51
|
Smirl JD, Hoffman K, Tzeng YC, Hansen A, Ainslie PN. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships. J Appl Physiol (1985) 2015; 119:487-501. [PMID: 26183476 DOI: 10.1152/japplphysiol.00264.2015] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/15/2015] [Indexed: 11/22/2022] Open
Abstract
We examined the between-day reproducibility of active (squat-stand maneuvers)- and passive [oscillatory lower-body negative pressure (OLBNP) maneuvers]-driven oscillations in blood pressure. These relationships were examined in both younger (n = 10; 25 ± 3 yr) and older (n = 9; 66 ± 4 yr) adults. Each testing protocol incorporated rest (5 min), followed by driven maneuvers at 0.05 (5 min) and 0.10 (5 min) Hz to increase blood-pressure variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal partial pressure of CO2 were monitored. The pressure-flow relationship was quantified in the very low (0.02-0.07 Hz) and low (0.07-0.20 Hz) frequencies (LF; spontaneous data) and at 0.05 and 0.10 Hz (driven maneuvers point estimates). Although there were no between-age differences, very few spontaneous and OLBNP transfer function metrics met the criteria for acceptable reproducibility, as reflected in a between-day, within-subject coefficient of variation (CoV) of <20%. Combined CoV data consist of LF coherence (15.1 ± 12.2%), LF gain (15.1 ± 12.2%), and LF normalized gain (18.5 ± 10.9%); OLBNP data consist of 0.05 (12.1 ± 15.%) and 0.10 (4.7 ± 7.8%) Hz coherence. In contrast, the squat-stand maneuvers revealed that all metrics (coherence: 0.6 ± 0.5 and 0.3 ± 0.5%; gain: 17.4 ± 12.3 and 12.7 ± 11.0%; normalized gain: 16.7 ± 10.9 and 15.7 ± 11.0%; and phase: 11.6 ± 10.2 and 17.3 ± 10.8%) at 0.05 and 0.10 Hz, respectively, were considered biologically acceptable for reproducibility. These findings have important implications for the reliable assessment and interpretation of cerebral pressure-flow dynamics in humans.
Collapse
Affiliation(s)
- Jonathan D Smirl
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, British Columbia, Canada; and
| | - Keegan Hoffman
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, British Columbia, Canada; and
| | - Yu-Chieh Tzeng
- Cardiovascular Systems Laboratory, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Alex Hansen
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, British Columbia, Canada; and
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, British Columbia, Canada; and
| |
Collapse
|
52
|
Wavelet transform analysis to assess oscillations in pial artery pulsation at the human cardiac frequency. Microvasc Res 2015; 99:86-91. [DOI: 10.1016/j.mvr.2015.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/15/2015] [Accepted: 03/13/2015] [Indexed: 11/21/2022]
|
53
|
Nasr N, Czosnyka M, Pavy-Le Traon A, Custaud MA, Liu X, Varsos GV, Larrue V. Baroreflex and cerebral autoregulation are inversely correlated. Circ J 2014; 78:2460-7. [PMID: 25187067 DOI: 10.1253/circj.cj-14-0445] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The relative stability of cerebral blood flow is maintained by the baroreflex and cerebral autoregulation (CA). We assessed the relationship between baroreflex sensitivity (BRS) and CA in patients with atherosclerotic carotid stenosis or occlusion. METHODS AND RESULTS Patients referred for assessment of atherosclerotic unilateral >50% carotid stenosis or occlusion were included. Ten healthy volunteers served as a reference group. BRS was measured using the sequence method. CA was quantified by the correlation coefficient (Mx) between slow oscillations in mean arterial blood pressure and mean cerebral blood flow velocities from transcranial Doppler. Forty-five patients (M/F: 36/9), with a median age of 68 years (IQR:17) were included. Thirty-four patients had carotid stenosis, and 11 patients had carotid occlusion (asymptomatic: 31 patients; symptomatic: 14 patients). The median degree of carotid steno-occlusive disease was 90% (IQR:18). Both CA (P=0.02) and BRS (P<0.001) were impaired in patients as compared with healthy volunteers. CA and BRS were inversely and strongly correlated with each other in patients (rho=0.58, P<0.001) and in healthy volunteers (rho=0.939; P<0.001). Increasing BRS remained strongly associated with impaired CA on multivariate analysis (P=0.004). CONCLUSIONS There was an inverse correlation between CA and BRS in healthy volunteers and in patients with carotid stenosis or occlusion. This might be due to a relative increase in sympathetic drive associated with weak baroreflex enhancing cerebral vasomotor tone and CA.
Collapse
Affiliation(s)
- Nathalie Nasr
- Department of Clinical Neurosciences, University of Cambridge, School of Clinical Medicine
| | | | | | | | | | | | | |
Collapse
|
54
|
Müller MWD, Osterreich M. A comparison of dynamic cerebral autoregulation across changes in cerebral blood flow velocity for 200 s. Front Physiol 2014; 5:327. [PMID: 25206340 PMCID: PMC4144203 DOI: 10.3389/fphys.2014.00327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022] Open
Abstract
Objectives: The dynamic interaction between blood pressure (BP) and cerebral blood flow velocity (CBFV) is not fully understood, especially for CBFV changes lasting longer than 50 s. The interaction between BP and CBFV is relatively well characterized for periods <50 s using transfer function (TF) estimations of phase, gain, and coherence. We used TF estimations to compare the phase and gain for periods >50 s with those for periods <50 s. Materials and Methods: BP and CBFV (of the middle cerebral artery) were simultaneously recorded in 23 healthy subjects (10 men, 13 women, mean age 35 ± 10 years) under normo- and hypocapnia (induced by hyperventilation). TF and coherence estimations were based on Welch's periodogram method with a windowing of 200 s (frequency resolution, 0.005 Hz, corresponding to a period of 200 s). Means of the phase, gain, and coherence were calculated over frequency periods of 0.005–0.02 Hz (sVLF), 0.02–0.07 Hz (VLF), 0.07–0.15 Hz (LF), and 0.15–0.40 Hz (HF) and analyzed using the t-test and Pearson correlation. Results: Compared with the VLF range, normo- and hypocapnia phases were slightly but significantly lower in sVLF, while gain and coherence were not different. Hypocapnia induced significant (mostly p < 0.01) phase increases and gain decreases as well as coherence decreases in all frequency ranges. The phase and gain correlated significantly (−0.87 < r > −0.99) (p < 0.001) and inversely in all frequency ranges <0.15 Hz under both respiratory conditions. In some instances, the phase indicated disturbed autoregulation. Conclusion: In the frequency range <0.15 Hz, the phase and gain correlate highly and linearly with high consistency. The phase, gain, and coherence were similar in sVLF and VLF ranges. The phase was slightly lower in the sVLF range than in the VLF range. Notably, the data suggest that autoregulatory failure may occur in healthy persons.
Collapse
Affiliation(s)
- Martin W-D Müller
- Neurovascular Lab, Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne Lucerne, Switzerland
| | - Mareike Osterreich
- Neurovascular Lab, Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne Lucerne, Switzerland
| |
Collapse
|
55
|
Robertson AD, Edgell H, Hughson RL. Assessing cerebrovascular autoregulation from critical closing pressure and resistance area product during upright posture in aging and hypertension. Am J Physiol Heart Circ Physiol 2014; 307:H124-33. [PMID: 24858843 DOI: 10.1152/ajpheart.00086.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Static cerebral autoregulation (sCA) is believed to be resistant to aging and hypertensive pathology. However, methods to characterize autoregulation commonly rely on beat-by-beat mean hemodynamic measures and do not consider within-beat pulse wave characteristics that are impacted by arterial stiffening. We examined the role of critical closing pressure (CrCP) and resistance area product (RAP), two measures derived from the pulse wave, across supine lying, sitting, and standing postures in young adults, normotensive older adults, and older adults with controlled and uncontrolled hypertension (N = 80). Traditional measures of sCA, using both intracranial and extracranial methods, indicated similar efficiency across all groups, but within-beat measures suggested different mechanisms of regulation. At rest, RAP was increased in hypertension compared with young adults (P < 0.001), but CrCP was similar. In contrast, the drop in CrCP was the primary regulator of change in cerebrovascular resistance upon adopting an upright posture. Both CrCP and RAP demonstrated group-by-posture interaction effects (P < 0.05), with older hypertensive adults exhibiting a rise in RAP that was absent in other groups. The posture-related swings in CrCP and RAP were related to changes in both the pulsatile and mean components of arterial pressure, independent of age, cardiac output, and carbon dioxide. Group-by-posture differences in pulse pressure were mediated in part by an attenuated heart rate response in older hypertensive adults (P = 0.002). Examination of pulsatile measures in young, elderly, and hypertensive adults identified unique differences in how cerebral blood flow is regulated in upright posture.
Collapse
Affiliation(s)
- Andrew D Robertson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Heather Edgell
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| |
Collapse
|
56
|
Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow. Med Eng Phys 2014; 36:563-75. [DOI: 10.1016/j.medengphy.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
|
57
|
Nonstationarity of dynamic cerebral autoregulation. Med Eng Phys 2014; 36:576-84. [DOI: 10.1016/j.medengphy.2013.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/23/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022]
|
58
|
Smirl JD, Tzeng YC, Monteleone BJ, Ainslie PN. Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans. J Appl Physiol (1985) 2014; 116:1614-22. [PMID: 24744385 DOI: 10.1152/japplphysiol.01266.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the hypothesis that changes in the cerebrovascular resistance index (CVRi), independent of blood pressure (BP), will influence the dynamic relationship between BP and cerebral blood flow in humans. We altered CVRi with (via controlled hyperventilation) and without [via indomethacin (INDO, 1.2 mg/kg)] changes in PaCO2. Sixteen subjects (12 men, 27 ± 7 yr) were tested on two occasions (INDO and hypocapnia) separated by >48 h. Each test incorporated seated rest (5 min), followed by squat-stand maneuvers to increase BP variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis (TFA). Beat-to-beat BP, middle cerebral artery velocity (MCAv), posterior cerebral artery velocity (PCAv), and end-tidal Pco2 were monitored. Dynamic pressure-flow relations were quantified using TFA between BP and MCAv/PCAv in the very low and low frequencies through the driven squat-stand maneuvers at 0.05 and 0.10 Hz. MCAv and PCAv reductions by INDO and hypocapnia were well matched, and CVRi was comparably elevated (P < 0.001). During the squat-stand maneuvers (0.05 and 0.10 Hz), the point estimates of absolute gain were universally reduced, and phase was increased under both conditions. In addition to an absence of regional differences, our findings indicate that alterations in CVRi independent of PaCO2 can alter cerebral pressure-flow dynamics. These findings are consistent with the concept of CVRi being a key factor that should be considered in the correct interpretation of cerebral pressure-flow dynamics as indexed using TFA metrics.
