51
|
Abstract
Recovery from traumatic muscle injuries is typically prolonged and incomplete, leading to impaired muscle and joint function. We sought to determine whether mechanical stimulation via whole-body low-intensity vibration (LIV) could (1) improve muscle regeneration and (2) reduce muscle fibrosis following traumatic injury. C57BL/6J mice were subjected to a laceration of the gastrocnemius muscle and were treated with LIV (0.2 g at 90 Hz or 0.4 g at 45 Hz for 30 min/day) or non-LIV sham treatment (controls) for seven or 14 days. Muscle regeneration and fibrosis were assessed in hematoxylin and eosin or Masson's trichrome stained muscle cryosections, respectively. Compared to non-LIV control mice, the myofiber cross-sectional area was larger in mice treated with each LIV protocol after 14 days of treatment. Minimum fiber diameter was also larger in mice treated with LIV of 90 Hz/0.2 g after 14 days of treatment. There was also a trend toward a reduction in collagen deposition after 14 days of treatment with 45 Hz/0.4 g (p = 0.059). These findings suggest that LIV may improve muscle healing by enhancing myofiber growth and reducing fibrosis. The LIV-induced improvements in muscle healing suggest that LIV may represent a novel therapeutic approach for improving the healing of traumatic muscle injuries.
Collapse
|
52
|
Corona BT, Flanagan KE, Brininger CM, Goldman SM, Call JA, Greising SM. Impact of volumetric muscle loss injury on persistent motoneuron axotomy. Muscle Nerve 2018; 57:799-807. [PMID: 29144551 DOI: 10.1002/mus.26016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Volumetric muscle loss (VML) occurs following significant traumatic injury or surgical removal of skeletal muscle, resulting in nonrecoverable loss of tissue and long-term dysfunction. Perhaps less recognized is that VML injuries inherently disrupt the neuromuscular unit, resulting in fiber denervation and presumptive motor unit rearrangement, expansion, and/or loss. To characterize neural dysfunction we quantified motoneuron axotomy, in efforts to understand how this relates to the temporal coordination of neuromuscular and morphological alterations due to injury. METHODS In an established rat tibialis anterior (TA) VML injury model, we examined the motoneuron, skeletal muscle, and maximal isometric torque at 3, 7, 14, and 21 days postinjury. RESULTS Significant axotomy of 57-79% of all TA muscle motoneurons was observed through 21 days postinjury, which was coupled with a 45-90% TA maximal torque deficit. DISCUSSION A ∼20% partial ablation of the TA muscle causes disproportionate damage across the motor unit acutely postinjury. Muscle Nerve 57: 799-807, 2018.
Collapse
Affiliation(s)
- Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, Texas, 78234, USA
| | - Kate E Flanagan
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, Texas, 78234, USA
| | - Christian M Brininger
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, Texas, 78234, USA
| | - Stephen M Goldman
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, Texas, 78234, USA
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, Georgia, USA.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Sarah M Greising
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, Texas, 78234, USA
| |
Collapse
|
53
|
Abstract
Volumetric muscle loss (VML) resulting from extremity trauma presents chronic and persistent functional deficits which ultimately manifest disability. Acellular biological scaffolds, or decellularized extracellular matrices (ECMs), embody an ideal treatment platform due to their current clinical use for soft tissue repair, off-the-shelf availability, and zero autogenous donor tissue burden. ECMs have been reported to promote functional skeletal muscle tissue remodeling in small and large animal models of VML injury, and this conclusion was reached in a recent clinical trial that enrolled 13 patients. However, numerous other pre-clinical reports have not observed ECM-mediated skeletal muscle regeneration. The current study was designed to reconcile these discrepancies. The capacity of ECMs to orchestrate functional muscle tissue remodeling was interrogated in a porcine VML injury model using unbiased assessments of muscle tissue regeneration and functional recovery. Here, we show that VML injury incites an overwhelming inflammatory and fibrotic response that leads to expansive fibrous tissue deposition and chronic functional deficits, which ECM repair does not augment.
