51
|
Naumov DE, Perelman JM, Kolosov VP, Potapova TA, Maksimov VN, Zhou X. Transient receptor potential melastatin 8 gene polymorphism is associated with cold-induced airway hyperresponsiveness in bronchial asthma. Respirology 2015; 20:1192-7. [PMID: 26272603 DOI: 10.1111/resp.12605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/27/2015] [Accepted: 05/06/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Cold-induced airway hyperresponsiveness (CAH) is common in bronchial asthma (BA) patients and represents a problem for those living in cold climate. Transient receptor potential melastatin 8 (TRPM8) channel is the main cold temperature sensor in humans that could mediate cold response in asthmatics with CAH. No associations between TRPM8 gene polymorphisms and CAH have been reported. METHODS The present study involved 123 BA patients. CAH was assessed by 3-min isocapnic (5% CO2 ) cold air (-20°C) hyperventilation challenge. The c.750G > C (rs11562975), c.1256G > A (rs7593557), c.3048C > T (rs11563208) and c.3174C > G (rs11563071) polymorphisms of TRPM8 gene were genotyped by allele-specific polymerase chain reaction (PCR) and PCR with subsequent restriction fragment length polymorphism analysis. RESULTS GC genotype and C allele carriers of the c.750G > C (rs11562975) polymorphism were more frequently observed to exhibit CAH. The estimated odds ratio for the GC genotype was 3.73 95%CI (1.48; 9.37), P = 0.005. Furthermore, GC heterozygotes had a prominent decrease in forced expiratory volume in 1 s after the challenge as compared to GG homozygotes (-12% (-16; -8.1) vs -6.45% (-11; -2.1), P < 0.001). GC carriers also had a marked reduction in other spirometric parameters. CONCLUSIONS The GC variant of the TRPM8:c.750G > C (rs11562975) polymorphism is associated with CAH in patients with BA, which suggests a potential role of TRPM8 in CAH development.
Collapse
Affiliation(s)
- Denis E Naumov
- Laboratory of Prophylaxis of Nonspecific Lung Diseases, Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Blagoveshchensk, Russia
| | - Juliy M Perelman
- Laboratory of Functional Research of Respiratory System, Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Blagoveshchensk, Russia
| | - Victor P Kolosov
- Laboratory of Prophylaxis of Nonspecific Lung Diseases, Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Blagoveshchensk, Russia
| | - Tatyana A Potapova
- Laboratory of Human Molecular Genetics, Research Institute of Internal and Preventive Medicine, Novosibirsk, Russia
| | - Vladimir N Maksimov
- Laboratory of Human Molecular Genetics, Research Institute of Internal and Preventive Medicine, Novosibirsk, Russia
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
52
|
|
53
|
Morice AH. Over-the-counter cough medicines: New approaches. Pulm Pharmacol Ther 2015; 35:149-51. [PMID: 26232720 DOI: 10.1016/j.pupt.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/14/2015] [Accepted: 07/25/2015] [Indexed: 10/23/2022]
Abstract
The global market for over-the-counter (OTC) medicines in the category cough/cold is enormous amounting to 5.77 billion euro in 2014 (source IMS). Despite this enormous healthcare investment, mainly by direct consumer purchase, evidence for efficacy is poor by modern standards. Because of a lack of new drug development existing OTC medicines are supported by trials of inadequate design. This has led to the claim that cough medicines are inefficacious. Recent developments in measuring cough support some existing agents but investment in modern studies to provide comprehensive proof of efficacy has not happened. The switch from prescription medicine to OTC which has occurred in other markets will not occur in antitussives since novel therapies have yet to be developed. One area, that of herbal derived medicines, has seen innovation because it is less hampered by regulatory constraints.