Collapse
Affiliation(s)
- J D Smirl
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada;
| | - Y C Tzeng
- Cardiovascular Systems Laboratory, Centre for Translational Physiology, University of Otago, Wellington, New Zealand; and
| | - B J Monteleone
- Faculty of Medicine, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - P N Ainslie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
59
|
Cerebral endothelial function determined by cerebrovascular reactivity to L-arginine. BIOMED RESEARCH INTERNATIONAL 2014; 2014:601515. [PMID: 24860826 PMCID: PMC4016874 DOI: 10.1155/2014/601515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/27/2014] [Indexed: 12/27/2022]
Abstract
Endothelium forms the inner cellular lining of blood vessels and plays an important role in many physiological functions including the control of vasomotor tone. Cerebral endothelium is probably one of the most specific types but until recently it was impossible to determine its function. In this review, the role of cerebrovascular reactivity to L-arginine (CVR-L-Arg) for assessment of cerebral endothelial function is discussed. L-Arginine induces vasodilatation through enhanced production of nitric oxide (NO) in the cerebral endothelium. Transcranial Doppler sonography is used for evaluation of cerebral blood flow changes. The method is noninvasive, inexpensive, and enables reproducible measurements. CVR-L-Arg has been compared to flow-mediated dilatation as a gold standard for systemic endothelial function and intima-media thickness as a marker for morphological changes. However, it seems to show specific cerebral endothelial function. So far CVR-L-Arg has been used to study cerebral endothelial function in many pathological conditions such as stroke, migraine, etc. In addition CVR-L-Arg has also proven its usefulness in order to show potential improvement after pharmacological interventions. In conclusion CVR-L-Arg is a promising noninvasive research method that could provide means for evaluation of cerebral endothelial function in physiological and pathological conditions.
Collapse
|
60
|
Phillips AA, Ainslie PN, Krassioukov AV, Warburton DER. Regulation of cerebral blood flow after spinal cord injury. J Neurotrauma 2013; 30:1551-63. [PMID: 23758347 DOI: 10.1089/neu.2013.2972] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Significant cardiovascular and autonomic dysfunction occurs after era spinal cord injury (SCI). Two major conditions arising from autonomic dysfunction are orthostatic hypotension and autonomic dysreflexia (i.e., severe acute hypertension). Effective regulation of cerebral blood flow (CBF) is essential to offset these drastic changes in cerebral perfusion pressure. In the context of orthostatic hypotension and autonomic dysreflexia, the purpose of this review is to critically examine the mechanisms underlying effective CBF after an SCI and propose future avenues for research. Although only 16 studies have examined CBF control in those with high-level SCI (above the sixth thoracic spinal segment), it appears that CBF regulation is markedly altered in this population. Cerebrovascular function comprises three major mechanisms: (1) cerebral autoregulation, (i.e., ΔCBF/Δ blood pressure); (2) cerebrovascular reactivity to changes in PaCO2 (i.e. ΔCBF/arterial gas concentration); and (3) neurovascular coupling (i.e., ΔCBF/Δ metabolic demand). While static cerebral autoregulation appears to be well maintained in high-level SCI, dynamic cerebral autoregulation, cerebrovascular reactivity, and neurovascular coupling appear to be markedly altered. Several adverse complications after high-level SCI may mediate the changes in CBF regulation including: systemic endothelial dysfunction, sleep apnea, dyslipidemia, decentralization of sympathetic control, and dominant parasympathetic activity. Future studies are needed to describe whether altered CBF responses after SCI aid or impede orthostatic tolerance. Further, simultaneous evaluation of extracranial and intracranial CBF, combined with modern structural and functional imaging, would allow for a more comprehensive evaluation of CBF regulatory processes. We are only beginning to understand the functional effects of dysfunctional CBF regulation on brain function on persons with SCI, which are likely to include increased risk of transient ischemic attacks, stroke, and cognitive dysfunction.
Collapse
Affiliation(s)
- Aaron A Phillips
- Cardiovascular Physiology and Rehabilitation Laboratory, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
61
|
Abstract
Transcranial Doppler (TCD) ultrasound provides rapid, noninvasive, real-time measures of cerebrovascular function. TCD can be used to measure flow velocity in the basal arteries of the brain to assess relative changes in flow, diagnose focal vascular stenosis, or to detect embolic signals within these arteries. TCD can also be used to assess the physiologic health of a particular vascular territory by measuring blood flow responses to changes in blood pressure (cerebral autoregulation), changes in end-tidal CO2 (cerebral vasoreactivity), or cognitive and motor activation (neurovascular coupling or functional hyperemia). TCD has established utility in the clinical diagnosis of a number of cerebrovascular disorders such as acute ischemic stroke, vasospasm, subarachnoid hemorrhage, sickle cell disease, as well as other conditions such as brain death. Clinical indication and research applications for this mode of imaging continue to expand. In this review, the authors summarize the basic principles and clinical utility of TCD and provide an overview of a few TCD research applications.
Collapse
|
62
|
Alrawi YA, Panerai RB, Myint PK, Potter JF. Pharmacological blood pressure lowering in the older hypertensive patients may lead to cognitive impairment by altering neurovascular coupling. Med Hypotheses 2013; 80:303-7. [PMID: 23313333 DOI: 10.1016/j.mehy.2012.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/13/2012] [Indexed: 11/16/2022]
Abstract
The link between both high and low blood pressure (BP) levels and cognitive impairment in later life has been reported in several studies. The mechanisms for this link are unclear but may be related to abnormalities in brain blood flow control. Our previous work has shown that cerebral autoregulation (CA) is unimpaired in both young and older people with hypertension at rest and that ageing does not appear to impact on the increase in the cerebral blood flow response to increased metabolic demand of neurones and other cells of the nervous system due to heightened activity (Neurovascular Coupling, NVC). Nonetheless, it is plausible that NVC efficiency becomes compromised during mental activity in older people with hypertension and that certain classes of anti-hypertensive agents may exacerbate the situation by reducing both NVC and CA contributing to cognitive decline. Such a link would have a major impact on prescribing patterns for anti-hypertensive medication.
Collapse
Affiliation(s)
- Yasir A Alrawi
- Department of Stroke Medicine, James Paget University Hospital, Great Yarmouth, UK.
| | | | | | | |
Collapse
|
63
|
Ogawa Y, Aoki K, Kato J, Iwasaki KI. Differential effects of mild central hypovolemia with furosemide administration vs. lower body suction on dynamic cerebral autoregulation. J Appl Physiol (1985) 2012. [PMID: 23195631 DOI: 10.1152/japplphysiol.00741.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diuretic-induced mild hypovolemia with hemoconcentration reportedly improves dynamic cerebral autoregulation, whereas central hypovolemia without hemoconcentration induced by lower body negative pressure (LBNP) has no effect or impairs dynamic cerebral autoregulation. This discrepancy may be explained by different blood properties, by degrees of central hypovolemia, or both. We investigated the effects of equivalent central hypovolemia induced by furosemide administration or LBNP application on dynamic cerebral autoregulation to test our hypothesis that mild central hypovolemia due to furosemide administration enhances dynamic cerebral autoregulation in contrast to LBNP. Seven healthy male subjects received 0.4 mg/kg furosemide and LBNP, with equivalent decreases in central venous pressure (CVP). Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis between beat-to-beat mean arterial blood pressure (MAP) and mean cerebral blood flow velocity (MCBFV). CVP decreased by ∼3-4 mmHg with both furosemide administration (∼26 mg) and LBNP (approximately -20 mmHg). Steady state MCBFV remained unchanged with both techniques, whereas MAP increased significantly with furosemide administration. Coherence and transfer function gain in the low and high frequency ranges with hypovolemia due to furosemide administration were significantly lower than those due to LBNP (ANOVA interaction effects, P < 0.05), although transfer function gain in the very low frequency range did not change. Our results suggest that although the decreases in CVP were equivalent between furosemide administration and LBNP, the resultant central hypovolemia differentially affected dynamic cerebral autoregulation. Mild central hypovolemia with hemoconcentration resulting from furosemide administration may enhance dynamic cerebral autoregulation compared with LBNP.
Collapse
Affiliation(s)
- Yojiro Ogawa
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | | | | | | |
Collapse
|
64
|
de la Iglesia B, Ong ACL, Potter JF, Metcalf AK, Myint PK. Predictors of orthostatic hypotension in patients attending a transient ischaemic attack clinic: Database study. Blood Press 2012; 22:120-7. [DOI: 10.3109/08037051.2012.732780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
65
|
Sato K, Fisher JP, Seifert T, Overgaard M, Secher NH, Ogoh S. Blood flow in internal carotid and vertebral arteries during orthostatic stress. Exp Physiol 2012; 97:1272-80. [DOI: 10.1113/expphysiol.2012.064774] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
66
|
Nakagawa K, Serrador JM, LaRose SL, Sorond FA. Dynamic cerebral autoregulation after intracerebral hemorrhage: A case-control study. BMC Neurol 2011; 11:108. [PMID: 21884574 PMCID: PMC3175166 DOI: 10.1186/1471-2377-11-108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 08/31/2011] [Indexed: 11/26/2022] Open
Abstract
Background Dynamic cerebral autoregulation after intracerebral hemorrhage (ICH) remains poorly understood. We performed a case-control study to compare dynamic autoregulation between ICH patients and healthy controls. Methods Twenty-one patients (66 ± 15 years) with early (< 72 hours) lobar or basal ganglia ICH were prospectively studied and compared to twenty-three age-matched controls (65 ± 9 years). Continuous measures of mean flow velocity (MFV) in the middle cerebral artery and mean arterial blood pressure (MAP) were obtained over 5 min. Cerebrovascular resistance index (CVRi) was calculated as the ratio of MAP to MFV. Dynamic cerebral autoregulation was assessed using transfer function analysis of spontaneous MAP and MFV oscillations in the low (0.03-0.15 Hz) and high (0.15-0.5 Hz) frequency ranges. Results The ICH group demonstrated higher CVRi compared to controls (ipsilateral: 1.91 ± 1.01 mmHg·s·cm-1, p = 0.04; contralateral: 2.01 ± 1.24 mmHg·s·cm-1, p = 0.04; vs. control: 1.42 ± 0.45 mmHg·s·cm-1). The ICH group had higher gains than controls in the low (ipsilateral: 1.33 ± 0.58%/mmHg, p = 0.0005; contralateral: 1.47 ± 0.98%/mmHg, p = 0.004; vs. control: 0.82 ± 0.30%/mmHg) and high (ipsilateral: 2.11 ± 1.31%/mmHg, p < 0.0001; contralateral: 2.14 ± 1.49%/mmHg, p < 0.0001; vs. control: 0.66 ± 0.26%/mmHg) frequency ranges. The ICH group also had higher coherence in the contralateral hemisphere than the control (ICH contralateral: 0.53 ± 0.38, p = 0.02; vs. control: 0.38 ± 0.15) in the high frequency range. Conclusions Patients with ICH had higher gains in a wide range of frequency ranges compared to controls. These findings suggest that dynamic cerebral autoregulation may be less effective in the early days after ICH. Further study is needed to determine the relationship between hematoma size and severity of autoregulation impairment.
