51
|
Gorgey AS, Dudley GA. Spasticity may defend skeletal muscle size and composition after incomplete spinal cord injury. Spinal Cord 2007; 46:96-102. [PMID: 17637764 DOI: 10.1038/sj.sc.3102087] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DESIGN Cross-sectional. OBJECTIVES (1) To determine the effects of the level of spinal cord injury (SCI) on skeletal muscle, intramuscular fat (IMF) cross-sectional areas (CSAs) and relative IMF; (2) to determine the relation, if any, of spasticity to each of these variables after incomplete SCI. SETTINGS In-patient study at the Shepherd Center, Atlanta, GA, USA. METHODS Thirteen individuals with incomplete SCI were classified according to their level of injury into a high level of injury group (HLI, C5-C7, n=8) and a low level of injury group (LLI, T12-L2, n=5). Spasticity was determined for thigh muscles using a modified Ashworth scale at 6 weeks post-injury. T1-weighted magnetic resonance (MR) images were taken 6 weeks post-injury to measure thigh skeletal muscle and IMF CSAs. RESULTS Spasticity was significantly evident in the HLI group compared to the LLI group (P=0.023). Six weeks post-injury, muscle CSA was 103+/-18 cm(2) in the HLI group and 80+/-20 cm(2) in the LLI group (P=0.042). Relative IMF was 3.6+/-2.0% in HLI and 7.5+/-4.0% in LLI (P=0.021). Additionally, spasticity accounted for 54% of the variability in muscle CSA for all subjects (r (2)=0.54, P=0.006). CONCLUSIONS Spasticity may be an important factor in defending skeletal muscle size and indirectly preventing IMF accumulation early after incomplete SCI.
Collapse
Affiliation(s)
- A S Gorgey
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48108, USA.
| | | |
Collapse
|
52
|
Abstract
Satellite cells are small, mononuclear cells found in close association with striated skeletal muscles cells (myofibers). These cells appear to function as reserve myoblasts. A critical role for these cells in the process of muscle regeneration following injury has been clearly established. In that role, satellite cells have been shown to proliferate extensively. Some of the progeny of these cells then fuse with each other to form replacement myofibers, whereas others return to quiescence, thereby maintaining this reserve population. In response to injury, activated satellite cells can also fuse with damaged but viable myofibers to promote repair and regeneration. It has also been observed that satellite cells are activated during periods of significantly increased muscle loading and that some of these cells fuse with apparently undamaged myofibers as part of the hypertrophy process. The observation that the inactivation of satellite cell proliferation prevents most of the hypertrophy response to chronic increases in loading has lead to the hypothesis that a limitation to the expansion of myofiber size is imposed by the number of myonuclei present. Recent evidence suggests that a potential limitation to muscle hypertrophy, in the absence of a reserve supply of myonuclei, may be the inability to sustain increases in ribosomes, thereby limiting translational capacity.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, Medical Science I D335, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
53
|
Milingos D, Katopodis H, Milingos S, Protopapas A, Creatsas G, Michalas S, Antsaklis A, Koutsilieris M. Insulin-like growth factor-1 isoform mRNA expression in women with endometriosis: eutopic endometrium versus endometriotic cyst. Ann N Y Acad Sci 2007; 1092:434-9. [PMID: 17308170 DOI: 10.1196/annals.1365.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pathogenesis of endometriosis involves growth factors, which are synthesized locally. Insulin-like growth factor-1 (IGF-1) prevents apoptosis and has mitogenic action on endometrial cells. The IGF-1 gene undergoes alternative splicing and results in three isoforms (IGF-1Ea, IGF-1Eb, and IGF-1Ec or MGF). We analyzed the mRNA expression of IGF-1 isoforms in tissue samples of eutopic endometrium and endometriotic cyst obtained during laparoscopy from women with endometriosis. We documented that all three IGF-1 isoforms are expressed in both eutopic endometrium and ovarian endometrioma. Furthermore, we documented a significant decrease in all IGF-1 isoform expression in endometriotic cyst compared to endometrium of women with endometriosis. The reduction may correlate with the disease status and presence of fibrotic inactive tissue found in late stages of the disease.
Collapse
Affiliation(s)
- Dimitrios Milingos
- First Department of Obstetrics and Gynicology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Bamman MM, Petrella JK, Kim JS, Mayhew DL, Cross JM. Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol (1985) 2007; 102:2232-9. [PMID: 17395765 DOI: 10.1152/japplphysiol.00024.2007] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We applied K-means cluster analysis to test the hypothesis that muscle-specific factors known to modulate protein synthesis and satellite cell activity would be differentially expressed during progressive resistance training (PRT, 16 wk) in 66 human subjects experiencing extreme, modest, and failed myofiber hypertrophy. Muscle mRNA expression of IGF-I isoform Ea (IGF-IEa), mechanogrowth factor (MGF, IGF-IEc), myogenin, and MyoD were assessed in muscle biopsies collected at baseline (T1) and 24 h after the first (T2) and last (T3) loading bouts from previously untrained subjects clustered as extreme responders (Xtr, n=17), modest responders (Mod, n=32), and nonresponders (Non, n=17) based on mean myofiber hypertrophy. Myofiber growth averaged 2,475 microm2 in Xtr, 1,111 microm2 in Mod, and -16 microm2 in Non. Main training effects revealed increases in all transcripts (46-83%, P<0.005). For the entire cohort, IGF-IEa, MGF, and myogenin mRNAs were upregulated by T2 (P<0.05), while MyoD did not increase significantly until T3 (P<0.001). Within clusters, MGF and myogenin upregulation was robust in Xtr (126% and 65%) and Mod (73% and 41%) vs. no changes in Non. While significant in all clusters by T3, IGF-IEa increased most in Xtr (105%) and least in Non (44%). Although MyoD expression increased overall, no changes within clusters were detected. We reveal for the first time that MGF and myogenin transcripts are differentially expressed in subjects experiencing varying degrees of PRT-mediated myofiber hypertrophy. The data strongly suggest the load-mediated induction of these genes may initiate important actions necessary to promote myofiber growth during PRT, while the role of MyoD is less clear.
