51
|
Raso MG, Wistuba II. Molecular pathogenesis of early-stage non-small cell lung cancer and a proposal for tissue banking to facilitate identification of new biomarkers. J Thorac Oncol 2007; 2:S128-35. [PMID: 17603309 DOI: 10.1097/jto.0b013e318074fe42] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Non-small cell lung carcinoma (NSCLC) is one of the leading causes of death from cancer in both Eastern and Western countries. For patients with stage I NSCLC, full lobar or more extensive surgical resection is the treatment of choice. However, even among patients with surgically resected, stage I NSCLC, up to 30% of patients die of the disease within 5 years. At present, apart from clinical stage, there are no established cancer-specific clinical variables or biomarkers that reliably identify individuals at increased risk of death after surgical resection-individuals who could be candidates for adjuvant therapy or alternative management strategies. At a recent international workshop, participants discussed a clinical trial to compare radiation therapy with surgery among patients with stage I NSCLC. This study offers the opportunity to prospectively obtain, bank, and analyze tissue and other clinical specimens, which should facilitate the identification of new biomarkers for early detection, prognosis, and therapy in lung cancer.
Collapse
Affiliation(s)
- Maria Gabriela Raso
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | |
Collapse
|
52
|
Ohtani S, Iwamaru A, Deng W, Ueda K, Wu G, Jayachandran G, Kondo S, Atkinson EN, Minna JD, Roth JA, Ji L. Tumor suppressor 101F6 and ascorbate synergistically and selectively inhibit non-small cell lung cancer growth by caspase-independent apoptosis and autophagy. Cancer Res 2007; 67:6293-303. [PMID: 17616688 DOI: 10.1158/0008-5472.can-06-3884] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
101F6 is a candidate tumor suppressor gene harbored on chromosome 3p21.3, a region with frequent and early allele loss and genetic alterations in many human cancers. We previously showed that enforced expression of wild-type 101F6 by adenoviral vector-mediated gene transfer significantly inhibited tumor cell growth in 3p21.3-deficient non-small cell lung cancer (NSCLC) cells in vitro and in vivo. The molecular mechanism of 101F6-mediated tumor suppression is largely unknown. A computer-aided structural and functional model predicts the 101F6 protein to be a member of the cytochrome b561 protein family that is involved in the regeneration of the antioxidant ascorbate. 101F6 protein is expressed in normal lung bronchial epithelial cells and fibroblasts but is lost in most lung cancers. Treatment with 101F6 nanoparticle-mediated gene transfer in combination with a subpharmacologic dose (200-500 micromol/L) of ascorbate synergistically and selectively inhibited lung cancer cell growth in vitro. Systemic injection of 101F6 nanoparticles plus the i.p. injection of ascorbate synergistically inhibited both tumor formation and growth in human NSCLC H322 orthotopic lung cancer mouse models (P<0.001). Furthermore, exogenous expression of 101F6 enhanced intracellular uptake of ascorbate, leading to an accumulation of cytotoxic H(2)O(2) and a synergistic killing of tumor cells through caspase-independent apoptotic and autophagic pathways. The antitumor synergism showed by the combination treatment with systemic administration of 101F6 nanoparticles and ascorbate on lung cancer offers an attractive therapeutic strategy for future clinical trials in cancer prevention and treatment.
Collapse
Affiliation(s)
- Shoichiro Ohtani
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
Deletions of the 3p21.3 region are a frequent and early event in the formation of lung, breast, kidney and other cancers. Intense investigation of allelic losses and the discovery of overlapping homozygous deletions in lung and breast tumour-cell lines have defined a minimal critical 120 kb deletion region containing eight genes and likely to harbor one or more tumour-suppressor genes (TSGs). The candidate genes are HYAL2, FUS1, Ras-associated factor 1 (RASSF1), BLU/ZMYND10, NPR2L, 101F6, PL6 and CACNA2D2. Recent research indicates that several of these genes can suppress the growth of lung and other tumour cells. Furthermore, some genes (RASSF1A and BLU/ZMYND10) are very frequently inactivated by non-classical mechanisms such as promoter hypermethylation resulting in loss of expression. These data indicate that the 120 kb critical deletion region at 3p21.3 may represent a TSG cluster with preferential inactivation of particular genes depending on tumour type. The eight genes within this region and their potential role in cancer will be the focus of this review.
