51
|
Mistry HD, Ogalde MVH, Broughton Pipkin F, Escher G, Kurlak LO. Maternal, Fetal, and Placental Selectins in Women With Pre-eclampsia; Association With the Renin-Angiotensin-System. Front Med (Lausanne) 2020; 7:270. [PMID: 32596247 PMCID: PMC7304321 DOI: 10.3389/fmed.2020.00270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
Selectins [endothelial (E), platelet (P), and leucocytes (L)] are a class of cell adhesion molecules, stimulated in response to inflammation. Pre-eclampsia is characterized by inflammation, and angiotensin II is pro-inflammatory. We hypothesized that circulating maternal and fetal concentrations and placental expression of selectins would be increased in women with pre-eclampsia and would be associated with the angiotensin receptors (AT1R and AT2R). Maternal and fetal blood and placental tissue was collected at delivery from White European normotensive controls (n = 17) and women with pre-eclampsia (n = 17). Soluble (s) E-, P- and L-selectin protein concentrations were measured by ELISA and placental protein expression was examined by immunohistochemistry. Maternal sE-selectin concentrations were increased in pre-eclampsia (P < 0.001); conversely fetal sE- and sP-selectin levels were lower in pre-eclampsia (P < 0.05 for both). Staining was mainly localized to the syncytiotrophoblast for all selectins. E-selectin expression was increased, while P-selectin was decreased in placental from pre-eclampsia (P < 0.05 for both); no differences were observed for L-selectin expression. Both E- and L-selectin were positively correlated (P < 0.008; P < 0.02) with AT2R placental expression, whilst P-selectin was negatively associated with AT1R (P < 0.005), all only in the pre-eclampsia group. This novel study reports maternal, fetal and placental expression of selectins in pre-eclampsia. The increased E-selectins reflect the endothelial dysfunction, characteristic of pre-eclampsia. In contrast, the reduced P-selectins and the positive association of placental AT2Rs with both E-and L-selectin in pre-eclampsia could be a protective mechanism to limit the endothelial dysfunction.
Collapse
Affiliation(s)
- Hiten D. Mistry
- Department of Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Melissa V. Hott Ogalde
- Department of Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Fiona Broughton Pipkin
- Department of Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Geneviève Escher
- Department of Nephrology and Hypertension, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Lesia O. Kurlak
- Department of Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
52
|
Ribeiro P, Leitão L, Monteiro AC, Bortolin A, Moura B, Lamghari M, Neto E. Microfluidic-based models to address the bone marrow metastatic niche complexity. Semin Cell Dev Biol 2020; 112:27-36. [PMID: 32513499 DOI: 10.1016/j.semcdb.2020.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Bone marrow (BM) is a preferential metastatic site for solid cancers, contributing to higher morbidity and mortality among millions of oncologic patients worldwide. There are no current efficient therapies to minimize this health burden. Microfluidic based in vitro models emerge as powerful alternatives to animal testing, as well as promising tools for the development of personalized medicine solutions. The complexity associated with the BM metastatic niche originated a wide variety of microfluidic platforms designed to mimic this microenvironment. This review gathers the essential parameters to design an accurate in vitro microfluidic device, based on a comparative analysis of existing models created to address the different steps of the metastatic cascade.
Collapse
Affiliation(s)
- Patrícia Ribeiro
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Luís Leitão
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana C Monteiro
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrea Bortolin
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Beatriz Moura
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
53
|
Denneny E, Sahota J, Beatson R, Thornton D, Burchell J, Porter J. Mucins and their receptors in chronic lung disease. Clin Transl Immunology 2020; 9:e01120. [PMID: 32194962 PMCID: PMC7077995 DOI: 10.1002/cti2.1120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
There is growing recognition that mucus and mucin biology have a considerable impact on respiratory health, and subsequent global morbidity and mortality. Mucins play a critical role in chronic lung disease, not only by providing a physical barrier and clearing pathogens, but also in immune homeostasis. The aim of this review is to familiarise the reader with the role of mucins in both lung health and disease, with particular focus on function in immunity, infection and inflammation. We will also discuss their receptors, termed glycan-binding proteins, and how they provide an attractive prospect for therapeutic intervention.
