Pediatr Surg 2009; 44:2302-6. [PMID: 20006014 DOI: 10.1016/j.jpedsurg.2009.07.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 07/31/2009] [Indexed: 01/02/2023]
Abstract
PURPOSE The pathogenesis of pulmonary hypoplasia in nitrofen-induced congenital diaphragmatic hernia (CDH) still remains unclear. Wnt signaling pathways play a critical role in lung development. Whereas canonical Wnt signaling regulates branching morphogenesis during early lung development, the noncanonical Wnt5a controls late lung morphogenesis, including patterning of distal airway and vascular tubulogenesis (alveolarization). Overexpression of Wnt5a in transgenic mice and in the chick has been reported to result in severe pulmonary hypoplasia. We designed this study to test the hypothesis that the pulmonary Wnt5a gene expression is up-regulated in late stages of lung morphogenesis in CDH. METHODS Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal lungs were harvested on D15, D18, and D21 and divided into 3 groups: control; nitrofen without CDH, CDH(-); and nitrofen with CDH, CDH(+) (n = 8 at each time-point, respectively). Wnt5a pulmonary gene expression was analyzed by real-time reverse transcription polymerase chain reaction. Immunohistochemistry was performed to evaluate Wnt5a protein expression at each time-point. RESULTS Pulmonary relative mRNA expression levels of Wnt5a were significantly increased in CDH(-) and CDH(+) at D18 (1.61 +/- 0.92 and 1.81 +/- 1.20, respectively) and D21 (2.40 +/- 0.74* and 2.65 +/- 0.35*, respectively) compared to controls at D18 and D21 (0.90 +/- 0.17* and 1.69 +/- 0.53**, respectively) (*P < .05, **P < .001 vs control ). Strong Wnt5a immunoreactivity was seen in the distal epithelium at D18 and D21 in nitrofen-induced hypoplastic lung compared to controls. CONCLUSION Up-regulation of pulmonary Wnt5a gene expression in the late lung morphogenesis may interfere with patterning of alveolarization, causing pulmonary hypoplasia in the nitrofen-induced CDH.
Collapse
Affiliation(s)
- Takashi Doi
- The Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| | | |
Collapse
|
98
|
Abstract
A comprehensive appreciation of mechanisms regulating epithelial maintenance and repair in pulmonary airways is fundamental to our understanding of tissue remodeling and dysfunction in chronic lung disease. This review provides an update on current concepts that have emerged from recent work in the field of airway epithelial repair and progenitor cell biology. New models to investigate the behavior of lung epithelial progenitor cells have provided fresh insights into their regulation and organization, and help to clarify their roles in normal maintenance and repair. Emerging technologies for the fractionation and culture of lung epithelial cells also provide opportunities to investigate the behavior and regulation of progenitor cell subsets in controlled systems. These advances hold promise for development of new strategies to modulate epithelial cell behavior and to effect tissue repair in the setting of lung disease.
Collapse
Affiliation(s)
- Huaiyong Chen
- Departments of Medicine and Cell Biology, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina
| | - Keitaro Matsumoto
- Departments of Medicine and Cell Biology, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina
| | - Barry R. Stripp
- Departments of Medicine and Cell Biology, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
99
|
Flozak AS, Lam AP, Russell S, Jain M, Peled ON, Sheppard KA, Beri R, Mutlu GM, Budinger GRS, Gottardi CJ. Beta-catenin/T-cell factor signaling is activated during lung injury and promotes the survival and migration of alveolar epithelial cells. J Biol Chem 2009; 285:3157-67. [PMID: 19933277 DOI: 10.1074/jbc.m109.070326] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Wnt/beta-catenin signaling cascade activates genes that allow cells to adopt particular identities throughout development. In adult self-renewing tissues like intestine and blood, activation of the Wnt pathway maintains a progenitor phenotype, whereas forced inhibition of this pathway promotes differentiation. In the lung alveolus, type 2 epithelial cells (AT2) have been described as progenitors for the type 1 cell (AT1), but whether AT2 progenitors use the same signaling mechanisms to control differentiation as rapidly renewing tissues is not known. We show that adult AT2 cells do not exhibit constitutive beta-catenin signaling in vivo, using the AXIN2(+/LacZ) reporter mouse, or after fresh isolation of an enriched population of AT2 cells. Rather, this pathway is activated in lungs subjected to bleomycin-induced injury, as well as upon placement of AT2 cells in culture. Forced inhibition of beta-catenin/T-cell factor signaling in AT2 cultures leads to increased cell death. Cells that survive show reduced migration after wounding and reduced expression of AT1 cell markers (T1alpha and RAGE). These results suggest that AT2 cells may function as facultative progenitors, where activation of Wnt/beta-catenin signaling during lung injury promotes alveolar epithelial survival, migration, and differentiation toward an AT1-like phenotype.
Collapse
Affiliation(s)
- Annette S Flozak
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Sharma S, Tantisira K, Carey V, Murphy AJ, Lasky-Su J, Celedón JC, Lazarus R, Klanderman B, Rogers A, Soto-Quirós M, Avila L, Mariani T, Gaedigk R, Leeder S, Torday J, Warburton D, Raby B, Weiss ST. A role for Wnt signaling genes in the pathogenesis of impaired lung function in asthma. Am J Respir Crit Care Med 2009; 181:328-36. [PMID: 19926868 DOI: 10.1164/rccm.200907-1009oc] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Animal models demonstrate that aberrant gene expression in utero can result in abnormal pulmonary phenotypes. OBJECTIVES We sought to identify genes that are differentially expressed during in utero airway development and test the hypothesis that variants in these genes influence lung function in patients with asthma. METHODS Stage 1 (Gene Expression): Differential gene expression analysis across the pseudoglandular (n = 27) and canalicular (n = 9) stages of human lung development was performed using regularized t tests with multiple comparison adjustments. Stage 2 (Genetic Association): Genetic association analyses of lung function (FEV(1), FVC, and FEV(1)/FVC) for variants in five differentially expressed genes were conducted in 403 parent-child trios from the Childhood Asthma Management Program (CAMP). Associations were replicated in 583 parent-child trios from the Genetics of Asthma in Costa Rica study. MEASUREMENTS AND MAIN RESULTS Of the 1,776 differentially expressed genes between the pseudoglandular (gestational age: 7-16 wk) and the canalicular (gestational age: 17-26 wk) stages, we selected 5 genes in the Wnt pathway for association testing. Thirteen single nucleotide polymorphisms in three genes demonstrated association with lung function in CAMP (P < 0.05), and associations for two of these genes were replicated in the Costa Ricans: Wnt1-inducible signaling pathway protein 1 with FEV(1) (combined P = 0.0005) and FVC (combined P = 0.0004), and Wnt inhibitory factor 1 with FVC (combined P = 0.003) and FEV(1)/FVC (combined P = 0.003). CONCLUSIONS Wnt signaling genes are associated with impaired lung function in two childhood asthma cohorts. Furthermore, gene expression profiling of human fetal lung development can be used to identify genes implicated in the pathogenesis of lung function impairment in individuals with asthma.
Collapse
Affiliation(s)
- Sunita Sharma
- Channing Laboratory, Center for Genomic Medicine, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|