Collapse
Affiliation(s)
- L B Hesson
- Department of Medical and Molecular Genetics, MRC Protein Phosphorylation Unit, College of Life Sciences, Sir James Black Centre, Dow Street, University of Dundee, Dundee, UK.
| | | | | |
Collapse
|
54
|
Lin J, Sun T, Ji L, Deng W, Roth J, Minna J, Arlinghaus R. Oncogenic activation of c-Abl in non-small cell lung cancer cells lacking FUS1 expression: inhibition of c-Abl by the tumor suppressor gene product Fus1. Oncogene 2007; 26:6989-96. [PMID: 17486070 PMCID: PMC3457636 DOI: 10.1038/sj.onc.1210500] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In lung cancer, frequent loss of one allele of chromosome 3p is seen in both small cell lung cancer and non-small cell lung cancer (NSCLC), providing evidence of tumor suppressor genes (TSGs) in this chromosomal region. The mechanism of Fus1 tumor suppressor activity is unknown. We have found that a Fus1 peptide inhibits the Abl tyrosine kinase in vitro (IC(50) 35 microM). The inhibitory Fus1 sequence was derived from a region that was deleted in a mutant FUS1 gene (FUS1 (1-80)) detected in some lung cancer cell lines. Importantly, a stearic acid-modified form of this peptide was required for the inhibition, but stearic acid alone was not inhibitory. Two NSCLC cell lines, which lack expression of wild-type Fus1, contain activated c-Abl. Forced expression of an inducible FUS1 cDNA in H1299 NSCLC cells decreased levels of activated c-Abl and inhibited its tyrosine kinase activity. Similarly, treatment of c-Abl immune complexes with the inhibitory Fus1 peptide also reduced the level of c-Abl in these immune complexes. The size and number of colonies of the NSCLC cell line, H1,299, in soft agar was strongly inhibited by the Abl kinase inhibitor imatinib mesylate. Co-expression of FUS1 and c-ABL in COS1 cells blocked activation of c-Abl tyrosine kinase. In contrast, co-expression of mutant FUS1 (1-80) with c-ABL had little inhibitory activity against c-Abl. These findings provide strong evidence that c-Abl is a possible target in NSCLC patients that have reduced expression of Fus1 in their tumor cells.
Collapse
Affiliation(s)
- J Lin
- Department of Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Ivanova AV, Ivanov SV, Pascal V, Lumsden JM, Ward JM, Morris N, Tessarolo L, Anderson SK, Lerman MI. Autoimmunity, spontaneous tumourigenesis, and IL-15 insufficiency in mice with a targeted disruption of the tumour suppressor gene Fus1. J Pathol 2007; 211:591-601. [PMID: 17318811 DOI: 10.1002/path.2146] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Fus1 gene resides in the critical 3p21.3 human chromosomal region deleted in lung and breast cancers. Recently, the tumour suppressor properties of Fus1 were confirmed experimentally by intra-tumoural administration of Fus1 that suppressed experimental lung metastasis in mice. We generated Fus1-deficient mice that were viable, fertile, and demonstrated a complex immunological phenotype. Animals with a disrupted Fus1 gene developed signs of autoimmune disease, such as vasculitis, glomerulonephritis, anaemia, circulating autoantibodies, and showed an increased frequency of spontaneous vascular tumours. Preliminary analysis of immune cell populations revealed a consistent defect in NK cell maturation in Fus1 null mice that correlated with changes in the expression of IL-15. Injection of IL-15 into Fus1 knockout mice completely rescued the NK cell maturation defect. Based on these results, we propose the hypothesis that Fus1 deficiency affects NK cell maturation through the reduction of IL-15 production but does not directly alter their developmental capacity. Since acquired immunity was not affected in Fus1-deficient animals, we suggest a relationship between the Fus1 protein and the regulation of innate immunity via IL-15 production. The increased frequency of spontaneous cancers and the development of an autoimmune syndrome in Fus1 null mice imply that these mice could serve as a model for studying molecular mechanisms of anti-tumour immunity and autoimmunity.
