51
|
Ning S, Li H, Qiao K, Wang Q, Shen M, Kang Y, Yin Y, Liu J, Liu L, Hou S, Wang J, Xu S, Pang D. Identification of long-term survival-associated gene in breast cancer. Aging (Albany NY) 2020; 12:20332-20349. [PMID: 33080569 PMCID: PMC7655188 DOI: 10.18632/aging.103807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/09/2020] [Indexed: 04/10/2023]
Abstract
Breast cancer patients at the same stage may show different clinical prognoses or different therapeutic effects of systemic therapy. Differentially expressed genes of breast cancer were identified from GSE42568. Through survival, receiver operating characteristic (ROC) curve, random forest, GSVA and a Cox regression model analyses, genes were identified that could be associated with survival time in breast cancer. The molecular mechanism was identified by enrichment, GSEA, methylation and SNV analyses. Then, the expression of a key gene was verified by the TCGA dataset and RT-qPCR, Western blot, and immunohistochemistry. We identified 784 genes related to the 5-year overall survival time of breast cancer. Through ROC curve and random forest analysis, 10 prognostic genes were screened. These were integrated into a complex by GSVA, and high expression of the complex significantly promoted the recurrence-free survival of patients. In addition, key genes were related to immune and metabolic-related functions. Importantly, we identified methylation of MEX3A and TBC1D 9 and mutations events. Finally, the expression of UGCG was verified by the TCGA dataset and by experimental methods in our own samples. These results indicate that 10 genes may be potential biomarkers and therapeutic targets for long-term survival in breast cancer, especially UGCG.
Collapse
Affiliation(s)
- Shipeng Ning
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Hui Li
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Kun Qiao
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Qin Wang
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Meiying Shen
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yujuan Kang
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yanling Yin
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Jiena Liu
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Lei Liu
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Siyu Hou
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Jianyu Wang
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Shouping Xu
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Da Pang
- Harbin Medical University, Harbin 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| |
Collapse
|
52
|
Gigantino V, Salvati A, Giurato G, Palumbo D, Strianese O, Rizzo F, Tarallo R, Nyman TA, Weisz A, Nassa G. Identification of Antiestrogen‐Bound Estrogen Receptor α Interactomes in Hormone‐Responsive Human Breast Cancer Cell Nuclei. Proteomics 2020; 20:e2000135. [DOI: 10.1002/pmic.202000135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/30/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics Department of Medicine Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi Salerno 84081 Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics Department of Medicine Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi Salerno 84081 Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics Department of Medicine Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi Salerno 84081 Italy
| | - Domenico Palumbo
- Laboratory of Molecular Medicine and Genomics Department of Medicine Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi Salerno 84081 Italy
| | - Oriana Strianese
- Laboratory of Molecular Medicine and Genomics Department of Medicine Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi Salerno 84081 Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics Department of Medicine Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi Salerno 84081 Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics Department of Medicine Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi Salerno 84081 Italy
| | - Tuula A. Nyman
- Department of Immunology Institute of Clinical Medicine University of Oslo and Rikshospitalet Oslo Oslo 0372 Norway
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics Department of Medicine Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi Salerno 84081 Italy
- CRGS ‐ Genome Research Center for Health University of Salerno Campus of Medicine Baronissi Salerno 84081 Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics Department of Medicine Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi Salerno 84081 Italy
| |
Collapse
|
53
|
Hruschka N, Kalisz M, Subijana M, Graña-Castro O, Del Cano-Ochoa F, Brunet LP, Chernukhin I, Sagrera A, De Reynies A, Kloesch B, Chin SF, Burgués O, Andreu D, Bermejo B, Cejalvo JM, Sutton J, Caldas C, Ramón-Maiques S, Carroll JS, Prat A, Real FX, Martinelli P. The GATA3 X308_Splice breast cancer mutation is a hormone context-dependent oncogenic driver. Oncogene 2020; 39:5455-5467. [PMID: 32587399 PMCID: PMC7410826 DOI: 10.1038/s41388-020-1376-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
As the catalog of oncogenic driver mutations is expanding, it becomes clear that alterations in a given gene might have different functions and should not be lumped into one class. The transcription factor GATA3 is a paradigm of this. We investigated the functions of the most common GATA3 mutation (X308_Splice) and five additional mutations, which converge into a neoprotein that we called "neoGATA3," associated with excellent prognosis in patients. Analysis of available molecular data from >3000 breast cancer patients revealed a dysregulation of the ER-dependent transcriptional response in tumors carrying neoGATA3-generating mutations. Mechanistic studies in vitro showed that neoGATA3 interferes with the transcriptional programs controlled by estrogen and progesterone receptors, without fully abrogating them. ChIP-Seq analysis indicated that ER binding is reduced in neoGATA3-expressing cells, especially at distal regions, suggesting that neoGATA3 interferes with the fine tuning of ER-dependent gene expression. This has opposite outputs in distinct hormonal context, having pro- or anti-proliferative effects, depending on the estrogen/progesterone ratio. Our data call for functional analyses of putative cancer drivers to guide clinical application.
Collapse
Affiliation(s)
- Natascha Hruschka
- Institute of Cancer Research, Medical University Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, CIBERONC, Madrid, Spain
| | - Maria Subijana
- Institute of Cancer Research, Medical University Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Francisco Del Cano-Ochoa
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Laia Paré Brunet
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Ana Sagrera
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, CIBERONC, Madrid, Spain
| | - Aurelien De Reynies
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Bernhard Kloesch
- Institute of Cancer Research, Medical University Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Suet-Feung Chin
- Department of Oncology, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Octavio Burgués
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Pathology Department, Hospital Clínico Universitario-CIBERONC, Valencia, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, Universitat Pompeu Fabra, Barcelona, Spain
| | - Begoña Bermejo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Oncology and Hematology Department, Hospital Clínico Universitario-CIBERONC, Valencia, Spain
| | - Juan Miguel Cejalvo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Oncology and Hematology Department, Hospital Clínico Universitario-CIBERONC, Valencia, Spain
| | - Joe Sutton
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Carlos Caldas
- Department of Oncology, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Santiago Ramón-Maiques
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Aleix Prat
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, CIBERONC, Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Paola Martinelli
- Institute of Cancer Research, Medical University Vienna, Comprehensive Cancer Center, Vienna, Austria.
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, CIBERONC, Madrid, Spain.
- Cancer Cell Signaling Department, Boehringer-Ingelheim RCV, Vienna, Austria.
