51
|
Guntuku L, Naidu VGM, Yerra VG. Mitochondrial Dysfunction in Gliomas: Pharmacotherapeutic Potential of Natural Compounds. Curr Neuropharmacol 2016; 14:567-83. [PMID: 26791479 PMCID: PMC4981742 DOI: 10.2174/1570159x14666160121115641] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/08/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
Gliomas are the most common primary brain tumors either benign or malignant originating from the glial tissue. Glioblastoma multiforme (GBM) is the most prevalent and aggressive form among all gliomas, associated with decimal prognosis due to it`s high invasive nature. GBM is also characterized by high recurrence rate and apoptosis resistance features which make the therapeutic targeting very challenging. Mitochondria are key cellular organelles that are acting as focal points in diverse array of cellular functions such as cellular energy metabolism, regulation of ion homeostasis, redox signaling and cell death. Eventual findings of mitochondrial dysfunction include preference of glycolysis over oxidative phosphorylation, enhanced reactive oxygen species generation and abnormal mitochondria mediated apoptotic machinery are frequently observed in various malignancies including gliomas. In particular, gliomas harbor mitochondrial structure abnormalities, genomic mutations in mtDNA, altered energy metabolism (Warburg effect) along with mutations in isocitrate dehydrogenase (IDH) enzyme. Numerous natural compounds have shown efficacy in the treatment of gliomas by targeting mitochondrial aberrant signaling cascades. Some of the natural compounds directly target the components of mitochondria whereas others act indirectly through modulating metabolic abnormalities that are consequence of the mitochondrial dysfunction. The present review offers a molecular insight into mitochondrial pathology in gliomas and therapeutic mechanisms of some of the promising natural compounds that target mitochondrial dysfunction. This review also sheds light on the challenges and possible ways to overcome the hurdles associated with these natural compounds to enter into the clinical market.
Collapse
Affiliation(s)
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India.
| | | |
Collapse
|
52
|
Diedrich J, Gusky HC, Podgorski I. Adipose tissue dysfunction and its effects on tumor metabolism. Horm Mol Biol Clin Investig 2015; 21:17-41. [PMID: 25781550 DOI: 10.1515/hmbci-2014-0045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Abstract
Growing by an alarming rate in the Western world, obesity has become a condition associated with a multitude of diseases such as diabetes, metabolic syndrome and various cancers. Generally viewed as an abnormal accumulation of hypertrophied adipocytes, obesity is also a poor prognostic factor for recurrence and chemoresistance in cancer patients. With more than two-thirds of the adult population in the United States considered clinically overweight or obese, it is critical that the relationship between obesity and cancer is further emphasized and elucidated. Adipocytes are highly metabolically active cells, which, through release of adipokines and cytokines and activation of endocrine and paracrine pathways, affect processes in neighboring and distant cells, altering their normal homeostasis. This work will examine specifically how adipocyte-derived factors regulate the cellular metabolism of malignant cells within the tumor niche. Briefly, tumor cells undergo metabolic pressure towards a more glycolytic and hypoxic state through a variety of metabolic regulators and signaling pathways, i.e., phosphoinositol-3 kinase (PI3K), hypoxia-inducible factor-1 alpha (HIF-1α), and c-MYC signaling. Enhanced glycolysis and high lactate production are hallmarks of tumor progression largely because of a process known as the Warburg effect. Herein, we review the latest literature pertaining to the body of work on the interactions between adipose and tumor cells, and underlining the changes in cancer cell metabolism that have been targeted by the currently available treatments.
Collapse
|
53
|
Shahsavari Z, Karami-Tehrani F, Salami S, Ghasemzadeh M. RIP1K and RIP3K provoked by shikonin induce cell cycle arrest in the triple negative breast cancer cell line, MDA-MB-468: necroptosis as a desperate programmed suicide pathway. Tumour Biol 2015; 37:4479-91. [PMID: 26496737 DOI: 10.1007/s13277-015-4258-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
Resistance to cell death and reprogramming of metabolism are important in neoplastic cells. Increased resistance to apoptosis and recurrence of tumors are the major roadblocks to effective treatment of triple negative breast cancer. It has been thought that execution of necroptosis involves ROS generation and mitochondrial dysfunction in malignant cells. In this study, the effect of shikonin, an active substance from the dried root of Lithospermum erythrorhizon, on the induction of necroptosis or apoptosis, via RIP1K-RIP3K expressions has been examined in the triple negative breast cancer cell line. The expression levels of RIP1K and RIP3K, caspase-3 and caspase-8 activities, the levels of ROS, and mitochondrial membrane potential have been studied in the shikonin-treated MDA-MB-468 cell line. An increase in the ROS levels and a reduction in mitochondrial membrane potential have been observed in the shikonin-treated cells. Cell death has mainly occurred through necroptosis with a significant increase in the RIP1K and RIP3K expressions, and characteristic morphological changes have been observed. In the presence of Nec-1, caspase-3 mediating apoptosis has occurred in the shikonin-treated cells. The current findings have revealed that shikonin provoked mitochondrial ROS production in the triple negative breast cancer cell line, which works as a double-edged executioner's ax in the execution of necroptosis or apoptosis. The main route of cell death induced by shikonin is RIP1K-RIP3K-mediated necroptosis, but in the presence of Nec-1, apoptosis has prevailed. The present results shed a new light on the possible treatment of drug-resistant triple negative breast cancer.