Collapse
Affiliation(s)
- A V Ivanova
- Laboratory of Immunobiology, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - S V Ivanov
- Laboratory of Immunobiology, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - V Pascal
- Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - J M Lumsden
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - J M Ward
- Comparative Medicine Branch, NIAID, & SoBran, Inc., Rockville, MD 20892 USA
| | - N Morris
- Laboratory Animal Sciences Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - L Tessarolo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - S K Anderson
- Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - M I Lerman
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
56
|
Dorai T, Sawczuk I, Pastorek J, Wiernik PH, Dutcher JP. Role of carbonic anhydrases in the progression of renal cell carcinoma subtypes: proposal of a unified hypothesis. Cancer Invest 2007; 24:754-79. [PMID: 17162558 DOI: 10.1080/07357900601062321] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Renal cell carcinoma (RCC) has the highest rate of occurrence within the US when compared with other countries. Recent advances in the basic research and molecular diagnostics of this malignancy have revealed that RCC is not a single disease, but it is a mixture of several types of malignancies with unique molecular mechanisms and pathological attributes. RCC is now divided into clear cell carcinoma (80% of all kidney cancers), papillary type 1 and papillary type 2 neoplasms (10-15% of all RCC patients) and RCC with chromophobic and oncocytic features, called the Birt-Hogg-Dube (BHD) subtype, in roughly 5% of all patients. Apart from these, neoplasms such as the tuberous sclerosis (TSC) syndrome may occur with a mixed pathological features with a renal presentation. In this review, molecular evidence, both direct and indirect, published so far on all these RCC subtypes have been analyzed to find out whether there is any common thread that could run through these disparate malignancies that happen to occur in a single organ, i.e., the kidney. We believe that the role played by the expression and certain non-traditional activities of the cabonic anhydrase (CA) family members, along with the differing levels of hypoxia induced within these tumors may be the most common denominators. Evidence is presented focusing on how the CA family members could participate in the genesis and progression of each and every one of these RCC subtypes and how their function could be influenced by hypoxia, activities of receptor type protein tyrosine kinases and certain other pre-disposing factors. These rationalizations point towards a unified hypothesis that may help explain the occurrence of all these RCC subtypes in a molecular manner. We hope that these analyses would a) stimulate further studies aimed toward a better understanding of the role played by carbonic anhydrases in RCC subtypes and b) would pave way to a better and rationally designed therapies to interfere with their function to benefit patients with RCC and possibly other cancers.
Collapse
Affiliation(s)
- Thambi Dorai
- Comprehensive Cancer Center, Our Lady of Mercy Medical Center, New York Medical College, Bronx, New York 10466, USA.