Collapse
Affiliation(s)
- Marcas M Bamman
- Department of Physiology and Biophysics, Medical Scientist Training Program, The University of Alabama at Birmingham, and Core Muscle Research Laboratory, GRECC/11G, Veterans Affairs Medical Center, AL 35294-0001, USA.
| | | | | | | | | |
Collapse
|
55
|
Hulmi JJ, Ahtiainen JP, Kaasalainen T, Pöllänen E, Häkkinen K, Alen M, Selänne H, Kovanen V, Mero AA. Postexercise Myostatin and Activin IIb mRNA Levels. Med Sci Sports Exerc 2007; 39:289-97. [PMID: 17277593 DOI: 10.1249/01.mss.0000241650.15006.6e] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Muscle hypertrophy is likely to result from the cumulative effects of repeated bouts of resistance exercise (RE) on postexercise molecular responses. Therefore, we determined muscle growth- and regeneration-related mRNA expression in response to a single RE bout both before and after a strength-training (ST) period. By means of this novel longitudinal setting, we examined whether postexercise gene expression at the transcriptional level is different in the trained and untrained state. METHODS Eleven untrained healthy older men and 11 controls (age 62.3 +/- 6.3 yr) volunteered as subjects. Muscle biopsies from the vastus lateralis muscle were taken at rest and 1 and 48 h after five sets of 10-repetition leg press RE both before and after 21 wk of supervised ST. RESULTS Myostatin and myogenin mRNA expression, determined by real-time RT-PCR, increased (P < 0.05) after ST. Conversely, the single RE bout decreased myostatin mRNA after ST, with the decrease showing a negative correlation (r = -0.65, P < 0.05) with the long-term increase in myostatin during ST. Furthermore, RE before ST increased myogenin mRNA (P < 0.05) and tended to increase after ST (P = 0.08). Myostatin receptor activin IIb mRNA levels were decreased at 1 h after RE in the pre-ST condition (P = 0.05) and also tended to decrease in the post-ST condition (P = 0.07). RE-induced downregulation in myostatin mRNA correlated with the ST-induced increase in total body muscle mass (r = -0.82, P = 0.002). CONCLUSIONS A single bout of RE in older men can downregulate the expression of myostatin receptor activin IIb mRNA. ST influences the response of myostatin to RE, as short-term RE-induced downregulation of myostatin was observed only after ST. The results also indicate that RE-induced alterations in myostatin mRNA expression may have a role in ST-induced muscle hypertrophy.
Collapse
Affiliation(s)
- Juha J Hulmi
- Department of Biology of Physical Activity and Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Tanhoffer RA, Yamazaki RK, Nunes EA, Pchevozniki AI, Pchevozniki AM, Nogata C, Aikawa J, Bonatto SJ, Brito G, Lissa MD, Fernandes LC. Glutamine concentration and immune response of spinal cord-injured rats. J Spinal Cord Med 2007; 30:140-6. [PMID: 17591226 PMCID: PMC2031944 DOI: 10.1080/10790268.2007.11753925] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/OBJECTIVES Glutamine plays a key role in immune response. Spinal cord injury (SCI) leads to severe loss of muscle mass and to a high incidence of infections. This study investigated the acute effect of SCI (2 and 5 days) on the plasma glutamine and skeletal muscle concentrations and immune responses in rats. METHODS A total of 29 adult male Wistar rats were divided as follows: control (C; n = 5), sham-operated (S2; n = 5) and spinal cord-transected (T2; n = 7). They were killed on day 2 after surgery/transection (acute phase). Another set was sham-operated (S5; n = 5), spinal cord-transected (T5; n = 7), and killed at day 5 after surgery/transection (secondary phase). Blood was collected; the white portion of the epitrochlearis and gastrocnemius muscles and the red portion of soleus muscles were dissected to measure the glutamine concentration. Gut-associated lymphocytes and peritoneal macrophages were obtained for immune parameters measurements. RESULTS Glutamine concentration in the plasma, gastrocnemius, and soleus muscles in rats with SCI were significantly reduced but not in the epitrochlearis muscle in the acute (2 days) and secondary (5 days) phases. Phagocytic response was reduced in the acute phase but increased in the secondary phase in rats with SCI. Superoxide production, on the other hand, was significantly increased at days 2 and 5 after SCI, and CD8+ lymphocytes subset decreased significantly on days 2 and 5. CONCLUSIONS Our results showed reduction in plasma glutamine and skeletal muscle concentrations after spinal cord transection. They also suggest that SCI and glutamine reduction contribute to an alteration in immune competence.
Collapse
Affiliation(s)
- Ricardo A Tanhoffer
- Department of Physiology, Laboratory of Cellular Metabolism, Universidade Federal do Parana, Centro Politecnico-Jardim das Americas, Setor de Ciencias Biologicas, Curitiba, Parana, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Garma T, Kobayashi C, Haddad F, Adams GR, Bodell PW, Baldwin KM. Similar acute molecular responses to equivalent volumes of isometric, lengthening, or shortening mode resistance exercise. J Appl Physiol (1985) 2006; 102:135-43. [PMID: 17008438 DOI: 10.1152/japplphysiol.00776.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The present study was undertaken to test the hypothesis that the contraction mode of action [static-isometric (Iso), shortening-concentric (Con), or lengthening-eccentric (Ecc)] used to stress the muscle provides a differential mechanical stimulus eliciting greater or lesser degrees of anabolic response at the initiation of a resistance training program. We performed an acute resistance training study in which different groups of rodents completed four training sessions in either the Iso, Con, or Ecc mode of contraction under conditions of activation and movement specifically designed to elicit equivalent volumes of force accumulation. The results of this experiment indicate that the three modes of contraction produced nearly identical cell signaling, indicative of an anabolic response involving factors such as increased levels of mRNA for IGF-I, procollagen III alpha1, decreased myostatin mRNA, and increased total RNA concentration. The resulting profiles collectively provide evidence that pure mode of muscle action, in and of itself, does not appear to be a primary variable in determining the efficacy of increased loading paradigms with regard to the initiation of selected muscle anabolic responses.