Collapse
|
54
|
Marcinczyk M, Elmashhady H, Talovic M, Dunn A, Bugis F, Garg K. Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration. Biomaterials 2017; 141:233-242. [PMID: 28697464 DOI: 10.1016/j.biomaterials.2017.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
Abstract
Laminin (LM)-111 supplementation has improved muscle regeneration in several models of disease and injury. This study investigated a novel hydrogel composed of fibrinogen and LM-111. Increasing LM-111 concentration (50-450 μg/mL) in fibrin hydrogels resulted in highly fibrous scaffolds with progressively thinner interlaced fibers. Rheological testing showed that all hydrogels had viscoelastic behavior and the Young's modulus ranged from 2-6KPa. C2C12 myobalsts showed a significant increase in VEGF production and decrease in IL-6 production on LM-111 enriched fibrin hydrogels as compared to pure fibrin hydrogels on day 4. Western blotting results showed a significant increase in MyoD and desmin protein quantity but a significant decrease in myogenin protein quantity in myoblasts cultured on the LM-111 (450 μg/mL) enriched fibrin hydrogel. Combined application of electromechanical stimulation significantly enhanced the production of VEGF and IGF-1 from myoblast seeded fibrin-LM-111 hydrogels. Taken together, these observations offer an important first step toward optimizing a tissue engineered constructs for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Hady Elmashhady
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Faiz Bugis
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA.
| |
Collapse
|
55
|
Hurtgen BJ, Ward CL, Leopold Wager CM, Garg K, Goldman SM, Henderson BEP, McKinley TO, Greising SM, Wenke JC, Corona BT. Autologous minced muscle grafts improve endogenous fracture healing and muscle strength after musculoskeletal trauma. Physiol Rep 2017; 5:e13362. [PMID: 28747511 PMCID: PMC5532491 DOI: 10.14814/phy2.13362] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022] Open
Abstract
The deleterious impact of concomitant muscle injury on fracture healing and limb function is commonly considered part of the natural sequela of orthopedic trauma. Recent reports suggest that heightened inflammation in the surrounding traumatized musculature is a primary determinant of fracture healing. Relatedly, there are emerging potential therapeutic approaches for severe muscle trauma (e.g., volumetric muscle loss [VML] injury), such as autologous minced muscle grafts (1 mm3 pieces of muscle; GRAFT), that can partially prevent chronic functional deficits and appear to have an immunomodulatory effect within VML injured muscle. The primary goal of this study was to determine if repair of VML injury with GRAFT rescues impaired fracture healing and improves the strength of the traumatized muscle in a male Lewis rat model of tibia open fracture. The most salient findings of the study were: (1) tibialis anterior (TA) muscle repair with GRAFT improved endogenous healing of fractured tibia and improved the functional outcome of muscle regeneration; (2) GRAFT repair attenuated the monocyte/macrophage (CD45+CDllb+) and T lymphocyte (CD3+) response to VML injury; (3) TA muscle protein concentrations of MCP1, IL-10, and IGF-1 were augmented in a proregenerative manner by GRAFT repair; (4) VML injury concomitant with osteotomy induced a heightened systemic presence of alarmins (e.g., soluble RAGE) and leukocytes (e.g., monocytes), and depressed IGF-1 concentration, which GRAFT repair ameliorated. Collectively, these data indicate that repair of VML injury with a regenerative therapy can modulate the inflammatory and regenerative phenotype of the treated muscle and in association improve musculoskeletal healing.
Collapse
Affiliation(s)
- Brady J Hurtgen
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Catherine L Ward
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Chrissy M Leopold Wager
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Koyal Garg
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Stephen M Goldman
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Beth E P Henderson
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sarah M Greising
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Joseph C Wenke
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| |
Collapse
|
56
|
Quarta M, Cromie M, Chacon R, Blonigan J, Garcia V, Akimenko I, Hamer M, Paine P, Stok M, Shrager JB, Rando TA. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat Commun 2017. [PMID: 28631758 PMCID: PMC5481841 DOI: 10.1038/ncomms15613] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Volumetric muscle loss (VML) is associated with loss of skeletal muscle function, and current treatments show limited efficacy. Here we show that bioconstructs suffused with genetically-labelled muscle stem cells (MuSCs) and other muscle resident cells (MRCs) are effective to treat VML injuries in mice. Imaging of bioconstructs implanted in damaged muscles indicates MuSCs survival and growth, and ex vivo analyses show force restoration of treated muscles. Histological analysis highlights myofibre formation, neovascularisation, but insufficient innervation. Both innervation and in vivo force production are enhanced when implantation of bioconstructs is followed by an exercise regimen. Significant improvements are also observed when bioconstructs are used to treat chronic VML injury models. Finally, we demonstrate that bioconstructs made with human MuSCs and MRCs can generate functional muscle tissue in our VML model. These data suggest that stem cell-based therapies aimed to engineer tissue in vivo may be effective to treat acute and chronic VML.