Collapse
Affiliation(s)
- Zahra Shahsavari
- Cancer Research Laboratory, Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran
| | - Fatemeh Karami-Tehrani
- Cancer Research Laboratory, Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran.
| | - Siamak Salami
- Department of Clinical Biochemistry, Faculty of Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
54
|
Wang Z, Li S, Ren R, Li J, Cui X. Recombinant Buckwheat Trypsin Inhibitor Induces Mitophagy by Directly Targeting Mitochondria and Causes Mitochondrial Dysfunction in Hep G2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7795-7804. [PMID: 26301894 DOI: 10.1021/acs.jafc.5b02644] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mitochondria are essential targets for cancer chemotherapy and other disease treatments. Recombinant buckwheat trypsin inhibitor (rBTI), a member of the potato type I proteinase inhibitor family, was derived from tartary buckwheat extracts. Our results showed that rBTI directly targeted mitochondria and induced mitochondrial fragmentation and mitophagy. This occurs through enhanced depolarization of the mitochondrial membrane potential, increasing reactive oxygen species (ROS) generation associated with the rise of the superoxide dismutase and catalase activity and glutathione peroxidase (GSH) content, and changes in the GSH/oxidized glutathione ratio. Mild and transient ROS induced by rBTI were shown to be important signaling molecules required to induce Hep G2 mitophagy to remove dysfunctional mitochondria. Furthermore, rBTI could directly induce mitochondrial fragmentation. It was also noted that rBTI highly increased colocalization of mitochondria in treated cells compared to nontreated cells. Tom 20, a subunit of the translocase of the mitochondrial outer membrane complex responsible for recognizing mitochondrial presequences, may be the direct target of rBTI.
Collapse
Affiliation(s)
- Zhuanhua Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University , Taiyuan 030006, P. R. China
| | - Shanshan Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University , Taiyuan 030006, P. R. China
| | - Rong Ren
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University , Taiyuan 030006, P. R. China
| | - Jiao Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University , Taiyuan 030006, P. R. China
| | - Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University , Taiyuan 030006, P. R. China
| |
Collapse
|
55
|
Cho SC, Choi BY. Acetylshikonin Inhibits Human Pancreatic PANC-1 Cancer Cell Proliferation by Suppressing the NF-κB Activity. Biomol Ther (Seoul) 2015; 23:428-33. [PMID: 26336582 PMCID: PMC4556202 DOI: 10.4062/biomolther.2015.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/31/2015] [Accepted: 08/07/2015] [Indexed: 12/16/2022] Open
Abstract
Acetylshikonin, a natural naphthoquinone derivative compound, has been used for treatment of inflammation and cancer. In the present study, we have investigated whether acetylshikonin could regulate the NF-κB signaling pathway, thereby leading to suppression of tumorigenesis. We observed that acetylshikonin significantly reduced proliferation of several cancer cell lines, including human pancreatic PANC-1 cancer cells. In addition, acetylshikonin inhibited phorbol 12-myristate 13-acetate (PMA) or tumor necrosis-α (TNF-α)-induced NF-κB reporter activity. Proteome cytokine array and real-time RT-PCR results illustrated that acetylshikonin inhibition of PMA-induced production of cytokines was mediated at the transcriptional level and it was associated with suppression of NF-κB activity and matrix metalloprotenases. Finally, we observed that an exposure of acetylshikonin significantly inhibited the anchorage-independent growth of PANC-1 cells. Together, our results indicate that acetylshikonin could serve as a promising therapeutic agent for future treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Seok-Cheol Cho
- Department of Food Science & Engineering, Seowon University, Cheongju 361-742, Republic of Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju 361-742, Republic of Korea
| |
Collapse
|
56
|
Senthilkumar R, Chen BA, Cai XH, Fu R. Anticancer and multidrug-resistance reversing potential of traditional medicinal plants and their bioactive compounds in leukemia cell lines. Chin J Nat Med 2015; 12:881-94. [PMID: 25556059 DOI: 10.1016/s1875-5364(14)60131-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 01/11/2023]
Abstract
Multidrug resistance remains a serious clinical problem in the successful therapy of malignant diseases. It occurs in cultured tumor cell lines, as well as in human cancers. Therefore, it is critical to develop novel anticancer drugs with multidrug-resistance modulating potential to increase the survival rate of leukemia patients. Plant-derived natural products have been used for the treatment of various diseases for thousands of years. This review summarizes the anticancer and multidrug-resistance reversing properties of the extracts and bioactive compounds from traditional medicinal plants in different leukemia cell lines. Further mechanistic studies will pave the road to establish the anticancer potential of plant-derived natural compounds.