Collapse
Affiliation(s)
- Kazuma Nakagawa
- Neuroscience Institute, The Queen's Medical Center, Honolulu, Hawaii, USA.
| | | | | | | |
Collapse
|
67
|
Sorond FA, Kiely DK, Galica A, Moscufo N, Serrador JM, Iloputaife I, Egorova S, Dell'Oglio E, Meier DS, Newton E, Milberg WP, Guttmann CRG, Lipsitz LA. Neurovascular coupling is impaired in slow walkers: the MOBILIZE Boston Study. Ann Neurol 2011; 70:213-20. [PMID: 21674588 DOI: 10.1002/ana.22433] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/03/2011] [Accepted: 03/18/2011] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neurovascular coupling may be involved in compensatory mechanisms responsible for preservation of gait speed in elderly people with cerebrovascular disease. Our study examines the association between neurovascular coupling in the middle cerebral artery and gait speed in elderly individuals with impaired cerebral vasoreactivity. METHODS Twenty-two fast and 20 slow walkers in the lowest quartile of cerebral vasoreactivity were recruited from the MOBILIZE Boston Study. Neurovascular coupling was assessed in bilateral middle cerebral arteries by measuring cerebral blood flow during the N-Back task. Cerebral white matter hyperintensities were measured for each group using magnetic resonance imaging. RESULTS Neurovascular coupling was attenuated in slow compared to fast walkers (2.8%; 95% confidence interval [CI], -0.9 to 6.6 vs 8.2%; 95% CI, 4.7-11.8; p = 0.02). The odds ratio of being a slow walker was 6.4 (95% CI, 1.7-24.9; p = 0.007) if there was a high burden of white matter hyperintensity; however, this risk increased to 14.5 (95% CI, 2.3-91.1; p = 0.004) if neurovascular coupling was also attenuated. INTERPRETATION Our results suggest that intact neurovascular coupling may help preserve mobility in elderly people with cerebral microvascular disease.
Collapse
Affiliation(s)
- Farzaneh A Sorond
- Department of Neurology, Stroke Division, Brigham and Women's Hospital, Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Deegan BM, Sorond FA, Galica A, Lipsitz LA, O'Laighin G, Serrador JM. Elderly women regulate brain blood flow better than men do. Stroke 2011; 42:1988-93. [PMID: 21566238 DOI: 10.1161/strokeaha.110.605618] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Orthostatic intolerance and falls differ between sexes and change with age. However, it remains unclear what role cerebral autoregulation may play in this response. This study was designed to determine whether cerebral autoregulation, assessed using transcranial Doppler ultrasound, is more effective in elderly females than in males. METHODS We used transcranial Doppler ultrasound to evaluate cerebral autoregulation in 544 (236 male) subjects older than age 70 years recruited as part of the MOBILIZE Boston study. The MOBILIZE Boston study is a prospective cohort study of a unique set of risk factors for falls in seniors in the Boston area. We assessed CO2 reactivity and transfer function gain, phase, and coherence during 5 minutes of quiet sitting and autoregulatory index during sit-to-stand tests. RESULTS Male subjects had significantly lower CO2 reactivity (males, 1.10 ± 0.03; females, 1.32 ± 0.43 (cm/s)/%CO2; P<0.001) and autoregulatory indices (males, 4.41 ± 2.44; female, 5.32 ± 2.47; P<0.001), higher transfer function gain (males, 1.34 ± 0.49; females, 1.19 ± 0.43; P=0.002), and lower phase (males, 42.7 ± 23.6; females, 49.4 ± 24.9; P=0.002) in the autoregulatory band, implying less effective cerebral autoregulation. However, reduced autoregulation in males was not below the normal range, indicating autoregulation was intact but less effective. CONCLUSIONS Female subjects were better able to maintain cerebral flow velocities during postural changes and demonstrated better cerebral autoregulation. The mechanisms of sex-based differences in autoregulation remain unclear but may partially explain the higher rates of orthostatic hypotension-related hospitalizations in elderly men.
Collapse
Affiliation(s)
- Brian M Deegan
- Electrical & Electronic Engineering, School of Engineering & Informatics, NUI Galway, University Road, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
69
|
Kim YS, Davis SC, Truijen J, Stok WJ, Secher NH, van Lieshout JJ. Intensive Blood Pressure Control Affects Cerebral Blood Flow in Type 2 Diabetes Mellitus Patients. Hypertension 2011; 57:738-45. [DOI: 10.1161/hypertensionaha.110.160523] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic variables and transcranial Doppler-determined cerebral blood flow velocity (CBFV), cerebral CO
2
responsiveness, and cognitive function were determined after 3 and 6 months of intensive BP control in 17 type 2 diabetic patients with microvascular complications (T2DM+), in 18 diabetic patients without (T2DM−) microvascular complications, and in 16 nondiabetic hypertensive patients. Cerebrovascular reserve capacity was lower in T2DM+ versus T2DM− and nondiabetic hypertensive patients (4.6±1.1 versus 6.0±1.6 [
P
<0.05] and 6.6±1.7 [
P
<0.01], Δ%mean CBFV/mm Hg). After 6 months, the attained BP was comparable among the 3 groups. However, in contrast to nondiabetic hypertensive patients, intensive BP control reduced CBFV in T2DM− (58±9 to 54±12 cm · s
−1
) and T2DM+ (57±13 to 52±11 cm · s
−1
) at 3 months, but CBFV returned to baseline at 6 months only in T2DM−, whereas the reduction in CBFV progressed in T2DM+ (to 48±8 cm · s
−1
). Cognitive function did not change during the 6 months. Static cerebrovascular autoregulation appears to be impaired in type 2 diabetes mellitus, with a transient reduction in CBFV in uncomplicated diabetic patients on tight BP control, but with a progressive reduction in CBFV in diabetic patients with microvascular complications, indicating that maintenance of cerebral perfusion during BP treatment depends on the progression of microvascular disease. We suggest that BP treatment should be individualized, aiming at a balance between BP reduction and maintenance of CBFV.
Collapse
Affiliation(s)
- Yu-Sok Kim
- From the Departments of Internal Medicine (Y.-S.K., J.T., J.J.v.L.) and Physiology (W.J.S.), Academic Medical Center and Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Center for Heart Failure Research (Y.-S.K., S.C.A.T.D., J.T., W.J.S., J.J.v.L.), University of Amsterdam, Amsterdam, The Netherlands; Department of Anesthesia (N.H.S.), Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Shyrin C.A.T. Davis
- From the Departments of Internal Medicine (Y.-S.K., J.T., J.J.v.L.) and Physiology (W.J.S.), Academic Medical Center and Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Center for Heart Failure Research (Y.-S.K., S.C.A.T.D., J.T., W.J.S., J.J.v.L.), University of Amsterdam, Amsterdam, The Netherlands; Department of Anesthesia (N.H.S.), Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jasper Truijen
- From the Departments of Internal Medicine (Y.-S.K., J.T., J.J.v.L.) and Physiology (W.J.S.), Academic Medical Center and Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Center for Heart Failure Research (Y.-S.K., S.C.A.T.D., J.T., W.J.S., J.J.v.L.), University of Amsterdam, Amsterdam, The Netherlands; Department of Anesthesia (N.H.S.), Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Wim J. Stok
- From the Departments of Internal Medicine (Y.-S.K., J.T., J.J.v.L.) and Physiology (W.J.S.), Academic Medical Center and Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Center for Heart Failure Research (Y.-S.K., S.C.A.T.D., J.T., W.J.S., J.J.v.L.), University of Amsterdam, Amsterdam, The Netherlands; Department of Anesthesia (N.H.S.), Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niels H. Secher
- From the Departments of Internal Medicine (Y.-S.K., J.T., J.J.v.L.) and Physiology (W.J.S.), Academic Medical Center and Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Center for Heart Failure Research (Y.-S.K., S.C.A.T.D., J.T., W.J.S., J.J.v.L.), University of Amsterdam, Amsterdam, The Netherlands; Department of Anesthesia (N.H.S.), Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Johannes J. van Lieshout
- From the Departments of Internal Medicine (Y.-S.K., J.T., J.J.v.L.) and Physiology (W.J.S.), Academic Medical Center and Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Center for Heart Failure Research (Y.-S.K., S.C.A.T.D., J.T., W.J.S., J.J.v.L.), University of Amsterdam, Amsterdam, The Netherlands; Department of Anesthesia (N.H.S.), Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
70
|
Willie CK, Colino FL, Bailey DM, Tzeng YC, Binsted G, Jones LW, Haykowsky MJ, Bellapart J, Ogoh S, Smith KJ, Smirl JD, Day TA, Lucas SJ, Eller LK, Ainslie PN. Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J Neurosci Methods 2011; 196:221-37. [PMID: 21276818 DOI: 10.1016/j.jneumeth.2011.01.011] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 01/05/2023]
Abstract
There is considerable utility in the use of transcranial Doppler ultrasound (TCD) to assess cerebrovascular function. The brain is unique in its high energy and oxygen demand but limited capacity for energy storage that necessitates an effective means of regional blood delivery. The relative low cost, ease-of-use, non-invasiveness, and excellent temporal resolution of TCD make it an ideal tool for the examination of cerebrovascular function in both research and clinical settings. TCD is an efficient tool to access blood velocities within the cerebral vessels, cerebral autoregulation, cerebrovascular reactivity to CO(2), and neurovascular coupling, in both physiological states and in pathological conditions such as stroke and head trauma. In this review, we provide: (1) an overview of TCD methodology with respect to other techniques; (2) a methodological synopsis of the cerebrovascular exam using TCD; (3) an overview of the physiological mechanisms involved in regulation of the cerebral blood flow; (4) the utility of TCD for assessment of cerebrovascular pathology; and (5) recommendations for the assessment of four critical and complimentary aspects of cerebrovascular function: intra-cranial blood flow velocity, cerebral autoregulation, cerebral reactivity, and neurovascular coupling. The integration of these regulatory mechanisms from an integrated systems perspective is discussed, and future research directions are explored.