Collapse
Affiliation(s)
- Emma Denneny
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| | - Jagdeep Sahota
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| | - Richard Beatson
- Breast Cancer Biology Group Division of Cancer Studies King's College London Guy's Hospital London UK
| | - David Thornton
- Wellcome Trust Centre for Cell-Matrix Research School of Biological Sciences Faculty of Biology, Medicine and Health Manchester Academic Health Sciences Centre University of Manchester Manchester UK
| | - Joy Burchell
- Breast Cancer Biology Group Division of Cancer Studies King's College London Guy's Hospital London UK
| | - Joanna Porter
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| |
Collapse
|
54
|
Etman SM, Abdallah OY, Elnaggar YSR. Novel fucoidan based bioactive targeted nanoparticles from Undaria Pinnatifida for treatment of pancreatic cancer. Int J Biol Macromol 2020; 145:390-401. [PMID: 31881303 DOI: 10.1016/j.ijbiomac.2019.12.177] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Fucoidan is a marine polymer extracted from diverse types of brown algae. This polysaccharide showed great potential towards treatment of different types of cancer. In this study, the activity of fucoidan extracted from Undaria Pinnatifida was investigated against pancreatic cancer (one of the most life-threatening cancers). Then, in an attempt to enhance the polymer's activity against cancer cells, conversion the polymer solution to nanoparticles was suggested to enhance its delivery through pancreatic cancer surrounding stroma. Novel fucoidan based nanoparticles were elaborated by polyelectrolyte interaction with the positively charged, active targeting ligand lactoferrin. The formulation was optimized through the interplay between different factors. Effect of fucoidan solution along with its blank nanoparticles was tested on the viability of pancreatic cancer cells and its migration and invasion abilities. Results confirmed the cytotoxic ability of fucoidan against pancreatic cancer. IC50 value decreased by 2.3 folds when the polymer was converted to nanoparticles. The prepared nanosystems showed an enhanced ability to prevent pancreatic cancer cells' migration and invasion. Results suggested the potential of using these nanoparticles as bioactive dual-targeted system either blank or loaded with different anticancer agents for treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Samar M Etman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Egypt.
| |
Collapse
|
55
|
Sialic acid and biology of life: An introduction. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153325 DOI: 10.1016/b978-0-12-816126-5.00001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sialic acids are important molecule with high structural diversity. They are known to occur in higher animals such as Echinoderms, Hemichordata, Cephalochorda, and Vertebrata and also in other animals such as Platyhelminthes, Cephalopoda, and Crustaceae. Plants are known to lack sialic acid. But they are reported to occur in viruses, bacteria, protozoa, and fungi. Deaminated neuraminic acid although occurs in vertebrates and bacteria, is reported to occur in abundance in the lower vertebrates. Sialic acids are mostly located in terminal ends of glycoproteins and glycolipids, capsular and tissue polysialic acids, bacterial lipooligosaccharides/polysaccharides, and in different forms that dictate their role in biology. Sialic acid play important roles in human physiology of cell-cell interaction, communication, cell-cell signaling, carbohydrate-protein interactions, cellular aggregation, development processes, immune reactions, reproduction, and in neurobiology and human diseases in enabling the infection process by bacteria and virus, tumor growth and metastasis, microbiome biology, and pathology. It enables molecular mimicry in pathogens that allows them to escape host immune responses. Recently sialic acid has found role in therapeutics. In this chapter we have highlighted the (i) diversity of sialic acid, (ii) their occurrence in the diverse life forms, (iii) sialylation and disease, and (iv) sialic acid and therapeutics.