| |
Collapse
|
54
|
Yu Y, Chen JT, Yeh AB. Weighted step-down confidence procedures with applications to gene expression data. COMMUN STAT-THEOR M 2020. [DOI: 10.1080/03610926.2020.1772983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yang Yu
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio, USA
| | - John T. Chen
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio, USA
| | - Arthur B. Yeh
- Department of Applied Statistics and Operation Research, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
55
|
Terkelsen T, Russo F, Gromov P, Haakensen VD, Brunak S, Gromova I, Krogh A, Papaleo E. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Breast Cancer Res 2020; 22:73. [PMID: 32605588 PMCID: PMC7329449 DOI: 10.1186/s13058-020-01295-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Studies on tumor-secreted microRNAs point to a functional role of these in cellular communication and reprogramming of the tumor microenvironment. Uptake of tumor-secreted microRNAs by neighboring cells may result in the silencing of mRNA targets and, in turn, modulation of the transcriptome. Studying miRNAs externalized from tumors could improve cancer patient diagnosis and disease monitoring and help to pinpoint which miRNA-gene interactions are central for tumor properties such as invasiveness and metastasis. Methods Using a bioinformatics approach, we analyzed the profiles of secreted tumor and normal interstitial fluid (IF) microRNAs, from women with breast cancer (BC). We carried out differential abundance analysis (DAA), to obtain miRNAs, which were enriched or depleted in IFs, from patients with different clinical traits. Subsequently, miRNA family enrichment analysis was performed to assess whether any families were over-represented in the specific sets. We identified dysregulated genes in tumor tissues from the same cohort of patients and constructed weighted gene co-expression networks, to extract sets of co-expressed genes and co-abundant miRNAs. Lastly, we integrated miRNAs and mRNAs to obtain interaction networks and supported our findings using prediction tools and cancer gene databases. Results Network analysis showed co-expressed genes and miRNA regulators, associated with tumor lymphocyte infiltration. All of the genes were involved in immune system processes, and many had previously been associated with cancer immunity. A subset of these, BTLA, CXCL13, IL7R, LAMP3, and LTB, was linked to the presence of tertiary lymphoid structures and high endothelial venules within tumors. Co-abundant tumor interstitial fluid miRNAs within this network, including miR-146a and miR-494, were annotated as negative regulators of immune-stimulatory responses. One co-expression network encompassed differences between BC subtypes. Genes differentially co-expressed between luminal B and triple-negative breast cancer (TNBC) were connected with sphingolipid metabolism and predicted to be co-regulated by miR-23a. Co-expressed genes and TIF miRNAs associated with tumor grade were BTRC, CHST1, miR-10a/b, miR-107, miR-301a, and miR-454. Conclusion Integration of IF miRNAs and mRNAs unveiled networks associated with patient clinicopathological traits, and underlined molecular mechanisms, specific to BC sub-groups. Our results highlight the benefits of an integrative approach to biomarker discovery, placing secreted miRNAs within a biological context.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Francesco Russo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Vilde Drageset Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Anders Krogh
- Unit of Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
56
|
Intrinsic and Extrinsic Factors Governing the Transcriptional Regulation of ESR1. Discov Oncol 2020; 11:129-147. [PMID: 32592004 DOI: 10.1007/s12672-020-00388-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional regulation of ESR1, the gene that encodes for estrogen receptor α (ER), is critical for regulating the downstream effects of the estrogen signaling pathway in breast cancer such as cell growth. ESR1 is a large and complex gene that is regulated by multiple regulatory elements, which has complicated our understanding of how ESR1 expression is controlled in the context of breast cancer. Early studies characterized the genomic structure of ESR1 with subsequent studies focused on identifying intrinsic (chromatin environment, transcription factors, signaling pathways) and extrinsic (tumor microenvironment, secreted factors) mechanisms that impact ESR1 gene expression. Currently, the introduction of genomic sequencing platforms and additional genome-wide technologies has provided additional insight on how chromatin structures may coordinate with these intrinsic and extrinsic mechanisms to regulate ESR1 expression. Understanding these interactions will allow us to have a clearer understanding of how ESR1 expression is regulated and eventually provide clues on how to influence its regulation with potential treatments. In this review, we highlight key studies concerning the genomic structure of ESR1, mechanisms that affect the dynamics of ESR1 expression, and considerations towards affecting ESR1 expression and hormone responsiveness in breast cancer.
Collapse
|
57
|
Bai JW, Wei M, Li JW, Zhang GJ. Notch Signaling Pathway and Endocrine Resistance in Breast Cancer. Front Pharmacol 2020; 11:924. [PMID: 32636747 PMCID: PMC7318302 DOI: 10.3389/fphar.2020.00924] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Nearly 70% of breast cancers express the estrogen receptor (ER) and are hormone-dependent for cell proliferation and survival. Anti-estrogen therapies with aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs) or selective estrogen receptor down regulators (SERDs) are the standard endocrine therapy approach for ER positive breast cancer patients. However, about 30% of patients receiving endocrine therapy will progress during the therapy or become endocrine resistance eventually. The intrinsic or acquired endocrine resistance has become a major obstacle for endocrine therapy. The mechanism of endocrine resistance is very complicated and recently emerging evidence indicates dysregulation of Notch signaling pathway contributes to endocrine resistance in breast cancer patients. The potential mechanisms include regulation of ER, promotion of cancer stem cell (CSC) phenotype and mesenchymal cell ratio, alteration of the local tumor microenvironment and cell cycle. This review will summarize the latest progress on the investigation of Notch signaling pathway in breast cancer endocrine resistance.
Collapse
Affiliation(s)
- Jing-Wen Bai
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Min Wei
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ji-Wei Li
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Guo-Jun Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
58
|
Bartoloni S, Leone S, Acconcia F. Unexpected Impact of a Hepatitis C Virus Inhibitor on 17β-Estradiol Signaling in Breast Cancer. Int J Mol Sci 2020; 21:ijms21103418. [PMID: 32408555 PMCID: PMC7279444 DOI: 10.3390/ijms21103418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
17β-Estradiol (E2) controls diverse physiological processes, including cell proliferation, through its binding to estrogen receptor α (ERα). E2:ERα signaling depends on both the receptor subcellular localization (e.g., nucleus, plasma membrane) and intracellular ERα abundance. Indeed, the control of ERα levels is necessary for the effects of E2, and E2 itself induces ERα degradation and cell proliferation in parallel. Thus, the modulation of intracellular ERα levels is a critical parameter for E2-induced cell proliferation. Therefore, we used this parameter as a bait to identify compounds that influence ERα levels and E2-dependent proliferation in breast cancer (BC) cells from a library of Food and Drug Administration (FDA)-approved drugs. We found that telaprevir (Tel) reduces ERα levels and inhibits BC cell proliferation. Tel is an inhibitor of the hepatitis C virus (HCV) NS3/4A serine protease, but its effect on E2:ERα signaling has not been investigated. Here, for the first time, we analyzed the effects of Tel on intracellular ERα levels and E2:ERα signaling to cell proliferation in different ERα-expressing BC cell lines. Overall, our findings demonstrate that Tel reduces intracellular ERα levels, deregulates E2:ERα signaling and inhibits E2-induced proliferation in BC cells and suggest the potential drug repurposing of Tel for the treatment of BC.
Collapse
|
59
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
60
|
Gao Y, Chen L, Han Y, Wu F, Yang WS, Zhang Z, Huo T, Zhu Y, Yu C, Kim H, Lee M, Tang Z, Phillips K, He B, Jung SY, Song Y, Zhu B, Xu RM, Feng Q. Acetylation of histone H3K27 signals the transcriptional elongation for estrogen receptor alpha. Commun Biol 2020; 3:165. [PMID: 32265480 PMCID: PMC7138820 DOI: 10.1038/s42003-020-0898-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
As approximately 70% of human breast tumors are estrogen receptor α (ERα)-positive, estrogen and ERα play essential roles in breast cancer development. By interrupting the ERα signaling pathway, endocrine therapy has been proven to be an effective therapeutic strategy. In this study, we identified a mechanism by which Transcription Start Site (TSS)-associated histone H3K27 acetylation signals the Super Elongation Complex (SEC) to regulate transcriptional elongation of the ESR1 (ERα) gene. SEC interacts with H3K27ac on ESR1 TSS through its scaffold protein AFF4. Depletion of AFF4 by siRNA or CRISPR/Cas9 dramatically reduces expression of ESR1 and its target genes, consequently inhibiting breast cancer cell growth. More importantly, a AFF4 mutant which lacks H3K27ac interaction failed to rescue ESR1 gene expression, suggesting H3K27 acetylation at TSS region is a key mark bridging the transition from transcriptional initiation to elongation, and perturbing SEC function can be an alternative strategy for targeting ERα signaling pathway at chromatin level.
Collapse
Affiliation(s)
- Yujing Gao
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, China
| | - Lijia Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yali Han
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Fangrui Wu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wen-Si Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zheng Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tong Huo
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yingmin Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chengtai Yu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Hong Kim
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Mark Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhen Tang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kevin Phillips
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bin He
- Immunology & Transplant Science Center, Department of Surgery and Urology, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bokai Zhu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qin Feng
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
61
|
Luo Y, Wang X, Ma L, Ma Z, Li S, Fang X, Ma X. Bioinformatics analyses and biological function of lncRNA ZFPM2-AS1 and ZFPM2 gene in hepatocellular carcinoma. Oncol Lett 2020; 19:3677-3686. [PMID: 32382322 PMCID: PMC7202276 DOI: 10.3892/ol.2020.11485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/14/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most lethal malignant tumors worldwide; however, the etiology of HCC still remains poorly understood. In the present study, cancer-omics databases, including The Cancer Genome Atlas, GTEx and Gene Expression Omnibus, were systematically analyzed in order to investigate the role of the long non-coding RNA (lncRNA) zinc finger protein, FOG family member 2-antisense 1 (ZFPM2-AS1) and the zinc finger protein, FOG family member 2 (ZFPM2) gene in the occurrence and progression of HCC. It was identified that the expression levels of lncRNA ZFPM2-AS1 were significantly increased in HCC tissues, whereas expression levels of the ZFPM2 gene were significantly decreased in HCC tissues compared with normal liver tissues. Higher expression levels of ZFPM2-AS1 were significantly associated with a less favorable prognosis of HCC, whereas higher expression levels of the ZFPM2 gene were associated with a more favorable prognosis of HCC. Genetic alterations in the ZFPM2 gene may contribute to a worse prognosis of HCC. Validation of the GSE14520 dataset also demon stared that ZFPM2 gene expression levels were significantly decreased in HCC tissues (P<0.001). The receiver operating characteristic (ROC) analysis of the ZFPM2 gene indicated high accuracy of this gene in distinguishing between HCC tissues and non-tumor tissues. The areas under the ROC curves were >0.8. Using integrated strategies, the present study demonstrated that lncRNA ZFPM2-AS1 and the ZFPM2 gene may contribute to the occurrence and prognosis of HCC. These findings may provide a novel understanding of the molecular mechanisms underlying the occurrence and prognosis of HCC.