Collapse
Affiliation(s)
- C K Willie
- Department of Human Kinetics, Faculty of Health and Social Development, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC, Canada V1V 1V7.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Deegan BM, Serrador JM, Nakagawa K, Jones E, Sorond FA, Olaighin G. The effect of blood pressure calibrations and transcranial Doppler signal loss on transfer function estimates of cerebral autoregulation. Med Eng Phys 2011; 33:553-62. [PMID: 21239208 DOI: 10.1016/j.medengphy.2010.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/26/2010] [Accepted: 12/13/2010] [Indexed: 11/16/2022]
Abstract
There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism ("physiocal") causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of "physiocals" and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial "physiocals" and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03-0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5s of data loss every 50s. 2s data loss only affects frequency bands above 0.15Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1min, although gain and coherence tend to be overestimated at higher frequencies.
Collapse
Affiliation(s)
- Brian M Deegan
- Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland.
| | | | | | | | | | | |
Collapse
|
72
|
van Beek AHEA, de Wit HM, Olde Rikkert MGM, Claassen JAHR. Incorrect Performance of the Breath Hold Method in the Old Underestimates Cerebrovascular Reactivity and Goes Unnoticed Without Concomitant Blood Pressure and End-Tidal CO2 Registration. J Neuroimaging 2011; 21:340-7. [DOI: 10.1111/j.1552-6569.2010.00517.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
73
|
Galvin SD, Celi LA, Thomas KN, Clendon TR, Galvin IF, Bunton RW, Ainslie PN. Effects of age and coronary artery disease on cerebrovascular reactivity to carbon dioxide in humans. Anaesth Intensive Care 2010; 38:710-7. [PMID: 20715736 DOI: 10.1177/0310057x1003800415] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alterations in cerebrovascular reactivity to CO2, an index of cerebrovascular function, have been associated with increased risk of stroke. We hypothesised that cerebrovascular reactivity is impaired with increasing age and in patients with symptomatic coronary artery disease (CAD). Cerebrovascular and cardiovascular reactivity to CO2 was assessed at rest and during hypercapnia (5% CO2) and hypocapnia (hyperventilation) in subjects with symptomatic CAD (n=13) and age-matched old (n=9) and young (n=20) controls without CAD. Independent of CAD, reductions in middle cerebral artery blood velocity (transcranial Doppler) and cerebral oxygenation (near-infrared spectroscopy) were correlated with increasing age (r = -0.68, r = -0.51, respectively, P < 0.01). In CAD patients, at rest and during hypercapnia, cerebral oxygenation was lower (P < 0.05 vs. young). Although middle cerebral artery blood velocity reactivity was unaltered in the hypercapnic range, middle cerebral artery blood velocity reactivity to hypocapnia was elevated in the CAD and age-matched controls (P < 0.01 vs. young), and was associated with age (r = 0.62, P < 0.01). Transient drops in arterial PCO2 occur in a range of physiological and pathophysiological situations, therefore, the elevated middle cerebral artery blood velocity reactivity to hypocapnia combined with reductions in middle cerebral artery blood velocity may be important mechanisms underlying neurological risk with aging. In CAD patients, additional reductions in cerebral oxygenation may place them at additional risk of cerebral ischaemia.
Collapse
Affiliation(s)
- S D Galvin
- Department of Cardiothoracic Surgery, Section of Surgery, University of Otago and Dunedin Hospital, New Zealand
| | | | | | | | | | | | | |
Collapse
|
74
|
Deegan BM, Devine ER, Geraghty MC, Jones E, Ólaighin G, Serrador JM. The relationship between cardiac output and dynamic cerebral autoregulation in humans. J Appl Physiol (1985) 2010; 109:1424-31. [PMID: 20689094 DOI: 10.1152/japplphysiol.01262.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebral autoregulation adjusts cerebrovascular resistance in the face of changing perfusion pressures to maintain relatively constant flow. Results from several studies suggest that cardiac output may also play a role. We tested the hypothesis that cerebral blood flow would autoregulate independent of changes in cardiac output. Transient systemic hypotension was induced by thigh-cuff deflation in 19 healthy volunteers (7 women) in both supine and seated positions. Mean arterial pressure (Finapres), cerebral blood flow (transcranial Doppler) in the anterior (ACA) and middle cerebral artery (MCA), beat-by-beat cardiac output (echocardiography), and end-tidal Pco(2) were measured. Autoregulation was assessed using the autoregulatory index (ARI) defined by Tiecks et al. (Tiecks FP, Lam AM, Aaslid R, Newell DW. Stroke 26: 1014-1019, 1995). Cerebral autoregulation was better in the supine position in both the ACA [supine ARI: 5.0 ± 0.21 (mean ± SE), seated ARI: 3.9 ± 0.4, P = 0.01] and MCA (supine ARI: 5.0 ± 0.2, seated ARI: 3.8 ± 0.3, P = 0.004). In contrast, cardiac output responses were not different between positions and did not correlate with cerebral blood flow ARIs. In addition, women had better autoregulation in the ACA (P = 0.046), but not the MCA, despite having the same cardiac output response. These data demonstrate cardiac output does not appear to affect the dynamic cerebral autoregulatory response to sudden hypotension in healthy controls, regardless of posture. These results also highlight the importance of considering sex when studying cerebral autoregulation.
Collapse
Affiliation(s)
- B M Deegan
- School of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
75
|
Tzeng YC, Willie CK, Ainslie PN. Baroreflex, Cerebral Perfusion, and Stroke: Integrative Physiology at Its Best. Stroke 2010; 41:e429. [DOI: 10.1161/strokeaha.109.570853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yu Chieh Tzeng
- Physiological Rhythms Unit, Department of Surgery and Anesthesia, University of Otago, Wellington, New Zealand
| | - Chris K. Willie
- Department of Human Kinetics, Faculty of Health and Social Development, University of British Columbia, Okanagan, Kelowna, Canada
| | - Philip N. Ainslie
- Department of Human Kinetics, Faculty of Health and Social Development, University of British Columbia, Okanagan, Kelowna, Canada
| |
Collapse
|
76
|
Tzeng YC, Lucas SJE, Atkinson G, Willie CK, Ainslie PN. Fundamental relationships between arterial baroreflex sensitivity and dynamic cerebral autoregulation in humans. J Appl Physiol (1985) 2010; 108:1162-8. [PMID: 20223996 DOI: 10.1152/japplphysiol.01390.2009] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional relationship between dynamic cerebral autoregulation (CA) and arterial baroreflex sensitivity (BRS) in humans is unknown. Given that adequate cerebral perfusion during normal physiological challenges requires the integrated control of CA and the arterial baroreflex, we hypothesized that between-individual variability in dynamic CA would be related to BRS in humans. We measured R-R interval, blood pressure, and cerebral blood flow velocity (transcranial Doppler) in 19 volunteers. BRS was estimated with the modified Oxford method (nitroprusside-phenylephrine injections) and spontaneous low-frequency (0.04-0.15) alpha-index. Dynamic CA was quantified using the rate of regulation (RoR) and autoregulatory index (ARI) derived from the thigh-cuff release technique and transfer function analysis of spontaneous oscillations in blood pressure and mean cerebral blood flow velocity. Results show that RoR and ARI were inversely related to nitroprusside BRS [R=-0.72, confidence interval (CI) -0.89 to -0.40, P=0.0005 vs. RoR; R=-0.69, CI -0.88 to -0.35, P=0.001 vs. ARI], phenylephrine BRS (R=-0.66, CI -0.86 to -0.29, P=0.0002 vs. RoR; R=-0.71, CI -0.89 to -0.38, P=0.0001 vs. ARI), and alpha-index (R=-0.70, CI -0.89 to -0.40, P=0.0008 vs. RoR; R=-0.62, CI -0.84 to -0.24, P=0.005 vs. ARI). Transfer function gain was positively related to nitroprusside BRS (R=0.62, CI 0.24-0.84, P=0.0042), phenylephrine BRS (R=0.52, CI 0.10-0.79, P=0.021), and alpha-index (R=0.69, CI 0.35-0.88, P=0.001). These findings indicate that individuals with an attenuated dynamic CA have greater BRS (and vice versa), suggesting the presence of possible compensatory interactions between blood pressure and mechanisms of cerebral blood flow control in humans. Such compensatory adjustments may account for the divergent changes in dynamic CA and BRS seen, for example, in chronic hypotension and spontaneous hypertension.
Collapse
Affiliation(s)
- Yu-Chieh Tzeng
- Physiological Rhythms Unit, Department of Surgery & Anesthesia, University of Otago, Wellington 23A Mein St., PO Box 7343, Wellington South 6242, New Zealand.
| | | | | | | | | |
Collapse
|
77
|
Formes K, Zhang P, Tierney N, Schaller F, Shi X. Chronic physical activity mitigates cerebral hypoperfusion during central hypovolemia in elderly humans. Am J Physiol Heart Circ Physiol 2009; 298:H1029-37. [PMID: 20044443 DOI: 10.1152/ajpheart.00662.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study sought to test the hypothesis that orthostasis-induced cerebral hypoperfusion would be less severe in physically active elderly humans (ACT group) than in sedentary elderly humans (SED group). The peak O(2) uptake of 10 SED (67.1 +/- 1.4 yr) and 9 ACT (68.0 +/- 1.1 yr) volunteers was determined by a graded cycling exercise test (22.1 +/- 1.2 vs 35.8 +/- 1.3 ml.min(-1).kg(-1), P < 0.01). Baseline mean arterial pressure (MAP; tonometry) and middle cerebral arterial blood flow velocity (V(MCA); transcranial Doppler) were similar between the groups (SED vs. ACT group: 91 +/- 3 vs. 87 +/- 3 mmHg and 54.9 +/- 2.3 vs. 57.8 +/- 3.2 cm/s, respectively), whereas heart rate was higher and stroke volume (bioimpedance) was smaller in the SED group than in the ACT group. Central hypovolemia during graded lower body negative pressure (LBNP) was larger (P < 0.01) in the ACT group than in the SED group. However, the slope of V(MCA)/LBNP was smaller (P < 0.05) in the ACT group (0.159 +/- 0.016 cm/s/Torr) than in the SED group (0.211 +/- 0.008 cm/s/Torr). During LBNP, the SED group had a greater augmentation of cerebral vasomotor tone (P < 0.05) and hypocapnia (P < 0.001) compared with the ACT group. Baseline MAP variability and V(MCA) variability were significantly smaller in the SED group than in the ACT group, i.e., 0.49 +/- 0.07 vs. 1.04 +/- 0.16 (mmHg)(2) and 1.06 +/- 0.19 vs. 4.24 +/- 1.59 (cm/s)(2), respectively. However, transfer function gain, coherence, and phase between MAP and V(MCA) signals (Welch spectral estimator) from 0.08-0.18 Hz were not different between SED (1.41 +/- 0.18 cm.s(-1).mmHg(-1), 0.63 +/- 0.06 units, and 38.03 +/- 6.57 degrees ) and ACT (1.65 +/- 0.44 cm.s(-1).mmHg(-1), 0.56 +/- 0.05 units, and 48.55 +/- 11.84 degrees ) groups. We conclude that a physically active lifestyle improves the intrinsic mechanism of cerebral autoregulation and helps mitigate cerebral hypoperfusion during central hypovolemia in healthy elderly adults.