Collapse
Affiliation(s)
- Ravichandran Senthilkumar
- Department of Neoplastic Hematologic Disorders (Medical Science Key Subject of Jiangsu Province), Zhongda Hospital, Schoool of Medicine, Southeast University, Nanjing 210009, China; Department of Oncology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bao-An Chen
- Department of Neoplastic Hematologic Disorders (Medical Science Key Subject of Jiangsu Province), Zhongda Hospital, Schoool of Medicine, Southeast University, Nanjing 210009, China; Department of Oncology, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Xiao-Hui Cai
- Department of Neoplastic Hematologic Disorders (Medical Science Key Subject of Jiangsu Province), Zhongda Hospital, Schoool of Medicine, Southeast University, Nanjing 210009, China; Department of Oncology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
57
|
Antagonistic effects of acetylshikonin on LPS-induced NO and PGE2 production in BV2 microglial cells via inhibition of ROS/PI3K/Akt-mediated NF-κB signaling and activation of Nrf2-dependent HO-1. In Vitro Cell Dev Biol Anim 2015; 51:975-86. [PMID: 26091627 DOI: 10.1007/s11626-015-9922-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/11/2015] [Indexed: 12/17/2022]
Abstract
Although acetylshikonin (ACS) is known to have antioxidant and antitumor activities, whether ACS regulates the expression of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated microglial cells remains unclear. In this study, it was found that ACS isolated from Lithospermum erythrorhizon inhibits LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) release by suppressing the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in BV2 microglial cells. Furthermore, ACS reduced the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) and subsequently suppressed iNOS and COX-2 expression. Consistent with these data, ACS attenuated the phosphorylation of PI3K and Akt and suppressed the DNA-binding activity of NF-κB by inducing the generation of reactive oxygen species (ROS) in LPS-stimulated cells. In addition, ACS enhanced heme oxygenase-1 (HO-1) expression via nuclear factor-erythroid 2-related factor 2 (Nrf2) activation. Zinc protoporphyrin, a specific HO-1 inhibitor, partially attenuated the antagonistic effects of ACS on LPS-induced NO and PGE2 production. By contrast, the presence of cobalt protoporphyrin, a specific HO-1 inducer, potently suppressed LPS-induced NO and PGE2 production. These data indicate that ACS downregulates proinflammatory mediators such as NO and PGE2 by suppressing PI3K/Akt-dependent NF-κB activity induced by ROS as well as inducing Nrf2-dependent HO-1 activity. Taken together, ACS might be a good candidate to regulate LPS-mediated inflammatory diseases.
Collapse
|
58
|
Shikonin protects against obesity through the modulation of adipogenesis, lipogenesis, and β-oxidation in vivo. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
59
|
Thakur R, Trivedi R, Rastogi N, Singh M, Mishra DP. Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer. Sci Rep 2015; 5:10194. [PMID: 25973915 PMCID: PMC4431480 DOI: 10.1038/srep10194] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/02/2015] [Indexed: 12/26/2022] Open
Abstract
Cancer stem cells (CSCs) are responsible for aggressive tumor growth, metastasis and therapy resistance. In this study, we evaluated the effects of Shikonin (Shk) on breast cancer and found its anti-CSC potential. Shk treatment decreased the expression of various epithelial to mesenchymal transition (EMT) and CSC associated markers. Kinase profiling array and western blot analysis indicated that Shk inhibits STAT3, FAK and Src activation. Inhibition of these signaling proteins using standard inhibitors revealed that STAT3 inhibition affected CSCs properties more significantly than FAK or Src inhibition. We observed a significant decrease in cell migration upon FAK and Src inhibition and decrease in invasion upon inhibition of STAT3, FAK and Src. Combined inhibition of STAT3 with Src or FAK reduced the mammosphere formation, migration and invasion more significantly than the individual inhibitions. These observations indicated that the anti-breast cancer properties of Shk are due to its potential to inhibit multiple signaling proteins. Shk also reduced the activation and expression of STAT3, FAK and Src in vivo and reduced tumorigenicity, growth and metastasis of 4T1 cells. Collectively, this study underscores the translational relevance of using a single inhibitor (Shk) for compromising multiple tumor-associated signaling pathways to check cancer metastasis and stem cell load.