Collapse
Affiliation(s)
- Yi Luo
- Department of Epidemiology, College of Preventive Medicine, Army Military Medical University, Chongqing 400038, P.R. China
| | - Xiaojun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Army Military Medical University, Chongqing 400038, P.R. China
| | - Ling Ma
- Department of Pediatrics, Banan People's Hospital of Chongqing, Chongqing 401320, P.R. China
| | - Zhihua Ma
- Department of Anesthesia, The First Affiliated Hospital of Army Military Medical University, Chongqing 400038, P.R. China
| | - Shen Li
- The Second Clinical College, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoyu Fang
- College of Preventive Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Army Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
62
|
Nagarajan S, Rao SV, Sutton J, Cheeseman D, Dunn S, Papachristou EK, Prada JEG, Couturier DL, Kumar S, Kishore K, Chilamakuri CSR, Glont SE, Archer Goode E, Brodie C, Guppy N, Natrajan R, Bruna A, Caldas C, Russell A, Siersbæk R, Yusa K, Chernukhin I, Carroll JS. ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nat Genet 2020; 52:187-197. [PMID: 31913353 PMCID: PMC7116647 DOI: 10.1038/s41588-019-0541-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
Using genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens to understand endocrine drug resistance, we discovered ARID1A and other SWI/SNF complex components as the factors most critically required for response to two classes of estrogen receptor-alpha (ER) antagonists. In this context, SWI/SNF-specific gene deletion resulted in drug resistance. Unexpectedly, ARID1A was also the top candidate in regard to response to the bromodomain and extraterminal domain inhibitor JQ1, but in the opposite direction, with loss of ARID1A sensitizing breast cancer cells to bromodomain and extraterminal domain inhibition. We show that ARID1A is a repressor that binds chromatin at ER cis-regulatory elements. However, ARID1A elicits repressive activity in an enhancer-specific, but forkhead box A1-dependent and active, ER-independent manner. Deletion of ARID1A resulted in loss of histone deacetylase 1 binding, increased histone 4 lysine acetylation and subsequent BRD4-driven transcription and growth. ARID1A mutations are more frequent in treatment-resistant disease, and our findings provide mechanistic insight into this process while revealing rational treatment strategies for these patients.
Collapse
Affiliation(s)
| | - Shalini V Rao
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joseph Sutton
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Danya Cheeseman
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Sanjeev Kumar
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kamal Kishore
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | | | - Cara Brodie
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Alejandra Bruna
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Alasdair Russell
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Rasmus Siersbæk
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kosuke Yusa
- Wellcome Trust Sanger Institute, Hinxton, UK
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Igor Chernukhin
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jason S Carroll
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
63
|
Bacolod MD, Huang J, Giardina SF, Feinberg PB, Mirza AH, Swistel A, Soper SA, Barany F. Prediction of blood-based biomarkers and subsequent design of bisulfite PCR-LDR-qPCR assay for breast cancer detection. BMC Cancer 2020; 20:85. [PMID: 32005108 PMCID: PMC6995062 DOI: 10.1186/s12885-020-6574-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background Interrogation of site-specific CpG methylation in circulating tumor DNAs (ctDNAs) has been employed in a number of studies for early detection of breast cancer (BrCa). In many of these studies, the markers were identified based on known biology of BrCa progression, and interrogated using methyl-specific PCR (MSP), a technique involving bisulfite conversion, PCR, and qPCR. Methods In this report, we are demonstrating the development of a novel assay (Multiplex Bisulfite PCR-LDR-qPCR) which can potentially offer improvements to MSP, by integrating additional steps such as ligase detection reaction (LDR), methylated CpG target enrichment, carryover protection (use of uracil DNA glycosylase), and minimization of primer-dimer formation (use of ribose primers and RNAseH2). The assay is designed to for breast cancer-specific CpG markers identified through integrated analyses of publicly available genome-wide methylation datasets for 31 types of primary tumors (including BrCa), as well as matching normal tissues, and peripheral blood. Results Our results indicate that the PCR-LDR-qPCR assay is capable of detecting ~ 30 methylated copies of each of 3 BrCa-specific CpG markers, when mixed with excess amount unmethylated CpG markers (~ 3000 copies each), which is a reasonable approximation of BrCa ctDNA overwhelmed with peripheral blood cell-free DNA (cfDNA) when isolated from patient plasma. The bioinformatically-identified CpG markers are located in promoter regions of NR5A2 and PRKCB, and a non-coding region of chromosome 1 (upstream of EFNA3). Additional bioinformatic analyses would reveal that these methylation markers are independent of patient race and age, and positively associated with signaling pathways associated with BrCa progression (such as those related to retinoid nuclear receptor, PTEN, p53, pRB, and p27). Conclusion This report demonstrates the potential utilization of bisulfite PCR-LDR-qPCR assay, along with bioinformatically-driven biomarker discovery, in blood-based BrCa detection.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Jianmin Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Philip B Feinberg
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Aashiq H Mirza
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alexander Swistel
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Steven A Soper
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS, 66047, USA
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
64
|
López-Mateo I, Alonso-Merino E, Suarez-Cabrera C, Park JW, Cheng SY, Alemany S, Paramio JM, Aranda A. Thyroid Hormone Receptor β Inhibits Self-Renewal Capacity of Breast Cancer Stem Cells. Thyroid 2020; 30:116-132. [PMID: 31760908 PMCID: PMC6998057 DOI: 10.1089/thy.2019.0175] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: A subpopulation of cancer stem cells (CSCs) with capacity for self-renewal is believed to drive initiation, progression, and relapse of breast tumors. Methods: Since the thyroid hormone receptor β (TRβ) appears to suppress breast tumor growth and metastasis, we have analyzed the possibility that TRβ could affect the CSC population using MCF-7 cells grown under adherent conditions or as mammospheres, as well as inoculation into immunodeficient mice. Results: Treatment of TRβ-expressing MCF-7 cells (MCF7-TRβ cells) with the thyroid hormone triiodothyronine (T3) decreased significantly CD44+/CD24- and ALDH+ cell subpopulations, the efficiency of mammosphere formation, the self-renewal capacity of CSCs in limiting dilution assays, the expression of the pluripotency factors in the mammospheres, and tumor initiating capacity in immunodeficient mice, indicating that the hormone reduces the CSC population present within the bulk MCF7-TRβ cultures. T3 also decreased migration and invasion, a hallmark of CSCs. Transcriptome analysis showed downregulation of the estrogen receptor alpha (ERα) and ER-responsive genes by T3. Furthermore, among the T3-repressed genes, there was an enrichment in genes containing binding sites for transcription factors that are key determinants of luminal-type breast cancers and are required for ER binding to chromatin. Conclusion: We demonstrate a novel role of TRβ in the biology of CSCs that may be related to its action as a tumor suppressor in breast cancer.
Collapse
Affiliation(s)
- Irene López-Mateo
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
| | - Elvira Alonso-Merino
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
| | | | - Jeong Won Park
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland
| | - Susana Alemany
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
| | - Jesús M. Paramio
- Molecular Oncology Unit, CIEMAT, Madrid, Spain
- Institute of Biomedical Research, Hosp Univ. “12 de Octubre,” Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Aranda
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Address correspondence to: Ana Aranda, PhD, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols”, Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
65
|
Liang C, Niu L, Xiao Z, Zheng C, Shen Y, Shi Y, Han X. Whole-genome sequencing of prostate cancer reveals novel mutation-driven processes and molecular subgroups. Life Sci 2019; 254:117218. [PMID: 31884093 DOI: 10.1016/j.lfs.2019.117218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 01/27/2023]
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed cancer in men. However, its genetic characteristics in the Chinese population have not been extensively profiled. Here we screened 27 Chinese patients and preformed whole-genome sequencing to dissect their genomic patterns. We found that 18.5% (5/27) tumors harbored non-protein coding mutations on FOXA1. Besides, novel focal amplifications/deletions involving ZBTB7B, SLC4A4, TBX18, CYSLTR2 and EFNA5 were frequently present in tumors. Notably, group specificity of base substitution signature B displayed a strong link to hotspot mutations on SPOP gene. Furthermore, based on six rearrangement signatures, tumors were assigned to five subgroups that revealed different biological mechanisms. Of which, tandem duplicator subgroup harbored all CDK12 mutations, small deletor subgroup owned 75% TP53 changes, and large deletor subgroup had 66.7% SPOP mutations. Taken together, we provide a comprehensive view of genomic patterns which affect the critical cell regulators of PCa in the Chinese population. Our findings may provide valuable insights for designing specific treatments for Chinese patients with PCa.