Collapse
Affiliation(s)
- Kevin Formes
- Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, Fort Worth, 76107, USA
| | | | | | | | | |
Collapse
|
78
|
Ogoh S, Tzeng YC, Lucas SJE, Galvin SD, Ainslie PN. Influence of baroreflex-mediated tachycardia on the regulation of dynamic cerebral perfusion during acute hypotension in humans. J Physiol 2009; 588:365-71. [PMID: 19933752 DOI: 10.1113/jphysiol.2009.180844] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effect of acute arterial baroreflex dysfunction on cerebral autoregulation (CA) in otherwise healthy humans is unknown. We identified dynamic CA with and without arterial baroreflex-mediated tachycardia and consequent changes in cardiac output during acute hypotension whilst continuously monitoring changes in middle cerebral artery mean blood velocity (MCA V(mean)). Acute hypotension was induced in nine healthy subjects (mean +/- s.d.; 26 +/- 3 years) by releasing bilateral thigh cuffs after 6 min of supra-systolic resting ischaemia. Hypotension was induced before and after sympathetic blockade (beta-1 receptors), and combined sympathetic-cholinergic blockade. That sequential bolus injections of sodium nitroprusside (50 microg), followed 60 s later by phenylephrine hydrochloride (50 microg), elicited < 5 beats min(-1) change in heart rate was verified to confirm that full cardiac autonomic blockade was achieved. Thigh cuff release elicited a transient drop in mean arterial pressure and resultant tachycardia. This tachycardic response was diminished in full cardiac blockade (vs. control, P = 0.029; vs. beta-1 adrenergic blockade, P = 0.031). Dynamic CA was also attenuated in the full blockade condition compared to both control (P = 0.028) and beta-1 adrenergic blockade conditions (P = 0.015), and was related with the attenuated tachycardia response (P = 0.015). These data indicate an important role of the cardiac baroreflex in dynamic CA.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-shi, Saitama, Japan.
| | | | | | | | | |
Collapse
|
79
|
Hajjar I, Hart M, Milberg W, Novak V, Lipsitz L. The rationale and design of the antihypertensives and vascular, endothelial, and cognitive function (AVEC) trial in elderly hypertensives with early cognitive impairment: role of the renin angiotensin system inhibition. BMC Geriatr 2009; 9:48. [PMID: 19922631 PMCID: PMC2784465 DOI: 10.1186/1471-2318-9-48] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/18/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prior evidence suggests that the renin angiotensin system and antihypertensives that inhibit this system play a role in cognitive, central vascular, and endothelial function. Our objective is to conduct a double-blind randomized controlled clinical trial, the antihypertensives and vascular, endothelial, and cognitive function (AVEC), to compare 1 year treatment of 3 antihypertensives (lisinopril, candesartan, or hydrochlorothiazide) in their effect on memory and executive function, cerebral blood flow, and central endothelial function of seniors with hypertension and early objective evidence of executive or memory impairments. METHODS/DESIGN The overall experimental design of the AVEC trial is a 3-arm double blind randomized controlled clinical trial. A total of 100 community eligible individuals (60 years or older) with hypertension and early cognitive impairment are being recruited from the greater Boston area and randomized to lisinopril, candesartan, or hydrochlorothiazide ("active control") for 12 months. The goal of the intervention is to achieve blood pressure control defined as SBP < 140 mm Hg and DBP < 90 mm Hg. Additional antihypertensives are added to achieve this goal if needed. Eligible participants are those with hypertension, defined as a blood pressure 140/90 mm Hg or greater, early cognitive impairment without dementia defined (10 or less out of 15 on the executive clock draw test or 1 standard deviation below the mean on the immediate memory subtest of the repeatable battery for the assessment of neuropsychological status and Mini-Mental-Status-exam >20 and without clinical diagnosis of dementia or Alzheimer's disease). Individuals who are currently receiving antihypertensives are eligible to participate if the participants and the primary care providers are willing to taper their antihypertensives. Participants undergo cognitive assessment, measurements of cerebral blood flow using Transcranial Doppler, and central endothelial function by measuring changes in cerebral blood flow in response to changes in end tidal carbon dioxide at baseline (off antihypertensives), 6, and 12 months. Our outcomes are change in cognitive function score (executive and memory), cerebral blood flow, and carbon dioxide cerebral vasoreactivity. DISCUSSION The AVEC trial is the first study to explore impact of antihypertensives in those who are showing early evidence of cognitive difficulties that did not reach the threshold of dementia. Success of this trial will offer new therapeutic application of antihypertensives that inhibit the renin angiotensin system and new insights in the role of this system in aging. TRIAL REGISTRATION Clinicaltrials.gov NCT00605072.
Collapse
|
80
|
Atkinson G, Jones H, Ainslie PN. Circadian variation in the circulatory responses to exercise: relevance to the morning peaks in strokes and cardiac events. Eur J Appl Physiol 2009; 108:15-29. [PMID: 19826832 DOI: 10.1007/s00421-009-1243-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
Sudden cardiac and cerebral events are most common in the morning. A fundamental question is whether these events are triggered by the increase in physical activity after waking, and/or a result of circadian variation in the responses of circulatory function to exercise. Although signaling pathways from the master circadian clock in the suprachiasmatic nuclei to sites of circulatory control are not yet understood, it is known that cerebral blood flow, autoregulation and cerebrovascular reactivity to changes in CO(2) are impaired in the morning and, therefore, could explain the increased risk of cerebrovascular events. Blood pressure (BP) and the rate pressure product (RPP) show marked 'morning surges' when people are studied in free-living conditions, making the rupture of a fragile atherosclerotic plaque and sudden cardiac event more likely. Since cerebral autoregulation is reduced in the morning, this surge in BP may also exacerbate the risk of hemorrhagic and ischemic strokes in the presence of other acute and chronic risk factors. Increased sympathetic activity, decreased endothelial function, and increased platelet aggregability could also be important in explaining the morning peak in cardiac and cerebral events but how these factors respond to exercise at different times of day is unclear. Evidence is emerging that the exercise-related responses of BP and RPP are increased in the morning when prior sleep is controlled. We recommend that such 'semi-constant routine' protocols are employed to examine the relative influence of the body clock and exogenous factors on the 24-h variation in other circulatory factors.
Collapse
Affiliation(s)
- Greg Atkinson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| | | | | |
Collapse
|
81
|
Brodie FG, Panerai RB, Foster S, Evans DH, Robinson TG. Long-term changes in dynamic cerebral autoregulation: a 10 years follow up study. Clin Physiol Funct Imaging 2009; 29:366-71. [DOI: 10.1111/j.1475-097x.2009.00880.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
82
|
Zhang R, Behbehani K, Levine BD. Dynamic pressure-flow relationship of the cerebral circulation during acute increase in arterial pressure. J Physiol 2009; 587:2567-77. [PMID: 19359366 DOI: 10.1113/jphysiol.2008.168302] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The physiological mechanism(s) for the regulation of the dynamic pressure-flow relationship of the cerebral circulation are not well understood. We studied the effects of acute cerebral vasoconstriction on the transfer function between spontaneous changes in blood pressure (BP) and cerebral blood flow velocity (CBFV) in 13 healthy subjects (30 +/- 7 years). CBFV was measured in the middle cerebral artery using transcranial Doppler. BP was increased stepwise with phenylephrine infusion at 0.5, 1.0 and 2.0 microg kg(-1) min(-1). Phenylephrine increased BP by 11, 23 and 37% from baseline, while CBFV increased (11%) only with the highest increase in BP. Cerebrovascular resistance index (BP/CBFV) increased progressively by 6, 17 and 23%, demonstrating effective steady-state autoregulation. Transfer function gain at the low frequencies (LF, 0.07-0.20 Hz) was reduced by 15, 14 and 14%, while the phase was reduced by 10, 17 and 31%. A similar trend of changes was observed at the high frequencies (HF, 0.20-0.35 Hz), but gain and phase remained unchanged at the very low frequencies (VLF, 0.02-0.07 Hz). Windkessel model simulation suggests that increases in steady-state cerebrovascular resistance and/or decreases in vascular compliance during cerebral vasoconstriction contribute to the changes in gain and phase. These findings suggest that changes in steady-state cerebrovascular resistance and/or vascular compliance modulate the dynamic pressure-flow relationship at the low and high frequencies, while dynamic autoregulation is likely to be dominant at the very low frequencies. Thus, oscillations in CBFV are modulated not only by dynamic autoregulation, but also by changes in steady-state cerebrovascular resistance and/or vascular compliance.
Collapse
Affiliation(s)
- Rong Zhang
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, TX 75231, USA.
| | | | | |
Collapse
|
83
|
Nakagawa K, Serrador JM, Larose SL, Moslehi F, Lipsitz LA, Sorond FA. Autoregulation in the posterior circulation is altered by the metabolic state of the visual cortex. Stroke 2009; 40:2062-7. [PMID: 19359628 DOI: 10.1161/strokeaha.108.545285] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Previous studies suggest that dynamic autoregulation in the posterior cerebral artery (PCA) is less efficient compared to the middle cerebral artery (MCA). We examined the role of cerebral vasodilation caused by metabolic activation (ie, visual stimulus) on autoregulatory characteristics in the 2 vascular territories. METHODS Blood flow velocity in the PCA and MCA and mean arterial pressure were measured continuously in 45 healthy volunteers (62+/-3 years) while seated with eyes open. Additional 20 subjects (60+/-5 years) were examined with eyes closed and open. Autoregulation was assessed using transfer function gains in both the PCA and MCA territories in the low (0.03-0.07 Hz), high (0.07-0.15 Hz), and cardiac (approximately 1 Hz) frequency ranges. RESULTS With eyes open, gains were significantly higher in the PCA compared to the MCA in the low (PCA: 1.41+/-0.09 vs MCA: 1.18+/-0.07; P=0.003) and high (PCA: 2.06+/-0.12 vs MCA: 1.61+/-0.08; P=0.0001) frequencies. Opening eyes increased blood flow velocity and reduced cerebrovascular resistance index in the PCA but not in MCA. This vasodilation in the PCA was associated with increased gain in the low (autoregulatory) frequency, whereas MCA gain did not change (PCA: 0.89+/-0.14 vs 1.31+/-0.17, MCA: 1.24+/-0.16 vs 1.16+/-0.11; P=0.02). CONCLUSIONS Dilation of the PCA territory during visual cortex activation resulted in increased PCA transfer function gain without changing MCA gain. Thus, impaired autoregulation in the PCA reported in previous literature is likely the result of metabolic vasodilation and not an inherent difference in the autoregulatory characteristics of the posterior circulation.