Collapse
Affiliation(s)
- Ravi Thakur
- Cell Death Research Laboratory, Endocrinology Division, CSIR-CDRI, Lucknow, INDIA
| | - Rachana Trivedi
- Cell Death Research Laboratory, Endocrinology Division, CSIR-CDRI, Lucknow, INDIA
| | - Namrata Rastogi
- Cell Death Research Laboratory, Endocrinology Division, CSIR-CDRI, Lucknow, INDIA
| | - Manisha Singh
- Cell Death Research Laboratory, Endocrinology Division, CSIR-CDRI, Lucknow, INDIA
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Endocrinology Division, CSIR-CDRI, Lucknow, INDIA
| |
Collapse
|
60
|
Gara RK, Srivastava VK, Duggal S, Bagga JK, Bhatt M, Sanyal S, Mishra DP. Shikonin selectively induces apoptosis in human prostate cancer cells through the endoplasmic reticulum stress and mitochondrial apoptotic pathway. J Biomed Sci 2015; 22:26. [PMID: 25879420 PMCID: PMC4389804 DOI: 10.1186/s12929-015-0127-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 03/06/2015] [Indexed: 12/12/2022] Open
Abstract
Background Despite the recent progress in screening and therapy, a majority of prostate cancer cases eventually attain hormone refractory and chemo-resistant attributes. Conventional chemotherapeutic strategies are effective at very high doses for only palliative management of these prostate cancers. Therefore chemo-sensitization of prostate cancer cells could be a promising strategy for increasing efficacy of the conventional chemotherapeutic agents in prostate cancer patients. Recent studies have indicated that the chemo-preventive natural agents restore the pro-apoptotic protein expression and induce endoplasmic reticulum stress (ER stress) leading to the inhibition of cellular proliferation and activation of the mitochondrial apoptosis in prostate cancer cells. Therefore reprogramming ER stress-mitochondrial dependent apoptosis could be a potential approach for management of hormone refractory chemoresistant prostate cancers. We aimed to study the effects of the natural naphthoquinone Shikonin in human prostate cancer cells. Results The results indicated that Shikonin induces apoptosis in prostate cancer cells through the dual induction of the endoplasmic reticulum stress and mitochondrial dysfunction. Shikonin induced ROS generation and activated ER stress and calpain activity. Moreover, addition of antioxidants attenuated these effects. Shikonin also induced the mitochondrial apoptotic pathway mediated through the enhanced expression of the pro-apoptotic Bax and inhibition of Bcl-2, disruption of the mitochondrial membrane potential (MMP) followed by the activation of caspase-9, caspase-3, and PARP cleavage. Conclusion The results suggest that shikonin could be useful in the therapeutic management of hormone refractory prostate cancers due to its modulation of the pro-apoptotic ER stress and mitochondrial apoptotic pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0127-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rishi Kumar Gara
- Cell Death Research Laboratory, Endocrinology Division CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Center for Cancer Research, UTHSC, Memphis, TN, USA.
| | | | - Shivali Duggal
- Department of Radiotherapy, King George Medical University, Lucknow, 226003, India.
| | - Jaspreet Kaur Bagga
- Cell Death Research Laboratory, Endocrinology Division CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Mlb Bhatt
- Department of Radiotherapy, King George Medical University, Lucknow, 226003, India.
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Endocrinology Division CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| |
Collapse
|
61
|
Qu D, Xu XM, Zhang M, Jiang TS, Zhang Y, Li SQ. Cbl participates in shikonin-induced apoptosis by negatively regulating phosphoinositide 3-kinase/protein kinase B signaling. Mol Med Rep 2015; 12:1305-13. [PMID: 25815461 DOI: 10.3892/mmr.2015.3510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 02/11/2015] [Indexed: 11/06/2022] Open
Abstract
Shikonin, a naturally occurring naphthoquinone, exhibits anti-tumorigenic activity. However, its precise mechanisms of action have remained elusive. In the present study, the involvement in the action of shikonin of the ubiquitin ligases Cbl-b and c-Cbl, which are negative regulators of phosphoinositide 3-kinase (PI3K) activation, was investigated. Shikonin was observed to reduce cell viability and induce apoptosis and G2/M phase arrest in lung cancer cells. In addition, shikonin increased the protein levels of B-cell lymphoma 2 (Bcl-2)-associated X and p53 and reduced those of Bcl-2. Additionally, shikonin inhibited PI3k/Akt activity and upregulated Cbl protein expression. In addition, a specific inhibitor of PI3K, LY294002, was observed to have a synergistic effect on the proliferation inhibition and apoptotic induction of A549 cells with shikonin. In conclusion, the results of the present study suggested that Cbl proteins promote shikonin-induced apoptosis by negatively regulating PI3K/Akt signaling in lung cancer cells.
