51
|
Anreddy N, Patel A, Sodani K, Kathawala RJ, Chen EP, Wurpel JN, Chen ZS. PD173074, a selective FGFR inhibitor, reverses MRP7 (ABCC10)-mediated MDR. Acta Pharm Sin B 2014; 4:202-7. [PMID: 26579384 PMCID: PMC4629066 DOI: 10.1016/j.apsb.2014.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 01/28/2014] [Accepted: 02/14/2014] [Indexed: 01/27/2023] Open
Abstract
Multidrug resistance protein 7 (MRP7, ABCC10) is a recently identified member of the ATP-binding cassette (ABC) transporter family, which adequately confers resistance to a diverse group of antineoplastic agents, including taxanes, vinca alkaloids and nucleoside analogs among others. Clinical studies indicate an increased MRP7 expression in non-small cell lung carcinomas (NSCLC) compared to a normal healthy lung tissue. Recent studies revealed increased paclitaxel sensitivity in the Mrp7−/− mouse model compared to their wild-type counterparts. This demonstrates that MRP7 is a key contributor in developing drug resistance. Recently our group reported that PD173074, a specific fibroblast growth factor receptor (FGFR) inhibitor, could significantly reverse P-glycoprotein-mediated MDR. However, whether PD173074 can interact with and inhibit other MRP members is unknown. In the present study, we investigated the ability of PD173074 to reverse MRP7-mediated MDR. We found that PD173074, at non-toxic concentration, could significantly increase the cellular sensitivity to MRP7 substrates. Mechanistic studies indicated that PD173074 (1 μmol/L) significantly increased the intracellular accumulation and in-turn decreased the efflux of paclitaxel by inhibiting the transport activity without altering expression levels of the MRP7 protein, thereby representing a promising therapeutic agent in the clinical treatment of chemoresistant cancer patients.
Collapse
Key Words
- ABC, ATP binding cassette
- ABCC10
- EGFR, epidermal growth factor receptor
- FGFR, fibroblast growth factor receptor
- Fibroblast growth factor receptor
- HEK293, human embryonic kidney 293
- MDR, multidrug resistance
- MRP7, multidrug resistance protein 7
- MSDs, membrane-spanning domains
- Multidrug resistance
- NBDs, nucleotide-binding domains
- NSCLC, non-small cell lung carcinomas
- PD173074
- RTK, receptor tyrosine kinase
- TKI, tyrosine kinase inhibitor
- Tyrosine kinase inhibitor
Collapse
|
52
|
Enriched variations in TEKT4 and breast cancer resistance to paclitaxel. Nat Commun 2014; 5:3802. [PMID: 24823476 DOI: 10.1038/ncomms4802] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/03/2014] [Indexed: 12/13/2022] Open
Abstract
Among chemotherapeutic agents, paclitaxel has shown great efficacy against breast cancer. Prediction of paclitaxel response may improve patient outcomes. Here we show, using exome sequencing, that in comparison with pre-treatment biopsies, two TEKT4 germline variations are enriched in post-treatment tumours. We find TEKT4 variations in ~ 10% of an independent cohort of 84 pairs of samples. Tektin4 (encoded by TEKT4) associates closely with tubulin in doublet microtubules and helps stabilize these structures. These two TEKT4 germline variations in a high cis linkage are biologically relevant, as the ectopic expression of variant TEKT4 deregulates the microtubule stability, antagonizes the paclitaxel-induced stabilizing effect of microtubules and increases paclitaxel resistance. Furthermore, TEKT4 germline variations are associated with reduced disease-free survival and overall survival compared with wild-type TEKT4 in patients undergoing paclitaxel-based chemotherapy. Taken together, we reveal a potential mechanism of resistance to paclitaxel through the acquisition of germline variations in breast cancer.
Collapse
|
53
|
GUIZANI TAISSIREL, GUIBERT CLOTILDE, TRIKI SAÏDA, ST-PIERRE BENOIT, DUCOS ERIC. Identification of a human ABCC10 orthologue in Catharanthus roseus reveals a U12-type intron determinant for the N-terminal domain feature. J Genet 2014; 93:21-33. [DOI: 10.1007/s12041-014-0327-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
54
|
Reddy LH, Bazile D. Drug delivery design for intravenous route with integrated physicochemistry, pharmacokinetics and pharmacodynamics: illustration with the case of taxane therapeutics. Adv Drug Deliv Rev 2014; 71:34-57. [PMID: 24184489 DOI: 10.1016/j.addr.2013.10.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
This review is aimed at combining the published data on taxane formulations into a generalized Drug Delivery approach, starting from the physicochemistry and assessing its relationships with the pharmacokinetics, the biodistribution and the pharmacodynamics. Owing to the number and variety of taxane formulation designs, we considered this class of cytotoxic anticancer agents of particular interest to illustrate the concepts attached to this approach. According to the history of taxane development, we propose a classification as (i) "surfactant-based formulations" first generation, (ii) "surfactant-free formulations" second generation and (iii) "modulated pharmacokinetics drug delivery systems" third generation. Since our objective was to make the link between (i) the physicochemistry of the drug and carrier and (ii) the efficacy and safety of the drug in preclinical animal models and (iii) in human, we focused on the drug delivery technologies that were tested in clinic.
Collapse
Affiliation(s)
- L Harivardhan Reddy
- Drug Delivery Technologies and Innovation, Pharmaceutical Sciences Department, Sanofi Research and Development, 13 Quai Jules-Guesde, 94403 Vitry-sur-Seine, France.
| | - Didier Bazile
- Drug Delivery Technologies and Innovation, Pharmaceutical Sciences Department, Sanofi Research and Development, 13 Quai Jules-Guesde, 94403 Vitry-sur-Seine, France
| |
Collapse
|
55
|
Epigenetic downregulation of RUNX3 by DNA methylation induces docetaxel chemoresistance in human lung adenocarcinoma cells by activation of the AKT pathway. Int J Biochem Cell Biol 2013; 45:2369-78. [DOI: 10.1016/j.biocel.2013.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/27/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022]
|
56
|
Gibson NM, Quinn CJ, Pfannenstiel KB, Hydock DS, Hayward R. Effects of age on multidrug resistance protein expression and doxorubicin accumulation in cardiac and skeletal muscle. Xenobiotica 2013; 44:472-9. [DOI: 10.3109/00498254.2013.846489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
57
|
Kathawala RJ, Wang YJ, Ashby CR, Chen ZS. Recent advances regarding the role of ABC subfamily C member 10 (ABCC10) in the efflux of antitumor drugs. CHINESE JOURNAL OF CANCER 2013; 33:223-30. [PMID: 24103790 PMCID: PMC4026542 DOI: 10.5732/cjc.013.10122] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABCC10, also known as multidrug-resistant protein 7 (MRP7), is the tenth member of the C subfamily of the ATP-binding cassette (ABC) superfamily. ABCC10 mediates multidrug resistance (MDR) in cancer cells by preventing the intracellular accumulation of certain antitumor drugs. The ABCC10 transporter is a 171-kDa protein that is localized on the basolateral cell membrane. ABCC10 is a broad-specificity transporter of xenobiotics, including antitumor drugs, such as taxanes, epothilone B, vinca alkaloids, and cytarabine, as well as modulators of the estrogen pathway, such as tamoxifen. In recent years, ABCC10 inhibitors, including cepharanthine, lapatinib, erlotinib, nilotinib, imatinib, sildenafil, and vardenafil, have been reported to overcome ABCC10-mediated MDR. This review discusses some recent and clinically relevant aspects of the ABCC10 drug efflux transporter from the perspective of current chemotherapy, particularly its inhibition by tyrosine kinase inhibitors and phosphodiesterase type 5 inhibitors.
Collapse
Affiliation(s)
- Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | | | | | | |
Collapse
|
58
|
Chen JJ, Patel A, Sodani K, Xiao ZJ, Tiwari AK, Zhang DM, Li YJ, Yang DH, Ye WC, Chen SD, Chen ZS. bba, a synthetic derivative of 23-hydroxybutulinic acid, reverses multidrug resistance by inhibiting the efflux activity of MRP7 (ABCC10). PLoS One 2013; 8:e74573. [PMID: 24069321 PMCID: PMC3775757 DOI: 10.1371/journal.pone.0074573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 08/05/2013] [Indexed: 12/19/2022] Open
Abstract
Natural products are frequently used for adjuvant chemotherapy in cancer treatment. 23-O-(1,4'-bipiperidine-1-carbonyl) betulinic acid (BBA) is a synthetic derivative of 23-hydroxybutulinic acid (23-HBA), which is a natural pentacyclic triterpene and the major active constituent of the root of Pulsatillachinensis. We previously reported that BBA could reverse P-glycoprotein (P-gp/ABCB1)-mediated multidrug resistance (MDR). In the present study, we investigated whether BBA has the potential to reverse multidrug resistance protein 7 (MRP7/ABCC10)-mediated MDR. We found that BBA concentration-dependently enhanced the sensitivity of MRP7-transfected HEK293 cells to paclitaxel, docetaxel and vinblastine. Accumulation and efflux experiments demonstrated that BBA increased the intracellular accumulation of [3H]-paclitaxel by inhibiting the efflux of [3H]-paclitaxel from HEK293/MRP7 cells. In addition, immunoblotting and immunofluorescence analyses indicated no significant alteration of MRP7 protein expression and localization in plasma membranes after treatment with BBA. These results demonstrate that BBA reverses MRP7-mediated MDR through blocking the drug efflux function of MRP7 without affecting the intracellular ATP levels. Our findings suggest that BBA has the potential to be used in combination with conventional chemotherapeutic agents to augment the response to chemotherapy.