Collapse
Affiliation(s)
- Caixia Liang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lijuan Niu
- Department of Ultrasound, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zejun Xiao
- Department of Urinary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cuiling Zheng
- Department of Clinical Laboratory, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yinchen Shen
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaohong Han
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Clinical Laboratory, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
66
|
FOXA1 upregulation promotes enhancer and transcriptional reprogramming in endocrine-resistant breast cancer. Proc Natl Acad Sci U S A 2019; 116:26823-26834. [PMID: 31826955 DOI: 10.1073/pnas.1911584116] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Forkhead box A1 (FOXA1) is a pioneer factor that facilitates chromatin binding and function of lineage-specific and oncogenic transcription factors. Hyperactive FOXA1 signaling due to gene amplification or overexpression has been reported in estrogen receptor-positive (ER+) endocrine-resistant metastatic breast cancer. However, the molecular mechanisms by which FOXA1 up-regulation promotes these processes and the key downstream targets of the FOXA1 oncogenic network remain elusive. Here, we demonstrate that FOXA1 overexpression in ER+ breast cancer cells drives genome-wide enhancer reprogramming to activate prometastatic transcriptional programs. Up-regulated FOXA1 employs superenhancers (SEs) to synchronize transcriptional reprogramming in endocrine-resistant breast cancer cells, reflecting an early embryonic development process. We identify the hypoxia-inducible transcription factor hypoxia-inducible factor-2α (HIF-2α) as the top high FOXA1-induced SE target, mediating the impact of high FOXA1 in activating prometastatic gene sets and pathways associated with poor clinical outcome. Using clinical ER+/HER2- metastatic breast cancer datasets, we show that the aberrant FOXA1/HIF-2α transcriptional axis is largely nonconcurrent with the ESR1 mutations, suggesting different mechanisms of endocrine resistance and treatment strategies. We further demonstrate the selective efficacy of an HIF-2α antagonist, currently in clinical trials for advanced kidney cancer and recurrent glioblastoma, in reducing the clonogenicity, migration, and invasion of endocrine-resistant breast cancer cells expressing high FOXA1. Our study has uncovered high FOXA1-induced enhancer reprogramming and HIF-2α-dependent transcriptional programs as vulnerable targets for treating endocrine-resistant and metastatic breast cancer.
Collapse
|
67
|
Chiang HC, Zhang X, Li J, Zhao X, Chen J, Wang HTH, Jatoi I, Brenner A, Hu Y, Li R. BRCA1-associated R-loop affects transcription and differentiation in breast luminal epithelial cells. Nucleic Acids Res 2019; 47:5086-5099. [PMID: 30982901 PMCID: PMC6547407 DOI: 10.1093/nar/gkz262] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
BRCA1-associated basal-like breast cancer originates from luminal progenitor cells. Breast epithelial cells from cancer-free BRCA1 mutation carriers are defective in luminal differentiation. However, how BRCA1 deficiency leads to lineage-specific differentiation defect is not clear. BRCA1 is implicated in resolving R-loops, DNA-RNA hybrid structures associated with genome instability and transcriptional regulation. We recently showed that R-loops are preferentially accumulated in breast luminal epithelial cells of BRCA1 mutation carriers. Here, we interrogate the impact of a BRCA1 mutation-associated R-loop located in a putative transcriptional enhancer upstream of the ERα-encoding ESR1 gene. Genetic ablation confirms the relevance of this R-loop-containing region to enhancer-promoter interactions and transcriptional activation of the corresponding neighboring genes, including ESR1, CCDC170 and RMND1. BRCA1 knockdown in ERα+ luminal breast cancer cells increases intensity of this R-loop and reduces transcription of its neighboring genes. The deleterious effect of BRCA1 depletion on transcription is mitigated by ectopic expression of R-loop-removing RNase H1. Furthermore, RNase H1 overexpression in primary breast cells from BRCA1 mutation carriers results in a shift from luminal progenitor cells to mature luminal cells. Our findings suggest that BRCA1-dependent R-loop mitigation contributes to luminal cell-specific transcription and differentiation, which could in turn suppress BRCA1-associated tumorigenesis.
Collapse
Affiliation(s)
- Huai-Chin Chiang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Jingwei Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiayan Zhao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jerry Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Howard T-H Wang
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ismail Jatoi
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Andrew Brenner
- Department of Medicine, The Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
68
|
Lu S, Yakirevich E, Wang LJ, Resnick MB, Wang Y. Cytokeratin 7-negative and GATA binding protein 3-negative breast cancers: Clinicopathological features and prognostic significance. BMC Cancer 2019; 19:1085. [PMID: 31718619 PMCID: PMC6849242 DOI: 10.1186/s12885-019-6295-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/25/2019] [Indexed: 01/10/2023] Open
Abstract
Background Cytokeratin 7 (CK7) and GATA binding protein 3 (GATA3) are considered as immunohistochemical hallmarks of breast cancers; however, there are breast tumors lacking these markers. Clinicopathological characterization of CK7 negative breast cancer has not been addressed previously and similar studies on GATA3 negative tumors are limited. Methods This study included 196 consecutive cases of Nottingham Grade 3 breast cancers with 159 cases of Grade 1 and Grade 2 tumors for comparison. CK7 and GATA3 expression was correlated with patient’s age, histological type, pathological grade and stage, hormone receptor status, molecular subtype and overall survival. Results CK7 negativity was seen in 13% of Grade 3, 9% of Grade 2, and 2% of Grade 1 cases (P = 0.0457). Similarly, 28% of Grade 3, 5% of Grade 2 and 2% of Grade 1 cases were GATA3 negative (P < 0.0001). CK7 negative tumors did not show association with other clinicopathological parameters. GATA3 negative tumors were enriched in the basal-like molecular subgroup and were associated with negative estrogen receptor (ER) and negative progesterone receptor (PR) statuses. Both CK7 and GATA3 expression showed no association with overall survival in patients with Grade 3 tumor. Conclusions This is the first study to characterize CK7 negative breast tumors in the context of clinicopathology. Profiling the CK7 negative and GATA3 negative breast cancers helps to understand the biology of these specific tumor subgroups and may aid in their diagnosis.
Collapse
Affiliation(s)
- Shaolei Lu
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, 593 Eddy St; APC 12, Providence, RI, 02903, USA.
| | - Evgeny Yakirevich
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, 593 Eddy St; APC 12, Providence, RI, 02903, USA
| | - Li Juan Wang
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, 593 Eddy St; APC 12, Providence, RI, 02903, USA
| | - Murray B Resnick
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, 593 Eddy St; APC 12, Providence, RI, 02903, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, 593 Eddy St; APC 12, Providence, RI, 02903, USA.
| |
Collapse
|
69
|
Yu W, Huang W, Yang Y, Qiu R, Zeng Y, Hou Y, Sun G, Shi H, Leng S, Feng D, Chen Y, Wang S, Teng X, Yu H, Wang Y. GATA3 recruits UTX for gene transcriptional activation to suppress metastasis of breast cancer. Cell Death Dis 2019; 10:832. [PMID: 31685800 PMCID: PMC6828764 DOI: 10.1038/s41419-019-2062-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
GATA3 has emerged as a prominent transcription factor required for maintaining mammary-gland homeostasis. GATA3 loss is associated with aggressive breast cancer development, but the mechanism by which breast cancer is affected by the loss of GATA3 function remains unclear. Here, we report that GATA3 expression is positively correlated with the expression of UTX, a histone H3K27 demethylase contained in the MLL4 methyltransferase complex, and that GATA3 recruits the chromatin-remodeling MLL4 complex and interacts directly with UTX, ASH2L, and RBBP5. Using RNA sequencing and chromatin immunoprecipitation and sequencing, we demonstrate that the GATA3/UTX complex synergistically regulates a cohort of genes including Dicer and UTX, which are critically involved in the epithelial-to-mesenchymal transition (EMT). Our results further show that the GATA3-UTX-Dicer axis inhibits EMT, invasion, and metastasis of breast cancer cells in vitro and the dissemination of breast cancer in vivo. Our study implicates the GATA3-UTX-Dicer axis in breast cancer metastasis and provides new mechanistic insights into the pathophysiological function of GATA3.