Collapse
Affiliation(s)
- Alyn H Morice
- Centre for Cardiovascular & Metabolic Research, HYMS, University of Hull, Castle Hill Hospital, Castle Road, Cottingham, East Yorkshire, HU16 5JQ, UK.
| |
Collapse
|
54
|
TRP channels. Curr Opin Pharmacol 2015; 22:18-23. [DOI: 10.1016/j.coph.2015.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 01/17/2023]
|
55
|
Millqvist E. TRP channels and temperature in airway disease-clinical significance. Temperature (Austin) 2015; 2:172-7. [PMID: 27227021 PMCID: PMC4843868 DOI: 10.1080/23328940.2015.1012979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/24/2015] [Accepted: 01/26/2015] [Indexed: 11/16/2022] Open
Abstract
Temperatures above and below what is generally regarded as "comfortable" for the human being have long been known to induce various airway symptoms, especially in combination with exercise in cold climate with temperatures below 0°C, which is naturally since exercise is followed by enhanced ventilation and thus greater amounts of inhaled cold air. The aim was to highlight the knowledge we have today on symptoms from the airways (here also including the eyes) arisen from various temperatures; the mechanisms, the pathophysiology and their clinical significance. The most common eye and airway conditions related to temperature changes are dry eye disease, rhinitis, laryngeal dysfunction, asthma, chronic obstructive pulmonary disease and chronic cough. Transient receptor potential (TRP) ion channels are probably involved in all temperature induced airway symptoms but via different pathways, which are now beginning to be mapped out. In asthma, the most persuasive hypothesis today is that cold-induced asthmatic bronchoconstriction is induced by dehydration of the airway mucosa, from which it follows that provocations with osmotic stimuli like hypertonic saline and mannitol can be used as a surrogate for exercise provocation as well as dry air inhalation. In chronic unexplained cough there seems to be a direct influence of cold air on the TRP ion channels followed by coughing and increased cough sensitivity to inhaled capsaicin. Revelations in the last decades of the ability of several airway TRP ion channels to sense and react to ambient air temperature have opened new windows for the understanding of the pathogenesis in a diversity of airway reactions appearing in many common respiratory diseases.
Collapse
Affiliation(s)
- Eva Millqvist
- Department of Internal Medicine/Respiratory Medicine and Allergology; The Sahlgrenska Academy; University of Gothenburg; Gothenburg, Sweden
| |
Collapse
|
56
|
Kunkler PE, Zhang L, Pellman JJ, Oxford GS, Hurley JH. Sensitization of the trigeminovascular system following environmental irritant exposure. Cephalalgia 2015; 35:1192-201. [PMID: 25724913 DOI: 10.1177/0333102415574845] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Air pollution is linked to increased emergency room visits for headache, and migraine patients frequently cite chemicals or odors as headache triggers, but the association between air pollutants and headache is not well understood. We previously reported that nasal administration of environmental irritants acutely increases meningeal blood flow via a TRPA1-dependent mechanism involving the trigeminovascular system. Here, we examine whether chronic environmental irritant exposure sensitizes the trigeminovascular system. METHODS Male rats were exposed to acrolein, a TRPA1 agonist, or room air by inhalation for four days prior to meningeal blood flow measurements. Some animals were injected daily with a TRPA1 antagonist, AP-18, or vehicle prior to inhalation exposure. Trigeminal ganglia were isolated following blood flow measurements for immunocytochemistry and/or qPCR determination of TRPV1, TRPA1 and CGRP levels. RESULTS Acrolein inhalation exposure potentiated blood flow responses both to TRPA1 and TRPV1 agonists compared to room air. Acrolein exposure did not alter TRPV1 or TRPA1 mRNA levels or TRPV1 or CGRP immunoreactive cell counts in the trigeminal ganglion. Acrolein sensitization of trigeminovascular responses to a TRPA1 agonist was attenuated by pre-treatment with AP-18. INTERPRETATION These results suggest trigeminovascular sensitization as a mechanism for enhanced headache susceptibility after chemical exposure.