Collapse
Affiliation(s)
- Jun-Jiang Chen
- Guangdong Key Laboratory for Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States of America
| | - Atish Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States of America
| | - Kamlesh Sodani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States of America
| | - Zhi-Jie Xiao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States of America
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States of America
| | | | - Ying-Jie Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Dong-Hua Yang
- Biosample Repository, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Si-Dong Chen
- Guangdong Key Laboratory for Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- * E-mail: (Z-SC); (S-DC)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States of America
- * E-mail: (Z-SC); (S-DC)
| |
Collapse
|
59
|
Fatemian T, Othman I, Chowdhury EH. Strategies and validation for siRNA-based therapeutics for the reversal of multi-drug resistance in cancer. Drug Discov Today 2013; 19:71-8. [PMID: 23974068 DOI: 10.1016/j.drudis.2013.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 01/20/2023]
Abstract
Resistance of cancer cells to anticancer drugs is the main reason for the failure of traditional cancer treatments. Various cellular components and different loops within the signaling pathways contribute to drug resistance which could be modulated with the aim to restore drug efficacy. Unveiling the molecular mechanisms for cancer drug resistance has now paved the way for the development of novel approaches to regulate the response rates to anticancer drugs at the genetic level. The recent progress on identification and validation of the vital genes directly or indirectly involved in development of cancer drug resistance with the aid of the specific knock down ability of RNA interference technology is discussed in this review.
Collapse
Affiliation(s)
- Tahereh Fatemian
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Malaysia
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Malaysia.
| |
Collapse
|
60
|
Deng W, Dai CL, Chen JJ, Kathawala RJ, Sun YL, Chen HF, Fu LW, Chen ZS. Tandutinib (MLN518) reverses multidrug resistance by inhibiting the efflux activity of the multidrug resistance protein 7 (ABCC10). Oncol Rep 2013; 29:2479-85. [PMID: 23525656 PMCID: PMC3694559 DOI: 10.3892/or.2013.2362] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/02/2013] [Indexed: 12/12/2022] Open
Abstract
It is well established that ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR) is one of the major mechanisms that causes resistance to antineoplastic drugs in cancer cells. ABC transporters can significantly decrease the intracellular concentration of antineoplastic drugs by increasing their efflux, thereby lowering their cytotoxic activity. One of these transporters, the multidrug resistance protein 7 (MRP7/ABCC10), has already been shown to produce resistance to antineoplastic drugs by increasing the efflux of the drugs. In the present study, we investigated whether tandutinib, an FMS-like tyrosine kinase 3 (FLT3) inhibitor, has the potential to reverse MRP7-mediated MDR. Our results revealed that tandutinib significantly enhanced the sensitivity of MRP7-transfected HEK293 cells to the 2 established MRP7 substrates, paclitaxel and vincristine, whereas there was less or no effect on the control vector-transfected HEK293 cells. [³H]-paclitaxel accumulation and efflux studies demonstrated that tandutinib increased the intracellular accumulation of [³H]-paclitaxel and inhibited the efflux of [³H]-paclitaxel from HEK-MRP7 cells. In addition, western blot analysis showed that tandutinib did not significantly affect MRP7 expression. Thus, we conclude that the FLT3 inhibitor tandutinib can reverse MRP7-mediated MDR through inhibition of the drug efflux function and may have potential to be used clinically in combination therapy for cancer patients.
Collapse
Affiliation(s)
- Wen Deng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Reversal of MRP7 (ABCC10)-mediated multidrug resistance by tariquidar. PLoS One 2013; 8:e55576. [PMID: 23393594 PMCID: PMC3564796 DOI: 10.1371/journal.pone.0055576] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/03/2013] [Indexed: 11/19/2022] Open
Abstract
Multidrug resistance protein 7 (MRP7, ABCC10) is a recently discovered member of the ATP-binding cassette (ABC) family which are capable of conferring resistance to a variety of anticancer drugs, including taxanes and nucleoside analogs, in vivo. MRP7 is highly expressed in non-small cell lung cancer cells, and Mrp7-KO mice are highly sensitive to paclitaxel, making MRP7 an attractive chemotherapeutic target of non-small cell lung cancer. However, only a few inhibitors of MRP7 are currently identified, with none of them having progressed to clinical trials. We used MRP7-expressing cells to investigate whether tariquidar, a third generation inhibitor of P-glycoprotein, could inhibit MRP7-mediated multidrug resistance (MDR). We found that tariquidar, at 0.1 and 0.3 µM, significantly potentiated the sensitivity of MRP7-transfected HEK293 cells to MRP7 substrates and increased the intracellular accumulation of paclitaxel. We further demonstrated that tariquidar directly impaired paclitaxel efflux and could downregulate MRP7 protein expression in a concentration- and time-dependent manner after prolonged treatment. Our findings suggest that tariquidar, at pharmacologically achievable concentrations, reverses MRP7-mediated MDR through inhibition of MRP7 protein expression and function, and thus represents a promising therapeutic agent in the clinical treatment of chemoresistant cancer patients.
Collapse
|
62
|
Abstract
Lung cancer is the most commonly diagnosed cancer in the world. “Driver” and “passenger” mutations identified in lung cancer indicate that genetics play a major role in the development of the disease, progression, metastasis and response to therapy. Survival rates for lung cancer treatment have remained stagnant at ~15% over the past 40 years in patients with disseminated disease despite advances in surgical techniques, radiotherapy and chemotherapy. Resistance to therapy; either intrinsic or acquired has been a major hindrance to treatment leading to great interest in studies seeking to understand and overcome resistance. Genetic information gained from molecular analyses has been critical in identifying druggable targets and tumor profiles that may be predictors of therapeutic response and mediators of resistance. Mutated or overexpressed epidermal growth factor receptor (EGFR) and translocations in the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) genes (EML4-ALK) are examples of genetic aberrations resulting in targeted therapies for both localized and metastatic disease. Positive clinical responses have been noted in patients harboring these genetic mutations when treated with targeted therapies compared to patients lacking these mutations. Resistance is nonetheless a major factor contributing to the failure of targeted agents and standard cytotoxic agents. In this review, we examine molecular mechanisms that are potential drivers of resistance in non-small cell lung carcinoma, the most frequently diagnosed form of lung cancer. The mechanisms addressed include resistance to molecular targeted therapies as well as conventional chemotherapeutics through the activity of multidrug resistance proteins.
Collapse
Affiliation(s)
- Janet Wangari-Talbot
- Fox Chase Cancer Center, Developmental Therapeutics Program, 333 Cottman Ave, Philadelphia, PA, USA
| | - Elizabeth Hopper-Borge
- Fox Chase Cancer Center, Developmental Therapeutics Program, 333 Cottman Ave, Philadelphia, PA, USA
| |
Collapse
|
63
|
Multidrug Resistance in Cancer: A Tale of ABC Drug Transporters. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7070-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
64
|
Malofeeva EV, Domanitskaya N, Gudima M, Hopper-Borge EA. Modulation of the ATPase and transport activities of broad-acting multidrug resistance factor ABCC10 (MRP7). Cancer Res 2012; 72:6457-67. [PMID: 23087055 DOI: 10.1158/0008-5472.can-12-1340] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell surface molecule ABCC10 is a broad-acting transporter of xenobiotics, including cancer drugs, such as taxanes, epothilone B, and modulators of the estrogen pathway. Abcc10(-/-) mice exhibit increased tissue sensitivity and lethality resulting from paclitaxel exposure compared with wild-type counterparts, arguing ABCC10 functions as a major determinant of taxane sensitivity in mice. To better understand the mechanistic basis of ABCC10 action, we characterized the biochemical and vectorial transport properties of this protein. Using crude membranes in an ABCC10 overexpression system, we found that the ABCC10 transport substrates estrogen estradiol-glucuronide (E(2)17βG) and leukotriene C4 (LTC(4)) significantly stimulated ABCC10 beryllium fluoride (BeFx)-sensitive ATPase activity. We also defined the E(2)17βG antagonist, tamoxifen, as a novel substrate and stimulator of ABCC10. In addition, a number of cytotoxic substrates, including docetaxel, paclitaxel, and Ara-C, increased the ABCC10 basal ATPase activity. We determined that ABCC10 localizes to the basolateral cell surface, using transepithelial well assays to establish that ABCC10-overexpressing LLC-PK1 cells exported [(3)H]-docetaxel from the apical to the basolateral side. Importantly, we found that the clinically valuable multikinase inhibitor sorafenib, and a natural alkaloid, cepharanthine, inhibited ABCC10 docetaxel transport activity. Thus, concomitant use of these agents might restore the intracellular accumulation and potency of ABCC10-exported cytotoxic drugs, such as paclitaxel. Overall, our work could seed future efforts to identify inhibitors and other physiologic substrates of ABCC10.