Collapse
Affiliation(s)
- Kazuma Nakagawa
- Department of Neurology, Stroke Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
84
|
Kim YS, Bogert LWJ, Immink RV, Harms MPM, Colier WNJM, van Lieshout JJ. Effects of aging on the cerebrovascular orthostatic response. Neurobiol Aging 2009; 32:344-53. [PMID: 19356825 DOI: 10.1016/j.neurobiolaging.2009.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 02/16/2009] [Accepted: 02/21/2009] [Indexed: 11/30/2022]
Abstract
When healthy subjects stand up, it is associated with a reduction in cerebral blood velocity and oxygenation although cerebral autoregulation would be considered to prevent a decrease in cerebral perfusion. Aging is associated with a higher incidence of falls, and in the elderly falls may occur particularly during the adaptation to postural change. This study evaluated the cerebrovascular adaptation to postural change in 15 healthy younger (YNG) vs. 15 older (OLD) subjects by recordings of the near-infrared spectroscopy-determined cerebral oxygenation (cO₂Hb) and the transcranial Doppler-determined mean middle cerebral artery blood velocity (MCA V(mean)). In OLD (59 (52-65) years) vs. YNG (29 (27-33) years), the initial postural decline in mean arterial pressure (-52 ± 3% vs. -67 ± 3%), cO₂Hb (-3.4 ± 2.5 μmoll(-1) vs. -5.3 ± 1.7 μmoll(-1)) and MCA V(mean) (-16 ± 4% vs. -29 ± 3%) was smaller. The decline in MCA V(mean) was related to the reduction in MAP. During prolonged orthostatic stress, the decline in MCA V(mean)and cO(2)Hb in OLD remained smaller. We conclude that with healthy aging the postural reduction in cerebral perfusion becomes less prominent.
Collapse
Affiliation(s)
- Yu-Sok Kim
- Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
85
|
Claassen JAHR, Levine BD, Zhang R. Cerebral vasomotor reactivity before and after blood pressure reduction in hypertensive patients. Am J Hypertens 2009; 22:384-91. [PMID: 19229191 DOI: 10.1038/ajh.2009.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hypertension is associated with cerebrovascular remodeling and endothelial dysfunction, which may reduce cerebral vasomotor reactivity to CO2. Treatment combining blood pressure (BP) reduction with inhibition of vascular effects of angiotensin II may reverse these changes. However, the reduction in BP at the onset of treatment can compromise cerebral perfusion and exhaust vasomotor reserve, leading to impaired CO2 reactivity. METHODS Eleven patients (nine men, two women) with newly diagnosed, untreated mild-to-moderate hypertension aged (mean (s.d.)) 52 (9) years, and eight controls (seven men, one woman) aged 46 (10) years were studied. Patients received losartan/hydrochlorothiazide (50/12.5 or 100/25 mg) to reduce BP to <140/<90 mm Hg within 1-2 weeks. BP (Finapres), heart rate (HR), CBFV (cerebral blood flow velocity, transcranial Doppler), cerebrovascular resistance, and CO2 reactivity were measured at baseline, after the rapid BP reduction, and after long-term treatment (3-4 months). RESULTS At baseline, hypertension was not associated with reduced CO2 reactivity. Treatment effectively lowered BP from 148 (12)/89 (7) to 130 (15)/80 (9) after 1-2 weeks and 125 (10)/77 (7) mm Hg after 3-4 months (P = 0.003). CO2 reactivity was not affected by the reduction in BP within 2 weeks, and long-term treatment did not augment reactivity. CONCLUSIONS In hypertension without diabetes or advanced cerebrovascular disease, CO2 reactivity is not reduced, and rapid normalization (within 2 weeks) of BP does not exhaust vasomotor reserve. CO2 reactivity did not change between 2 and 12 weeks of treatment, which argues against a direct vascular effect of angiotensin II inhibition within this period.
Collapse
|
86
|
Abstract
Short-term regulation of cerebral blood flow (CBF) is controlled by myogenic, metabolic and neurogenic mechanisms, which maintain flow within narrow limits, despite large changes in arterial blood pressure (ABP). Static cerebral autoregulation (CA) represents the steady-state relationship between CBF and ABP, characterized by a plateau of nearly constant CBF for ABP changes in the interval 60-150 mmHg. The transient response of the CBF-ABP relationship is usually referred to as dynamic CA and can be observed during spontaneous fluctuations in ABP or from sudden changes in ABP induced by thigh cuff deflation, changes in posture and other manoeuvres. Modelling the dynamic ABP-CBFV relationship is an essential step to gain better insight into the physiology of CA and to obtain clinically relevant information from model parameters. This paper reviews the literature on the application of CA models to different clinical conditions. Although mathematical models have been proposed and should be pursued, most studies have adopted linear input-output ('black-box') models, despite the inherently non-linear nature of CA. The most common of these have been transfer function analysis (TFA) and a second-order differential equation model, which have been the main focus of the review. An index of CA (ARI), and frequency-domain parameters derived from TFA, have been shown to be sensitive to pathophysiological changes in patients with carotid artery disease, stroke, severe head injury, subarachnoid haemorrhage and other conditions. Non-linear dynamic models have also been proposed, but more work is required to establish their superiority and applicability in the clinical environment. Of particular importance is the development of multivariate models that can cope with time-varying parameters, and protocols to validate the reproducibility and ranges of normality of dynamic CA parameters extracted from these models.
Collapse
|
87
|
Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1473-95. [PMID: 19211719 DOI: 10.1152/ajpregu.91008.2008] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebral blood flow (CBF) and its distribution are highly sensitive to changes in the partial pressure of arterial CO(2) (Pa(CO(2))). This physiological response, termed cerebrovascular CO(2) reactivity, is a vital homeostatic function that helps regulate and maintain central pH and, therefore, affects the respiratory central chemoreceptor stimulus. CBF increases with hypercapnia to wash out CO(2) from brain tissue, thereby attenuating the rise in central Pco(2), whereas hypocapnia causes cerebral vasoconstriction, which reduces CBF and attenuates the fall of brain tissue Pco(2). Cerebrovascular reactivity and ventilatory response to Pa(CO(2)) are therefore tightly linked, so that the regulation of CBF has an important role in stabilizing breathing during fluctuating levels of chemical stimuli. Indeed, recent reports indicate that cerebrovascular responsiveness to CO(2), primarily via its effects at the level of the central chemoreceptors, is an important determinant of eupneic and hypercapnic ventilatory responsiveness in otherwise healthy humans during wakefulness, sleep, and exercise and at high altitude. In particular, reductions in cerebrovascular responsiveness to CO(2) that provoke an increase in the gain of the chemoreflex control of breathing may underpin breathing instability during central sleep apnea in patients with congestive heart failure and on ascent to high altitude. In this review, we summarize the major factors that regulate CBF to emphasize the integrated mechanisms, in addition to Pa(CO(2)), that control CBF. We discuss in detail the assessment and interpretation of cerebrovascular reactivity to CO(2). Next, we provide a detailed update on the integration of the role of cerebrovascular CO(2) reactivity and CBF in regulation of chemoreflex control of breathing in health and disease. Finally, we describe the use of a newly developed steady-state modeling approach to examine the effects of changes in CBF on the chemoreflex control of breathing and suggest avenues for future research.
Collapse
Affiliation(s)
- Philip N Ainslie
- Department of Physiology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
88
|
Sorond FA, Serrador JM, Jones RN, Shaffer ML, Lipsitz LA. The sit-to-stand technique for the measurement of dynamic cerebral autoregulation. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:21-9. [PMID: 18834658 PMCID: PMC2680703 DOI: 10.1016/j.ultrasmedbio.2008.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/16/2008] [Accepted: 08/01/2008] [Indexed: 05/08/2023]
Abstract
Measurement of cerebral autoregulation is important for the evaluation and management of a number of clinical disorders that affect cerebral blood flow. We currently lack simple bedside measures that mimic common physiologic stresses. Therefore, we evaluated a new sit-to-stand technique as an alternative method to the frequently-used thigh-cuff technique in healthy volunteers. Continuous middle cerebral artery (MCA) blood flow velocities (BFV) and arterial blood pressure (ABP) were measured in response to standing from a sitting position, or rapid thigh-cuff deflation in 24 healthy subjects (50 +/- 22 y). Autoregulatory index (ARI) was calculated as the BFV response for step changes in ABP using a second-order differential equation with a set of parameters that can be used to grade the performance of autoregulation. Of these 24 subjects, 30% could tolerate only two thigh-cuffs and refused to proceed with the third cuff, whereas none of our subjects had any difficulty with performing the three sit-to-stand trials. The two techniques produced similar changes in mean ABP, but the times to nadir of the blood pressure and BFV were significantly faster for the thigh-cuff. The mean group ARIs were similar between the two techniques. Although between-subjects variability was higher for sit-to-stand ARIs, the within-subject sit-to-stand ARI variability was small. Thus, for the assessment of cerebral autoregulation, the sit-to-stand procedure is well tolerated and produces ARI values that have low within-subject variability. The sit-to-stand technique appears to be a suitable measure of individual ARI values for inferring dynamic cerebral autoregulation.
Collapse
Affiliation(s)
- Farzaneh A Sorond
- Department of Neurology, Stroke Division, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
89
|
Dynamic cerebral autoregulatory capacity is affected early in Type 2 diabetes. Clin Sci (Lond) 2008; 115:255-62. [PMID: 18348713 DOI: 10.1042/cs20070458] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes is associated with an increased risk of endothelial dysfunction and microvascular complications with impaired autoregulation of tissue perfusion. Both microvascular disease and cardiovascular autonomic neuropathy may affect cerebral autoregulation. In the present study, we tested the hypothesis that, in the absence of cardiovascular autonomic neuropathy, cerebral autoregulation is impaired in subjects with DM+ (Type 2 diabetes with microvascular complications) but intact in subjects with DM- (Type 2 diabetes without microvascular complications). Dynamic cerebral autoregulation and the steady-state cerebrovascular response to postural change were studied in subjects with DM+ and DM-, in the absence of cardiovascular autonomic neuropathy, and in CTRL (healthy control) subjects. The relationship between spontaneous changes in MCA V(mean) (middle cerebral artery mean blood velocity) and MAP (mean arterial pressure) was evaluated using frequency domain analysis. In the low-frequency region (0.07-0.15 Hz), the phase lead of the MAP-to-MCA V(mean) transfer function was 52+/-10 degrees in CTRL subjects, reduced in subjects with DM- (40+/-6 degrees ; P<0.01 compared with CTRL subjects) and impaired in subjects with DM+ (30+/-5 degrees ; P<0.01 compared with subjects with DM-), indicating less dampening of blood pressure oscillations by affected dynamic cerebral autoregulation. The steady-state response of MCA V(mean) to postural change was comparable for all groups (-12+/-6% in CTRL subjects, -15+/-6% in subjects with DM- and -15+/-7% in subjects with DM+). HbA(1c) (glycated haemoglobin) and the duration of diabetes, but not blood pressure, were determinants of transfer function phase. In conclusion, dysfunction of dynamic cerebral autoregulation in subjects with Type 2 diabetes appears to be an early manifestation of microvascular disease prior to the clinical expression of diabetic nephropathy, retinopathy or cardiovascular autonomic neuropathy.