| | | | | | | | | |
Collapse
|
57
|
Deng WG, Kawashima H, Wu G, Jayachandran G, Xu K, Minna JD, Roth JA, Ji L. Synergistic tumor suppression by coexpression of FUS1 and p53 is associated with down-regulation of murine double minute-2 and activation of the apoptotic protease-activating factor 1-dependent apoptotic pathway in human non-small cell lung cancer cells. Cancer Res 2007; 67:709-17. [PMID: 17234782 DOI: 10.1158/0008-5472.can-06-3463] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
FUS1 is a novel tumor suppressor gene identified in human chromosome 3p21.3 region. Loss of expression and deficiency of posttranslational modification of FUS1 protein have been found in a majority of human lung cancers. Restoration of wild-type FUS1 in 3p21.3-deficient human lung cancer cells exhibited a potent tumor suppression function in vitro and in vivo. In this study, we evaluated the combined effects of FUS1 and tumor suppressor p53 on antitumor activity and explored the molecular mechanisms of their mutual actions in human non-small cell lung cancer (NSCLC) cells. We found that coexpression of FUS1 and p53 by N-[1-(2,3-dioleoyloxyl)propyl]-NNN-trimethylammoniummethyl sulfate:cholesterol nanoparticle-mediated gene transfer significantly and synergistically inhibited NSCLC cell growth and induced apoptosis in vitro. We also found that a systemic treatment with a combination of FUS1 and p53 nanoparticles synergistically suppressed the development and growth of tumors in a human H322 lung cancer orthotopic mouse model. Furthermore, we showed that the observed synergistic tumor suppression by FUS1 and p53 concurred with the FUS1-mediated down-regulation of murine double minute-2 (MDM2) expression, the accumulation and stabilization of p53 protein, as well as the activation of the apoptotic protease-activating factor 1 (Apaf-1)-dependent apoptotic pathway in human NSCLC cells. Our results therefore provide new insights into the molecular mechanism of FUS1-mediated tumor suppression activity and imply that a molecular therapy combining two or more functionally synergistic tumor suppressors may constitute a novel and effective strategy for cancer treatment.
Collapse
Affiliation(s)
- Wu-Guo Deng
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Zhang H, Wang X, Li J, Zhu J, Xie X, Yuan B, Yang Z, Zeng M, Jiang Z, Li J, Huang C, Ye Q. Tissue type-specific modulation of ER transcriptional activity by NFAT3. Biochem Biophys Res Commun 2007; 353:576-81. [PMID: 17194453 DOI: 10.1016/j.bbrc.2006.12.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/07/2006] [Indexed: 11/28/2022]
Abstract
NFAT3 belongs to the NFAT family of transcription factors playing important roles in the development of several organ systems and was found to act as a transcriptional coactivator of estrogen receptors (ERalpha and ERbeta) in breast cancer cells. Since some cofactors of transcription factors show cell or tissue type-specific effects on transcriptional regulation, we investigated the effect of NFAT3 on the transcriptional activity of ERs in different cell lines originated from kidney. Surprisingly, overexpression of NFAT3 in these cell types decreased dose-dependently both ERalpha and ERbeta transcriptional activities in a ligand-independent manner. Knockdown of endogenous NFAT3 using NFAT3 small interfering RNA (siRNA) increased ER transcriptional activities. NFAT3 deletion mutants lacking the ER-binding sites completely abolished the NFAT3 repression of ERalpha and ERbeta transcriptional activities. Replacement of Ser168 and Ser170, the amino acid residues on which NFAT3 can be phosphorylated, with Ala did not change the ability of NFAT3 to inhibit the transcriptional activity of ERalpha and ERbeta. Taken together, these results demonstrate that NFAT3 is a new kind of cofactor that displays dual transcription modulation mode dependent on tissue types.
Collapse
Affiliation(s)
- Hao Zhang
- Beijing Institute of Biotechnology, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Selvakumar P, Lakshmikuttyamma A, Shrivastav A, Das SB, Dimmock JR, Sharma RK. Potential role of N-myristoyltransferase in cancer. Prog Lipid Res 2007; 46:1-36. [PMID: 16846646 DOI: 10.1016/j.plipres.2006.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colorectal cancer is the second leading cause of malignant death, and better preventive strategies are needed. The treatment of colonic cancer remains difficult because of the lack of effective chemotherapeutic agents; therefore it is important to continue to search for cellular functions that can be disrupted by chemotherapeutic drugs resulting in the inhibition of the development and progression of cancer. The current knowledge of the modification of proteins by myristoylation involving myristoyl-CoA: protein N-myristoyltransferase (NMT) is in its infancy. This process is involved in the pathogenesis of cancer. We have reported for the first time that NMT activity and protein expression were higher in human colorectal cancer, gallbladder carcinoma and brain tumors. In addition, an increase in NMT activity appeared at an early stage in colonic carcinogenesis. It is conceivable therefore that NMT can be used as a potential marker for the early detection of cancer. These observations lead to the possibility of developing NMT specific inhibitors, which may be therapeutically useful. We proposed that HSC70 and/or enolase could be used as an anticancer therapeutic target. This review summarized the status of NMT in cancer which has been carried in our laboratory.