Collapse
Affiliation(s)
- Phillip Edward Kunkler
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, USA
| | - LuJuan Zhang
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, USA
| | - Jessica Joan Pellman
- The Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, USA
| | - Gerry Stephen Oxford
- The Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, USA
| | - Joyce Harts Hurley
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, USA
| |
Collapse
|
57
|
Peripheral neural circuitry in cough. Curr Opin Pharmacol 2015; 22:9-17. [PMID: 25704498 DOI: 10.1016/j.coph.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 01/22/2023]
Abstract
Cough is a reflex that serves to protect the airways. Excessive or chronic coughing is a major health issue that is poorly controlled by current therapeutics. Significant effort has been made to understand the mechanisms underlying the cough reflex. The focus of this review is the evidence supporting the role of specific airway sensory nerve (afferent) populations in the initiation and modulation of the cough reflex in health and disease.
Collapse
|
58
|
Bonvini SJ, Birrell MA, Smith JA, Belvisi MG. Targeting TRP channels for chronic cough: from bench to bedside. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:401-20. [PMID: 25572384 DOI: 10.1007/s00210-014-1082-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022]
Abstract
Cough is currently the most common reason for patients to visit a primary care physician in the UK, yet it remains an unmet medical need. Current therapies have limited efficacy or have potentially dangerous side effects. Under normal circumstances, cough is a protective reflex to clear the lungs of harmful particles; however, in disease, cough can become excessive, dramatically impacting patients' lives. In many cases, this condition is linked to inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD), but can also be refractory to treatment and idiopathic in nature. Therefore, there is an urgent need to develop therapies, and targeting the sensory afferent arm of the reflex which initiates the cough reflex may uncover novel therapeutic targets. The cough reflex is initiated following activation of ion channels present on vagal sensory afferents. These ion channels include the transient receptor potential (TRP) family of cation-selective ion channels which act as cellular sensors and respond to changes in the external environment. Many direct activators of TRP channels, including arachidonic acid derivatives, a lowered airway pH, changes in temperature, and altered airway osmolarity are present in the diseased airway where responses to challenge agents which activate airway sensory nerve activity are known to be enhanced. Furthermore, the expression of some TRP channels is increased in airway disease. Together, this makes them promising targets for the treatment of chronic cough. This review will cover the current understanding of the role of the TRP family of ion channels in the activation of airway sensory nerves and cough, focusing on four members, transient receptor potential vanilloid (TRPV) 1, transient receptor potential ankyrin (TRPA) 1, TRPV4, and transient receptor potential melastatin (TRPM) 8 as these represent the channels where most information has been gathered with relevance to the airways. We will describe recent data and highlight the possible therapeutic utility of specific TRP channel antagonists as antitussives in the clinic.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
59
|
Canning BJ, Chang AB, Bolser DC, Smith JA, Mazzone SB, McGarvey L. Anatomy and neurophysiology of cough: CHEST Guideline and Expert Panel report. Chest 2014; 146:1633-1648. [PMID: 25188530 PMCID: PMC4251621 DOI: 10.1378/chest.14-1481] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/21/2014] [Indexed: 12/11/2022] Open
Abstract
Bronchopulmonary C-fibers and a subset of mechanically sensitive, acid-sensitive myelinated sensory nerves play essential roles in regulating cough. These vagal sensory nerves terminate primarily in the larynx, trachea, carina, and large intrapulmonary bronchi. Other bronchopulmonary sensory nerves, sensory nerves innervating other viscera, as well as somatosensory nerves innervating the chest wall, diaphragm, and abdominal musculature regulate cough patterning and cough sensitivity. The responsiveness and morphology of the airway vagal sensory nerve subtypes and the extrapulmonary sensory nerves that regulate coughing are described. The brainstem and higher brain control systems that process this sensory information are complex, but our current understanding of them is considerable and increasing. The relevance of these neural systems to clinical phenomena, such as urge to cough and psychologic methods for treatment of dystussia, is high, and modern imaging methods have revealed potential neural substrates for some features of cough in the human.