Collapse
|
90
|
Jennings JR, Muldoon MF, Price J, Christie IC, Meltzer CC. Cerebrovascular support for cognitive processing in hypertensive patients is altered by blood pressure treatment. Hypertension 2008; 52:65-71. [PMID: 18519845 DOI: 10.1161/hypertensionaha.108.110262] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hypertension is associated with mild decrements in cognition. In addition, regional cerebral blood flow responses during memory processing are blunted in parietal and thalamic areas among untreated hypertensive adults, who, compared with normotensive subjects, manifest greater correlation in blood flow response across task-related brain regions. Here, we test whether pharmacological treatment of hypertension normalizes regional cerebral blood flow responses and whether it does so differentially according to drug class. Treatment with lisinopril, an angiotensin-converting enzyme blocker, known to enhance vasodilative responsivity, was compared with treatment with atenolol, a beta-blocker. Untreated hypertensive volunteers (n=28) were randomly assigned and treated for 1 year. Whole brain and regional cerebral flow responses to memory processing and acutely administered acetazolamide, a vasodilator, were assessed pretreatment and posttreatment. Peripheral brachial artery dilation during reactive hyperemia was also measured. Quantitative blood flow measures showed no difference in the magnitude of regional cerebral blood flow responses pretreatment and posttreatment to either memory tasks or acetazolamide injection. Brachial artery flow-mediated dilation increased with treatment. No differences between medications were observed. In brain regions active in memory processing, however, regional cerebral blood flow responses were more highly correlated after treatment. Specificity of cerebral blood flow to different regions appears to decline with treatment of hypertension. This greater correlation among active brain regions, which is present as well in untreated hypertensive relative to normotensive volunteers, may represent compensation in the face of less region-specific responsivity in individuals with hypertension.
Collapse
|
91
|
Ogawa Y, Iwasaki KI, Aoki K, Shibata S, Kato J, Ogawa S. Central hypervolemia with hemodilution impairs dynamic cerebral autoregulation. Anesth Analg 2007; 105:1389-96, table of contents. [PMID: 17959971 DOI: 10.1213/01.ane.0000281910.95740.e4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Frequent changes in the perioperative central blood volume could affect cerebral autoregulation through alterations in sympathetic nerve activity, cardiac output, blood viscosity, and cerebral vasomotor tone. However, the effect of dynamic cerebral autoregulation has not been studied during acute wide-ranging changes in central blood volume, especially with respect to central hypervolemia with hemodilution. METHODS We evaluated dynamic cerebral autoregulation during central hypovolemia and central hypervolemia with hemodilution using spectral and transfer function analysis between mean arterial blood pressure (MBP) and cerebral blood flow (CBF) velocity variability in 12 individuals. Rapid changes in central blood volume were achieved using two levels of lower body negative pressure (-15 and -30 mm Hg) and two discrete infusions of normal saline (15 mL/kg and total 30 mL/kg). We then estimated changes in central blood volume as central venous pressure (CVP) and/or cardiac output using impedance cardiography. RESULTS Steady-state CBF velocity and cardiac output decreased at -30 mm Hg lower body negative pressure (changes of CVP approximately -4 mm Hg) or were increased by each saline infusion (changes of CVP 4-6 mm Hg), without a significant change in MBP. However, transfer function gain (magnitude of transfer) between MBP and CBF velocity variability significantly increased only after saline infusion, suggesting an increased magnitude of transfer from MBP oscillations to CBF fluctuations during central hypervolemia with hemodilution. CONCLUSION Our results suggest that, although steady-state CBF velocity changes under both central hypervolemia and hypovolemia, only hypervolemic hemodilution impairs dynamic cerebral autoregulation.
Collapse
Affiliation(s)
- Yojiro Ogawa
- Department of Hygiene and Space Medicine, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
92
|
Peebles K, Celi L, McGrattan K, Murrell C, Thomas K, Ainslie PN. Human cerebrovascular and ventilatory CO2 reactivity to end-tidal, arterial and internal jugular vein PCO2. J Physiol 2007; 584:347-57. [PMID: 17690148 PMCID: PMC2277051 DOI: 10.1113/jphysiol.2007.137075] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study examined cerebrovascular reactivity and ventilation during step changes in CO(2) in humans. We hypothesized that: (1) end-tidal P(CO(2)) (P(ET,CO(2))) would overestimate arterial P(CO(2)) (P(a,CO(2))) during step variations in P(ET,CO(2)) and thus underestimate cerebrovascular CO(2) reactivity; and (2) since P(CO(2)) from the internal jugular vein (P(jv,CO(2))) better represents brain tissue P(CO(2)), cerebrovascular CO(2) reactivity would be higher when expressed against P(jv,CO(2)) than with P(a,CO(2)), and would be related to the degree of ventilatory change during hypercapnia. Incremental hypercapnia was achieved through 4 min administrations of 4% and 8% CO(2). Incremental hypocapnia involved two 4 min steps of hyperventilation to change P(ET,CO(2)), in an equal and opposite direction, to that incurred during hypercapnia. Arterial and internal jugular venous blood was sampled simultaneously at baseline and during each CO(2) step. Cerebrovascular reactivity to CO(2) was expressed as the percentage change in blood flow velocity in the middle cerebral artery (MCAv) per mmHg change in P(a,CO(2)) and P(jv,CO(2)). During hypercapnia, but not hypocapnia, P(ET,CO(2)) overestimated P(a,CO(2)) by +2.4 +/- 3.4 mmHg and underestimated MCAv-CO(2) reactivity (P < 0.05). The hypercapnic and hypocapnic MCAv-CO(2) reactivity was higher ( approximately 97% and approximately 24%, respectively) when expressed with P(jv,CO(2)) than P(a,CO(2)) (P < 0.05). The hypercapnic MCAv-P(jv,CO(2)) reactivity was inversely related to the increase in ventilatory change (R(2) = 0.43; P < 0.05), indicating that a reduced reactivity results in less central CO(2) washout and greater ventilatory stimulus. Differences in the P(ET,CO(2)), P(a,CO(2)) and P(jv,CO(2))-MCAv relationships have implications for the true representation and physiological interpretation of cerebrovascular CO(2) reactivity.
Collapse
Affiliation(s)
- Karen Peebles
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
93
|
Murrell C, Wilson L, Cotter JD, Lucas S, Ogoh S, George K, Ainslie PN. Alterations in autonomic function and cerebral hemodynamics to orthostatic challenge following a mountain marathon. J Appl Physiol (1985) 2007; 103:88-96. [PMID: 17379746 DOI: 10.1152/japplphysiol.01396.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined potential mechanisms (autonomic function, hypotension, and cerebral hypoperfusion) responsible for orthostatic intolerance following prolonged exercise. Autonomic function and cerebral hemodynamics were monitored in seven athletes pre-, post- (<4 h), and 48 h following a mountain marathon [42.2 km; cumulative gain ∼1,000 m; ∼15°C; completion time, 261 ± 27 (SD) min]. In each condition, middle cerebral artery blood velocity (MCAv), blood pressure (BP), heart rate (HR), and cardiac output (Modelflow) were measured continuously before and during a 6-min stand. Measurements of HR and BP variability and time-domain analysis were used as an index of sympathovagal balance and baroreflex sensitivity (BRS). Cerebral autoregulation was assessed using transfer-function gain and phase shift in BP and MCAv. Hypotension was evident following the marathon during supine rest and on standing despite increased sympathetic and reduced parasympathetic control, and elevations in HR and cardiac output. On standing, following the marathon, there was less elevation in normalized low-frequency HR variability ( P < 0.05), indicating attenuated sympathetic activation. MCAv was maintained while supine but reduced during orthostasis postmarathon [−10.4 ± 9.8% pre- vs. −15.4 ± 9.9% postmarathon (%change from supine); P < 0.05]; such reductions were related to an attenuation in BRS ( r = 0.81; P < 0.05). Cerebral autoregulation was unchanged following the marathon. These findings indicate that following prolonged exercise, hypotension and postural reductions in autonomic function or baroreflex control, or both, rather than a compromise in cerebral autoregulation, may place the brain at risk of hypoperfusion. Such changes may be critical factors in collapse following prolonged exercise.
Collapse
Affiliation(s)
- Carissa Murrell
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
94
|
Sammons EL, Samani NJ, Smith SM, Rathbone WE, Bentley S, Potter JF, Panerai RB. Influence of noninvasive peripheral arterial blood pressure measurements on assessment of dynamic cerebral autoregulation. J Appl Physiol (1985) 2007; 103:369-75. [PMID: 17463300 DOI: 10.1152/japplphysiol.00271.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Assessment of dynamic cerebral autoregulation (CA) requires continuous recording of arterial blood pressure (ABP). In humans, noninvasive ABP recordings with the Finapres device have often been used for this purpose. We compared estimates of dynamic CA derived from Finapres with those from invasive recordings in the aorta. Measurements of finger noninvasive ABP (Finapres), intra-aortic ABP (Millar catheter), surface ECG, transcutaneous CO2, and bilateral cerebral blood flow velocity (CBFV) in the middle cerebral arteries were simultaneously and continuously recorded in 27 patients scheduled for percutaneous coronary interventions. Phase, gain, coherence, and CBFV step response from both the Finapres and intra-arterial catheter were estimated by transfer function analysis. A dynamic autoregulation index (ARI) was also calculated. For both hemispheres, the ARI index and the CBFV step response recovery at 4 s were significantly greater for the Finapres-derived estimates than for the values obtained from aortic pressure. The transfer function gain for frequencies <0.1 Hz was significantly smaller for the Finapres estimates. The phase frequency response was significantly greater for the Finapres estimates at frequencies >0.1 Hz, but not at lower frequencies. The Finapres gives higher values for the efficiency of dynamic CA compared with values derived from aortic pressure measurements, as indicated by biases in the ARI index, CBFV step response, gain, and phase. Despite the significance of these biases, their relatively small amplitude indicates a good level of agreement between indexes of CA derived from the Finapres compared with corresponding estimates obtained from invasive measurements of aortic ABP.