Collapse
Affiliation(s)
- T Garma
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
58
|
Olesen JL, Heinemeier KM, Haddad F, Langberg H, Flyvbjerg A, Kjaer M, Baldwin KM. Expression of insulin-like growth factor I, insulin-like growth factor binding proteins, and collagen mRNA in mechanically loaded plantaris tendon. J Appl Physiol (1985) 2006; 101:183-8. [PMID: 16782835 DOI: 10.1152/japplphysiol.00636.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) is known to exert an anabolic effect on tendon fibroblast production of collagen. IGF-I's regulation is complex and involves six different IGF binding proteins (IGFBPs). Of these, IGFBP-4 and -5 could potentially influence the effect of IGF-I in the tendon because they both are produced in fibroblast; however, the response of IGFBP-4 and -5 to mechanical loading and their role in IGF-I regulation in tendinous tissue are unknown. A splice variant of IGF-I, mechano-growth factor (MGF) is upregulated and known to be important for adaptation in loaded muscle. However, it is not known whether MGF is expressed and upregulated in mechanically loaded tendon. This study examined the effect of mechanical load on tendon collagen mRNA in relation to changes in the IGF-I systems mRNA expression. Data were collected at 2, 4, 8 and 16 days after surgical removal of synergistic muscle to the plantaris muscle of the rat, thus increasing the load to plantaris muscle and tendon. Nearly a doubling of the tendon mass was observed after 16 days of loading. A rapid rise in tendon procollagen III mRNA was seen after 2 days whereas the increase in procollagen I mRNA was significant from day 8. MGF was expressed and upregulated in loaded tendon tissue with a faster response than IGF-I, which was increased from day 8. Finally, IGFBP-4 mRNA was increased with a time pattern similar to procollagen III, whereas IGFBP-5 decreased at day 8. In conclusion, loading of tendon tissue results in an upregulation of IGF-I, IGFBP-4, and procollagen and is associated with an increase in tendon mass. Also, MGF is expressed with an early upregulation in loaded tendon tissue. We suggest that the IGF-I system could be involved in collagen synthesis in tendon in response to mechanical loading.
Collapse
Affiliation(s)
- Jens L Olesen
- Institute of Sports Medicine, Bispebjerg Hospital, DK-2400 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
59
|
Thijssen DH, Ellenkamp R, Smits P, Hopman MT. Rapid vascular adaptations to training and detraining in persons with spinal cord injury. Arch Phys Med Rehabil 2006; 87:474-81. [PMID: 16571385 DOI: 10.1016/j.apmr.2005.11.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 10/31/2005] [Accepted: 11/04/2005] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To assess the time course of arterial adaptations during 6 weeks of functional electric stimulation (FES) training and 6 weeks of detraining in subjects with spinal cord injury (SCI). DESIGN Intervention study (before-after trial). SETTING University medical center. PARTICIPANTS Volunteer sample of 9 subjects with SCI. INTERVENTIONS Six weeks of twice weekly FES cycling and 6 weeks of detraining. MAIN OUTCOME MEASURES Vascular characteristics were measured by plethysmography (baseline and peak blood flow of the thigh) and echo Doppler (diameter of the femoral artery and flow-mediated dilation [FMD]). RESULTS After 2 weeks of FES training, arterial characteristics changed significantly; there was an increase in baseline and peak blood flow, an increase in femoral artery diameter, and a decrease in FMD of the femoral artery. Detraining reversed baseline and peak thigh blood flow, vascular resistance, and femoral diameter toward pretraining values within 1 week. However, detraining did not restore the FMD of the femoral artery, even after 6 weeks. CONCLUSIONS Two weeks of hybrid FES training (4 exercise bouts) is sufficient to improve peak leg blood flow and arterial diameter, and to normalize FMD. In addition, detraining results in rapidly reversed vascular characteristics within 1 week.
Collapse
Affiliation(s)
- Dick H Thijssen
- Department of Physiology, Institute for Fundamental and Clinical Human Movement Sciences, the Netherlands
| | | | | | | |
Collapse
|
60
|
Lang CH, Krawiec BJ, Huber D, McCoy JM, Frost RA. Sepsis and inflammatory insults downregulate IGFBP-5, but not IGFBP-4, in skeletal muscle via a TNF-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2006; 290:R963-72. [PMID: 16339387 DOI: 10.1152/ajpregu.00684.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The purpose of the present study was to determine whether catabolic stimuli that induce muscle atrophy alter the muscle mRNA abundance of insulin-like growth factor binding protein (IGFBP)-4 and -5, and if so determine the physiological mechanism for such a change. Catabolic insults produced by endotoxin (LPS) and sepsis decreased IGFBP-5 mRNA time- and dose-dependently in gastrocnemius muscle. This reduction did not result from muscle disuse because hindlimb immobilization increased IGFBP-5. Continuous infusion of a nonlethal dose of tumor necrosis factor-α (TNF-α) decreased IGFBP-5 mRNA 70%, whereas pretreatment of septic rats with a neutralizing TNF binding protein completely prevented the reduction in muscle IGFBP-5. The addition of LPS or TNF-α to cultured C2C12myoblasts also decreased IGFBP-5 expression. Although exogenously administered growth hormone (GH) increased IGFBP-5 mRNA 2-fold in muscle from control rats, muscle from septic animals was GH resistant and no such elevation was detected. In contrast, exogenous administration of IGF-I as part of a binary complex composed of IGF-I/IGFBP-3 produced comparable increases in IGFBP-5 mRNA in both control and septic muscle. Concomitant determinations of IGF-I mRNA content revealed a positive linear relationship between IGF-I and IGFBP-5 mRNA in the same muscle in response to LPS, sepsis, TNF-α, and GH treatment. Although dexamethasone decreased muscle IGFBP-5, pretreatment of rats with the glucocorticoid receptor antagonist RU486 did not prevent the sepsis-induced decrease in IGFBP-5 mRNA. In contrast, muscle IGFBP-4 mRNA abundance was not significantly altered by LPS, sepsis, or hindlimb immobilization. In summary, these data demonstrate that various inflammatory insults decrease muscle IGFBP-5 mRNA, without altering IGFBP-4, by a TNF-dependent glucocorticoid-independent mechanism. Finally, IGF-I appears to be a dominant positive regulator of IGFBP-5 gene expression in muscle under both normal and catabolic conditions.