Collapse
Affiliation(s)
| | - Anne B Chang
- Queensland Children's Respiratory Centre, Royal Children's Hospital, Brisbane, QLD, Australia, Child Health Division, Menzies School of Health, Darwin, NT, Australia
| | - Donald C Bolser
- Department of Physiological Sciences, University of Florida, Gainesville, FL
| | - Jaclyn A Smith
- Centre for Respiratory and Allergy, University of Manchester, Manchester, England
| | - Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Lorcan McGarvey
- Centre for Infection and Immunity, The Queen's University of Belfast, Belfast, Northern Ireland.
| |
Collapse
|
60
|
Ioan I, Poussel M, Coutier L, Plevkova J, Poliacek I, Bolser DC, Davenport PW, Derelle J, Hanacek J, Tatar M, Marchal F, Schweitzer C, Fontana G, Varechova S. What is chronic cough in children? Front Physiol 2014; 5:322. [PMID: 25221517 PMCID: PMC4148026 DOI: 10.3389/fphys.2014.00322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/05/2014] [Indexed: 01/28/2023] Open
Abstract
The cough reflex is modulated throughout growth and development. Cough—but not expiration reflex—appears to be absent at birth, but increases with maturation. Thus, acute cough is the most frequent respiratory symptom during the first few years of life. Later on, the pubertal development seems to play a significant role in changing of the cough threshold during childhood and adolescence resulting in sex-related differences in cough reflex sensitivity in adulthood. Asthma is the major cause of chronic cough in children. Prolonged acute cough is usually related to the long-lasting effects of a previous viral airway infection or to the particular entity called protracted bacterial bronchitis. Cough pointers and type may orient toward specific etiologies, such as barking cough in croup or tracheomalacia, paroxystic whooping cough in Pertussis. Cough is productive in protracted bacterial bronchitis, sinusitis or bronchiectasis. Cough is usually associated with wheeze or dyspnea on exertion in asthma; however, it may be the sole symptom in cough variant asthma. Thus, pediatric cough has particularities differentiating it from adult cough, so the approach and management should be developmentally specific.
Collapse
Affiliation(s)
- Iulia Ioan
- Service D'explorations Fonctionnelles Pédiatriques, Hôpital D'enfants Centre Hospitalier Universitaire de Nancy, Vandoeuvre les Nancy, France
| | - Mathias Poussel
- Service Des Examens de la Fonction Respiratoire et de L'aptitude à L'exercice Centre Hospitalier Universitaire de Nancy, Vandoeuvre les Nancy, France ; EA 3450 DevAH - Laboratoire de Physiologie, Faculté de Médecine, Université Lorraine Vandoeuvre, France
| | - Laurianne Coutier
- EA 3450 DevAH - Laboratoire de Physiologie, Faculté de Médecine, Université Lorraine Vandoeuvre, France
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University Martin, Slovakia
| | - Ivan Poliacek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine, Comenius University Martin, Slovakia
| | - Donald C Bolser
- Department of Physiological Sciences, University of Florida Gainesville, FL, USA
| | - Paul W Davenport
- Department of Physiological Sciences, University of Florida Gainesville, FL, USA
| | - Jocelyne Derelle
- Service de Médecine Infantile et de Génétique Clinique, Hôpital D'enfants Vandœuvre-lès-Nancy, France
| | - Jan Hanacek
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University Martin, Slovakia
| | - Milos Tatar
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University Martin, Slovakia
| | - François Marchal
- Service D'explorations Fonctionnelles Pédiatriques, Hôpital D'enfants Centre Hospitalier Universitaire de Nancy, Vandoeuvre les Nancy, France ; EA 3450 DevAH - Laboratoire de Physiologie, Faculté de Médecine, Université Lorraine Vandoeuvre, France
| | - Cyril Schweitzer
- Service D'explorations Fonctionnelles Pédiatriques, Hôpital D'enfants Centre Hospitalier Universitaire de Nancy, Vandoeuvre les Nancy, France ; EA 3450 DevAH - Laboratoire de Physiologie, Faculté de Médecine, Université Lorraine Vandoeuvre, France ; Service de Médecine Infantile et de Génétique Clinique, Hôpital D'enfants Vandœuvre-lès-Nancy, France