Collapse
Affiliation(s)
- Wenqian Yu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China.,Cardiovascular surgery center, Shandong Provincial ENT Hospital affiliated to Shandong University, 250022, Jinan, P.R. China
| | - Wei Huang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, P.R. China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Yi Zeng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Gancheng Sun
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Hang Shi
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Shuai Leng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Dandan Feng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Yang Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Shuang Wang
- Cardiovascular surgery center, Shandong Provincial ENT Hospital affiliated to Shandong University, 250022, Jinan, P.R. China
| | - Xu Teng
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, P.R. China
| | - Hefen Yu
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, P.R. China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China. .,Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, P.R. China.
| |
Collapse
|
70
|
Lung DK, Warrick JW, Hematti P, Callander NS, Mark CJ, Miyamoto S, Alarid ET. Bone Marrow Stromal Cells Transcriptionally Repress ESR1 but Cannot Overcome Constitutive ESR1 Mutant Activity. Endocrinology 2019; 160:2427-2440. [PMID: 31504407 PMCID: PMC6760314 DOI: 10.1210/en.2019-00299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/18/2019] [Indexed: 12/28/2022]
Abstract
Estrogen receptor α (ER) is the target of endocrine therapies in ER-positive breast cancer (BC), but their therapeutic effectiveness diminishes with disease progression. Most metastatic BCs retain an ER-positive status, but ER expression levels are reduced. We asked how the bone tumor microenvironment (TME) regulates ER expression. We observed ESR1 mRNA and ER protein downregulation in BC cells treated with conditioned media (CM) from patient-derived, cancer-activated bone marrow stromal cells (BMSCs) and the BMSC cell line HS5. Decreases in ESR1 mRNA were attributed to decreases in nascent transcripts as well as decreased RNA polymerase II occupancy and H3K27Ac levels on the ESR1 promoter and/or distal enhancer (ENH1). Repression extended to neighboring genes of ESR1, including ARMT1 and SYNE1. Although ERK/MAPK signaling pathway can repress ER expression by other TME cell types, MAPK inhibition did not reverse decreases in ER expression by BMSC-CM. ESR1 mRNA and ER protein half-lives in MCF7 cells were unchanged by BMSC-CM treatment. Whereas ER phosphorylation was induced, ER activity was repressed by BMSC-CM as neither ER occupancy at known binding sites nor estrogen response element-luciferase activity was detected. BMSC-CM also repressed expression of ER target genes. In cells expressing the Y537S and D538G ESR1 mutations, BMSC-CM reduced ESR1, but expression of target genes PGR and TFF1 remained significantly elevated compared with that of control wild-type cells. These studies demonstrate that BMSCs can transcriptionally corepress ESR1 with neighboring genes and inhibit receptor activity, but the functional consequences of the BMSC TME can be limited by metastasis-associated ESR1 mutations.
Collapse
Affiliation(s)
- David K Lung
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Comprehensive Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Jay W Warrick
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin
| | - Natalie S Callander
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin
| | - Christina J Mark
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Comprehensive Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Shigeki Miyamoto
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Comprehensive Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Elaine T Alarid
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Comprehensive Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
- Correspondence: Elaine T. Alarid, PhD, 6151 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, Wisconsin 53705. E-mail: .
| |
Collapse
|
71
|
Molloy ME, Lewinska M, Williamson AK, Nguyen TT, Kuser-Abali G, Gong L, Yan J, Little JB, Pandolfi PP, Yuan ZM. ZBTB7A governs estrogen receptor alpha expression in breast cancer. J Mol Cell Biol 2019; 10:273-284. [PMID: 30265334 DOI: 10.1093/jmcb/mjy020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/19/2018] [Indexed: 01/30/2023] Open
Abstract
ZBTB7A, a member of the POZ/BTB and Krüppel (POK) family of transcription factors, has been shown to have a context-dependent role in cancer development and progression. The role of ZBTB7A in estrogen receptor alpha (ERα)-positive breast cancer is largely unknown. Approximately 70% of breast cancers are classified as ERα-positive. ERα carries out the biological effects of estrogen and its expression level dictates response to endocrine therapies and prognosis for breast cancer patients. In this study, we find that ZBTB7A transcriptionally regulates ERα expression in ERα-positive breast cancer cell lines by binding to the ESR1 promoter leading to increased transcription of ERα. Inhibition of ZBTB7A in ERα-positive cells results in decreased estrogen responsiveness as demonstrated by diminished estrogen-response element-driven luciferase reporter activity, induction of estrogen target genes, and estrogen-stimulated growth. We also report that ERα potentiates ZBTB7A expression via a post-translational mechanism, suggesting the presence of a positive feedback loop between ZBTB7A and ERα, conferring sensitivity to estrogen in breast cancer. Clinically, we find that ZBTB7A and ERα are often co-expressed in breast cancers and that high ZBTB7A expression correlates with improved overall and relapse-free survival for breast cancer patients. Importantly, high ZBTB7A expression predicts a more favorable outcome for patients treated with endocrine therapies. Together, these findings demonstrate that ZBTB7A contributes to the transcriptional program maintaining ERα expression and potentially an endocrine therapy-responsive phenotype in breast cancer.
Collapse
Affiliation(s)
- Mary Ellen Molloy
- Department of Environmental Health, John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Monika Lewinska
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amanda K Williamson
- Department of Environmental Health, John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Thanh Thao Nguyen
- Department of Environmental Health, John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gamze Kuser-Abali
- Department of Environmental Health, John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Gong
- Department of Environmental Health, John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiawei Yan
- Department of Environmental Health, John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - John B Little
- Department of Environmental Health, John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhi-Min Yuan
- Department of Environmental Health, John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
72
|
Zeng Y, Gao T, Huang W, Yang Y, Qiu R, Hou Y, Yu W, Leng S, Feng D, Liu W, Teng X, Yu H, Wang Y. MicroRNA-455-3p mediates GATA3 tumor suppression in mammary epithelial cells by inhibiting TGF-β signaling. J Biol Chem 2019; 294:15808-15825. [PMID: 31492753 DOI: 10.1074/jbc.ra119.010800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
GATA3 is a basic and essential transcription factor that regulates many pathophysiological processes and is required for the development of mammary luminal epithelial cells. Loss-of-function GATA3 alterations in breast cancer are associated with poor prognosis. Here, we sought to understand the tumor-suppressive functions GATA3 normally performs. We discovered a role for GATA3 in suppressing epithelial-to-mesenchymal transition (EMT) in breast cancer by activating miR-455-3p expression. Enforced expression of miR-455-3p alone partially prevented EMT induced by transforming growth factor β (TGF-β) both in cells and tumor xenografts by directly inhibiting key components of TGF-β signaling. Pathway and biochemical analyses showed that one miRNA-455-3p target, the TGF-β-induced protein ZEB1, recruits the Mi-2/nucleosome remodeling and deacetylase (NuRD) complex to the promotor region of miR-455 to strictly repress the GATA3-induced transcription of this microRNA. Considering that ZEB1 enhances TGF-β signaling, we delineated a double-feedback interaction between ZEB1 and miR-455-3p, in addition to the repressive effect of miR-455-3p on TGF-β signaling. Our study revealed that a feedback loop between these two axes, specifically GATA3-induced miR-455-3p expression, could repress ZEB1 and its recruitment of NuRD (MTA1) to suppress miR-455, which ultimately regulates TGF-β signaling. In conclusion, we identified that miR-455-3p plays a pivotal role in inhibiting the EMT and TGF-β signaling pathway and maintaining cell differentiation. This forms the basis of that miR-455-3p might be a promising therapeutic intervention for breast cancer.