Collapse
Affiliation(s)
- Charles H Lang
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
61
|
Maffiuletti NA, Zory R, Miotti D, Pellegrino MA, Jubeau M, Bottinelli R. Neuromuscular Adaptations to Electrostimulation Resistance Training. Am J Phys Med Rehabil 2006; 85:167-75. [PMID: 16428910 DOI: 10.1097/01.phm.0000197570.03343.18] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A combination of in vivo and in vitro analyses was performed to investigate muscular and neural adaptations of the weaker (nondominant) quadriceps femoris muscle of one healthy individual to short-term electrostimulation resistance training. The increase in maximal voluntary strength (+12%) was accompanied by neural (cross-education effect and increased muscle activation) and muscle adaptations (impairment of whole-muscle contractile properties). Significant changes in myosin heavy chain (MHC) isoforms relative content (+22% for MHC-2A and -28% for MHC-2X), single-fiber cross-sectional area (+27% for type 1 and +6% for type 2A muscle fibers), and specific tension of type 1 (+67%) but not type 2A fibers were also observed after training. Plastic changes in neural control confirm the possible involvement of both spinal and supraspinal structures to electrically evoked contractions. Changes at the single muscle fiber level induced by electrostimulation resistance training were significant and preferentially affected slow, type 1 fibers.
Collapse
|
62
|
Haddad F, Adams GR. Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol (1985) 2005; 100:1188-203. [PMID: 16373446 DOI: 10.1152/japplphysiol.01227.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sarcopenia is an age-related loss of muscle mass and strength. The aged can increase various measures of muscle size and strength in response to resistance exercise (RE), but this may not normalize specific tension. In rats, aging reduces the hypertrophy response and impairs regeneration. In this study, we measured cellular and molecular markers, indicative of muscle hypertrophy, that also respond to acute increases in loading. Comparing 6- and 30-mo-old rats, the aims were to 1) determine whether these markers are altered with age and 2) identify age-sensitive responses to acute RE. The muscles of old rats exhibited sarcopenia involving a deficit in contractile proteins and decreased force generation. The RNA-to-protein ratio was higher in the old muscles, suggesting a decrease in translational efficiency. There was evidence of reduced signaling via components downstream from the insulin/insulin-like growth factor (IGF)-I receptors in old muscles. The mRNA levels of myostatin and suppressor of cytokine signaling 2, negative regulators of muscle mass, were lower in old muscles but did not decrease following RE. RE induced increases in the mRNAs for IGF-I, mechano-growth factor, cyclin D1, and suppressor of cytokine signaling 3 were similar in old and young muscles. RE induced phosphorylation of the IGF-I receptor, and Akt increased in young but not old muscles, whereas that of S6K1 was similar for both. The results of this study indicate that a number of components of intracellular signaling pathways are sensitive to age. As a result, key anticatabolic responses appear to be refractory to the stimuli provided by RE.
Collapse
Affiliation(s)
- Fadia Haddad
- Department of Physiology & Biophysics, University of California, Irvine, Medical Sciences 1, Rm. D335, 92697-4560, USA
| | | |
Collapse
|
63
|
Gondin J, Guette M, Ballay Y, Martin A. Electromyostimulation Training Effects on Neural Drive and Muscle Architecture. Med Sci Sports Exerc 2005; 37:1291-9. [PMID: 16118574 DOI: 10.1249/01.mss.0000175090.49048.41] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of the study was to investigate the effect of 4 and 8 wk of electromyostimulation (EMS) training on both muscular and neural adaptations of the knee extensor muscles. METHODS Twenty males were divided into the electrostimulated group (EG, N = 12) and the control group (CG, N = 8). The training program consisted of 32 sessions of isometric EMS over an 8-wk period. All subjects were tested at baseline (B) and retested after 4 (WK4) and 8 (WK8) wk of EMS training. The EMG activity and muscle activation obtained under maximal voluntary contractions (MVC) was used to assess neural adaptations. Torque and EMG responses obtained under electrically evoked contractions, muscle anatomical cross-sectional area (ACSA), and vastus lateralis (VL) pennation angle, both measured by ultrasonography imaging, were examined to analyze muscular changes. RESULTS At WK8, knee extensor MVC significantly increased by 27% (P < 0.001) and was accompanied by an increase in muscle activation (+6%, P < 0.01), quadriceps muscle ACSA (+6%, P < 0.001), and VL pennation angle (+14%, P < 0.001). A significant increase in normalized EMG activity of both VL and vastus medialis (VM) muscles (+69 and +39%, respectively, P < 0.001) but not of rectus femoris (RF) muscle was also found at WK8. The ACSA of the VL, VM, and vastus intermedius muscles significantly increased at WK8 (5-8%, P < 0.001) but not at WK4, whereas no changes occurred in the RF muscle. CONCLUSION We concluded that the voluntary torque gains obtained after EMS training could be attributed to both muscular and neural adaptations. Both changes selectively involved the monoarticular vastii muscles.
Collapse
Affiliation(s)
- Julien Gondin
- INSERM/ERM 207 Laboratory, Faculty of Sport Sciences, University of Burgundy, Dijon, France.
| | | | | | | |
Collapse
|
64
|
Kim JS, Kosek DJ, Petrella JK, Cross JM, Bamman MM. Resting and load-induced levels of myogenic gene transcripts differ between older adults with demonstrable sarcopenia and young men and women. J Appl Physiol (1985) 2005; 99:2149-58. [PMID: 16051712 DOI: 10.1152/japplphysiol.00513.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regenerative capacity appears to be impaired in sarcopenic muscle. As local growth factors and myogenic regulatory factors (MRFs) modulate repair/regeneration responses after overload, we hypothesized that resistance loading (RL)-induced expression of MRFs and muscle IGF-I-related genes would be blunted in older (O) males (M) and females (F) with demonstrable sarcopenia vs. young (Y) adults. Y (20-35 yr, 10 YF, 10 YM) and O (60-75 yr, 9 OF, 9 OM) underwent vastus lateralis biopsy before and 24 h after knee extensor RL. Sarcopenia was assessed by cross-sectional area of type I, IIa, and IIx myofibers. Transcript levels were assessed by relative RT-PCR and analyzed by age x gender x load repeated-measures ANOVA. O were sarcopenic based on type II atrophy with smaller type IIa (P < 0.05) and IIx (P < 0.001) myofibers. Within-gender cross-sectional area differences were more marked in F (OF < YF: IIa 21%, IIx 42%). Load effects (P < 0.05) were seen for four of seven mRNAs as IGF-IEa (34%), myogenin (53%), and MyoD (20%) increased, and myf-6 declined 10%. Increased IGF-IEa was driven by O (48%) and/or M (43%). An age x gender x load interaction was found for MyoD (P < 0.05). An age x load interaction for type 1 IGF receptor (P < 0.05) was driven by a small increase in O (16%, P < 0.05). A gender x load interaction (P < 0.05) was noted for IGF binding protein-4. Age effects (P < 0.05) resulted from higher MyoD (54%), myf-5 (21%), and IGF binding protein-4 (17%) in O and were primarily localized to F at baseline (OF > YF; MyoD 94%, myf-5 47%, P < 0.05). We conclude that RL acutely increases mRNA expression of IGF-IEa and myogenin, which may promote growth/regeneration in both Y and O. Higher resting levels of MRFs in OF vs. YF suggest elevated basal regenerative activity in sarcopenic muscle of OF.