| | - Giovanni Fontana
- Department of Internal Medicine, University of Florence Florence, Italy
| | - Silvia Varechova
- Service D'explorations Fonctionnelles Pédiatriques, Hôpital D'enfants Centre Hospitalier Universitaire de Nancy, Vandoeuvre les Nancy, France ; EA 3450 DevAH - Laboratoire de Physiologie, Faculté de Médecine, Université Lorraine Vandoeuvre, France
| |
Collapse
|
61
|
Morice AH, Millqvist E, Belvisi MG, Bieksiene K, Birring SS, Chung KF, Dal Negro RW, Dicpinigaitis P, Kantar A, McGarvey LP, Pacheco A, Sakalauskas R, Smith JA. Expert opinion on the cough hypersensitivity syndrome in respiratory medicine. Eur Respir J 2014; 44:1132-48. [PMID: 25142479 DOI: 10.1183/09031936.00218613] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In 2011, a European Respiratory Society Task Force embarked on a process to determine the position and clinical relevance of the cough hypersensitivity syndrome, a disorder characterised by troublesome coughing often triggered by low levels of thermal, mechanical or chemical exposure, in the management of patients with chronic cough. A 21-component questionnaire was developed by an iterative process supported by a literature review. 44 key opinion leaders in respiratory medicine were selected and interviewed as to their opinions. There was a high degree of unanimity in the responses obtained, with all opinion leaders supporting the concept of cough hypersensitivity as a clinically useful paradigm. The classic stratification of cough into asthmatic, rhinitic and reflux-related phenotypes was supported. Significant disparity of opinion was seen in the response to two questions concerning the therapy of chronic cough. First, the role of acid suppression in reflux cough was questioned. Secondly, the opinion leaders were split as to whether a trial of oral steroids was indicated to establish a diagnosis of eosinophilic cough. The cough hypersensitivity syndrome was clearly endorsed by the opinion leaders as a valid and useful concept. They considered that support of patients with chronic cough was inadequate and the Task Force recommends that further work is urgently required in this neglected area.
Collapse
Affiliation(s)
- Alyn H Morice
- Centre for Cardiovascular and Metabolic Research, Respiratory Medicine, Hull York Medical School, University of Hull, Cottingham, UK
| | - Eva Millqvist
- Dept of Internal Medicine/Respiratory Medicine and Allergology, University of Gothenburg, Gothenburg, Sweden
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Pharmacology and Toxicology Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Kristina Bieksiene
- Dept of Pulmonology and Immunology, Lithuanian University of Health Science, Kaunas, Lithuania
| | - Surinder S Birring
- Division of Asthma, Allergy and Lung Biology, King's College London, London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Roberto W Dal Negro
- Centro Nazionale Studi di Farmacoeconomia e Farmacoepidemiologua Respiratoria CESFAR, Verona, Italy
| | - Peter Dicpinigaitis
- Einstein Division/Montefiore Medical Center, Albert Einstein College of Medicine, New York, , NY, USA
| | - Ahmad Kantar
- Paediatric Cough and Asthma Centre, Istituti Ospedalieri Bergamaschi, Bergamo, Italy
| | - Lorcan P McGarvey
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Adalberto Pacheco
- Chronic Cough Unit, Pneumology Service, Hospital Ramón y Cajal, Madrid, Spain
| | - Raimundas Sakalauskas
- Dept of Pulmonology and Immunology, Lithuanian University of Health Science, Kaunas, Lithuania
| | - Jaclyn A Smith
- Centre for Respiratory and Allergy, University of Manchester, University Hospital of South Manchester, Manchester, UK
| |
Collapse
|
62
|
Kunkler PE, Ballard CJ, Pellman JJ, Zhang L, Oxford GS, Hurley JH. Intraganglionic signaling as a novel nasal-meningeal pathway for TRPA1-dependent trigeminovascular activation by inhaled environmental irritants. PLoS One 2014; 9:e103086. [PMID: 25077949 PMCID: PMC4117521 DOI: 10.1371/journal.pone.0103086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