Collapse
Affiliation(s)
- Ekaterina V Malofeeva
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
65
|
Tiwari AK, Sodani K, Dai CL, Abuznait AH, Singh S, Xiao ZJ, Patel A, Talele TT, Fu L, Kaddoumi A, Gallo JM, Chen ZS. Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett 2012; 328:307-17. [PMID: 23063650 DOI: 10.1016/j.canlet.2012.10.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 12/18/2022]
Abstract
A panel of clinically used tyrosine kinase inhibitors were compared and nilotinib was found to most potently sensitize specific anticancer agents by blocking the functions of ABCB1/P-glycoprotein, ABCG2/BCRP and ABCC10/MRP7 transporters involved in multi-drug resistance. Nilotinib appreciably enhanced the antitumor response of (1) paclitaxel in the ABCB1- and novel ABCC10-xenograft models, and (2) doxorubicin in a novel ABCG2-xenograft model. With no apparent toxicity observed in the above models, nilotinib attenuated tumor growth synergistically and increased paclitaxel concentrations in ABCB1-overexpressing tumors. The beneficial actions of nilotinib warrant consideration as viable combinations in the clinic with agents that suffer from MDR-mediated insensitivity.
Collapse
Affiliation(s)
- Amit K Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Chen JJ, Sun YL, Tiwari AK, Xiao ZJ, Sodani K, Yang DH, Vispute SG, Jiang WQ, Chen SD, Chen ZS. PDE5 inhibitors, sildenafil and vardenafil, reverse multidrug resistance by inhibiting the efflux function of multidrug resistance protein 7 (ATP-binding Cassette C10) transporter. Cancer Sci 2012; 103:1531-7. [PMID: 22578167 DOI: 10.1111/j.1349-7006.2012.02328.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/21/2012] [Accepted: 04/23/2012] [Indexed: 11/28/2022] Open
Abstract
Phosphodiesterase type 5 (PDE5) inhibitors are widely used in the treatment of male erectile dysfunction and pulmonary hypertension. Recently, several groups have evaluated the ability of PDE5 inhibitors for their anticancer activities. Previously, we had shown that sildenafil, vardenafil and tadalafil could reverse P-glycoprotein (ATP-binding cassette B1)-mediated MDR. In the present study, we determined whether these PDE5 inhibitors have the potential to reverse multidrug resistance protein 7 (MRP7; ATP-binding cassette C10)-mediated MDR. We found that sildenafil and vardenafil dose-dependently enhanced the sensitivity of MRP7-transfected HEK293 cells to paclitaxel, docetaxel and vinblastine, while tadalafil had only a minimal effect. Accumulation and efflux experiments demonstrated that sildenafil and vardenafil increased the intracellular accumulation of [(3)H]-paclitaxel by inhibiting the efflux of [(3 H]-paclitaxel in HEK/MRP7 cells. In addition, immunoblot and immunofluorescence analyses indicated that no significant alterations of MRP7 protein expression and localization in plasma membranes were found after treatment with sildenafil, vardenafil or tadalafil. These results demonstrate that sildenafil and vardenafil reverse MRP7-mediated a MDR through inhibition of the drug efflux function of MRP7. Our findings indicate a potentially novel use of PDE5 inhibitors as an adjuvant chemotherapeutic agent in clinical practice.
Collapse
Affiliation(s)
- Jun-Jiang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St John's University, Jamaica, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Association of ABCC10 polymorphisms with nevirapine plasma concentrations in the German Competence Network for HIV/AIDS. Pharmacogenet Genomics 2012; 22:10-9. [PMID: 22082652 DOI: 10.1097/fpc.0b013e32834dd82e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Nevirapine exhibits marked interpatient variability in pharmacokinetics. CYP2B6 activity and demographic factors are important, but there are a few data on drug transporters for nevirapine. ABCC10 (MRP7) is an efflux transporter highly expressed in liver, intestine, and peripheral blood cells. We investigated whether nevirapine is a substrate for ABCC10 and whether genetic variants contribute to variability in nevirapine plasma concentrations. METHODS Accumulation of nevirapine was assessed in parental and ABCC10-transfected HEK293 cells (HEK293-ABCC10), CD4+ cells, and monocyte-derived macrophages from healthy volunteers (n=8). ABCC10 small interfering RNA studies were also conducted. DNA samples with paired plasma drug concentrations were available from 163 HIV-infected patients receiving nevirapine-containing regimens. Sequenom was used to screen 14 single nucleotide polymorphisms in ABCC10. Linear regression models were used to identify factors independently associated with nevirapine plasma concentration. RESULTS Nevirapine accumulation was 37% lower in HEK293-ABCC10 cells compared with parental HEK293 cells (P=0.02), and this was reversed by cepharanthine (an ABCC10 inhibitor). After small interfering RNA knockdown of ABCC10, there was an increase in accumulation of nevirapine in CD4 cells (32%; P=0.03) and monocyte-derived macrophages (38%; P=0.04). Marked differences in the haplotype structure of ABCC10 was observed between White and Black patients in the cohort. In Whites, an exonic single nucleotide polymorphism (rs2125739) was significantly associated with nevirapine plasma concentration (P=0.02). Multivariate regression analysis identified carriage of a composite genotype of ABCC10 rs2125739 and CYP2B6 516G>T (P=0.001), time post dose (P=0.01) and BMI (P=0.07) to be independently associated with nevirapine plasma concentrations. CONCLUSION Nevirapine is a substrate for ABCC10 and genetic variants influence its plasma concentrations. ABCC10 in lymphocytes and macrophages may also contribute to variability in intracellular permeation of nevirapine. Further studies are required to determine the clinical implications of these findings.
Collapse
|
68
|
Freeman CL, Swords R, Giles FJ. Amonafide: a future in treatment of resistant and secondary acute myeloid leukemia? Expert Rev Hematol 2012; 5:17-26. [PMID: 22272701 DOI: 10.1586/ehm.11.68] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Development of the novel topoisomerase II inhibitor, amonafide, began almost 40 years ago. The drug was selected for further investigation owing to evidence of marked antineoplastic efficacy in preclinical models of cancer. When its usefulness in the treatment of various solid malignancies proved limited, focus was shifted to establishing its use as an antileukemic agent, specifically against secondary and treatment-associated acute myeloid leukemia (AML). While Phase I and II studies gave rise to hopes that amonafide might hold the key to treating older patients, including those with multidrug resistant, cytogenetically unfavorable secondary and treatment-associated AML, when used in combination with cytarabine, it failed to demonstrate a survival advantage over standard-of-care therapy in randomized studies. This article will outline the development of amonafide from the laboratory to the bedside and discuss the potential place that this agent has in the current management of AML.
Collapse
Affiliation(s)
- Ciara L Freeman
- Mayo Clinic Phoenix Campus, Department of Hematology & Oncology, 5777 East Mayo Boulevard, Phoenix, AZ 85054, USA.
| | | | | |
Collapse
|
69
|
Feng B, Wang R, Chen LB. MiR-100 resensitizes docetaxel-resistant human lung adenocarcinoma cells (SPC-A1) to docetaxel by targeting Plk1. Cancer Lett 2012; 317:184-91. [PMID: 22120675 DOI: 10.1016/j.canlet.2011.11.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/21/2011] [Accepted: 11/18/2011] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) expression correlates with biological characteristics of both normal cells and cancer cells, but their roles in cancer chemoresistance remain unclear. By microarray analysis, miR-100 was found significantly down-regulated in docetaxel-resistant SPC-A1/DTX cells compared with parental SPC-A1 cells. Ectopic miR-100 expression resensitized SPC-A1/DTX cells to docetaxel by suppression of cell proliferation and induction of cell arrest in G(2)/M phase and apoptosis. Knock-down of Plk1, which was a direct target of miR-100, yielded similar effects as that of ectopic miR-100 expression. The inverse correlation between miR-100 and Plk1 expression was also detected in nude mice SPC-A1/DTX tumor xenografts and clinical lung adenocarcinoma tissues and was proved to be related with the in vivo response to docetaxel. Thus, our results suggested that down-regulation of miR-100 could lead to Plk1 over-expression and eventually to docetaxel chemoresistance of human lung adenocarcinoma.