Collapse
Affiliation(s)
- Jeong-su Kim
- Dept. of Physiology, Univeristy of Alabama, Birmingham, AL, USA
| | | | | | | | | |
Collapse
|
65
|
Kim JS, Cross JM, Bamman MM. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab 2005; 288:E1110-9. [PMID: 15644458 DOI: 10.1152/ajpendo.00464.2004] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myostatin inhibits myoblast proliferation and differentiation in developing muscle. Mounting evidence suggests that myostatin also plays a limiting role in growth/repair/regeneration of differentiated adult muscle by inhibiting satellite cell activation. We tested the hypothesis that myostatin mRNA expression would decrease after resistance loading (RL) with a blunted response in older (O) females (F) who have shown minimal hypertrophy [vs. males (M)] after long-term RL. As myostatin is thought to modulate cell cycle activity, we also studied the response of gene transcripts key to stimulation (cyclin B1 and D1) and inhibition (p21cip and p27kip) of the cell cycle, along with the muscle-specific load-sensitive mitogen mechano-growth factor (MGF). Twenty young (Y; 20-35 yr, 10 YF, 10 YM) and 18 O (60-75 yr, 9 OF, 9 OM) consented to vastus lateralis biopsy before and 24 h after a bout of RL (3 sets x 8-12 repetitions to volitional fatigue of squat, leg press, knee extension). Gene expression levels were determined by relative RT-PCR with 18S as an internal standard and analyzed by age x gender x load repeated-measures ANOVA. A load effect was found for four transcripts (P < 0.005) including myostatin, cyclin D1, p27kip, and MGF as mRNA levels decreased for myostatin (-44%) and p27kip (-16%) and increased for cyclin D1 (34%) and MGF (49%). For myostatin, age x load and gender x load interactions (P < 0.05) were driven by a lack of change in OF, while marked declines were noted in YM (-56%), YF (-48%), and OM (-40%). Higher cyclin D1 levels in OF led to a main age effect (36%, O > Y) and an age x gender interaction (66%, OF > YF vs. 10%, OM > YM; P < 0.05). An age x gender x load interaction (P < 0.05) for cyclin D1 resulted from a 48% increase in OF. Post hoc testing within groups revealed a significant increase in MGF after RL in YM only (91%, P < 0.05). Higher levels of cyclin B1 in O (27%, O > Y) led to a main age effect (P < 0.05). An age x load interaction for cyclin B1 (P < 0.05) was driven by a 26% increase in Y with no change in O after RL. No age or gender differences, or load-mediated changes, were detected in levels of p21cip mRNA expression. These data clearly demonstrate that RL downregulates myostatin expression and alters genes key to cell cycle progression. However, failure to reduce myostatin expression may play a role in limiting RL-induced hypertrophy in OF.
Collapse
Affiliation(s)
- Jeong-su Kim
- UAB Dept. of Physiology and Biophysics, Muscle Research Laboratory, GRECC/11G, Veterans Affairs Medical Center, 1530 3rd Ave. South, Birmingham, AL 35294-0001, USA
| | | | | |
Collapse
|
66
|
Yang Y, Creer A, Jemiolo B, Trappe S. Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J Appl Physiol (1985) 2005; 98:1745-52. [PMID: 15618316 DOI: 10.1152/japplphysiol.01185.2004] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to examine the time course activation of select myogenic (MRF4, Myf5, MyoD, myogenin) and metabolic (CD36, CPT1, HKII, and PDK4) genes after an acute bout of resistance (RE) or run (Run) exercise. Six RE subjects [25 ± 4 yr (mean ± SD), 74 ± 14 kg, 1.71 ± 0.11 m] and six Run subjects (25 ± 4 yr, 72 ± 5 kg, 1.81 ± 0.07 m, 63 ± 8 ml·kg−1·min−1) were studied. Eight muscle biopsies were taken from the vastus lateralis (RE) and gastrocnemius (Run) before, immediately after, and 1, 2, 4, 8, 12 and 24 h after exercise. RE increased mRNA of MRF4 (3.7- to 4.5-fold 2–4 h post), MyoD (5.8-fold 8 h post), myogenin (2.6- and 3.5-fold 8–12 h post), HKII (3.6- to 10.5-fold 2–12 h post), and PDK4 (14- to 26-fold 2–8 h post). There were no differences in Myf5, CD36, and CPT1 mRNA levels 0–24 h post-RE. Run increased mRNA of MyoD (5.0- to 8.0-fold), HKII (12- to 16-fold), and PDK4 (32- to 52-fold) at 8–12 h postexercise. There were no differences in MRF4, Myf5, myogenin, CD36 and CPT1 mRNA levels 0–24 h post-Run. These data indicate a myogenic and metabolic gene induction with RE and Run exercise. The timing of the gene induction is variable and generally peaks 4–8 h postexercise with all gene expression not significantly different from the preexercise levels by 24 h postexercise. These data provide basic information for the timing of human muscle biopsy samples for gene-expression studies involving exercise.