Collapse
Affiliation(s)
- Yi Zeng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Department of Biochemistry and Molecular Biology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyang Gao
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wenqian Yu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Leng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dandan Feng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xu Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
73
|
Cornelissen LM, de Bruijn R, Henneman L, Kim Y, Zwart W, Jonkers J. GATA3 Truncating Mutations Promote Cistromic Re-Programming In Vitro, but Not Mammary Tumor Formation in Mice. J Mammary Gland Biol Neoplasia 2019; 24:271-284. [PMID: 31218575 DOI: 10.1007/s10911-019-09432-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 11/27/2022] Open
Abstract
Heterozygous mutations in the transcription factor GATA3 are identified in 10-15% of all breast cancer cases. Most of these are protein-truncating mutations, concentrated within or downstream of the second GATA-type zinc-finger domain. Here, we investigated the functional consequences of expression of two truncated GATA3 mutants, in vitro in breast cancer cell lines and in vivo in the mouse mammary gland. We found that the truncated GATA3 mutants display altered DNA binding activity caused by preferred tethering through FOXA1. In addition, expression of the truncated GATA3 mutants reduces E-cadherin expression and promotes anchorage-independent growth in vitro. However, we could not identify any effects of truncated GATA3 expression on mammary gland development or mammary tumor formation in mice. Together, our results demonstrate that both truncated GATA3 mutants promote cistromic re-programming of GATA3 in vitro, but these mutants are not sufficient to induce tumor formation in mice.
Collapse
Affiliation(s)
- Lisette M Cornelissen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
- Division of Molecular Carcinogenisis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Linda Henneman
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
- Mouse Clinic for Cancer and Aging - Transgenic facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Yongsoo Kim
- Division of Molecular Carcinogenisis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
- Laboratory of Chemical Biology and Institute for Complex Molecular systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
74
|
Pellacani D, Tan S, Lefort S, Eaves CJ. Transcriptional regulation of normal human mammary cell heterogeneity and its perturbation in breast cancer. EMBO J 2019; 38:e100330. [PMID: 31304632 PMCID: PMC6627240 DOI: 10.15252/embj.2018100330] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
The mammary gland in adult women consists of biologically distinct cell types that differ in their surface phenotypes. Isolation and molecular characterization of these subpopulations of mammary cells have provided extensive insights into their different transcriptional programs and regulation. This information is now serving as a baseline for interpreting the heterogeneous features of human breast cancers. Examination of breast cancer mutational profiles further indicates that most have undergone a complex evolutionary process even before being detected. The consequent intra-tumoral as well as inter-tumoral heterogeneity of these cancers thus poses major challenges to deriving information from early and hence likely pervasive changes in potential therapeutic interest. Recently described reproducible and efficient methods for generating human breast cancers de novo in immunodeficient mice transplanted with genetically altered primary cells now offer a promising alternative to investigate initial stages of human breast cancer development. In this review, we summarize current knowledge about key transcriptional regulatory processes operative in these partially characterized subpopulations of normal human mammary cells and effects of disrupting these processes in experimentally produced human breast cancers.
Collapse
Affiliation(s)
- Davide Pellacani
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Susanna Tan
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Sylvain Lefort
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Connie J Eaves
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| |
Collapse
|
75
|
Pemp D, Esch HL, Hauptstein R, Möller FJ, Zierau O, Bosland MC, Geppert LN, Kleider C, Schlereth K, Vollmer G, Lehmann L. Novel insight in estrogen homeostasis and bioactivity in the ACI rat model of estrogen-induced mammary gland carcinogenesis. Arch Toxicol 2019; 93:1979-1992. [PMID: 31119341 DOI: 10.1007/s00204-019-02483-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/15/2019] [Indexed: 01/06/2023]
Abstract
Despite being widely used to investigate 17β-estradiol (E2)-induced mammary gland (MG) carcinogenesis and prevention thereof, estrogen homeostasis and its significance in the female August Copenhagen Irish (ACI) rat model is unknown. Thus, levels of 12 estrogens including metabolites and conjugates were determined mass spectrometrically in 38 plasmas and 52 tissues exhibiting phenotypes ranging from normal to palpable tumor derived from a representative ACI study using two different diets. In tissues, 40 transcripts encoding proteins involved in estrogen (biotrans)formation, ESR1-mediated signaling, proliferation and oxidative stress were analyzed (TaqMan PCR). Influence of histo(patho)logic phenotypes and diet on estrogen and transcript levels was analyzed by 2-way ANOVA and explanatory variables influencing levels and bioactivity of estrogens in tissues were identified by multiple linear regression models. Estrogen profiles in tissue and plasma and the influence of Hsd17b1 levels on intra-tissue levels of E2 and E1 conclusively indicated intra-mammary formation of E2 in ACI tumors by HSD17B1-mediated conversion of E1. Proliferation in ACI tumors was influenced by Egfr, Igf1r, Hgf and Met levels. 2-MeO-E1, the only oxidative estrogen metabolite detected above 28-42 fmol/g, was predominately observed in hyperplastic tissues and intra-tissue conversion of E1 seemed to contribute to its levels. The association of the occurrence of 2-MeO-E1 with higher levels of oxidative stress observed in hyperplastic and tumor tissues remained equivocal. Thus, the present study provides mechanistic explanation for previous and future results observed in the ACI model.
Collapse
Affiliation(s)
- Daniela Pemp
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Harald L Esch
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - René Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank J Möller
- Chair of Molecular Cell Physiology and Endocrinology, University of Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Oliver Zierau
- Chair of Molecular Cell Physiology and Endocrinology, University of Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Maarten C Bosland
- Department of Pathology, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, Chicago, IL, 60612, USA
| | - Leo N Geppert
- Chair of Mathematical Statistics with Applications in Biometrics, TU Dortmund University, Vogelpothsweg 87, 44221, Dortmund, Germany
| | - Carolin Kleider
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Katharina Schlereth
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Günter Vollmer
- Chair of Molecular Cell Physiology and Endocrinology, University of Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Leane Lehmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
76
|
Nakshatri H, Kumar B, Burney HN, Cox ML, Jacobsen M, Sandusky GE, D'Souza-Schorey C, Storniolo AMV. Genetic Ancestry-dependent Differences in Breast Cancer-induced Field Defects in the Tumor-adjacent Normal Breast. Clin Cancer Res 2019; 25:2848-2859. [PMID: 30718355 PMCID: PMC11216537 DOI: 10.1158/1078-0432.ccr-18-3427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic ancestry influences evolutionary pathways of cancers. However, whether ancestry influences cancer-induced field defects is unknown. The goal of this study was to utilize ancestry-mapped true normal breast tissues as controls to identify cancer-induced field defects in normal tissue adjacent to breast tumors (NATs) in women of African American (AA) and European (EA) ancestry. EXPERIMENTAL DESIGN A tissue microarray comprising breast tissues of ancestry-mapped 100 age-matched healthy women from the Komen Tissue Bank (KTB) at Indiana University (Indianapolis, IN) and tumor-NAT pairs from 100 women (300 samples total) was analyzed for the levels of ZEB1, an oncogenic transcription factor that is central to cell fate, mature luminal cell-enriched estrogen receptor alpha (ERα), GATA3, FOXA1, and for immune cell composition. RESULTS ZEB1+ cells, which were localized surrounding the ductal structures of the normal breast, were enriched in the KTB-normal of AA compared with KTB-normal of EA women. In contrast, in EA women, both NATs and tumors compared with KTB-normal contained higher levels of ZEB1+ cells. FOXA1 levels were lower in NATs compared with KTB-normal in AA but not in EA women. We also noted variations in the levels of GATA3, CD8+ T cells, PD1+ immune cells, and PDL1+ cell but not CD68+ macrophages in NATs of AA and EA women. ERα levels did not change in any of our analyses, pointing to the specificity of ancestry-dependent variations. CONCLUSIONS Genetic ancestry-mapped tissues from healthy individuals are required for proper assessment and development of cancer-induced field defects as early cancer detection markers. This finding is significant in light of recent discoveries of influence of genetic ancestry on both normal biology and tumor evolution.