Collapse
Affiliation(s)
- Dan Qu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiao-Man Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Meng Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ting-Shu Jiang
- Department of Respiratory Medicine, Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yi Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Sheng-Qi Li
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
62
|
Zhao Q, Kretschmer N, Bauer R, Efferth T. Shikonin and its derivatives inhibit the epidermal growth factor receptor signaling and synergistically kill glioblastoma cells in combination with erlotinib. Int J Cancer 2015; 137:1446-56. [PMID: 25688715 DOI: 10.1002/ijc.29483] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 02/04/2015] [Indexed: 01/26/2023]
Abstract
Overexpression and mutation of the epidermal growth factor receptor (EGFR) gene play a causal role in tumorigenesis and resistance to treatment of glioblastoma (GBM). EGFR inhibitors such as erlotinib are currently used for the treatment of GBM; however, their efficacy has been limited due to drug resistance. New treatment strategies are therefore urgently needed. Shikonin, a natural naphthoquinone, induces both apoptosis and necroptosis in human glioma cells, but the effectiveness of erlotinib-shikonin combination treatment as well as the underlying molecular mechanisms is unknown yet. In this study, we investigated erlotinib in combination with shikonin and 14 shikonin derivatives in parental U87MG and transfected U87MG.ΔEGFR GBM cells. Most of the shikonin derivatives revealed strong cytotoxicity. Shikonin together with five other derivatives, namely deoxyshikonin, isobutyrylshikonin, acetylshikonin, β,β-dimethylacrylshikonin and acetylalkannin showed synergistic cytotoxicity toward U87MG.ΔEGFR in combination with erlotinib. Moreover, the combined cytotoxic effect of shikonin and erlotinib was further confirmed with another three EGFR-expressing cell lines, BS153, A431 and DK-MG. Shikonin not only dose-dependently inhibited EGFR phosphorylation and decreased phosphorylation of EGFR downstream molecules, including AKT, P44/42MAPK and PLCγ1, but also together with erlotinib synergistically inhibited ΔEGFR phosphorylation in U87MG.ΔEGFR cells as determined by Loewe additivity and Bliss independence drug interaction models. These results suggest that the combination of erlotinib with shikonin or its derivatives might be a potential strategy to overcome drug resistance to erlotinib.
Collapse
Affiliation(s)
- Qiaoli Zhao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Nadine Kretschmer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
63
|
Qu D, Chen YU, Xu XM, Zhang M, Zhang YI, Li SQ. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med 2015; 9:1265-1270. [PMID: 25780420 PMCID: PMC4353798 DOI: 10.3892/etm.2015.2283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 01/08/2015] [Indexed: 12/02/2022] Open
Abstract
Shikonin (SK), a naturally occurring naphthoquinone, exhibits antitumor activity. However, its precise mechanisms of action are unknown. In the present study, the effects of SK on NCI-H460 human lung cancer cells were investigated. It was found that SK reduced cell viability and induced apoptosis in the NCI-H460 cells. Additionally, SK inhibited extracellular signal-regulated kinase (ERK) activity, which indicates that inhibition of the ERK pathway is probably one of the mechanisms by which SK induced NCI-H460 cell apoptosis. The expression of Cbl-b was significantly increased by treatment with SK for 4 h, and gradually increased to a maximal level at 24 h; the time taken for the upregulation of Cbl-b protein was in accordance to that required for the downregulation of phospho (p)-ERK protein. The Cbl inhibitor Ps341 reversed the SK-induced downregulation of p-ERK and apoptosis of NCI-H460 cells. These results indicate that Cbl-b potentiates the apoptotic action of SK by inhibiting the ERK pathway in lung cancer cells.