Collapse
Affiliation(s)
- Yifan Yang
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
| | | | | | | |
Collapse
|
67
|
Abstract
PURPOSE Chronic renal failure (CRF) patients often experience a significant degradation in quality of life that is associated with decreased physical fitness. Previous animal studies have used forced running or swimming as modalities to investigate the interactions between exercise and CRF. These modalities generally include stress responses unrelated to the exercise itself. The purpose of the current work was to determine whether, and to what extent, rats experiencing the onset of CRF would participate in voluntary wheel running exercise. An additional objective was to examine physiological parameters related to skeletal muscle and cardiovascular adaptation in the context of CRF and exercise. METHODS Groups of rats were assigned to sham-operated or 5/6 nephrectomy groups, and further divided into running or nonrunning subgroups. Blood, heart, and muscle tissues were collected 30 d after the exercise groups were returned to running wheel-equipped cages. RESULTS The results demonstrated that rats experiencing the early stages of CRF will voluntarily exercise to the same extent as sham-operated animals (e.g., sham, 7.2+/-0.8 vs CRF, 6.8+/-0.7 km.d). CRF resulted in increased systolic blood pressure that was not normalized by exercise. CRF induced a decrease in hemoglobin concentration that was prevented by exercise. Voluntary running resulted in an apparently nonpathological left ventricular hypertrophy in both the sham-operated and CRF rats. In locomotor skeletal muscles, CRF resulted in a 31% decrease in citrate synthase activity that was completely blunted by voluntary running activity. CONCLUSION Rats experiencing the onset of CRF will run voluntarily. This exercise appears to provide some potentially palliative effects on the skeletal muscle and cardiovascular responses to CRF.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA.
| | | | | | | |
Collapse
|
68
|
Haddad F, Baldwin KM, Tesch PA. Pretranslational markers of contractile protein expression in human skeletal muscle: effect of limb unloading plus resistance exercise. J Appl Physiol (1985) 2005; 98:46-52. [PMID: 15298986 DOI: 10.1152/japplphysiol.00553.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, it has been shown that the human ground-based model consisting of unilateral limb suspension (ULLS) induces atrophy and reduced strength of the affected quadriceps muscle group. Resistance exercise (RE) involving concentric-eccentric actions, in the face of ULLS, is effective in ameliorating these deficits. The goal of the present study was to determine whether alterations in contractile protein gene expression, e.g., myosin heavy chain and actin, as studied at the pretranslational level, provide molecular markers concerning the deficits that occur in muscle mass/volume during ULLS, as well as its maintenance in response to ULLS plus RE. Muscle biopsies were obtained from the vastus lateralis muscle of 31 middle-aged men and women before and after 5 wk of ULLS, ULLS plus RE, or RE only. The RE paradigm consisted of 12 sessions of 4 sets of 7 concentric-eccentric knee extensions. Our findings show that there were net deficits in total RNA, total mRNA, and actin and myosin heavy chain mRNA levels of expression after ULLS ( P < 0.05), whereas these alterations were blunted in the two groups receiving RE. Additional observations involving IGF-I and its associated receptor and binding proteins suggest that RE postures the skeletal muscle for signaling processes that favor a greater anabolic state relative to that observed in the ULLS group. Collectively, these findings suggest that molecular markers of contractile protein gene expression serve as useful subcellular indicators for ascertaining the underlying mechanisms regulating alterations in muscle mass in human subjects in response to altered loading states.
Collapse
Affiliation(s)
- F Haddad
- Dept. of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
69
|
Frimel TN, Kapadia F, Gaidosh GS, Li Y, Walter GA, Vandenborne K. A model of muscle atrophy using cast immobilization in mice. Muscle Nerve 2005; 32:672-4. [PMID: 16025524 DOI: 10.1002/mus.20399] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe a new cast-immobilization protocol to induce muscle atrophy in the lower hindlimb muscles of mice. Bilateral cast immobilization for 2 weeks in a shortened position resulted in a significant loss of muscle size and strength in the soleus and extensor digitorum longus. The availability of a model of cast immobilization in mice may benefit future studies targeting genetic or cell therapy interventions of muscle atrophy in transgenic and mutant mice strains.
Collapse
Affiliation(s)
- Tiffany N Frimel
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
70
|
Abstract
Chronic, low-level elevation of circulating interleukin (IL)-6 is observed in disease states as well as in many outwardly healthy elderly individuals. Increased plasma IL-6 is also observed after intense, prolonged exercise. In the context of skeletal muscle, IL-6 has variously been reported to regulate carbohydrate and lipid metabolism, increase satellite cell proliferation, or cause muscle wasting. In the present study, we used a rodent local infusion model to deliver modest levels of IL-6, comparable to that present after exercise or with chronic low-level inflammation in the elderly, directly into a single target muscle in vivo. The aim of this study was to examine the direct effects of IL-6 on skeletal muscle in the absence of systemic changes in this cytokine. Data included cellular and molecular markers of cytokine and growth factor signaling (phosphorylation and mRNA content) as well as measurements to detect muscle atrophy. IL-6 infusion resulted in muscle atrophy characterized by a preferential loss of myofibrillar protein (-17%). IL-6 induced a decrease in the phosphorylation of ribosomal S6 kinase (-60%) and STAT5 (-33%), whereas that of STAT3 was increased approximately twofold. The changes seen in the IL-6-infused muscles suggest alterations in the balance of growth factor-related signaling in favor of a more catabolic profile. This suggests that downregulation of growth factor-mediated intracellular signaling may be a mechanism contributing to the development of muscle atrophy induced by elevated IL-6.
Collapse
Affiliation(s)
- F Haddad
- Department of Physiology & Biophysics, University of California, Irvine, Medical Sciences 1, Irvine, CA 92697-4560, USA
| | | | | | | |
Collapse
|
71
|
Abstract
Numerous human in vivo studies on skeletal muscle gene expression have investigated the effects of given interventions. These have been founded on the assumption that presampling can be regarded as a representative control for postintervention sampling. However, many genes are responsive to the metabolic status, which varies during the day, so that observed differences in gene expression between the pre- and post-sample may therefore be a result of the daily variations rather than an intervention. Furthermore, the sampling itself can cause a local stress response, which may also influence the expression of some genes in later samples from the same localized area. To test this, we performed a short-term human endurance exercise study in which muscle biopsies were obtained from healthy untrained individuals (n=14) before and in the hours after exercise to measure the expression of mRNA for previously reported exercise-related genes (e.g., PPARgamma coactivator-1alpha (PGC-1alpha), pyruvate dehydrogenase kinase 4 (PDK4), MyoD, p21, (heat shock protein 72 (HSP72), lipoprotein lipase (LPL), citrate synthase (CS), and glucose transporter 4 (GLUT4)). To test for changes unrelated to exercise, one half of the subjects did not exercise. As suspected, several presumed exercise-induced genes were induced even without the exercise. Our data demonstrate that presampling is not always a representative control for postintervention sampling, illustrating that use of presampling can cause erroneous interpretations of the underlying induction signals.