Headache is the most common symptom associated with air pollution, but little is understood about the underlying mechanism. Nasal administration of environmental irritants activates the trigeminovascular system by a TRPA1-dependent process. This report addresses questions about the anatomical pathway involved and the function of TRP channels in this pathway. TRPV1 and TRPA1 are frequently co-localized and interact to modulate function in sensory neurons. We demonstrate here that resiniferatoxin ablation of TRPV1 expressing neurons significantly reduces meningeal blood flow responses to nasal administration of both TRPV1 and TRPA1 agonists. Accordingly resiniferatoxin also significantly reduces TRPV1 and CGRP immunostaining and TRPV1 and TRPA1 message levels in trigeminal ganglia. Sensory neurons of the trigeminal ganglia innervate the nasal epithelium and the meninges, but the mechanism and anatomical route by which nasal administration evokes meningeal vasodilatation is unclear. Double retrograde labeling from the nose and meninges reveals no co-localization of fluorescent label, however nasal and meningeal labeled cells are located in close proximity to each other within the trigeminal ganglion. Our data demonstrate that TRPV1 expressing neurons are important for TRPA1 responses in the nasal-meningeal pathway. Our data also suggest that the nasal-meningeal pathway is not primarily by axon reflex, but may instead result from intraganglionic transmission.
Collapse
Affiliation(s)
- Phillip Edward Kunkler
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Carrie Jo Ballard
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jessica Joan Pellman
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - LuJuan Zhang
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gerry Stephen Oxford
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joyce Harts Hurley
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
63
|
Nilius B, Szallasi A. Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacol Rev 2014; 66:676-814. [DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
64
|
Grace MS, Baxter M, Dubuis E, Birrell MA, Belvisi MG. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 2014; 171:2593-607. [PMID: 24286227 PMCID: PMC4009002 DOI: 10.1111/bph.12538] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, there has been an explosion of scientific publications reporting the many and varied roles of transient receptor potential (TRP) ion channels in physiological and pathological systems throughout the body. The aim of this review is to summarize the existing literature on the role of TRP channels in the lungs and discuss what is known about their function under normal and diseased conditions. The review will focus mainly on the pathogenesis and symptoms of asthma and chronic obstructive pulmonary disease and the role of four members of the TRP family: TRPA1, TRPV1, TRPV4 and TRPM8. We hope that the article will help the reader understand the role of TRP channels in the normal airway and how their function may be changed in the context of respiratory disease.
Collapse
Affiliation(s)
- M S Grace
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M Baxter
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - E Dubuis
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
65
|
McGarvey L. Update: the search for the human cough receptor. Lung 2014; 192:459-65. [PMID: 24770379 DOI: 10.1007/s00408-014-9581-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/29/2014] [Indexed: 10/25/2022]
Abstract
Despite the best efforts of basic and applied science, the identity of the human "cough receptor" remains elusive. The attraction of identifying a single "catch all" cough receptor is obvious, although such an objective is unlikely to be realised given the concept of "cough hypersensitivity," which is now considered the most clinically relevant description of what underlies problem coughing. One means of progressing this area is to join the thinking and experimental effort of basic science and clinical research in an effective manner. Some of the best examples of cooperative and translational research over the years together with an update on the most recent work will be discussed in this article.