Collapse
Affiliation(s)
- Dan Qu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Y U Chen
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiao-Man Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Meng Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Y I Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Sheng-Qi Li
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
64
|
Zeino M, Paulsen MS, Zehl M, Urban E, Kopp B, Efferth T. Identification of new P-glycoprotein inhibitors derived from cardiotonic steroids. Biochem Pharmacol 2014; 93:11-24. [PMID: 25451686 DOI: 10.1016/j.bcp.2014.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/27/2022]
Abstract
P-glycoprotein (ABCB1, MDR1) is capable of extruding chemotherapeutics outside the cell and its overexpression in certain cancer cells may cause failure of chemotherapy. Many attempts were carried out to identify potent inhibitors of this transporter and numerous compounds were shown to exert inhibitory effects in vitro, but so far none were able to make their way to the clinic due to serious complications. Natural compounds represent a great source of therapeutics, which are believed to be safe and effective. Therefore, we have screened a large library of naturally occurring cardiotonic steroids and their derivatives using high throughput flow cytometry. We were able to identify six compounds capable of modulating P-glycoprotein activity. By using P-glycoprotein ATPase assays, molecular docking in silico studies and resazurin reduction assays, the outcome of this high throughput screening platform has been validated. These novel compounds may serve as candidates to reverse doxorubicin resistance in leukemia cells.
Collapse
Affiliation(s)
- Maen Zeino
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Malte S Paulsen
- St. Mary's, Respiratory Infections NHLI, Flow Cytometry Core Facility, Imperial College, London, Great Britain
| | - Martin Zehl
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; Departments of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Ernst Urban
- Departments of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
65
|
Chou ST, Lin HC, Chuang MY, Chiu TH. Treatment with C
aulerpa Microphysa
Pepsin-Digested Extract Induces Apoptosis in Murine Leukemia WEHI-3 Cells. J Food Biochem 2014. [DOI: 10.1111/jfbc.12079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Su-Tze Chou
- Department of Food and Nutrition; Providence University; Taichung Taiwan
| | - Hui-Chiu Lin
- Penghu Marine Biology Research Center; Fisheries Research Institute; Penghu County Taiwan
| | - Mei-Yu Chuang
- Department of Food and Nutrition; Providence University; Taichung Taiwan
| | - Tsai-Hsin Chiu
- Department of Food Science; National Penghu University of Science and Technology; 300 Liu-Ho Rd. Magong City, Penghu County 880 Taiwan
| |
Collapse
|
66
|
Baloch† SK, Ling† LJ, Qiu HY, Ma L, Lin HY, Huang SC, Qi JL, Wang XM, Lu GH, Yang YH. Synthesis and biological evaluation of novel shikonin ester derivatives as potential anti-cancer agents. RSC Adv 2014. [DOI: 10.1039/c4ra05610h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
67
|
Shi S, Cao H. Shikonin promotes autophagy in BXPC-3 human pancreatic cancer cells through the PI3K/Akt signaling pathway. Oncol Lett 2014; 8:1087-1089. [PMID: 25120662 PMCID: PMC4114587 DOI: 10.3892/ol.2014.2293] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the effect of shikonin on autophagy in BXPC-3 human pancreatic cancer cells and its underlying mechanism. Cell viability was assessed using the Cell Counting Kit-8 assay and the expression of light chain (LC) 3, p62, phosphoinositide 3-kinase (PI3K), Akt, phosphorylated (p)-PI3K and p-Akt was analyzed using western blot analysis. Following treatment with 1 μmol/l shikonin for 48 h and 2.5 and 5 μmol/l shikonin for 24 and 48 h, the viability of the BXPC-3 cells was found to be significantly reduced and the protein expression of LC3-II/LC3-I was observed to be increased, while the protein expression of p62, PI3K, Akt, p-PI3K and p-Akt was decreased. These findings suggest that shikonin promotes autophagy in BXPC-3 cells and that the underlying mechanism may be associated with the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shuqing Shi
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Haimei Cao
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
68
|
Matthaiou EI, Barar J, Sandaltzopoulos R, Li C, Coukos G, Omidi Y. Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer. Int J Nanomedicine 2014; 9:1855-70. [PMID: 24790428 PMCID: PMC3998853 DOI: 10.2147/ijn.s51880] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Conventional chemotherapy of ovarian cancer often fails because of initiation of drug resistance and/or side effects and trace of untouched remaining cancerous cells. This highlights an urgent need for advanced targeted therapies for effective remediation of the disease using a cytotoxic agent with immunomodulatory effects, such as shikonin (SHK). Based on preliminary experiments, we found SHK to be profoundly toxic in ovarian epithelial cancer cells (OVCAR-5 and ID8 cells) as well as in normal ovarian IOSE-398 cells, endothelial MS1 cells, and lymphocytes. To limit its cytotoxic impact solely to tumor cells within the tumor microenvironment (TME), we aimed to engineer SHK as polymeric nanoparticles (NPs) with targeting moiety toward tumor microvasculature. To this end, using single/double emulsion solvent evaporation/diffusion technique with sonication, we formulated biodegradable NPs of poly(lactic-co-glycolic acid) (PLGA) loaded with SHK. The surface of NPs was further decorated with solubilizing agent polyethylene glycol (PEG) and tumor endothelial marker 1 (TEM1)/endosialin-targeting antibody (Ab) through carbodiimide/N-hydroxysuccinimide chemistry. Having characterized the physicochemical and morphological properties of NPs, we studied their drug-release profiles using various kinetic models. The biological impact of NPs was also evaluated in tumor-associated endothelial MS1 cells, primary lymphocytes, and epithelial ovarian cancer OVCAR-5 cells. Based on particle size analysis and electron microscopy, the engineered NPs showed a smooth spherical shape with size range of 120 to 250 nm and zeta potential value of -30 to -40 mV. Drug entrapment efficiency was ~80%-90%, which was reduced to ~50%-60% upon surface decoration with PEG and Ab. The liberation of SHK from NPs showed a sustained-release profile that was best fitted with Wagner log-probability model. Fluorescence microscopy and flow cytometry analysis showed active interaction of Ab-armed NPs with TEM1-positive MS1 cells, but not with TEM1-negative MS1 cells. While exposure of the PEGylated NPs for 2 hours was not toxic to lymphocytes, long-term exposure of the Ab-armed and PEGylated NPs was significantly toxic to TEM1-positive MS1 cells and OVCAR-5 cells. Based on these findings, we propose SHK-loaded Ab-armed PEGylated PLGA NPs as a novel nanomedicine for targeted therapy of solid tumors.