Collapse
Affiliation(s)
- Ponniah Selvakumar
- Department of Pathology and Laboratory Medicine, College of Medicine, and Health Research Division, Saskatchewan Cancer Agency, University of Saskatchewan, 20 Campus Drive, Saskatoon, Sask., Canada S7N 4H4
| | | | | | | | | | | |
Collapse
|
60
|
Zhu Y, Valdes R, Jortani SA. Application of bioaffinity mass spectrometry for analysis of ligands. Ther Drug Monit 2006; 27:694-9. [PMID: 16404796 DOI: 10.1097/01.ftd.0000179851.32093.dc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bioaffinity mass spectrometry is a novel technology for analysis of binding proteins and their ligands. In this review, we introduce the concepts and principles of bioaffinity surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS). Various preactivated chip types and several approaches for binding of ligands or their binders to the chips are discussed. We also provide specific examples for the use of this technology for screening antibodies, analyzing ligands, glycoconjugates, protein-protein inter-actions, and DNA (RNA) binding proteins. In pursuit of developing new tests or studies of mechanism of drug action in therapeutic drug monitoring practice, this technology may provide a more rapid approach for ligand-binder studies.
Collapse
Affiliation(s)
- Yusheng Zhu
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, KY 40202, USA
| | | | | |
Collapse
|
61
|
Oh JJ, Razfar A, Delgado I, Reed RA, Malkina A, Boctor B, Slamon DJ. 3p21.3 Tumor Suppressor Gene H37/Luca15/RBM5 Inhibits Growth of Human Lung Cancer Cells through Cell Cycle Arrest and Apoptosis. Cancer Res 2006; 66:3419-27. [PMID: 16585163 DOI: 10.1158/0008-5472.can-05-1667] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deletion at chromosome 3p21.3 is the earliest and the most frequently observed genetic alteration in lung cancer, suggesting that the region contains tumor suppressor gene(s) (TSG). Identification of those genes may lead to the development both of biomarkers to identify high-risk individuals and novel therapeutics. Previously, we cloned the H37/Luca15/RBM5 gene from 3p21.3 and showed its TSG characteristics. To investigate the physiologic function of H37 in the lung and its mechanism of tumor suppression, we have stably transfected H37 into A549 non-small cell lung cancer cells. A549/H37 cells show significant growth inhibition compared with the vector controls by in vitro and in vivo cell proliferation assays. Using this lung cancer cell model, we have found that the molecular mechanism of H37 tumor suppression involves both cell cycle (G(1)) arrest and apoptosis. To further define H37's function in cell cycle/apoptotic pathways, we investigated differential expression profiles of various cell cycle and apoptosis regulatory proteins using Western blot analysis. Both cyclin A and phophorylated RB levels were decreased in H37-transfected cells, whereas expression of Bax protein was increased. Mitochondrial regulation of apoptosis further downstream of Bax was investigated, showing change in the mitochondrial membrane potential, cytochrome c release into the cytosol, and enhanced caspase-9 and caspase-3 activities. We also report that H37 may mediate apoptosis in a p53-independent manner, and Bax knockdown by small interfering RNA suggests Bax plays a functional role downstream of H37. Lastly, we proposed a tumor suppression model of H37 as a post-transcriptional regulator for cell cycle/apoptotic-related proteins.