Collapse
Affiliation(s)
- Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, PR China
| | | | | |
Collapse
|
70
|
Sprowl JA, Mikkelsen TS, Giovinazzo H, Sparreboom A. Contribution of tumoral and host solute carriers to clinical drug response. Drug Resist Updat 2012; 15:5-20. [PMID: 22459901 DOI: 10.1016/j.drup.2012.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the solute carrier family of transporters are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. Several of these solute carriers are known to be expressed in cancer cells or cancer cell lines, and decreased cellular uptake of drugs potentially contributes to the development of resistance. As result, the expression levels of these proteins in humans have important consequences for an individual's susceptibility to certain drug-induced side effects, interactions, and treatment efficacy. In this review article, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of solute carriers to anticancer drug uptake in tumors, the role of these carriers in regulation of anticancer drug disposition, and recent advances in attempts to evaluate these proteins as therapeutic targets.
Collapse
Affiliation(s)
- Jason A Sprowl
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
71
|
Rottenberg S, Vollebergh MA, de Hoon B, de Ronde J, Schouten PC, Kersbergen A, Zander SAL, Pajic M, Jaspers JE, Jonkers M, Lodén M, Sol W, van der Burg E, Wesseling J, Gillet JP, Gottesman MM, Gribnau J, Wessels L, Linn SC, Jonkers J, Borst P. Impact of intertumoral heterogeneity on predicting chemotherapy response of BRCA1-deficient mammary tumors. Cancer Res 2012; 72:2350-61. [PMID: 22396490 DOI: 10.1158/0008-5472.can-11-4201] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The lack of markers to predict chemotherapy responses in patients poses a major handicap in cancer treatment. We searched for gene expression patterns that correlate with docetaxel or cisplatin response in a mouse model for breast cancer associated with BRCA1 deficiency. Array-based expression profiling did not identify a single marker gene predicting docetaxel response, despite an increase in Abcb1 (P-glycoprotein) expression that was sufficient to explain resistance in several poor responders. Intertumoral heterogeneity explained the inability to identify a predictive gene expression signature for docetaxel. To address this problem, we used a novel algorithm designed to detect differential gene expression in a subgroup of the poor responders that could identify tumors with increased Abcb1 transcript levels. In contrast, standard analytical tools, such as significance analysis of microarrays, detected a marker only if it correlated with response in a substantial fraction of tumors. For example, low expression of the Xist gene correlated with cisplatin hypersensitivity in most tumors, and it also predicted long recurrence-free survival of HER2-negative, stage III breast cancer patients treated with intensive platinum-based chemotherapy. Our findings may prove useful for selecting patients with high-risk breast cancer who could benefit from platinum-based therapy.
Collapse
Affiliation(s)
- Sven Rottenberg
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Borel F, Han R, Visser A, Petry H, van Deventer SJH, Jansen PLM, Konstantinova P. Adenosine triphosphate-binding cassette transporter genes up-regulation in untreated hepatocellular carcinoma is mediated by cellular microRNAs. Hepatology 2012; 55:821-32. [PMID: 21932399 DOI: 10.1002/hep.24682] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/09/2011] [Indexed: 12/12/2022]
Abstract
UNLABELLED Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are drug efflux pumps responsible for the multidrug resistance phenotype causing hepatocellular carcinoma (HCC) treatment failure. Here we studied the expression of 15 ABC transporters relevant for multidrug resistance in 19 paired HCC patient samples (16 untreated, 3 treated by chemotherapeutics). Twelve ABC transporters showed up-regulation in HCC compared with adjacent healthy liver. These include ABCA2, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, ABCC10, ABCC11, ABCC12, and ABCE1. The expression profile and function of some of these transporters have not been associated with HCC thus far. Because cellular microRNAs (miRNAs) are involved in posttranscriptional gene silencing, we hypothesized that regulation of ABC expression in HCC might be mediated by miRNAs. To study this, miRNAs were profiled and dysregulation of 90 miRNAs was shown in HCC compared with healthy liver, including up-regulation of 11 and down-regulation of 79. miRNA target sites in ABC genes were bioinformatically predicted and experimentally verified in vitro using luciferase reporter assays. In total, 13 cellular miRNAs were confirmed that target ABCA1, ABCC1, ABCC5, ABCC10, and ABCE1 genes and mediate changes in gene expression. Correlation analysis between ABC and miRNA expression in individual patients revealed an inverse relationship, providing an indication for miRNA regulation of ABC genes in HCC. CONCLUSION Up-regulation of ABC transporters in HCC occurs prior to chemotherapeutic treatment and is associated with miRNA down-regulation. Up-regulation of five ABC genes appears to be mediated by 13 cellular miRNAs in HCC patient samples. miRNA-based gene therapy may be a novel and promising way to affect the ABC profile and overcome clinical multidrug resistance.
Collapse
Affiliation(s)
- Florie Borel
- Department of Research & Development, Amsterdam Molecular Therapeutics, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Feng B, Wang R, Song HZ, Chen LB. MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3. Cancer 2011; 118:3365-76. [PMID: 22139708 DOI: 10.1002/cncr.26560] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/26/2011] [Accepted: 08/15/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been identified as important posttranscriptional regulators involved in various biological and pathological processes of cells, but their association with tumor chemoresistance has not been fully understood. METHODS We detected miRNA-200b (miR-200b) expression in different lung adenocarcinoma cell lines and then focused on its roles in regulation of docetaxel chemoresistance. We also identified E2F3 as a novel target of miR-200b. RESULTS Based on miRNA microarray data, miR-200b was identified as the most down-regulated miRNA in docetaxel-resistant SPC-A1/DTX cells compared with parental SPC-A1 cells. Ectopic miR-200b expression reversed docetaxel chemoresistance of lung adenocarcinoma cells through cell proliferation inhibition, apoptosis enhancement, and G(2) /M cell cycle arrest. In a nude mouse xenograft model, up-regulation of miR-200b significantly enhanced response of SPC-A1/DTX cells to docetaxel. Luciferase reporters containing the 3' untranslated region sequence of E2F3 messenger RNA were used to demonstrate that miR-200b could directly target E2F3. Small interfering RNA-mediated E2F3 knockdown revealed similar effects as that of ectopic miR-200b expression. Decreased miR-200b expression was also detected in tumor tissues sampled from lung adenocarcinoma patients treated with docetaxel-based chemotherapy and was proved to be correlated with high expression of E2F3, decreased sensitivity to docetaxel, and poor prognosis. CONCLUSIONS Our results suggest that down-regulation of miR-200b could lead to E2F3 overexpression and in turn contribute to chemoresistance of lung adenocarcinoma cells to docetaxel.
Collapse
Affiliation(s)
- Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | | | | | | |
Collapse
|
74
|
Sodani K, Patel A, Kathawala RJ, Chen ZS. Multidrug resistance associated proteins in multidrug resistance. CHINESE JOURNAL OF CANCER 2011; 31:58-72. [PMID: 22098952 PMCID: PMC3777468 DOI: 10.5732/cjc.011.10329] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multidrug resistance proteins (MRPs) are members of the C family of a group of proteins named ATP-binding cassette (ABC) transporters. These ABC transporters together form the largest branch of proteins within the human body. The MRP family comprises of 13 members, of which MRP1 to MRP9 are the major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out of the cell. They are mainly lipophilic anionic transporters and are reported to transport free or conjugates of glutathione (GSH), glucuronate, or sulphate. In addition, MRP1 to MRP3 can transport neutral organic drugs in free form in the presence of free GSH. Collectively, MRPs can transport drugs that differ structurally and mechanistically, including natural anticancer drugs, nucleoside analogs, antimetabolites, and tyrosine kinase inhibitors. Many of these MRPs transport physiologically important anions such as leukotriene C4, bilirubin glucuronide, and cyclic nucleotides. This review focuses mainly on the physiological functions, cellular resistance characteristics, and probable in vivo role of MRP1 to MRP9.
Collapse
Affiliation(s)
- Kamlesh Sodani
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | | | | | | |
Collapse
|
75
|
Linn DE, Yang X, Sun F, Xie Y, Chen H, Jiang R, Chen H, Chumsri S, Burger AM, Qiu Y. A Role for OCT4 in Tumor Initiation of Drug-Resistant Prostate Cancer Cells. Genes Cancer 2011; 1:908-16. [PMID: 21779471 DOI: 10.1177/1947601910388271] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/10/2010] [Accepted: 09/30/2010] [Indexed: 11/17/2022] Open
Abstract
Drug resistance remains a clinical challenge in cancer treatment due to poor understanding of underlying mechanisms. We have established several drug-resistant prostate cancer cell lines by long-term culture in medium containing chemotherapeutic drugs. These resistant lines displayed a significant increase in side population cells due to overexpression of drug efflux pumps including ABCG2/BCRP and MDR1/Pgp. To uncover potential mechanisms underlying drug resistance, we performed microarray analysis to identify differentially expressed genes in 2 drug-resistant lines. We observed that POU5F1/OCT4, a transcription factor key to regulating pluripotency in embryonic stem cells, was upregulated in drug-resistant lines and accompanied by transcriptional activation of a set of its known target genes. Upregulation of OCT4 in drug-resistant cells was validated by RT-PCR and sequencing of PCR products as well as confirmation by Western blot and specific shRNA knockdown. Analysis of the regulatory region of POU5F1/OCT4 revealed a reduction of methylation in drug-resistant cell lines. Furthermore, these drug-resistant cells exhibited a significant increase in tumorigenicity in vivo. Subcutaneous inoculation of as few as 10 drug-resistant cells could initiate tumor formation in SCID mice, whereas no detectable tumors were observed from the parental line under similar conditions, suggesting that these drug-resistant cells may be enriched for tumor-initiating cells. Knocking down OCT4 expression by specific shRNAs attenuated growth of drug-resistant cells. Our data suggest that OCT4 re-expression in cancer cells may play an important role in carcinogenesis and provide one possible mechanism by which cancer cells acquire/maintain a drug-resistant phenotype.