Collapse
Affiliation(s)
- Efthymia-Iliana Matthaiou
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Jaleh Barar
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Chunsheng Li
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George Coukos
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Yadollah Omidi
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
69
|
Kwak SY, Jeong YK, Kim BY, Lee JY, Ahn HJ, Jeong JH, Kim MS, Kim J, Han YH. β,β-Dimethylacrylshikonin sensitizes human colon cancer cells to ionizing radiation through the upregulation of reactive oxygen species. Oncol Lett 2014; 7:1812-1818. [PMID: 24932238 PMCID: PMC4049772 DOI: 10.3892/ol.2014.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/11/2014] [Indexed: 01/15/2023] Open
Abstract
Shikonin, a naphthoquinone derivative, has been shown to possess antitumor activity. In the present study, the effects of shikonin and its analog, β,β-dimethylacrylshikonin, were investigated as radiosensitizers on the human colon cancer cell line, HCT-116. Shikonin and, to a greater extent, its analog-induced apoptosis of HCT-116 cells further synergistically potentiated the induction of apoptosis when combined with ionizing radiation (IR) treatment. Shikonins also stimulated an increase in reactive oxygen species (ROS) production and IR-induced DNA damage. Pre-treatment with the ROS scavenger, N-acetylcysteine, suppressed the enhancement of IR-induced DNA damage and apoptosis stimulated by shikonins, indicating that shikonins exert their radiosensitizing effects through ROS upregulation. The radiosensitizing effect of shikonins was also examined in vivo using the xenograft mouse model. Consistent with the in vitro results, injection of β,β-dimethylacrylshikonin combined with IR treatment significantly suppressed tumor growth of the HCT-116 xenograft. Taken together, the results show that β,β-dimethylacrylshikonin is a promising agent for developing an improved strategy for radiotherapy against tumors.
Collapse
Affiliation(s)
- Seo-Young Kwak
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea ; Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Youn Kyoung Jeong
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Bu-Yeon Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Ji Young Lee
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Hyun-Joo Ahn
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Jae-Hoon Jeong
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Mi-Sook Kim
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Young-Hoon Han
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| |
Collapse
|
70
|
Kim SJ, Kim JM, Shim SH, Chang HI. Shikonin induces cell cycle arrest in human gastric cancer (AGS) by early growth response 1 (Egr1)-mediated p21 gene expression. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:1064-1071. [PMID: 24384380 DOI: 10.1016/j.jep.2013.11.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lithospermum erythrorhizon, a naphthoquinone compound derived from a shikonin, has long been used as traditional Chinese medicine for treatment of various diseases, including cancer. To evaluate the cytotoxic effects of shikonin on AGS gastric cancer cells via induction of cell cycle arrest. MATERIALS AND METHODS We observed the effects of 12.5-100 ng/mL dosage of shikonin treatment on AGS cancer cell line with the incubation time of 6h. Cytotoxic effects were assessed by measuring the changes in the intracellular ROS, appearance of senescence phenotype, cell cycle progression, CDK and cyclins expression levels upon shikonin treatment. We also examined upon the activation of Egr1-mediated p21 expression, by siRNA transfection, Luciferase assay, and ChIP assay. RESULTS In this study, we found that shikonin inhibits cell proliferation by arresting cell cycle progression at the G2/M phase via modulation of p21 in AGS cells. Also, our results revealed that the p21 gene was transactivated by early growth response1 (Egr1) in response to the shikonin treatment. Transient Egr1 expression enhanced shikonin-induced p21 promoter activity, whereas the suppression of Egr1 expression by small interfering RNA attenuated the ability of shikonin to induce p21 promoter activity. CONCLUSION Our results suggested that the anti-proliferative activity of shikonin was due to its ability to induce cell cycle arrest via Egr1-p21 signaling pathway. Thus, the work stated here validates the traditional use of shikonin in the treatment of cancer.