Collapse
Affiliation(s)
- Juliana J Oh
- Division of Hematology/Oncology, University of California at Los Angeles School of Medicine, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
62
|
Ferri N, Paoletti R, Corsini A. Lipid-modified proteins as biomarkers for cardiovascular disease: a review. Biomarkers 2005; 10:219-37. [PMID: 16191483 DOI: 10.1080/13547500500216660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid-modified proteins are classified based on the identity of the attached lipid, a post- or co-translational modification required for their biological function. At least five different lipid modifications of cysteines, glycines and other residues on the COOH- and NH(2)-terminal domains have been described. Cysteine residues may be modified by the addition of a 16-carbon saturated fatty acyl group by a labile thioester bond (palmitoylation) or by prenylation processes that catalyze the formation of thioether bond with mevalonate derived isoprenoids, farnesol and geranylgeraniol. The NH(2)-terminal glycine residues may undergo a quite distinct process involving the formation of an amide bond with a 14-carbon saturated acyl group (myristoylation), while glycine residues in the COOH-terminal may be covalently attached with a cholesterol moiety by an ester bond. Finally, cell surface proteins can be anchored to the membrane through the addition of glycosylphosphatidylinositol moiety. Several lines of evidence suggest that lipid-modified proteins are directly involved in different steps of the development of lesions of atherosclerosis, from leukocyte recruitment to plaque rupture, and their expression or lipid modification are likely altered during atherogenesis. This review will briefly summarize the different enzymatic pathways of lipid modification and propose a series of lipid-modified proteins that can be used as biomarkers for cardiovascular disease.
Collapse
Affiliation(s)
- N Ferri
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
63
|
Abstract
Small-cell lung carcinoma is an aggressive form of lung cancer that is strongly associated with cigarette smoking and has a tendency for early dissemination. Increasing evidence has implicated autocrine growth loops, proto-oncogenes, and tumour-suppressor genes in its development. At presentation, the vast majority of patients are symptomatic, and imaging typically reveals a hilar mass. Pathology, in most cases of samples obtained by bronchoscopic biopsy, should be undertaken by pathologists with pulmonary expertise, with the provision of additional tissue for immunohistochemical stains as needed. Staging should aim to identify any evidence of distant disease, by imaging of the chest, upper abdomen, head, and bones as appropriate. Limited-stage disease should be treated with etoposide and cisplatin and concurrent early chest irradiation. All patients who achieve complete remission should be considered for treatment with prophylactic cranial irradiation, owing to the high frequency of brain metastases in this disease. Extensive-stage disease should be managed by combination chemotherapy, with a regimen such as etoposide and cisplatin administered for four to six cycles. Thereafter, patients with progressive or recurrent disease should be treated with additional chemotherapy. For patients who survive long term, careful monitoring for development of a second primary tumour is necessary, with further investigation and treatment as appropriate.
Collapse
Affiliation(s)
- David M Jackman
- Dana Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
64
|
Ito I, Ji L, Tanaka F, Saito Y, Gopalan B, Branch CD, Xu K, Atkinson EN, Bekele BN, Stephens LC, Minna JD, Roth JA, Ramesh R. Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo. Cancer Gene Ther 2005; 11:733-9. [PMID: 15486560 DOI: 10.1038/sj.cgt.7700756] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lung cancer is one of the leading causes of death in the world. The underlying cause for lung cancer has been attributed to various factors that include alteration and mutation in the tumor suppressor genes. Restoration of normal function of the tumor suppressor gene is a potential therapeutic strategy. Recent studies have identified a group of candidate tumor suppressor genes on human chromosome 3p21.3 that are frequently deleted in human lung and breast cancers. Among the various genes identified in the 3p21.3 region, we tested the antitumor activity of the FUS1 gene in two human non-small-cell lung cancer (NSCLC) xenografts in vivo. Intratumoral administration of FUS1 gene complexed to DOTAP:cholesterol (DOTAP:Chol) liposome into subcutaneous H1299 and A549 lung tumor xenograft resulted in significant (P = .02) inhibition of tumor growth. Furthermore, intravenous injections of DOTAP:Chol-FUS1 complex into mice bearing experimental A549 lung metastasis demonstrated significant (P = .001) decrease in the number of metastatic tumor nodules. Finally, lung tumor-bearing animals when treated with DOTAP:Chol-FUS1 complex demonstrate prolonged survival (median survival time: 80 days, P = .01) compared to control animals. This result demonstrates the potent tumor suppressive activity of the FUS1 gene and is a promising therapeutic agent for treatment of primary and disseminated human lung cancer.