Collapse
Affiliation(s)
- Douglas E Linn
- Department of Pharmacology & Experimental Therapeutics and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Bergmann TK, Brasch-Andersen C, Gréen H, Mirza MR, Skougaard K, Wihl J, Keldsen N, Damkier P, Peterson C, Vach W, Brøsen K. Impact of ABCB1 Variants on Neutrophil Depression: A Pharmacogenomic Study of Paclitaxel in 92 Women with Ovarian Cancer. Basic Clin Pharmacol Toxicol 2011; 110:199-204. [DOI: 10.1111/j.1742-7843.2011.00802.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
77
|
Alhosin M, Ibrahim A, Boukhari A, Sharif T, Gies JP, Auger C, Schini-Kerth VB. Anti-neoplastic agent thymoquinone induces degradation of α and β tubulin proteins in human cancer cells without affecting their level in normal human fibroblasts. Invest New Drugs 2011; 30:1813-9. [PMID: 21881916 DOI: 10.1007/s10637-011-9734-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/09/2011] [Indexed: 12/27/2022]
Abstract
The microtubule-targeting agents derived from natural products, such as vinca-alkaloids and taxanes are an important family of efficient anti-cancer drugs with therapeutic benefits in both haematological and solid tumors. These drugs interfere with the assembly of microtubules of α/β tubulin heterodimers without altering their expression level. The aim of the present study was to investigate the effect of thymoquinone (TQ), a natural product present in black cumin seed oil known to exhibit putative anti-cancer activities, on α/β tubulin expression in human astrocytoma cells (cell line U87, solid tumor model) and in Jurkat cells (T lymphoblastic leukaemia cells). TQ induced a concentration- and time-dependent degradation of α/β tubulin in both cancer cell types. This degradation was associated with the up-regulation of the tumor suppressor p73 with subsequent induction of apoptosis. Interestingly, TQ had no effect on α/β tubulin protein expression in normal human fibroblast cells, which were used as a non-cancerous cell model. These data indicate that TQ exerts a selective effect towards α/β tubulin in cancer cells. In conclusion, the present findings indicate that TQ is a novel anti-microtubule drug which targets the level of α/β tubulin proteins in cancer cells. Furthermore, they highlight the interest of developing anti-cancer therapies that target directly tubulin rather than microtubules dynamics.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- CNRS UMR 7213 Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
78
|
Pushpakom SP, Liptrott NJ, Rodríguez-Nóvoa S, Labarga P, Soriano V, Albalater M, Hopper-Borge E, Bonora S, Di Perri G, Back DJ, Khoo S, Pirmohamed M, Owen A. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis 2011; 204:145-53. [PMID: 21628669 DOI: 10.1093/infdis/jir215] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Tenofovir (TFV) causes kidney tubular dysfunction (KTD) in some patients, but the mechanism is poorly understood. Genetic variants in TFV transporters are implicated; we explored whether ABCC10 transports TFV and whether ABCC10 single-nucleotide polymorphisms (SNPs) are associated with KTD. METHODS TFV accumulation was assessed in parental and ABCC10-transfected HEK293 cells (HEK293-ABCC10), CD4(+) cells and monocyte-derived macrophages (MDMs). Substrate specificity was confirmed by cepharanthine (ABCC10 inhibitor) and small interfering RNA (siRNA) studies. Fourteen SNPs in ABCC10 were genotyped in human immunodeficiency virus-positive patients with KTD (n = 19) or without KTD (controls; n = 96). SNP and haplotype analysis was performed using Haploview. RESULTS TFV accumulation was significantly lower in HEK293-ABCC10 cell lines than in parental HEK293 cells (35% lower; P = .02); this was reversed by cepharanthine. siRNA knockdown of ABCC10 resulted in increased accumulation of TFV in CD4(+) cells (18%; P = .04) and MDMs (25%; P = .04). Two ABCC10 SNPs (rs9349256: odds ratio [OR], 2.3; P = .02; rs2125739, OR, 2.0; P = .05) and their haplotype (OR, 2.1; P = .05) were significantly associated with KTD. rs9349256 was associated with urine phosphorus wasting (P = .02) and β2 microglobulinuria (P = .04). CONCLUSIONS TFV is a substrate for ABCC10, and genetic variability within the ABCC10 gene may influence TFV renal tubular transport and contribute to the development of KTD. These results need to be replicated in other cohorts.
Collapse
Affiliation(s)
- Sudeep P Pushpakom
- National Institute for Health Research Biomedical Research Centre, Royal Liverpool Hospital, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J 2011; 278:3226-45. [PMID: 21740521 DOI: 10.1111/j.1742-4658.2011.08235.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins that are best known for their ability to transport a wide variety of exogenous and endogenous substances across membranes against a concentration gradient via ATP hydrolysis. There are seven subfamilies of human ABC transporters, one of the largest being the 'C' subfamily (gene symbol ABCC). Nine ABCC subfamily members, the so-called multidrug resistance proteins (MRPs) 1-9, have been implicated in mediating multidrug resistance in tumor cells to varying degrees as the efflux extrude chemotherapeutic compounds (or their metabolites) from malignant cells. Some of the MRPs are also known to either influence drug disposition in normal tissues or modulate the elimination of drugs (or their metabolites) via hepatobiliary or renal excretory pathways. In addition, the cellular efflux of physiologically important organic anions such as leukotriene C(4) and cAMP is mediated by one or more of the MRPs. Finally, mutations in several MRPs are associated with human genetic disorders. In this minireview, the current biochemical and physiological knowledge of MRP1-MRP9 in cancer chemotherapy and human genetic disease is summarized. The mutations in MRP2/ABCC2 leading to conjugated hyperbilirubinemia (Dubin-Johnson syndrome) and in MRP6/ABCC6 leading to the connective tissue disorder Pseudoxanthoma elasticum are also discussed.
Collapse
Affiliation(s)
- Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA.
| | | |
Collapse
|
80
|
Wu CP, Hsieh CH, Wu YS. The Emergence of Drug Transporter-Mediated Multidrug Resistance to Cancer Chemotherapy. Mol Pharm 2011; 8:1996-2011. [DOI: 10.1021/mp200261n] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chung-Pu Wu
- Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Basic Medical Science, China Medical University and Hospital, Taichung, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| |
Collapse
|
81
|
Hopper-Borge EA, Churchill T, Paulose C, Nicolas E, Jacobs JD, Ngo O, Kuang Y, Grinberg A, Westphal H, Chen ZS, Klein-Szanto AJ, Belinsky MG, Kruh GD. Contribution of Abcc10 (Mrp7) to in vivo paclitaxel resistance as assessed in Abcc10(-/-) mice. Cancer Res 2011; 71:3649-57. [PMID: 21576088 DOI: 10.1158/0008-5472.can-10-3623] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, we reported that the ATP-binding cassette transporter 10 (ABCC10), also known as multidrug resistance protein 7 (MRP7), is able to confer resistance to a variety of anticancer agents, including taxanes. However, the in vivo functions of the pump have not been determined to any extent. In this study, we generated and analyzed Abcc10(-/-) mice to investigate the ability of Abcc10 to function as an endogenous resistance factor. Mouse embryo fibroblasts derived from Abcc10(-/-) mice were hypersensitive to docetaxel, paclitaxel, vincristine, and cytarabine (Ara-C) and exhibited increased cellular drug accumulation, relative to wild-type controls. Abcc10(-/-) null mice treated with paclitaxel exhibited increased lethality associated with neutropenia and marked bone marrow toxicity. In addition, toxicity in spleen and thymus was evident. These findings indicate that Abcc10 is dispensable for health and viability and that it is an endogenous resistance factor for taxanes, other natural product agents, and nucleoside analogues. This is the first demonstration that an ATP-binding cassette transporter other than P-glycoprotein can affect in vivo tissue sensitivity toward taxanes.