Collapse
Affiliation(s)
- Marco Quarta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Melinda Cromie
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Robert Chacon
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Justin Blonigan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Victor Garcia
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Igor Akimenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Mark Hamer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Patrick Paine
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| | - Merel Stok
- Erasmus Medical Center, Department of Hematology and Department of Pediatrics, Rotterdam 3000, The Netherlands
| | - Joseph B Shrager
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine and VA Palo Alto Health Care System, Stanford, California 94305, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.,Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital Palo Alto, California 94036, USA
| |
Collapse
|
57
|
Nuutila K, Sakthivel D, Kruse C, Tran P, Giatsidis G, Sinha I. Gene expression profiling of skeletal muscle after volumetric muscle loss. Wound Repair Regen 2017; 25:408-413. [DOI: 10.1111/wrr.12547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Kristo Nuutila
- Division of Plastic Surgery, Department of Surgery, Brigham & Women's Hospital; Harvard Medical School; Boston Massachusetts
| | - Dharaniya Sakthivel
- Division of Plastic Surgery, Department of Surgery, Brigham & Women's Hospital; Harvard Medical School; Boston Massachusetts
| | - Carla Kruse
- Division of Plastic Surgery, Department of Surgery, Brigham & Women's Hospital; Harvard Medical School; Boston Massachusetts
| | - Peter Tran
- Division of Plastic Surgery, Department of Surgery, Brigham & Women's Hospital; Harvard Medical School; Boston Massachusetts
| | - Giorgio Giatsidis
- Division of Plastic Surgery, Department of Surgery, Brigham & Women's Hospital; Harvard Medical School; Boston Massachusetts
| | - Indranil Sinha
- Division of Plastic Surgery, Department of Surgery, Brigham & Women's Hospital; Harvard Medical School; Boston Massachusetts
| |
Collapse
|
58
|
|
59
|
Corona BT, Henderson BEP, Ward CL, Greising SM. Contribution of minced muscle graft progenitor cells to muscle fiber formation after volumetric muscle loss injury in wild-type and immune deficient mice. Physiol Rep 2017; 5:e13249. [PMID: 28400501 PMCID: PMC5392532 DOI: 10.14814/phy2.13249] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022] Open
Abstract
Volumetric muscle injury (VML) causes an irrecoverable loss of muscle fibers, persistent strength deficits, and chronic disability. A crucial challenge to VML injury and possible regeneration is the removal of all of the in situ native elements necessary for skeletal muscle regeneration. Our first goal was to establish a reliable VML model in the mouse tibialis anterior (TA) muscle. In adult male wild-type and nude mice, a non-repaired ≈20% VML injury to the TA muscle resulted in an ≈59% loss in nerve evoked muscle strength, ≈33% loss in muscle mass, and ≈29% loss of muscle fibers at 28 day post-injury. Our second goal was to investigate if minced muscle grafts (≈1 mm3 tissue fragments) promote recovery of muscle fibers after VML injury and to understand if the graft-derived progenitor cells directly contribute to fiber regeneration. To assess donor cell contribution, donor muscle tissue was derived from UBC-GFP mice in a subset of experiments. Minced grafts restored ≈34% of the lost fibers 28 days post-injury. The number of GFP+ fibers and the estimated number of regenerated fibers were similar, regardless of host mouse strain. The muscle tissue regeneration promoted by minced grafts did not improve TA muscle strength at this time post-injury. These findings demonstrate the direct contribution of minced muscle graft-derived myogenic stem/progenitor cells to recovery of muscle fibers after VML injury and signify the utility of autologous myogenic stem cell therapies for this indication.
Collapse
Affiliation(s)
- Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Beth E P Henderson
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Catherine L Ward
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Sarah M Greising
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| |
Collapse
|
60
|
Corona BT, Wenke JC, Ward CL. Pathophysiology of Volumetric Muscle Loss Injury. Cells Tissues Organs 2016; 202:180-188. [PMID: 27825160 DOI: 10.1159/000443925] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Volumetric muscle loss (VML) injuries are prevalent in civilian and military trauma patients and are known to impart chronic functional deficits. The frank loss of muscle tissue that defines VML injuries is beyond the robust reparative and regenerative capacities of mammalian skeletal muscle. Given the nature of VML injuries, there is a clear need to develop therapies that promote de novo regeneration of skeletal muscle fibers, which can integrate with the remaining musculature and restore muscle strength. However, the pathophysiology of VML injuries is not completely defined, and, therefore, there may be other opportunities to improve functional outcomes other than de novo regeneration. Herein, clinical and preclinical studies of VML were reviewed to ascertain salient manifestations of VML injury that can impair limb function and muscle strength. The limited clinical data available highlighted proliferative fibrosis secondary to VML injury as a viable target to improve limb range of motion. Selected preclinical studies that used standardized neuromuscular functional assessments broadly identified that the muscle mass remaining after VML injury is performing suboptimally, and, therefore, percent VML strength deficits are significantly worse than can be explained by the initial frank loss of contractile machinery. Potential mechanisms of suboptimal strength of the remaining muscle mass suggested within the literature include intramuscular nerve damage, muscle architectural perturbations, and diminished transmission of force. Collectively, both clinical and preclinical data indicate a complex pathophysiology after VML that presents multiple therapeutic targets. This is a work of the US Government and is not subject to copyright protection in the USA. Foreign copyrights may apply. Published by S. Karger AG, Basel.