Collapse
Affiliation(s)
- Emily L Sammons
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Whatever the pathogenesis of syncope is, the ultimate common cause leading to loss of consciousness is insufficient cerebral perfusion with a critical reduction of blood flow to the reticular activating system. Brain circulation has an autoregulation system that keeps cerebral blood flow constant over a wide range of systemic blood pressures. Normally, if blood pressure decreases, autoregulation reacts with a reduction in cerebral vascular resistance, in an attempt to prevent cerebral hypoperfusion. However, in some cases, particularly in neurally mediated syncope, it can also be harmful, being actively implicated in a paradox reflex that induces an increase in cerebrovascular resistance and contributes to the critical reduction of cerebral blood flow. This review outlines the anatomic structures involved in cerebral autoregulation, its mechanisms, in normal and pathologic conditions, and the noninvasive neuroimaging techniques used in the study of cerebral circulation and autoregulation. An emphasis is placed on the description of autoregulation pathophysiology in orthostatic and neurally mediated syncope.
Collapse
|
96
|
Zhang R, Witkowski S, Fu Q, Claassen JAHR, Levine BD. Cerebral Hemodynamics After Short- and Long-Term Reduction in Blood Pressure in Mild and Moderate Hypertension. Hypertension 2007; 49:1149-55. [PMID: 17353511 DOI: 10.1161/hypertensionaha.106.084939] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study tested the hypothesis that acute reduction in blood pressure (BP) at the initial stage of antihypertensive therapy compromises brain perfusion and dynamic cerebral autoregulation in patients with hypertension. Cerebral blood flow velocity and BP were measured in patients with mild and moderate hypertension and in healthy volunteers at baseline upon reduction of BP within 1 to 2 weeks of administration of losartan/hydrochlorothiazide and after 3 to 4 months of treatment. The transfer function between beat-to-beat changes in BP and cerebral blood flow velocity was estimated to assess dynamic autoregulation. After 1 to 2 weeks of treatment, BP was reduced in mild (143±7/88±4 versus 126±12/77±6 mm Hg) and moderate hypertension (163±11/101±9 versus 134±17/84±9 mm Hg;
P
<0.05). These reductions in BP were well maintained over the 3 to 4 month period. Cerebral blood flow velocity did not change, whereas cerebrovascular resistance index was reduced by 17% (
P
<0.05) after reduction in BP. Responses of cerebral blood flow velocity to head-up tilt remained unchanged. Baseline transfer function gain at the low frequencies (0.07 to 0.20 Hz) was reduced in moderate hypertension, consistent with cerebral vasoconstriction and/or enhanced dynamic autoregulation. However, this reduced transfer function gain was restored to the level of control subjects after reduction in BP. These findings, contrary to our hypothesis, demonstrate that there is a rapid adaptation of the cerebral vasculature to protect the brain from hypoperfusion even at the initial stage of antihypertensive therapy in patients with mild and moderate hypertension.
Collapse
Affiliation(s)
- Rong Zhang
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, University of Texas Southwestern Medical Center, TX 75231, USA.
| | | | | | | | | |
Collapse
|
97
|
Rifkind JM, Nagababu E, Barbiro-Michaely E, Ramasamy S, Pluta RM, Mayevsky A. Nitrite infusion increases cerebral blood flow and decreases mean arterial blood pressure in rats: a role for red cell NO. Nitric Oxide 2007; 16:448-56. [PMID: 17517526 DOI: 10.1016/j.niox.2007.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 03/14/2007] [Indexed: 11/26/2022]
Abstract
It has been proposed that the reduction of nitrite by red cells producing NO plays a role in the regulation of vascular tone. This hypothesis was investigated in rats by measuring the effect of nitrite infusion on mean arterial blood pressure (MAP), cerebral blood flow (CBF) and cerebrovascular resistance (CVR) in conjunction with the accumulation of red cell NO. The relative magnitude of the effects on MAP and CBF as well as the time dependent changes during nitrite infusion are used to distinguish between the effects on the peripheral circulation and the effects on the cerebral circulation undergoing cerebral autoregulation. The nitrite infusion was found to reverse the 96% increase in MAP and the 13% decrease in CBF produced by L-NAME inhibition of e-NOS. At the same time there was a 20-fold increase in oxygen stable red cell NO. Correlations of the red cell NO for individual rats support a role for red cell nitrite reduction in regulating vascular tone in both the peripheral and the cerebral circulation. Furthermore, data obtained prior to treatment is consistent with a contribution of red cell reduced nitrite in regulating vascular tone even under normal conditions.
Collapse
Affiliation(s)
- Joseph M Rifkind
- Molecular Dynamics Section, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Mitsis GD, Debert CT, Hajo MI, Marmarelis VZ, Poulin MJ. Nonlinear, multiple-input modeling of cerebral hemodynamics during baseline and hypercapnia in young and post-menopausal women. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2007; 2007:2855-2858. [PMID: 18002590 DOI: 10.1109/iembs.2007.4352924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Normal aging is associated with changes in the cardiovascular system and more specifically in cerebral circulation. Sex-dependent changes in cerebrovascular CO2 reactivity, which may be related to hormonal levels, have been also reported. We therefore examined cerebral hemodynamics, i.e., dynamic pressure autoregulation and CO2 reactivity, by employing beat-to-beat values of mean arterial blood pressure and middle cerebral artery blood flow velocity, as well as breath-to-breath values of end-tidal CO2 tension during baseline and sustained, end-tidal forcing induced hypercapnia in pre- and post-menopausal women. For this purpose, we employed a recently proposed nonlinear, multiple-input model of cerebral hemodynamics. The results suggest that dynamic autoregulation and reactivity in response to spontaneous fluctuations are not affected in postmenopausal women and that CO2 reactivity to the larger, experimentally-induced hypercapnic stimuli are affected mildly. A significant decrease in CO2 reactivity to spontaneous fluctuations was also observed during hypercapnia in all three groups.
Collapse
Affiliation(s)
- Georgios D Mitsis
- Institute of Communications and Computer Systems, National Technical University of Athens, Athens 15780 Greece.
| | | | | | | | | |
Collapse
|
99
|
Carter R, Cheuvront SN, Vernieuw CR, Sawka MN. Hypohydration and prior heat stress exacerbates decreases in cerebral blood flow velocity during standing. J Appl Physiol (1985) 2006; 101:1744-50. [PMID: 16916922 DOI: 10.1152/japplphysiol.00200.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypohydration is associated with orthostatic intolerance; however, little is known about cerebrovascular mechanisms responsible. This study examined whether hypohydration reduces cerebral blood flow velocity (CBFV) in response to an orthostatic challenge. Eight subjects completed four orthostatic challenges (temperate conditions) twice before (Pre-EU and Pre-Hyp) and following recovery from passive heat stress ( approximately 3 h at 45 degrees C, 50% relative humidity, 1 m/s air speed) with (Post-EU) or without (Post-Hyp) fluid replacement of sweat losses (-3% body mass loss). Measurements included CBFV, mean arterial pressure (MAP), heart rate (HR), end-tidal CO(2), and core and skin temperatures. Test sessions included being seated (20 min) followed by standing (60 s) then resitting (60 s) with metronomic breathing (15 breaths/min). CBFV and MAP responses to standing were similar during Pre-EU and Pre-Hyp. Standing Post-Hyp exacerbated the magnitude (-28.0 +/- 1.4% of baseline) and duration (9.0 +/- 1.6 s) of CBFV reductions and increased cerebrovascular resistance (CVR) compared with Post-EU (-20.0 +/- 2.1% and 6.6 +/- 0.9 s). Standing Post-EU also resulted in a reduction in CBFV, and a smaller decrease in CVR compared with Pre-EU. MAP decreases were similar for Post-EU (-18 +/- 4 mmHg) and Post-Hyp (-21 +/- 5 mmHg) from seated to standing. These data demonstrate that despite similar MAP decreases, hypohydration, and prior heat stress (despite apparent recovery) produce greater CBFV reduction when standing. These observations suggest that hypohydration and prior heat stress are associated with greater reductions in CBFV with greater CVR, which likely contribute to orthostatic intolerance.
Collapse
Affiliation(s)
- Robert Carter
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760, USA.
| | | | | | | |
Collapse
|
100
|
Lavi S, Gaitini D, Milloul V, Jacob G. Impaired cerebral CO2 vasoreactivity: association with endothelial dysfunction. Am J Physiol Heart Circ Physiol 2006; 291:H1856-61. [PMID: 16766649 DOI: 10.1152/ajpheart.00014.2006] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conflicting data exist on the role of nitric oxide (NO) in cerebral blood flow (CBF) autoregulation. Previous studies involving human and animal subjects seem to indicate that NO involvement is limited to the CO(2)-dependent mechanism (chemoregulation) and not to the pressure-dependent autoregulation (mechanoregulation). We tested this hypothesis in patients with impaired endothelial function compared with healthy controls. Blood pressure, heart rate, end-tidal Pco(2), CBF velocities (CBFV), forearm blood flow, and reactive hyperemia were assessed in 16 patients with diabetes mellitus and/or hypertension and compared with 12 age- and sex-matched healthy controls. Pressure-dependent autoregulation was determined by escalating doses of phenylephrine. CO(2) vasoreactivity index was extrapolated from individual slopes of mean CBFV during normocapnia, hyperventilation, and CO(2) inhalation. Measurements were repeated after sodium nitroprusside infusion. Indexes of endothelial function, maximal and area under the curve (AUC) of forearm blood flow (FBF) changes, were significantly impaired in patients (maximal flow: 488 +/- 75 vs. 297 +/- 31%; P = 0.01, AUC DeltaFBF: 173 +/- 17 vs. 127 +/- 11; P = 0.03). Patients and controls showed similar changes in cerebrovascular resistance during blood pressure challenges (identical slopes). CO(2) vasoreactivity was impaired in patients compared with controls: 1.19 +/- 0.1 vs. 1.54 +/- 0.1 cm.s(-1).mmHg(-1); P = 0.04. NO donor (sodium nitroprusside) offsets this disparity. These results suggest that patients with endothelial dysfunction have impaired CO(2) vasoreactivity and preserved pressure-dependent autoregulation. This supports our hypothesis that NO is involved in CO(2)-dependent CBF regulation alone. CBFV chemoregulation could therefore be a surrogate of local cerebral endothelial function.
Collapse
Affiliation(s)
- Shahar Lavi
- J. Recanati Autonomic Dysfunction Center, Medicine A, Rambam Medical Center, PO Box 9602, Haifa 31096, Israel
| | | | | | | |
Collapse
|