Collapse
Affiliation(s)
- Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather N Burney
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary L Cox
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Anna Maria V Storniolo
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
77
|
Kim DH, Park HJ, Park HS, Lee JU, Ko C, Gye MC, Choi JM. Estrogen receptor α in T cells suppresses follicular helper T cell responses and prevents autoimmunity. Exp Mol Med 2019; 51:1-9. [PMID: 30988419 PMCID: PMC6465332 DOI: 10.1038/s12276-019-0237-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 11/09/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a sex hormone nuclear receptor that regulates various physiological events, including the immune response. Although there have been some recent studies on ERα regarding subsets of T cells, such as Th1, Th2, Th17, and Treg cells, its role in follicular helper T (TFH) cells has not yet been elucidated. To determine whether ERα controls TFH response and antibody production, we generated T cell-specific ERα knockout (KO) mice by utilizing the CD4-Cre/ERα flox system (CD4-ERα KO) and then analyzed their phenotype. At approximately 1 year of age, CD4-ERα KO mice spontaneously showed mild autoimmunity with increased autoantibody production and CD4+CD44+CXCR5+Bcl-6+ TFH cells in the mesenteric lymph nodes and spleen. We next immunized 6-8-week-old CD4-ERα KO mice with sheep red blood cells (SRBCs), which resulted in an increased proportion of TFH cells and germinal center (GC) responses. In addition, 17β-estradiol (E2) treatment decreased TFH responses in wild-type mice and suppressed the mRNA expression of Bcl-6 and IL-21. Finally, we confirmed that the production of high-affinity antigen-specific antibodies and isotype class switching induced by NP-conjugated ovalbumin immunization were elevated in CD4-ERα KO mice under sufficient estrogen conditions. These results collectively demonstrate that the female sex hormone receptor ERα inhibits the TFH cell response and GC reaction to control autoantibody production, which was related to estrogen signaling and autoimmunity.
Collapse
Affiliation(s)
- Do-Hyun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hong-Jai Park
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hyeon-Soo Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA
| | - Myung Chan Gye
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea. .,Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
78
|
Fritz AJ, Gillis NE, Gerrard DL, Rodriguez PD, Hong D, Rose JT, Ghule PN, Bolf EL, Gordon JA, Tye CE, Boyd JR, Tracy KM, Nickerson JA, van Wijnen AJ, Imbalzano AN, Heath JL, Frietze SE, Zaidi SK, Carr FE, Lian JB, Stein JL, Stein GS. Higher order genomic organization and epigenetic control maintain cellular identity and prevent breast cancer. Genes Chromosomes Cancer 2019; 58:484-499. [PMID: 30873710 DOI: 10.1002/gcc.22731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Cells establish and sustain structural and functional integrity of the genome to support cellular identity and prevent malignant transformation. In this review, we present a strategic overview of epigenetic regulatory mechanisms including histone modifications and higher order chromatin organization (HCO) that are perturbed in breast cancer onset and progression. Implications for dysfunctions that occur in hormone regulation, cell cycle control, and mitotic bookmarking in breast cancer are considered, with an emphasis on epithelial-to-mesenchymal transition and cancer stem cell activities. The architectural organization of regulatory machinery is addressed within the contexts of translating cancer-compromised genomic organization to advances in breast cancer risk assessment, diagnosis, prognosis, and identification of novel therapeutic targets with high specificity and minimal off target effects.
Collapse
Affiliation(s)
- A J Fritz
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - N E Gillis
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - D L Gerrard
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - P D Rodriguez
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - D Hong
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - J T Rose
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - P N Ghule
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - E L Bolf
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J A Gordon
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - C E Tye
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J R Boyd
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - K M Tracy
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J A Nickerson
- Division of Genes and Development of the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - A J van Wijnen
- Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic Minnesota, Rochester, Minnesota
| | - A N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - J L Heath
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - S E Frietze
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - S K Zaidi
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - F E Carr
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J B Lian
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J L Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - G S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
79
|
Dobersch S, Rubio K, Barreto G. Pioneer Factors and Architectural Proteins Mediating Embryonic Expression Signatures in Cancer. Trends Mol Med 2019; 25:287-302. [PMID: 30795971 DOI: 10.1016/j.molmed.2019.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
Accumulation of mutations causing aberrant changes in the genome promotes cancer. However, mutations do not occur in every cancer subtype, suggesting additional events that trigger cancer. Chromatin rearrangements initiated by pioneer factors and architectural proteins are key events occurring before cancer-related genes are expressed. Both protein groups are also master regulators of important processes during embryogenesis. Several publications demonstrated that embryonic gene expression signatures are reactivated during cancer. This review article highlights current knowledge on pioneer factors and architectural proteins mediating chromatin rearrangements, which are the backbone of embryonic expression signatures promoting malignant transformation. Understanding chromatin rearrangements inducing embryonic expression signatures in adult cells might be the key to novel therapeutic approaches against cancers subtypes that arise without genomic mutations.
Collapse
Affiliation(s)
- Stephanie Dobersch
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Laboratoire Croissance, Réparation et Régénération Tissulaires (CRRET), CNRS ERL 9215, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation; Member of the Excellence Cluster Cardio Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), 35932 Giessen, Germany; Member of the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL).
| |
Collapse
|
80
|
Zaidan N, Ottersbach K. The multi-faceted role of Gata3 in developmental haematopoiesis. Open Biol 2018; 8:rsob.180152. [PMID: 30463912 PMCID: PMC6282070 DOI: 10.1098/rsob.180152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
The transcription factor Gata3 is crucial for the development of several tissues and cell lineages both during development as well as postnatally. This importance is apparent from the early embryonic lethality following germline Gata3 deletion, with embryos displaying a number of phenotypes, and from the fact that Gata3 has been implicated in several cancer types. It often acts at the level of stem and progenitor cells in which it controls the expression of key lineage-determining factors as well as cell cycle genes, thus being one of the main drivers of cell fate choice and tissue morphogenesis. Gata3 is involved at various stages of haematopoiesis both in the adult as well as during development. This review summarizes the various contributions of Gata3 to haematopoiesis with a particular focus on the emergence of the first haematopoietic stem cells in the embryo—a process that appears to be influenced by Gata3 at various levels, thus highlighting the complex nature of Gata3 action.
Collapse
Affiliation(s)
- Nada Zaidan
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.,King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
81
|
Tozbikian GH, Zynger DL. A combination of GATA3 and SOX10 is useful for the diagnosis of metastatic triple-negative breast cancer. Hum Pathol 2018; 85:221-227. [PMID: 30468800 DOI: 10.1016/j.humpath.2018.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 11/25/2022]
Abstract
In metastatic breast cancer (MBC), it can be difficult to establish the origin if the primary tumor is triple negative or if there is a loss of biomarker expression. SOX10 expression has been reported in primary triple-negative breast cancer but is poorly studied in metastatic lesions. In this study, the diagnostic utility of a panel of SOX10, GATA3, and androgen receptor (AR) in MBC negative for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 was evaluated and compared with the expression of these markers in the matched primary breast cancer. In a series of 57 triple-negative MBCs, 82% were positive for GATA3, 58% for SOX10, and 25% for AR. Nearly all MBCs (95%) were positive for either GATA3 or SOX10, with 46% dual positive and 5% of cases negative for both markers. Most GATA3-negative MBC cases were SOX10 positive (70%). AR expression was only seen in GATA3-positive MBC (25%) and was significantly more frequent in SOX10-negative MBC (48%) versus SOX10-positive MBC (9%; P = .001). Concordance for GATA3, SOX10, and AR between the primary and metastasis was 89%, 88%, and 80%, respectively. Although GATA3 is a more sensitive lineage marker than SOX10 in MBC, SOX10 is a useful adjunct because it is positive in most GATA3-negative breast metastases. Using both GATA3 and SOX10 is recommended for confirming breast as the site of origin in metastases that lack estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression, whereas the addition of AR is not helpful.
Collapse
Affiliation(s)
- Gary H Tozbikian
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Debra L Zynger
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
82
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
83
|
Chen HJ, Huang RL, Liew PL, Su PH, Chen LY, Weng YC, Chang CC, Wang YC, Chan MWY, Lai HC. GATA3 as a master regulator and therapeutic target in ovarian high-grade serous carcinoma stem cells. Int J Cancer 2018; 143:3106-3119. [PMID: 30006927 DOI: 10.1002/ijc.31750] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/09/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Ovarian high-grade serous carcinoma (HGSC) is the most lethal gynecological malignancy. Prevailing evidences suggest that drug resistance and recurrence of ovarian HGSC are caused by the presence of cancer stem cells. Therefore, targeting cancer stems is appealing, however, all attempts to date, have failed. To circumvent this limit, we analyzed differential transcriptomes at early differentiation of ovarian HGSC stem cells and identified the developmental transcription factor GATA3 as highly expressed in stem, compared to progenitor cells. GATA3 expression associates with poor prognosis of ovarian HGSC patients, and was found to recruit the histone H3, lysine 27 (H3K27) demethylase, UTX, activate stemness markers, and promote stem-like phenotypes in ovarian HGSC cell lines. Targeting UTX by its inhibitor, GSKJ4, impeded GATA3-driven stemness phenotypes, and enhanced apoptosis of GATA3-expressing cancer cells. Combinations of gemcitabine or paclitaxel with GSKJ4, resulted in a synergistic cytotoxic effect. Our findings provide evidence for a new role for GATA3 in ovarian HGSC stemness, and demonstrate that GATA3 may serve as a biomarker for precision epigenetic therapy in the future.