Collapse
|
56
|
Circulating P-Selectin and Its Glycoprotein Ligand in Nondiabetic Obstructive Sleep Apnea Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1279:61-69. [PMID: 32170667 DOI: 10.1007/5584_2020_501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selectins and their ligands play an important role in atherosclerosis. The role of these adhesion molecules in the pathogenesis of obstructive sleep apnea (OSA) may be of clinical relevance. Therefore, the aim of this study was to assess the serum content of platelet P-selectin (P-SEL) and P-selectin glycoprotein ligand 1 (PSGL-1) in different OSA stages. The study was performed in nondiabetic patients, aged 32-71, in whom OSA was verified by polysomnography. The apnea/hypopnea index (AHI) was used to stratify OSA stages: AHI <5, no sleep pathology (OSA-0); AHI 5-15, (OSA-1); AHI 16-30, (OSA-2); and AHI >30, (OSA-3). There were 16 patients in each group. P-SEL and PSGL-1 were assessed by ELISA kits. There were no appreciable differences in the patients' glucose or high-specificity C-reactive protein content. We found that P-SEL and PSGL-1 significantly increased from OSA-0 to OSA-3. There were the following positive associations in all OSA patients: P-SEL vs. AHI, PSGL-1 vs. AHI, and P-SEL vs. PSGL-1. In addition, the adhesion molecules are associated with the anthropometric parameters, oxygen saturation, and sleep architecture in the OSA-1 group. We conclude that the adhesion molecules consistently increase in the blood of nondiabetic OSA patients, along with progression of disorder severity.
Collapse
|
57
|
Guan YZ, Yin RX, Zheng PF, Deng GX, Liu CX, Wei BL. Potential molecular mechanism of ACE gene at different time points in STEMI patients based on genome-wide microarray dataset. Lipids Health Dis 2019; 18:184. [PMID: 31647035 PMCID: PMC6813054 DOI: 10.1186/s12944-019-1131-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
Background This study aimed to investigate the angiotensin converting enzyme (ACE) co-expression genes and their pathways involved in ST-segment elevation myocardial infarction (STEMI) at different time points. Methods The array data set of GSE59867 was examined for the ACE co-expression genes in peripheral blood samples from 111 patients with STEMI at four time points (admission, discharge, and 1 and 6 months after MI). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, Gene Ontology (GO) annotation and protein-protein interaction (PPI) of the co-expression genes were determined using online analytical tools. The Cytoscape software was used to create modules and hub genes. Results The number of biological processes (BP), cellular components (CC) and molecular functions (MF) was 43, 22 and 24 at admission; 18, 19 and 11 at discharge; 30, 37 and 21 at 1 month after MI; and 12, 19 and 14 at 6 months after MI; respectively. There were 6 BP, 8 CC and 4 MF enriched at every time point. The co-expression genes were substantially enriched in 12, 5, 6 and 14 KEGG pathways at the four time points, respectively, but no KEGG pathway was found to be common in all time points. We identified 132 intersectional co-expression genes (90 positive and 42 negative) from the four time points and 17 BP, 13 CC, 11 MF and 7 KEGG pathways were enriched. In addition, the PPI network contained 129 nodes and 570 edges, and only 1 module was identified to be significantly enriched in just 1 BP (chromatin-mediated maintenance of transcription). Conclusions The results of the present study showed that the ACE co-expression genes and their pathways involved in STEMI were significantly different at four different time points. These findings may be helpful for further understanding the functions and roles of ACE in different stages of STEMI, and providing reference for the treatment of STEMI.
Collapse
Affiliation(s)
- Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China.
| | - Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| |
Collapse
|
58
|
Perkins LA, Anderson CJ, Novelli EM. Targeting P-Selectin Adhesion Molecule in Molecular Imaging: P-Selectin Expression as a Valuable Imaging Biomarker of Inflammation in Cardiovascular Disease. J Nucl Med 2019; 60:1691-1697. [PMID: 31601694 DOI: 10.2967/jnumed.118.225169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
P-selectin is an adhesion molecule translocated to the surface of endothelial cells and platelets under inflammatory stimuli, and its potential as a biomarker in inflammatory conditions has driven preclinical studies to investigate its application for molecular imaging of inflammation. Clinical imaging of P-selectin expression for disease characterization could have an important role in stratifying patients and determining treatment strategies. The objective of this review is to outline the role of P-selectin in cardiovascular inflammatory conditions and its translation as an early inflammatory biomarker for several molecular imaging modalities for diagnostic purposes and therapeutic planning.