Collapse
|
82
|
Wang X, Ma D, Olson WC, Heston WDW. In vitro and in vivo responses of advanced prostate tumors to PSMA ADC, an auristatin-conjugated antibody to prostate-specific membrane antigen. Mol Cancer Ther 2011; 10:1728-39. [PMID: 21750220 DOI: 10.1158/1535-7163.mct-11-0191] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate-specific membrane antigen (PSMA) is a membrane protein that is overexpressed manifold in prostate cancer and provides an attractive target for therapy. PSMA ADC is an antibody-drug conjugate (ADC) that consists of a fully human anti-PSMA monoclonal antibody conjugated to monomethylauristatin E through a valine-citrulline linker. In this study, the antitumor activity of PSMA ADC was evaluated against a panel of prostate cancer cell lines in vitro and in a novel in vivo model of taxane-refractory human prostate cancer. In vitro cell killing was efficient for cells with abundant PSMA expression (>10(5) molecules/cell; IC(50) ≤ 0.022 nmol/L) and 1,000-fold less efficient for cells with undetectable PSMA (IC(50) > 30 nmol/L). Intermediate potency (IC(50) = 0.80 nmol/L) was observed for cells with approximately 10(4) molecules of PSMA per cell, indicating a threshold PSMA level for selective cell killing. Similar in vitro activity was observed against androgen-dependent and -independent cells that had abundant PSMA expression. In vitro activity of PSMA ADC was also dependent on internalization and proper N-glycosylation/folding of PSMA. In contrast, less potent and nonselective cytotoxic activity was observed for a control ADC, free monomethylauristatin E, and other microtubule inhibitors. PSMA ADC showed high in vivo activity in treating xenograft tumors that had progressed following an initial course of docetaxel therapy, including tumors that were large (>700 mm(3)) before treatment with PSMA ADC. This study defines determinants of antitumor activity of a novel ADC. The findings here support the clinical evaluation of this agent in advanced prostate cancer.
Collapse
Affiliation(s)
- Xinning Wang
- Department of Cancer Biology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
83
|
De Souza R, Zahedi P, Badame RM, Allen C, Piquette-Miller M. Chemotherapy dosing schedule influences drug resistance development in ovarian cancer. Mol Cancer Ther 2011; 10:1289-99. [PMID: 21551263 DOI: 10.1158/1535-7163.mct-11-0058] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug resistance leads to chemotherapy failure and is responsible for the death of a great majority of patients with metastatic, late-stage ovarian cancer. The present study addressed whether changes in the chemotherapy dosing schedule affect the development, further worsening, or circumvention of drug resistance in chemosensitive and chemoresistant ovarian cancer. Severe combined immunodeficient mice bearing HeyA8 and HeyA8-MDR xenografts were treated with docetaxel intermittently (1×/wk or 3×/wk) or continuously for 21 days. Tumor mRNA expression of genes implicated in docetaxel resistance was measured by quantitative real-time-PCR. Analyzed genes included those encoding for the drug efflux transporters mdr1 and mrp7 and for molecules that interfere with or overcome the effects of docetaxel, including β-tubulinIII, actinin4, stathmin1, bcl2, rpn2, thoredoxin, and akt2. In both models, continuous docetaxel resulted in greater antitumor efficacy than 1×/wk or 3×/wk dosing and did not induce upregulation of any analyzed genes. Once weekly dosing caused upregulation of various drug resistance-related genes, especially in chemoresistant xenografts. More frequent, 3×/wk dosing diminished this effect, although levels of various genes were higher than for continuous chemotherapy. Drug efflux transporter expression was further examined by Western blotting, confirming that intermittent, but not continuous, docetaxel induced significant upregulation. Overall, our results show that the presence and length of treatment-free intervals contribute to the development of drug resistance. Elimination of these intervals by continuous dosing resulted in superior antitumor efficacy and prevented drug resistance induction in chemosensitive and chemoresistant disease. These results encourage the clinical implementation of continuous chemotherapy to overcome and/or prevent drug resistance in newly diagnosed and recurrent, refractory ovarian cancer.
Collapse
Affiliation(s)
- Raquel De Souza
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2
| | | | | | | | | |
Collapse
|
84
|
Matsson P, Yee SW, Markova S, Morrissey K, Jenkins G, Xuan J, Jorgenson E, Kroetz DL, Giacomini KM. Discovery of regulatory elements in human ATP-binding cassette transporters through expression quantitative trait mapping. THE PHARMACOGENOMICS JOURNAL 2011; 12:214-26. [PMID: 21383772 PMCID: PMC3325368 DOI: 10.1038/tpj.2011.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ATP-Binding Cassette (ABC) membrane transporters determine the disposition of many drugs, metabolites and endogenous compounds. Coding region variation in ABC transporters is the cause of many genetic disorders, but much less is known about the genetic basis and functional outcome of ABC transporter expression level variation. We used genotype and mRNA transcript level data from human lymphoblastoid cell lines to assess population and gender differences in ABC transporter expression, and to guide the discovery of genomic regions involved in transcriptional regulation. Nineteen of 49 ABC genes were differentially expressed between individuals of African, Asian and European descent suggesting an important influence of race on expression level of ABC transporters. Twenty-four significant associations were found between transporter transcript levels and proximally located genetic variants. Several of the associations were experimentally validated in reporter assays. Through influencing ABC expression levels, these SNPs may affect disease susceptibility and response to drugs.
Collapse
Affiliation(s)
- P Matsson
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 2011:299-323. [PMID: 21103974 DOI: 10.1007/978-3-642-14541-4_8] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nine multidrug resistance proteins (MRPs) represent the major part of the 12 members of the MRP/CFTR subfamily belonging to the 48 human ATP-binding cassette (ABC) transporters. Cloning, functional characterization, and cellular localization of most MRP subfamily members have identified them as ATP-dependent efflux pumps with a broad substrate specificity for the transport of endogenous and xenobiotic anionic substances localized in cellular plasma membranes. Prototypic substrates include glutathione conjugates such as leukotriene C(4) for MRP1, MRP2, and MRP4, bilirubin glucuronosides for MRP2 and MRP3, and cyclic AMP and cyclic GMP for MRP4, MRP5, and MRP8. Reduced glutathione (GSH), present in living cells at millimolar concentrations, modifies the substrate specificities of several MRPs, as exemplified by the cotransport of vincristine with GSH by MRP1, or by the cotransport of GSH with bile acids or of GSH with leukotriene B(4) by MRP4.The role of MRP subfamily members in pathophysiology may be illustrated by the MRP-mediated release of proinflammatory and immunomodulatory mediators such as leukotrienes and prostanoids. Pathophysiological consequences of many genetic variants leading to a lack of functional MRP protein in the plasma membrane are observed in the hereditary MRP2 deficiency associated with conjugated hyperbilirubinemia in Dubin-Johnson syndrome, in pseudoxanthoma elasticum due to mutations in the MRP6 (ABCC6) gene, or in the type of human earwax and osmidrosis determined by single nucleotide polymorphisms in the MRP8 (ABCC8) gene. The hepatobiliary and renal elimination of many drugs and their metabolites is mediated by MRP2 in the hepatocyte canalicular membrane and by MRP4 as well as MRP2 in the luminal membrane of kidney proximal tubules. Therefore, inhibition of these efflux pumps affects pharmacokinetics, unless compensated by other ATP-dependent efflux pumps with overlapping substrate specificities.
Collapse
|
86
|
Bergmann TK, Gréen H, Brasch-Andersen C, Mirza MR, Herrstedt J, Hølund B, du Bois A, Damkier P, Vach W, Brosen K, Peterson C. Retrospective study of the impact of pharmacogenetic variants on paclitaxel toxicity and survival in patients with ovarian cancer. Eur J Clin Pharmacol 2011; 67:693-700. [PMID: 21327421 DOI: 10.1007/s00228-011-1007-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 01/20/2011] [Indexed: 11/29/2022]
Abstract
PURPOSE Paclitaxel has a broad spectrum of anti-tumor activity and is useful in the treatment of ovarian, breast, and lung cancer. Paclitaxel is metabolized in the liver by CYP2C8 and CYP3A4 and transported by P-glycoprotein. The dose-limiting toxicities are neuropathy and neutropenia, but the interindividual variability in toxicity and also survival is large. The main purpose of this study was to investigate the impact of genetic variants in CYP2C8 and ABCB1 on toxicity and survival. METHODS The 182 patients previously treated for ovarian cancer with carboplatin and paclitaxel in either the AGO-OVAR-9 or the NSGO-OC9804 trial in Denmark or Sweden were eligible for this study. Genotyping was carried out on formalin-fixed tissue. The patients' toxicity profiles and survival data were derived from retrospective data. CYP2C8*3, ABCB1 C1236T, G2677T/A, and C3435T were chosen a priori for primary analysis; a host of other variants were entered into an exploratory analysis. RESULTS Clinical data and tissue were available from a total of 119 patients. Twenty-two single nucleotide polymorphisms (SNPs) in 10 genes were determined. Toxicity registration was available from 710 treatment cycles. In the primary analysis, no statistically significant correlation was found between CYP2C8*3, ABCB1 C1236T, G2677T/A, and C3435T and neutropenia, sensoric neuropathy, and overall survival. CONCLUSION CYP2C8*3 and the ABCB1 SNPs C1236T, G2677T/A, and C3435T were not statistically significantly correlated to overall survival, sensoric neuropathy, and neutropenia in 119 patients treated for ovarian cancer with paclitaxel/carboplatin.