Collapse
Affiliation(s)
- Kristian Vissing
- Department of Molecular Muscle Biology, Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|
72
|
Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol (1985) 2004; 98:482-8. [PMID: 15465884 DOI: 10.1152/japplphysiol.00895.2004] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resistance exercise (RE) training, designed to induce hypertrophy, strives for optimal activation of anabolic and myogenic mechanisms to increase myofiber size. Clearly, activation of these mechanisms must precede skeletal muscle growth. Most mechanistic studies of RE have involved analysis of outcome variables after many training sessions. This study measured molecular level responses to RE on a scale of hours to establish a time course for the activation of myogenic mechanisms. Muscle biopsy samples were collected from nine subjects before and after acute bouts of RE. The response to a single bout was assessed at 12 and 24 h postexercise. Further samples were obtained 24 and 72 h after a second exercise bout. RE was induced by neuromuscular electrical stimulation to generate maximal isometric contractions in the muscle of interest. A single RE bout resulted in increased levels of mRNA for IGF binding protein-4 (84%), MyoD (83%), myogenin (approximately 3-fold), cyclin D1 (50%), and p21-Waf1 (16-fold), and a transient decrease in IGF-I mRNA (46%). A temporally conserved, significant correlation between myogenin and p21 mRNA was observed (r = 0.70, P < or = 0.02). The mRNAs for mechano-growth factor, IGF binding protein-5, and the IGF-I receptor were unchanged by RE. Total skeletal muscle RNA was increased 72 h after the second serial bout of RE. These results indicate that molecular adaptations of skeletal muscle to loading respond in a very short time. This approach should provide insights on the mechanisms that modulate adaptation to RE and may be useful in evaluating RE training protocol variables with high temporal resolution.
Collapse
Affiliation(s)
- C Scott Bickel
- Department of Physical Therapy, Louisiana State University, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
73
|
Phillips SM, Stewart BG, Mahoney DJ, Hicks AL, McCartney N, Tang JE, Wilkinson SB, Armstrong D, Tarnopolsky MA. Body-weight-support treadmill training improves blood glucose regulation in persons with incomplete spinal cord injury. J Appl Physiol (1985) 2004; 97:716-24. [PMID: 15107410 DOI: 10.1152/japplphysiol.00167.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The impact of a 6-mo body-weight-supported treadmill training program on glucose homeostasis and muscle metabolic characteristics was investigated. Nine individuals (31 ± 3 yr, 8.1 ± 2.5 yr postinjury; means ± SE) with incomplete spinal cord injury trained three times weekly for a total of 6 mo. Training session duration and intensity (velocity) increased by 54 ± 10% ( P < 0.01) and 135 ± 20%, respectively. Muscle biopsies and a modified glucose tolerance test (100 g glucose with [U-13C]glucose) were performed before (Pre) and after training (Post). Training resulted in a reduction in area under the curve of glucose × time (−15 ± 4%) and insulin × time (−33 ± 8%; both P < 0.05). Oxidation of exogenous (ingested) glucose increased as a result of training (Pre = 4.4 ± 0.7 g/h, Post = 7.4 ± 0.6 g/h; P < 0.05), as did oxidation of endogenous (liver) glucose (Pre = 3.8 ± 0.3 g/h, Post = 5.2 ± 0.3 g/h; P < 0.05). Training resulted in increased muscle glycogen (80 ± 23%; P < 0.05) and GLUT-4 content and hexokinase II enzyme activity (126 ± 34 and 49 ± 4%, respectively, both P < 0.01). Resting muscle phosphocreatine content also increased after training (Pre = 62.1 ± 4.3, Post = 78.7 ± 3.8, both mmol/kg dry wt and P < 0.05). Six months of thrice-weekly body-weight-supported treadmill training in persons with an incomplete spinal cord injury improved blood glucose regulation by increasing oxidation and storage of an oral glucose load. Increases in the capacity for transport and phosphorylation glucose in skeletal muscle likely play a role in these adaptations.
Collapse
Affiliation(s)
- Stuart M Phillips
- Department of Kinesiology, Exercise and Metabolism Research Group, Centre for Health Promotion and Rehabilitation, McMaster University, 1280 Main St. West, Hamilton, ON, Canada L8S 4K1.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Bamman MM, Ragan RC, Kim JS, Cross JM, Hill VJ, Tuggle SC, Allman RM. Myogenic protein expression before and after resistance loading in 26- and 64-yr-old men and women. J Appl Physiol (1985) 2004; 97:1329-37. [PMID: 15155718 DOI: 10.1152/japplphysiol.01387.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Based on the growing body of evidence implicating an important role for myogenic regulatory factors (MRFs) in the adaptive responses of skeletal muscle to mechanical load, we tested the hypothesis that protein concentrations of MRFs as well as cell cycle proteins (i.e., cyclins and cyclin-dependent kinase inhibitors) would be altered after heavy leg resistance exercise (RE). Because we and others, however, have shown a blunted adaptive response to long-term resistance training in older (O) women [females (F)] compared with men (M), we also tested the hypothesis that these myogenic responses to RE would be influenced by age and gender. Twenty-two younger (Y) adults (20-35 yr, 11 YF, 11 YM) and 20 O adults (60-75 yr, 9 OF, 11 OM) consented to vastus lateralis muscle biopsy before and 24 h after a bout of RE using a regimen known to induce myofiber hypertrophy when performed 2-3 days/wk for several weeks (3 sets of 80% one-repetition maximum for squat, leg press, and knee extension). Protein concentrations of MRFs (MyoD, myogenin, myf-6), cyclin D1, cyclin B1, alpha-actin, and the cyclin-dependent kinase inhibitor p27kip were determined by immunoblotting. Data were analyzed by using age x gender x load repeated-measures ANOVA. Myogenin expression was 44% higher (P <0.05) in O compared with Y, and myf-6 tended to be higher in OF compared with YF (95%, P=0.059). A significant gender x load interaction indicated that, in F, RE led to a reduction in p27kip (20%; P<0.05), which was driven mainly by a 27% drop in OF. Levels of cyclin D1, cyclin B1, MyoD, myf-6, and alpha-actin were not influenced by age, gender, or loading. We report a novel finding in humans of markedly higher myogenin protein content in older sedentary muscle. The results do not, however, support the hypothesis that myogenic protein expression is altered 24 h after RE, irrespective of age or gender. Although the time point of postexercise muscle biopsy could be viewed as too early to capture maximal effects for most of these proteins, the significant decline in p27kip concentration found in OF suggests that mechanical load may provide one means of overcoming the inhibitory influence of p27kip.