Collapse
|
61
|
Corona BT, Greising SM. Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration. Biomaterials 2016; 104:238-46. [DOI: 10.1016/j.biomaterials.2016.07.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/11/2016] [Accepted: 07/16/2016] [Indexed: 02/08/2023]
|
62
|
Kim JT, Kasukonis BM, Brown LA, Washington TA, Wolchok JC. Recovery from volumetric muscle loss injury: A comparison between young and aged rats. Exp Gerontol 2016; 83:37-46. [PMID: 27435497 DOI: 10.1016/j.exger.2016.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/01/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
Termed volumetric muscle loss (VML), the bulk loss of skeletal muscle tissue either through trauma or surgery overwhelms the capacity for repair, leading to the formation of non-contractile scar tissue. The myogenic potential, along with other factors that influence wound repair are known to decline with age. In order to develop effective treatment strategies for VML injuries that are effective across a broad range of patient populations, it is necessary to understand how the response to VML injury is affected by aging. Towards this end, this study was conducted to compare the response of young and aged animal groups to a lower extremity VML injury. Young (3months, n=12) and aged (18months, n=8) male Fischer 344 rats underwent surgical VML injury of the tibialis anterior muscle. Three months after VML injury it was found that young TA muscle was on average 16% heavier than aged muscle when no VML injury was performed and 25% heavier when comparing VML treated young and aged animals (p<0.0001, p<0.0001). Peak contractile force for both the young and aged groups was found to decrease significantly following VML injury, producing 65% and 59% of the contralateral limbs' peak force, respectively (p<0.0001). However, there were no differences found for peak contractile force based on age, suggesting that VML affects muscle's ability to repair, regardless of age. In this study, we used the ratio of collagen I to MyoD expression as a metric for fibrosis vs. myogenesis. Decreasing fiber cross-sectional area with advancing age (p<0.005) coupled with the ratio of collagen I to MyoD expression, which increased with age, supports the thought that regeneration is impaired in the aged population in favor of fibrosis (p=0.0241). This impairment is also exacerbated by the contribution of VML injury, where a 77-fold increase in the ratio of collagen I to MyoD was observed in the aged group (p<0.0002). The aged animal model described in this study provides a tool for investigators exploring not only the development of VML injury strategies but also the effect of aging on muscle regeneration.
Collapse
Affiliation(s)
- John T Kim
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States
| | - Benjamin M Kasukonis
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States
| | - Lemuel A Brown
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, Fayetteville, AR 72701, United States
| | - Tyrone A Washington
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, Fayetteville, AR 72701, United States
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
63
|
Abstract
Volumetric muscle loss (VML) injury is prevalent in severe extremity trauma and is an emerging focus area among orthopedic and regenerative medicine fields. VML injuries are the result of an abrupt, frank loss of tissue and therefore of different etiology from other standard rodent injury models to include eccentric contraction, ischemia reperfusion, crush, and freeze injury. The current focus of many VML-related research efforts is to regenerate the lost muscle tissue and thereby improve muscle strength. Herein, we describe a VML model in the anterior compartment of the hindlimb that is permissible to repeated neuromuscular strength assessments and is validated in mouse, rat, and pig.