Collapse
Affiliation(s)
- Lorcan McGarvey
- Centre for Infection and Immunity, Queens University Belfast, Health Sciences Building, Lisburn Road, Belfast, BT9 7BL, Northern Ireland,
| |
Collapse
|
66
|
Dicpinigaitis PV, Morice AH, Birring SS, McGarvey L, Smith JA, Canning BJ, Page CP. Antitussive drugs--past, present, and future. Pharmacol Rev 2014; 66:468-512. [PMID: 24671376 PMCID: PMC11060423 DOI: 10.1124/pr.111.005116] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cough remains a serious unmet clinical problem, both as a symptom of a range of other conditions such as asthma, chronic obstructive pulmonary disease, gastroesophageal reflux, and as a problem in its own right in patients with chronic cough of unknown origin. This article reviews our current understanding of the pathogenesis of cough and the hypertussive state characterizing a number of diseases as well as reviewing the evidence for the different classes of antitussive drug currently in clinical use. For completeness, the review also discusses a number of major drug classes often clinically used to treat cough but that are not generally classified as antitussive drugs. We also reviewed a number of drug classes in various stages of development as antitussive drugs. Perhaps surprising for drugs used to treat such a common symptom, there is a paucity of well-controlled clinical studies documenting evidence for the use of many of the drug classes in use today, particularly those available over the counter. Nonetheless, there has been a considerable increase in our understanding of the cough reflex over the last decade that has led to a number of promising new targets for antitussive drugs being identified and thus giving some hope of new drugs being available in the not too distant future for the treatment of this often debilitating symptom.
Collapse
Affiliation(s)
- P V Dicpinigaitis
- King's College London, Franklin Wilkins Building, 100 Stamford St., London, SE1 9NH, UK.
| | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Transient receptor potential melastatin 8 (TRPM8) was originally cloned from prostate tissue. Shortly thereafter, the protein was identified as a cold- and menthol-activated ion channel in peripheral sensory neurons, where it plays a critical role in cold temperature detection. In this chapter, we review our current understanding of the molecular and biophysical properties, the pharmacology, and the modulation by signaling molecules of this TRP channel. Finally, we examine the physiological role of TRPM8 and its emerging link to various human diseases, including pain, prostate cancer, dry eye disease, and metabolic disorders.
Collapse
Affiliation(s)
- Laura Almaraz
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Avenida S. Ramón y Cajal s.n., San Juan de Alicante, 03550, Spain
| | | | | | | |
Collapse
|
68
|
Effect of Taste Sensation on Cough Reflex Sensitivity. Lung 2013; 192:9-13. [DOI: 10.1007/s00408-013-9515-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/02/2013] [Indexed: 11/25/2022]
|
69
|
Tsujimura T, Udemgba C, Inoue M, Canning BJ. Laryngeal and tracheal afferent nerve stimulation evokes swallowing in anaesthetized guinea pigs. J Physiol 2013; 591:4667-79. [PMID: 23858010 DOI: 10.1113/jphysiol.2013.256024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We describe swallowing reflexes evoked by laryngeal and tracheal vagal afferent nerve stimulation in anaesthetized guinea pigs. The swallowing reflexes evoked by laryngeal citric acid challenges were abolished by recurrent laryngeal nerve (RLN) transection and mimicked by electrical stimulation of the central cut ends of an RLN. By contrast, the number of swallows evoked by upper airway/pharyngeal distensions was not significantly reduced by RLN transection but they were virtually abolished by superior laryngeal nerve transection. Laryngeal citric acid-evoked swallowing was mimicked by laryngeal capsaicin challenges, implicating transient receptor potential vanilloid 1 (TRPV1)-expressing laryngeal afferent nerves arising from the jugular ganglia. The swallowing evoked by citric acid and capsaicin and evoked by electrical stimulation of either the tracheal or the laryngeal mucosa occurred at stimulation intensities that were typically subthreshold for evoking cough in these animals. Swallowing evoked by airway afferent nerve stimulation also desensitized at a much slower rate than cough. We speculate that swallowing is an essential component of airway protection from aspiration associated with laryngeal and tracheal afferent nerve activation.
Collapse
Affiliation(s)
- Takanori Tsujimura
- B. J. Canning: Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|