Collapse
Affiliation(s)
- Lydia A Perkins
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carolyn J Anderson
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Enrico M Novelli
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
59
|
Networks that stop the flow: A fresh look at fibrin and neutrophil extracellular traps. Thromb Res 2019; 182:1-11. [DOI: 10.1016/j.thromres.2019.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
|
60
|
Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front Immunol 2019; 10:1078. [PMID: 31231358 PMCID: PMC6558418 DOI: 10.3389/fimmu.2019.01078] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
The immune system and cancer have a complex relationship with the immune system playing a dual role in tumor development. The effector cells of the immune system can recognize and kill malignant cells while immune system-mediated inflammation can also promote tumor growth and regulatory cells suppress the anti-tumor responses. In the center of all anti-tumor responses is the ability of the immune cells to migrate to the tumor site and to interact with each other and with the malignant cells. Cell adhesion molecules including receptors of the immunoglobulin superfamily and integrins are of crucial importance in mediating these processes. Particularly integrins play a vital role in regulating all aspects of immune cell function including immune cell trafficking into tissues, effector cell activation and proliferation and the formation of the immunological synapse between immune cells or between immune cell and the target cell both during homeostasis and during inflammation and cancer. In this review we discuss the molecular mechanisms regulating integrin function and the role of integrins and other cell adhesion molecules in immune responses and in the tumor microenvironment. We also describe how malignant cells can utilize cell adhesion molecules to promote tumor growth and metastases and how these molecules could be targeted in cancer immunotherapy.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
61
|
Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther 2019; 20:1057-1067. [PMID: 30990132 PMCID: PMC6606043 DOI: 10.1080/15384047.2019.1598759] [Citation(s) in RCA: 330] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/24/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor-specific, circulating cell-free DNA in liquid biopsies is a promising source of biomarkers for minimally invasive serial monitoring of treatment responses in cancer management. We will review the current understanding of the origin of circulating cell-free DNA and different forms of DNA release (including various types of cell death and active secretion processes) and clearance routes. The dynamics of extracellular DNA in blood during therapy and the role of circulating DNA in pathophysiological processes (tumor-associated inflammation, NETosis, and pre-metastatic niche development) provide insights into the mechanisms that contribute to tumor development and metastases formation. Better knowledge of circulating tumor-specific cell-free DNA could facilitate the development of new therapeutic and diagnostic options for cancer management.
Collapse
Affiliation(s)
- Anatoli Kustanovich
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ruth Schwartz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Albert Grinshpun
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
62
|
Fornetti J, Welm AL, Stewart SA. Understanding the Bone in Cancer Metastasis. J Bone Miner Res 2018; 33:2099-2113. [PMID: 30476357 DOI: 10.1002/jbmr.3618] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
The bone is the third most common site of metastasis for a wide range of solid tumors including lung, breast, prostate, colorectal, thyroid, gynecologic, and melanoma, with 70% of metastatic prostate and breast cancer patients harboring bone metastasis.1 Unfortunately, once cancer spreads to the bone, it is rarely cured and is associated with a wide range of morbidities including pain, increased risk of fracture, and hypercalcemia. This fact has driven experts in the fields of bone and cancer biology to study the bone, and has revealed that there is a great deal that each can teach the other. The complexity of the bone was first described in 1889 when Stephen Paget proposed that tumor cells have a proclivity for certain organs, where they "seed" into a friendly "soil" and eventually grow into metastatic lesions. Dr. Paget went on to argue that although many study the "seed" it would be paramount to understand the "soil." Since this original work, significant advances have been made not only in understanding the cell-autonomous mechanisms that drive metastasis, but also alterations which drive changes to the "soil" that allow a tumor cell to thrive. Indeed, it is now clear that the "soil" in different metastatic sites is unique, and thus the mechanisms that allow tumor cells to remain in a dormant or growing state are specific to the organ in question. In the bone, our knowledge of the components that contribute to this fertile "soil" continues to expand, but our understanding of how they impact tumor growth in the bone remains in its infancy. Indeed, we now appreciate that the endosteal niche likely contributes to tumor cell dormancy, and that osteoclasts, osteocytes, and adipocytes can impact tumor cell growth. Here, we discuss the bone microenvironment and how it impacts cancer cell seeding, dormancy, and growth. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jaime Fornetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sheila A Stewart
- Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Integrating Communication within the Cancer Environment (ICCE) Institute, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
63
|
Gillies PJ, Richardson NA, Walshe J, Stephenson SA, Dawson RA, Harkin DG. Demonstration of P-selectin expression and potential function in human corneal epithelial cells. Exp Eye Res 2018; 176:196-206. [DOI: 10.1016/j.exer.2018.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/08/2018] [Accepted: 07/15/2018] [Indexed: 12/31/2022]
|
64
|
The prognostic impact of neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and platelet-to-lymphocyte ratio in patients with advanced colorectal cancer treated with first-line chemotherapy. GASTROENTEROLOGY REVIEW 2018; 13:218-222. [PMID: 30302166 PMCID: PMC6173071 DOI: 10.5114/pg.2018.78287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
Introduction Colorectal cancer is the second most frequently diagnosed malignancy and one of the leading causes of cancer-related death in Poland. Many reports of different types of cancer have indicated that blood count parameters may serve as a source of prognostic or predictive information. Aim To assess the association between these parameters and clinical outcome in patients with advanced colorectal cancer. Material and methods We retrospectively analysed a database of 295 patients with advanced colorectal cancer treated with first-line palliative chemotherapy at our institution from January 2008 to December 2012. Blood-based parameters were measured before the first cycle of treatment. Results The median progression-free survival (PFS) was 6.7 months, and the median overall survival was 17.6 months. A high neutrophil-to-lymphocyte ratio (NLR) and a high platelet-to-lymphocyte ratio (PLR) were associated with a shorter survival (hazard ratio (HR): 1.88, p < 0.0001 for the NLR and HR: 1.39, p = 0.0054 for the PLR), but for the PLR, we observed only a not significant trend toward a worse PFS (HR = 1.25, p = 0.07 for the PLR and HR = 1.55, p = 0.0004 for the NLR). A high lymphocyte-to-monocyte ratio (LMR) was associated with a better prognosis (HR = 0.58, p ≤ 0.0001) and a longer PFS (HR = 0.73, p = 0.011). Conclusions The blood-based parameters are readily available, reliable, and low-cost biomarkers, which can be easily incorporated into routine practice to predict the prognosis in patients with advanced colorectal cancer.
Collapse
|
65
|
SSeCKS/Akap12 suppresses metastatic melanoma lung colonization by attenuating Src-mediated pre-metastatic niche crosstalk. Oncotarget 2018; 9:33515-33527. [PMID: 30323895 PMCID: PMC6173366 DOI: 10.18632/oncotarget.26067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/20/2018] [Indexed: 01/09/2023] Open
Abstract
SSeCKS/Gravin/AKAP12 (SSeCKS) controls metastasis-associated PKC and Src signaling through direct scaffolding activity. SSeCKS is downregulated in the metastases of many human cancer types, and its forced re-expression suppresses the metastatic behavior of prostate cancer cells. SSeCKS is also downregulated in breast and prostate cancer stroma, and SSeCKS-null mice (KO) are metastasis-prone, suggesting a role in suppressing formation of the pre-metastatic niche. Here, we show that lung colonization and metastasis formation by B16F10 and SM1WT1[BrafV600E] mouse melanoma cells is 9-fold higher in syngeneic KO compared to WT hosts, although there is no difference in orthotopic tumor volumes. Although melanoma cells adhered equally to KO or WT lung fibroblasts (LF), co-injection of melanoma cells with KO (vs. WT) LF increased lung macrometastasis formation in WT hosts, marked by increased melanoma colonization at foci of leaky vasculature. Increased melanoma adhesion on KO lung endothelial cells (LEC) was facilitated by increased E-Selectin levels and by increased STAT3-regulated secretion of senescence-associated factors from KO-LF, such as Vegf. Finally, the ability of SSeCKS to attenuate IFNα-induced Stat3 activation in KO-LF required its Src-scaffolding domain. Taken together, these data suggest that SSeCKS normally suppresses metastatic colonization in the lung by attenuating the expression of Selectin adhesion proteins, which can be controlled autonomously by local endothelial cells or enhanced by senescence factors secreted by neighboring fibroblasts in a SSeCKS-regulated, Src/Stat3-dependent manner.
Collapse
|