Collapse
Affiliation(s)
- Troels K Bergmann
- Clinical Pharmacology, Institute of Public Health, University of Southern Denmark, J.B. Winsleows vej 19, 2nd floor, Odense, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Zahedi P, De Souza R, Huynh L, Piquette-Miller M, Allen C. Combination Drug Delivery Strategy for the Treatment of Multidrug Resistant Ovarian Cancer. Mol Pharm 2010; 8:260-9. [DOI: 10.1021/mp100323z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Payam Zahedi
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada, M5S 3M2
| | - Raquel De Souza
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada, M5S 3M2
| | - Loan Huynh
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada, M5S 3M2
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada, M5S 3M2
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada, M5S 3M2
| |
Collapse
|
88
|
Abstract
Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin and are an important therapeutic target in tumour cells. Agents that bind to microtubules have been part of the pharmacopoeia of anticancer therapy for decades and until the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agents with novel properties. In the current search for novel microtubule-binding agents, enhanced tumour specificity, reduced neurotoxicity and insensitivity to chemoresistance mechanisms are the three main objectives.
Collapse
Affiliation(s)
- Charles Dumontet
- INSERM 590, Faculté Rockefeller, 8 Avenue Rockefeller, 69008 Lyon, France and Université Lyon 1, ISPB, Lyon, F-69003, France.
| | | |
Collapse
|
89
|
Theile D, Ketabi-Kiyanvash N, Herold-Mende C, Dyckhoff G, Efferth T, Bertholet V, Haefeli WE, Weiss J. Evaluation of drug transporters' significance for multidrug resistance in head and neck squamous cell carcinoma. Head Neck 2010; 33:959-68. [DOI: 10.1002/hed.21559] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2010] [Indexed: 11/08/2022] Open
|
90
|
Bierman WFW, Scheffer GL, Schoonderwoerd A, Jansen G, van Agtmael MA, Danner SA, Scheper RJ. Protease inhibitors atazanavir, lopinavir and ritonavir are potent blockers, but poor substrates, of ABC transporters in a broad panel of ABC transporter-overexpressing cell lines. J Antimicrob Chemother 2010; 65:1672-80. [PMID: 20551216 DOI: 10.1093/jac/dkq209] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES A possible mechanism for HIV therapy failure is the efflux of HIV drugs from viral target cells or certain body compartments by ATP-binding cassette (ABC) transporters, allowing ongoing viral replication. Here, we investigated the interaction between protease inhibitors (PIs) and ABC transporters. METHODS To explore the potential blocking capacity of PIs, we exposed cells overexpressing multidrug resistance 1 P-glycoprotein (MDR1 P-gp), multidrug resistance protein 1 (MRP1) and breast cancer resistance protein (BCRP) to established cytotoxic substrates with or without one of the PIs atazanavir, lopinavir or ritonavir. Furthermore, to assess whether PIs serve as substrates, cell growth-inhibitory effects of these PIs were evaluated on cells overexpressing 1 of 11 ABC transporters and their parental counterparts. RESULTS Atazanavir, lopinavir and ritonavir were highly effective in reversing resistance against established substrates in cells overexpressing MDR1 P-gp and MRP1, and, to a lesser extent, BCRP. Concurrently, however, PIs appeared to be relatively poor substrates for ABC transporters. Only a moderate level of resistance to atazanavir was observed in cells overexpressing MRP6 and MRP9 [resistance factor (RF): 2.0-2.6]. Cells overexpressing MDR1 P-gp, MRP3, MRP4 and MRP5 displayed low levels of resistance to atazanavir (RF: 1.3-1.7); MRP7- and MRP9-overexpressing cells to lopinavir (RF: 1.4-1.5); and MRP9-overexpressing cells to ritonavir (RF: 1.4). CONCLUSIONS PIs can act as potent blockers of MDR1 P-gp, MRP1 and BCRP, but they are poor substrates for 11 ABC transporters. Consequently, ABC transporters are unlikely to play a major role in PI failure, but still may contribute to drug-specific adverse events and drug-drug interactions.
Collapse
Affiliation(s)
- Wouter F W Bierman
- Department of Internal Medicine, VU University Medical Center, Secretariaat Inwendige Geneeskunde, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
91
|
Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. THE PHARMACOGENOMICS JOURNAL 2010; 11:113-20. [PMID: 20368717 DOI: 10.1038/tpj.2010.19] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The primary purpose of this study was to evaluate the effect of CYP2C8*3 and three genetic ABCB1 variants on the elimination of paclitaxel. We studied 93 Caucasian women with ovarian cancer treated with paclitaxel and carboplatin. Using sparse sampling and nonlinear mixed effects modeling, the individual clearance of unbound paclitaxel was estimated from total plasma paclitaxel and Cremophor EL. The geometric mean of clearance was 385 l h⁻¹ (range 176-726 l h⁻¹). Carriers of CYP2C8*3 had 11% lower clearance than non-carriers, P=0.03. This has not been shown before in similar studies; the explanation is probably the advantage of using both unbound paclitaxel clearance and a population of patients of same gender. No significant association was found for the ABCB1 variants C1236T, G2677T/A and C3435T. Secondarily, other candidate single-nucleotide polymorphisms were explored with possible associations found for CYP2C8*4 (P=0.04) and ABCC1 g.7356253C>G (P=0.04).
Collapse
|
92
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 568] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
93
|
Abstract
The development of multidrug resistance (MDR) to chemotherapy remains a major challenge in the treatment of cancer. Resistance exists against every effective anticancer drug and can develop by numerous mechanisms including decreased drug uptake, increased drug efflux, activation of detoxifying systems, activation of DNA repair mechanisms, evasion of drug-induced apoptosis, etc. In the first part of this chapter, we briefly summarize the current knowledge on individual cellular mechanisms responsible for MDR, with a special emphasis on ATP-binding cassette transporters, perhaps the main theme of this textbook. Although extensive work has been done to characterize MDR mechanisms in vitro, the translation of this knowledge to the clinic has not been crowned with success. Therefore, identifying genes and mechanisms critical to the development of MDR in vivo and establishing a reliable method for analyzing clinical samples could help to predict the development of resistance and lead to treatments designed to circumvent it. Our thoughts about translational research needed to achieve significant progress in the understanding of this complex phenomenon are therefore discussed in a third section. The pleotropic response of cancer cells to chemotherapy is summarized in a concluding diagram.
Collapse
|
94
|
Risinger AL, Mooberry SL. Taccalonolides: Novel microtubule stabilizers with clinical potential. Cancer Lett 2009; 291:14-9. [PMID: 19880245 DOI: 10.1016/j.canlet.2009.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/21/2009] [Accepted: 09/28/2009] [Indexed: 12/22/2022]
Abstract
Nature remains an important source for new anticancer drugs. Numerous microtubule-targeting agents currently approved or in clinical development, including paclitaxel, vinblastine, vincristine, colchicine and combretastatin, are plant-derived compounds. The microtubule stabilizing properties of the taccalonolides were discovered as a part of a program to identify new microtubule stabilizers from natural sources. The taccalonolides are unique among all other agents in this class in that they stabilize microtubules through a mechanism of action that does not involve direct tubulin binding. Herein we review the discovery and isolation of the taccalonolides, their biological activities in vitro and in vivo and their potential advantages over clinically used microtubule stabilizers. We also discuss the challenges in formulation and supply that will need to be solved before the taccalonolides can become candidates for clinical development.
Collapse
Affiliation(s)
- April L Risinger
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 78229, United States
| | | |
Collapse
|
95
|
Shen T, Kuang YH, Ashby CR, Lei Y, Chen A, Zhou Y, Chen X, Tiwari AK, Hopper-Borge E, Ouyang J, Chen ZS. Imatinib and nilotinib reverse multidrug resistance in cancer cells by inhibiting the efflux activity of the MRP7 (ABCC10). PLoS One 2009; 4:e7520. [PMID: 19841739 PMCID: PMC2759525 DOI: 10.1371/journal.pone.0007520] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/02/2009] [Indexed: 01/17/2023] Open
Abstract
Background One of the major mechanisms that could produce resistance to antineoplastic drugs in cancer cells is the ATP binding cassette (ABC) transporters. The ABC transporters can significantly decrease the intracellular concentration of antineoplastic drugs by increasing their efflux, thereby lowering the cytotoxic activity of antineoplastic drugs. One of these transporters, the multiple resistant protein 7 (MRP7, ABCC10), has recently been shown to produce resistance to antineoplastic drugs by increasing the efflux of paclitaxel. In this study, we examined the effects of BCR-Abl tyrosine kinase inhibitors imatinib, nilotinib and dasatinib on the activity and expression of MRP7 in HEK293 cells transfected with MRP7, designated HEK-MRP7-2. Methodology and/or Principal Findings We report for the first time that imatinib and nilotinib reversed MRP7-mediated multidrug resistance. Our MTT assay results indicated that MRP7 expression in HEK-MRP7-2 cells was not significantly altered by incubation with 5 µM of imatinib or nilotinib for up to 72 hours. In addition, imatinib and nilotinib (1-5 µM) produced a significant concentration-dependent reversal of MRP7-mediated multidrug resistance by enhancing the sensitivity of HEK-MRP7-2 cells to paclitaxel and vincristine. Imatinib and nilotinib, at 5 µM, significantly increased the accumulation of [3H]-paclitaxel in HEK-MRP7-2 cells. The incubation of the HEK-MRP7-2 cells with imatinib or nilotinib (5 µM) also significantly inhibited the efflux of paclitaxel. Conclusions Imatinib and nilotinib reverse MRP7-mediated paclitaxel resistance, most likely due to their inhibition of the efflux of paclitaxel via MRP7. These findings suggest that imatinib or nilotinib, in combination with other antineoplastic drugs, may be useful in the treatment of certain resistant cancers.