Collapse
Affiliation(s)
- Beth E Pollot
- Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3611, Fort Sam Houston, TX, 78234-6315, USA
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3611, Fort Sam Houston, TX, 78234-6315, USA.
| |
Collapse
|
64
|
Aurora A, Roe JL, Corona BT, Walters TJ. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury. Biomaterials 2015; 67:393-407. [PMID: 26256250 DOI: 10.1016/j.biomaterials.2015.07.040] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/22/2015] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) derived scaffolds continue to be investigated for the treatment of volumetric muscle loss (VML) injuries. Clinically, ECM scaffolds have been used for lower extremity VML repair; in particular, MatriStem™, a porcine urinary bladder matrix (UBM), has shown improved functional outcomes and vascularization, but limited myogenesis. However, efficacy of the scaffold for the repair of traumatic muscle injuries has not been examined systematically. In this study, we demonstrate that the porcine UBM scaffold when used to repair a rodent gastrocnemius musculotendinous junction (MTJ) and tibialis anterior (TA) VML injury does not support muscle tissue regeneration. In the MTJ model, the scaffold was completely resorbed without tissue remodeling, suggesting that the scaffold may not be suitable for the clinical repair of muscle-tendon injuries. In the TA VML injury, the scaffold remodeled into a fibrotic tissue and showed functional improvement, but not due to muscle fiber regeneration. The inclusion of physical rehabilitation also did not improve functional response or tissue remodeling. We conclude that the porcine UBM scaffold when used to treat VML injuries may hasten the functional recovery through the mechanism of scaffold mediated functional fibrosis. Thus for appreciable muscle regeneration, repair strategies that incorporate myogenic cells, vasculogenic accelerant and a myoconductive scaffold need to be developed.
Collapse
Affiliation(s)
- Amit Aurora
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, 3698 Chambers Pass, Fort Sam Houston, TX 78234, USA
| | - Janet L Roe
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, 3698 Chambers Pass, Fort Sam Houston, TX 78234, USA
| | - Benjamin T Corona
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, 3698 Chambers Pass, Fort Sam Houston, TX 78234, USA
| | - Thomas J Walters
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, 3698 Chambers Pass, Fort Sam Houston, TX 78234, USA.
| |
Collapse
|
65
|
Garg K, Corona BT, Walters TJ. Therapeutic strategies for preventing skeletal muscle fibrosis after injury. Front Pharmacol 2015; 6:87. [PMID: 25954202 PMCID: PMC4404830 DOI: 10.3389/fphar.2015.00087] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/04/2015] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle repair after injury includes a complex and well-coordinated regenerative response. However, fibrosis often manifests, leading to aberrant regeneration and incomplete functional recovery. Research efforts have focused on the use of anti-fibrotic agents aimed at reducing the fibrotic response and improving functional recovery. While there are a number of mediators involved in the development of post-injury fibrosis, TGF-β1 is the primary pro-fibrogenic growth factor and several agents that inactivate TGF-β1 signaling cascade have emerged as promising anti-fibrotic therapies. A number of these agents are FDA approved for other conditions, clearing the way for rapid translation into clinical treatment. In this article, we provide an overview of muscle's host response to injury with special emphasis on the cellular and non-cellular mediators involved in the development of fibrosis. This article also reviews the findings of several pre-clinical studies that have utilized anti-fibrotic agents to improve muscle healing following most common forms of muscle injuries. Although some studies have shown positive results with anti-fibrotic treatment, others have indicated adverse outcomes. Some concerns and questions regarding the clinical potential of these anti-fibrotic agents have also been presented.
Collapse
Affiliation(s)
- Koyal Garg
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine Houston, TX, USA
| | - Benjamin T Corona
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine Houston, TX, USA
| | - Thomas J Walters
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine Houston, TX, USA
| |
Collapse
|
66
|
Ward CL, Ji L, Corona BT. An Autologous Muscle Tissue Expansion Approach for the Treatment of Volumetric Muscle Loss. Biores Open Access 2015; 4:198-208. [PMID: 26309796 PMCID: PMC4497650 DOI: 10.1089/biores.2015.0009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Volumetric muscle loss (VML) is a hallmark of orthopedic trauma with no current standard of care. As a potential therapy for some VML indications, autologous minced muscle grafts (1 mm(3) pieces of muscle) are effective in promoting remarkable de novo fiber regeneration. But they require ample donor muscle tissue and therefore may be limited in their application for large clinical VML. Here, we tested the hypothesis that autologous minced grafts may be volume expanded in a collagen hydrogel, allowing for the use of lesser autologous muscle while maintaining regenerative and functional efficacy. The results of the study indicate that 50% (but not 75%) less minced graft tissue suspended in a collagen hydrogel promoted a functional improvement similar to that of a 100% minced graft repair. However, approximately half of the number of fibers regenerated de novo with 50% graft repair. Moreover, the fibers that regenerated had a smaller cross-sectional area. These findings support the concept of using autologous minced grafts for the regeneration of muscle tissue after VML, but indicate the need to identify optimal carrier materials for expansion.
Collapse
Affiliation(s)
- Catherine L. Ward
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| | - Lisa Ji
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| | - Benjamin T. Corona
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| |
Collapse
|