Collapse
Affiliation(s)
- Isao Ito
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Gopalan B, Ito I, Branch CD, Stephens C, Roth JA, Ramesh R. Nanoparticle based systemic gene therapy for lung cancer: molecular mechanisms and strategies to suppress nanoparticle-mediated inflammatory response. Technol Cancer Res Treat 2005; 3:647-57. [PMID: 15560723 DOI: 10.1177/153303460400300615] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cancer gene therapy for the treatment of lung cancer has shown promise in the laboratory and in Phase I/II clinical trials. However, it is currently limited to treating localized tumors due to host-immunity against the gene delivery vector and the transgene. Therefore, there is a tremendous effort to develop and test alternate gene delivery vectors that are efficient, non-immunogenic, and applicable for systemic therapy. One such gene delivery vehicle is the non-viral vector, DOTAP:cholesterol (DOTAP:Chol) nanoparticle. Preclinical studies from our laboratory has shown that DOTAP:Chol. nanoparticles are effective systemic gene delivery vectors that efficiently deliver tumor-suppressor genes to disseminated lung tumors. Based on our findings we have recently initiated a Phase-I trial for systemic treatment of lung cancer using a novel tumor suppressor gene, FUS1. Although DOTAP:Chol. nanoparticles complexed to DNA (DNA-nanoparticles) are efficient vectors for systemic therapy, induction of an inflammatory response in a dose-dependent fashion has also been observed thereby limiting its use. A better understanding of the underlying mechanism for DNA-nanoparticles-mediated inflammatory response will allow us to develop strategies to suppress inflammation and expand the therapeutic window in treating human cancer. In the present study we conducted experiments examining the mechanism of nanoparticle-mediated inflammatory response in vitro and in vivo. We demonstrate that systemic administration of DNA-nanoparticles induced multiple signaling molecules both in vitro and in vivo that are associated with inflammation. Use of small molecule inhibitors against the signaling molecules resulted in their suppression and thereby reduced inflammation without affecting transgene expression. Our results provide a rationale to use small molecule inhibitors to suppress nanoparticle-mediated inflammation when administered systemically. Further development and testing will allow us to incorporate this strategy into future clinical trials that is based on systemic non-viral vector gene therapy.
Collapse
Affiliation(s)
- Began Gopalan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 445, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
66
|
Ji L, Minna JD, Roth JA. 3p21.3 tumor suppressor cluster: prospects for translational applications. Future Oncol 2005; 1:79-92. [PMID: 16555978 DOI: 10.1517/14796694.1.1.79] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Chromosomal abnormalities at the 3p21.3 region, including homozygous deletions and loss of heterozygosity and expressional deficiencies in 3p21.3 genes including transcriptional silences by promoter hypermethylation, altered mRNA splicing and aberrant transcripts, and lost or defect protein translation and post-translational modifications, are frequently found in most human cancers. Inactivation of 3p21.3 genes in primary tumors affects a wide spectrum of key biological processes such as cell proliferation, cell cycle kinetics, signaling transduction, ion exchange and transportation, apoptosis and cell death, and demonstrates the molecular signatures of carcinogenesis. Restoration of defective 3p21.3 genes with several wild-type 3p21.3 genes suppresses tumor cell growth both in vitro and in vivo. These findings suggest several 3p21.3 genes as potential tumor suppressors and implicates these 3p21.3 genes for future development as biomarkers for the early detection and diagnosis of cancer, and as prognostic and therapeutic tools for cancer prevention and molecular cancer therapy.
Collapse
Affiliation(s)
- Lin Ji
- Department of Thoracic & Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Unit 445, PO Box 301402, Houston, Texas, TX 77230-1402, USA.
| | | | | |
Collapse
|