Collapse
Affiliation(s)
- Sun-Joong Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea; Department of Molecular & Cellular Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd Unit 108, Houston, TX, USA
| | - Jee Min Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - So Hee Shim
- Department of Microbiology, College of Medicine, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Hyo Ihl Chang
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea.
| |
Collapse
|
71
|
Ogawa Y, Kawano Y, Yamazaki Y, Onishi Y. Shikonin shortens the circadian period: possible involvement of Top2 inhibition. Biochem Biophys Res Commun 2014; 443:339-43. [PMID: 24321095 DOI: 10.1016/j.bbrc.2013.11.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 11/30/2013] [Indexed: 12/01/2022]
Abstract
The naphthoquinone pigment, shikonin, is a natural product derived from Lithospermum erythrorhizon and an active component of a Chinese traditional herbal therapeutic. We identified shikonin as a candidate for shortening the circadian period using real-time reporter gene assays based on NIH3T3-derived stable reporter cells. Period length that became shortened in cells incubated with shikonin or etoposide reverted to that of control cells after continued incubation without these compounds. These findings indicated that shikonin and etoposide shorten the circadian period reversibly and through similar mechanisms. Topoisomerase II (Top2)-specific decatenation assays confirmed that shikonin, liker etoposide, is a Top2 inhibitor. Shikonin was incorporated into the nucleus and Top2 was located in the Bmal1 promoter, suggesting the relationship between Bmal1 transcription and Top2 inhibition. Top2a siRNA also shortened period length, suggesting that Top2 is involved in this process. Promoter assays showed that Top2a siRNA, etoposide and shikonin reduce Bmal1 promoter activity. These findings indicated that Top2 is involved in Bmal1 transcription and influences the circadian period, and that shikonin is a novel contributor to the control of period length in mammalian cells.
Collapse
Affiliation(s)
- Yoshikatsu Ogawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan
| | - Yasuhiro Kawano
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan
| | - Yoshimitsu Yamazaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan
| | - Yoshiaki Onishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan.
| |
Collapse
|
72
|
Integration of Different "-omics" Technologies Identifies Inhibition of the IGF1R-Akt-mTOR Signaling Cascade Involved in the Cytotoxic Effect of Shikonin against Leukemia Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:818709. [PMID: 23861714 PMCID: PMC3703888 DOI: 10.1155/2013/818709] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/07/2013] [Indexed: 01/11/2023]
Abstract
Hematological malignancies frequently have a poor prognosis and often remain incurable. Drug resistance, severe side effects, and relapse are major problems of currently used drugs, and new candidate compounds are required for improvement of therapy success. The naphthoquinone shikonin derived from the Chinese medicinal herb, Lithospermum erythrorhizon, is a promising candidate for the next generation of chemotherapy. The basal cellular mechanism of shikonin is the direct targeting of mitochondria. Cytotoxicity screenings showed that the compound is particularly effective against leukemia cells suggesting an additional cellular mechanism. mRNA and miRNA microarrays were used to analyze changes in gene expression in leukemia cells after shikonin treatment and combined with stable-isotope dimethyl labeling for quantitative proteomics. The integration of bioinformatics and the three "-omics" assays showed that the PI3K-Akt-mTOR pathway was affected by shikonin. Deregulations of this pathway are frequently associated with cancerogenesis, especially in a wide range of hematological malignancies. The effect on the PI3K-Akt-mTOR axis was validated by demonstrating a decreased phosphorylation of Akt and a direct inhibition of the IGF1R kinase activity after shikonin treatment. Our results indicate that inhibiting the IGF1R-Akt-mTOR signaling cascade is a new cellular mechanism of shikonin strengthening its potential for the treatment of hematological malignancies.
Collapse
|
73
|
Wang H, Wu C, Wan S, Zhang H, Zhou S, Liu G. Shikonin attenuates lung cancer cell adhesion to extracellular matrix and metastasis by inhibiting integrin β1 expression and the ERK1/2 signaling pathway. Toxicology 2013; 308:104-12. [DOI: 10.1016/j.tox.2013.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 01/07/2023]
|