Collapse
Affiliation(s)
- Marcas M Bamman
- UAB Dept. of Physiology and Biophysics, Muscle Research Laboratory, GRECC/11G, Veterans Affairs Medical Center, 1530 3rd Ave. South, Birmingham, AL 35294-0001, USA.
| | | | | | | | | | | | | |
Collapse
|
75
|
Adams GR, Cheng DC, Haddad F, Baldwin KM. Skeletal muscle hypertrophy in response to isometric, lengthening, and shortening training bouts of equivalent duration. J Appl Physiol (1985) 2004; 96:1613-8. [PMID: 15075307 DOI: 10.1152/japplphysiol.01162.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Movements generated by muscle contraction generally include periods of muscle shortening and lengthening as well as force development in the absence of external length changes (isometric). However, in the specific case of resistance exercise training, exercises are often intentionally designed to emphasize one of these modes. The purpose of the present study was to objectively evaluate the relative effectiveness of each training mode for inducing compensatory hypertrophy. With the use of a rat model with electrically stimulated (sciatic nerve) contractions, groups of rats completed 10 training sessions in 20 days. Within each training session, the duration of the stimulation was equal across the three modes. Although this protocol provided equivalent durations of duty cycle, the torque integral for the individual contractions varied markedly with training mode such that lengthening > isometric > shortening. The results indicate that the hypertrophy response did not track the torque integral with mass increases of isometric by 14%, shortening by 12%, and lengthening by 11%. All three modes of training resulted in similar increases in total muscle DNA and RNA. Isometric and shortening but not lengthening mode training resulted in increased muscle insulin-like growth factor I mRNA levels. These results indicate that relatively pure movement mode exercises result in similar levels of compensatory hypertrophy that do not necessarily track with the total amount of force generated during each contraction.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA.
| | | | | | | |
Collapse
|
76
|
Haddad F, Adams GR. Inhibition of MAP/ERK kinase prevents IGF-I-induced hypertrophy in rat muscles. J Appl Physiol (1985) 2004; 96:203-10. [PMID: 12959952 DOI: 10.1152/japplphysiol.00856.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) has been shown to stimulate a hypertrophy response in skeletal muscles in vivo. In vitro studies have delineated two primary intracellular pathways that appear to mediate the effects of IGF-I in skeletal muscle: the Ras-ERK pathway and the phosphoinositide-3 kinase pathway. In vitro, the Ras pathway appears to regulate the mitogenic effects of IGF-I signaling, whereas the phosphoinositide-3 kinase pathway is associated with cellular differentiation. On the basis of the results from in vitro studies, we hypothesized that the coinfusion of both IGF-I and an inhibitor of the Ras pathway would result in some increase in muscle protein but an inhibition of cell proliferation. Our results show that 14 days of coinfusion of MAPK/ERK kinase inhibitor PD-098059 (PD) limited the phosphorylation of ERK and prevented IGF-I induced increases in protein (18%, P < 0.05 vs. 7%, not significant) or myofibrillar protein (23%, P < 0.01 vs. 5%, not significant). However, there were similar increases in indicators of cell proliferation (e.g., total DNA, 50 and 52%, P < 0.001) in both the IGF- and IGF+PD-infused muscles. The most notable impact on IGF-I signaling was a significant blunting of IGF-I induced increase in S6K1 phosphorylation by PD-98059 coinfusion ( approximately 5-fold, P < 0.001 vs. 3-fold, P < 0.01). These results suggest that there are interactions between the various pathways down stream of the IGF-I receptor that may behave differently in vivo than in myogenic cell lines in vitro.
Collapse
Affiliation(s)
- Fadia Haddad
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4560, USA
| | | |
Collapse
|
77
|
Piekarski D, Potier P, Giannotti C. Study of the mode of action of some nitrodiphenyl ethers. Med Sci Sports Exerc 1990; 44:165-74. [PMID: 2165990 DOI: 10.1249/mss.0b013e31822672aa] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrosoderivatives of the nitrodiphenyl ether herbicides (nitrofen, bifenox) have been studied. UV irradiation in different organic solvents gives degradation products. In buffered aqueous media, in the presence of chloroplasts and spin traps such as DMPO, hydroxy and peroxy radicals have been characterized. In organic media and in the presence of spin traps such as DMPO, PBN, 4-POBN, solvent radicals (.CHCl2, .CCl3, .CH2 [symbol: see text]) have been formed. Nitro-derivatives have been studied under UV irradiation and in the presence of tetramethylethylene (TME), alkenylhydroxylamines are formed which autoxidize in nitroxide radicals. The formation of the stable nitroxide radical occurs in the dark process after continuous irradiation. The intensity of the signal decreases strongly when a new irradiation is applied. Radical species, with analogous ESR spectral characteristics are formed on reaction with nitrodiphenyl ethers and fatty acids. The reactivity of these herbicides in micellar media (SDS, Brij 35, and CTAB) has been investigated. The kinetics of formation of the ESR signal corresponding to the photoreduction of the nitrodiphenyl ether in the presence of TME behave differently in a micellar environment as compared to solution. The intensity of the formation of the nitroxide increases under irradiation and decreases in the dark; the rotational correlation time tau c has been determined for each type of micelle. Synthetic nitrosodiphenyl ether made by the reduction of nitrodiphenyl ether using hydrogen gas and PtO2 as a catalyst gives the corresponding amine, which is oxidized with meta-chloroperbenzoic acid (m.CPBA). The nitrosodiphenyl ether in the presence of soja azolectin liposome containing a fluorescent probe has been analysed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Piekarski
- Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | | | | |
Collapse
|