Collapse
Affiliation(s)
- Tong Shen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | - Ye-Hong Kuang
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
- Department of Dermatology, Xiang Ya Hospital, Central South University, Changsha, China
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | - Yu Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | - Angel Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | - Ying Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | - Xiang Chen
- Department of Dermatology, Xiang Ya Hospital, Central South University, Changsha, China
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | | | - Jiangyong Ouyang
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
- * E-mail:
| |
Collapse
|
96
|
Kuang YH, Shen T, Chen X, Sodani K, Hopper-Borge E, Tiwari AK, Lee JWKK, Fu LW, Chen ZS. Lapatinib and erlotinib are potent reversal agents for MRP7 (ABCC10)-mediated multidrug resistance. Biochem Pharmacol 2009; 79:154-61. [PMID: 19720054 DOI: 10.1016/j.bcp.2009.08.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/20/2009] [Accepted: 08/21/2009] [Indexed: 02/07/2023]
Abstract
In recent years, a number of TKIs (tyrosine kinase inhibitors) targeting epidermal growth factor receptor (EGFR) family have been synthesized and some have been approved for clinical treatment of cancer by the FDA. We recently reported a new pharmacological action of the 4-anilinoquinazoline derived EGFR TKIs, such as lapatinib (Tykerb) and erlotinib (Tarceva), which significantly affect the drug resistance patterns in cells expressing the multidrug resistance (MDR) phenotype. Previously, we showed that lapatinib and erlotinib could inhibit the drug efflux function of P-glycoprotein (P-gp, ABCB1) and ABCG2 transporters. In this study, we determined if these TKIs have the potential to reverse MDR due to the presence of the multidrug resistance protein 7 (MRP7, ABCC10). Our results showed that lapatinib and erlotinib dose-dependently enhanced the sensitivity of MRP7-transfected HEK293 cells to several established MRP7 substrates, specifically docetaxel, paclitaxel, vinblastine and vinorelbine, whereas there was no or a less effect on the control vector transfected HEK293 cells. [(3)H]-paclitaxel accumulation and efflux studies demonstrated that lapatinib and erlotinib increased the intracellular accumulation of [(3)H]-paclitaxel and inhibited the efflux of [(3)H]-paclitaxel from MRP7-transfected cells but not in the control cell line. Lapatinib is a more potent inhibitor of MRP7 than erlotinib. In addition, the Western blot analysis revealed that both lapatinib and erlotinib did not significantly affect MRP7 expression. We conclude that the EGFR TKIs, lapatinib and erlotinib reverse MRP7-mediated MDR through inhibition of the drug efflux function, suggesting that an EGFR TKI based combinational therapy may be applicable for chemotherapeutic practice clinically.
Collapse
Affiliation(s)
- Ye-Hong Kuang
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Mechanism of drug resistance identified in human lung adenocarcinoma cell line SPC-A1 selected for resistance to docetaxel. Chin J Cancer Res 2009. [DOI: 10.1007/s11670-009-0207-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
98
|
Liu YH, Di YM, Zhou ZW, Mo SL, Zhou SF. Multidrug resistance-associated proteins and implications in drug development. Clin Exp Pharmacol Physiol 2009; 37:115-20. [PMID: 19566819 DOI: 10.1111/j.1440-1681.2009.05252.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. The multidrug resistance-associated proteins (MRPs) belong to the ATP-binding cassette superfamily (ABCC family) of transporters that are expressed differentially in the liver, kidney, intestine and blood-brain barrier. There are nine human MRPs that transport a structurally diverse array of endo- and xenobiotics as well as their conjugates. 2. Multidrug resistance-associated protein 1 can be distinguished from MRP2 and MRP3 by its higher affinity for leukotriene C(4). Unlike MRP1, MRP2 functions in the extrusion of endogenous organic anions, such as bilirubin glucuronide and certain anticancer agents. In addition to the transport of glutathione and glucuronate conjugates, MRP3 has the additional capability of mediating the transport of monoanionic bile acids. 3. Both MRP4 and MRP5 are able to mediate the transport of cyclic nucleotides and confer resistance to certain antiviral and anticancer nucleotide analogues. Hereditary deficiency of MRP6 results in pseudoxanthoma elasticum. In the body, MRP6 is involved in the transport of glutathione conjugates and the cyclic pentapeptide BQ123. 4. Various MRPs show considerable differences in tissue distribution, substrate specificity and proposed physiological function. These proteins play a role in drug disposition and excretion and thus are implicated in drug toxicity and drug interactions. Increased efflux of natural product anticancer drugs and other anticancer agents mediated by MRPs from cancer cells is associated with tumour resistance. 5. A better understanding of the function and regulating mechanisms of MRPs could help minimize and avoid drug toxicity and unfavourable drug-drug interactions, as well as help overcome drug resistance.
Collapse
Affiliation(s)
- Ya-He Liu
- Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | | | | | | | | |
Collapse
|
99
|
Hauswald S, Duque-Afonso J, Wagner MM, Schertl FM, Lübbert M, Peschel C, Keller U, Licht T. Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes. Clin Cancer Res 2009; 15:3705-15. [PMID: 19458058 DOI: 10.1158/1078-0432.ccr-08-2048] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Histone deacetylase inhibitors (HDACi) are being studied in clinical trials with the aim to induce cellular differentiation, growth arrest, and apoptosis of tumor cells. Recent reports suggest that the multidrug resistance-1 (MDR1) gene is regulated by epigenetic mechanisms. To investigate whether additional drug transporters are regulated by HDACi and how this affects cytotoxicity, acute myeloid leukemia (AML) cells were examined. EXPERIMENTAL DESIGN AML cells were cultured in the presence of phenylbutyrate, valproate, suberoylanilide hydroxamic acid, or trichostatin A and analyzed for drug transporter expression and function as well as sensitivity to anticancer drugs. RESULTS MDR1, breast cancer resistance protein (BCRP), and multidrug resistance-associated proteins (MRP) 7 and 8 were induced in a dose- and time-dependent manner as shown by semiquantitative PCR. The pattern of gene induction was cell line specific. Phenylbutyrate induced P-glycoprotein and BCRP expression and the efflux of drugs as determined with labeled substrates. KG-1a cells treated with phenylbutyrate developed resistance to daunorubicin, mitoxantrone, etoposide, vinblastine, paclitaxel, topotecan, gemcitabine, and 5-fluorouracil; as a result drug-induced apoptosis was impaired. Chromatin immunoprecipitation revealed the hyperacetylation of histone proteins in the promoter regions of MDR1, BCRP, and MRP8 on valproate treatment. Furthermore, an alternative MRP8 promoter was induced by HDACi treatment. CONCLUSIONS Exposure of AML cells to HDACi induces a drug resistance phenotype broader than the "classic multidrug resistance," which might negatively affect treatment effectiveness.
Collapse
Affiliation(s)
- Stefanie Hauswald
- III. Medical Department, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Mijatovic T, Jungwirth U, Heffeter P, Hoda MAR, Dornetshuber R, Kiss R, Berger W. The Na+/K+-ATPase is the Achilles heel of multi-drug-resistant cancer cells. Cancer Lett 2009; 282:30-4. [PMID: 19339106 DOI: 10.1016/j.canlet.2009.02.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 12/28/2022]
Abstract
We recently reported that over-expressed Na(+)/K(+)-ATPase alpha subunits are new important anti-cancer targets. Cardiotonic steroids are the natural ligands of Na(+)/K(+)-ATPase and thus potentially potent anti-cancer agents with a novel mechanism of action. We report here that the hemi-synthetic cardenolide 19-hydroxy-2''oxovoruscharin is impressively active in cancer cells expressing diverse forms of multi-drug resistance (MDR) either conferred by the over-expression of selected drug-transporter proteins or induced by a range of chemotherapeutic agents. Together with the inability of tumor cells to acquire resistance to 19-hydroxy-2''oxovoruscharin, our data suggest that this novel compound could be especially applicable to notoriously drug-resistant cancers.
Collapse
|