Collapse
Affiliation(s)
- Hsiang-Ju Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- National Defense Medical Center, Graduate Institute of Life Sciences, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Translational Epigenetic Center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Phui-Ly Liew
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsuan Su
- Translational Epigenetic Center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Lin-Yu Chen
- National Defense Medical Center, Graduate Institute of Life Sciences, Taipei, Taiwan
| | - Yu-Chun Weng
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Translational Epigenetic Center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Cheng-Chang Chang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | - Yu-Chi Wang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | | | - Hung-Cheng Lai
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Translational Epigenetic Center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, People's Republic of China
| |
Collapse
|
84
|
Navarro FC, Herrnreiter C, Nowak L, Watkins SK. Estrogen Regulation of T-Cell Function and Its Impact on the Tumor Microenvironment. GENDER AND THE GENOME 2018. [DOI: 10.1177/2470289718801379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epidemiologic studies demonstrate significant gender-specific differences in immune system function. Males are more prone to infection and malignancies, while females are more vulnerable to autoimmune diseases. These differences are thought to be due to the action of gonadal hormones: Estrogen increases the inflammatory response and testosterone dampens it. More specifically, estrogen stimulation induces inflammatory cytokine production including interferon γ, interleukin (IL) 6, and tumor necrosis factor α, while testosterone induces IL-10, IL-4, and transforming growth factor β. More recent studies demonstrate threshold effects of estrogen stimulation on immune cell function: physiologic doses of estrogen (approximately 0.5 nmol/L) stimulate inflammatory cytokine production, but superphysiologic dosages (above 50 nmol/L) can result in decreased inflammatory cytokine production. This review reports findings concerning the impact of estrogen on CD8+ cytotoxic T cells and the overall immune response in the tumor microenvironment. Variables examined include dosage of hormone, the diversity of immune cells involved, and the nature of the immune response in cancer. Collective review of these points may assist in future hypotheses and studies to determine sex-specific differences in immune responses that may be used as targets in disease prevention and treatment.
Collapse
Affiliation(s)
- Flor C. Navarro
- Department of Surgery, Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
- Microbiology and Immunology, Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
- Biochemistry and Molecular Biology Track, Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Caroline Herrnreiter
- Department of Surgery, Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
- Microbiology and Immunology, Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
- Biochemistry and Molecular Biology Track, Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Lauren Nowak
- Department of Surgery, Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
- Microbiology and Immunology, Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
- Biochemistry and Molecular Biology Track, Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Stephanie K. Watkins
- Department of Surgery, Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
- Microbiology and Immunology, Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
- Biochemistry and Molecular Biology Track, Oncology Research Institute, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
85
|
Hua H, Zhang H, Kong Q, Jiang Y. Mechanisms for estrogen receptor expression in human cancer. Exp Hematol Oncol 2018; 7:24. [PMID: 30250760 PMCID: PMC6148803 DOI: 10.1186/s40164-018-0116-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen is a steroid hormone that has critical roles in reproductive development, bone homeostasis, cardiovascular remodeling and brain functions. However, estrogen also promotes mammary, ovarian and endometrial tumorigenesis. Estrogen antagonists and drugs that reduce estrogen biosynthesis have become highly successful therapeutic agents for breast cancer patients. The effects of estrogen are largely mediated by estrogen receptor (ER) α and ERβ, which are members of the nuclear receptor superfamily of transcription factors. The mechanisms underlying the aberrant expression of ER in breast cancer and other types of human tumors are complex, involving considerable alternative splicing of ERα and ERβ, transcription factors, epigenetic and post-transcriptional regulation of ER expression. Elucidation of mechanisms for ER expression may not only help understand cancer progression and evolution, but also shed light on overcoming endocrine therapy resistance. Herein, we review the complex mechanisms for regulating ER expression in human cancer.
Collapse
Affiliation(s)
- Hui Hua
- 1Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
86
|
Howard EW, Yang X. microRNA Regulation in Estrogen Receptor-Positive Breast Cancer and Endocrine Therapy. Biol Proced Online 2018; 20:17. [PMID: 30214383 PMCID: PMC6134714 DOI: 10.1186/s12575-018-0082-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
As de novo and acquired resistance to standard first line endocrine therapies is a growing clinical challenge for estrogen receptor-positive (ER+) breast cancer patients, understanding the mechanisms of resistance is critical to develop novel therapeutic strategies to prevent therapeutic resistance and improve patient outcomes. The widespread post-transcriptional regulatory role that microRNAs (miRNAs) can have on various oncogenic pathways has been well-documented. In particular, several miRNAs are reported to suppress ERα expression via direct binding with the 3’ UTR of ESR1 mRNA, which can confer resistance to estrogen/ERα-targeted therapies. In turn, estrogen/ERα activation can modulate miRNA expression, which may contribute to ER+ breast carcinogenesis. Given the reported oncogenic and tumor suppressor functions of miRNAs in ER+ breast cancer, the targeted regulation of specific miRNAs is emerging as a promising strategy to treat ER+ breast cancer and significantly improve patient responsiveness to endocrine therapies. In this review, we highlight the major miRNA-ER regulatory mechanisms in context with ER+ breast carcinogenesis, as well as the critical miRNAs that contribute to endocrine therapy resistance or sensitivity. Collectively, this comprehensive review of the current literature sheds light on the clinical applications and challenges associated with miRNA regulatory mechanisms and novel miRNA targets that may have translational value as potential therapeutics for the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| |
Collapse
|
87
|
Serandour AA, Mohammed H, Miremadi A, Mulder KW, Carroll JS. TRPS1 regulates oestrogen receptor binding and histone acetylation at enhancers. Oncogene 2018; 37:5281-5291. [PMID: 29895970 PMCID: PMC6169732 DOI: 10.1038/s41388-018-0312-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
The chromatin state is finely tuned to regulate function and specificity for transcription factors such as oestrogen receptor alpha (ER), which contributes to cell growth in breast cancer. ER transcriptional potential is mediated, in large part, by the specific associated proteins and co-factors that interact with it. Despite the identification and characterisation of several ER coregulators, a complete and systematic view of ER-regulating chromatin modifiers is lacking. By exploiting a focused siRNA screen that investigated the requirement for a library of 330 chromatin regulators in ER-mediated cell growth, we find that the NuRD and coREST histone deacetylation complexes are critical for breast cancer cell proliferation. Further, by proteomic and genomics approaches, we discover the transcription factor TRPS1 to be a key interactor of the NuRD and coREST complexes. Interestingly, TRPS1 gene amplification occurs in 28% of human breast tumours and is associated with poor prognosis. We propose that TRPS1 is required to repress spurious binding of ER, where it contributes to the removal of histone acetylation. Our data suggest that TRPS1 is an important ER-associated transcriptional repressor that regulates cell proliferation, chromatin acetylation and ER binding at the chromatin of cis-regulatory elements.
Collapse
Affiliation(s)
- A A Serandour
- Cambridge Institute, Cancer Research UK, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes; Ecole Centrale de Nantes, Nantes, France
| | - H Mohammed
- Cambridge Institute, Cancer Research UK, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | - A Miremadi
- Cambridge Institute, Cancer Research UK, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - K W Mulder
- Cambridge Institute, Cancer Research UK, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
- Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Radboud University, Nijmegen, The Netherlands.
| | - J S Carroll
- Cambridge Institute, Cancer Research UK, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
88
|
Lin HY, Liang YK, Dou XW, Chen CF, Wei XL, Zeng D, Bai JW, Guo YX, Lin FF, Huang WH, Du CW, Li YC, Chen M, Zhang GJ. Notch3 inhibits epithelial-mesenchymal transition in breast cancer via a novel mechanism, upregulation of GATA-3 expression. Oncogenesis 2018; 7:59. [PMID: 30100605 PMCID: PMC6087713 DOI: 10.1038/s41389-018-0069-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 02/05/2023] Open
Abstract
Notch3 and GATA binding protein 3 (GATA-3) have been, individually, shown to maintain luminal phenotype and inhibit epithelial-mesenchymal transition (EMT) in breast cancers. In the present study, we report that Notch3 expression positively correlates with that of GATA-3, and both are associated with estrogen receptor-α (ERα) expression in breast cancer cells. We demonstrate in vitro and in vivo that Notch3 suppressed EMT and breast cancer metastasis by activating GATA-3 transcription. Furthermore, Notch3 knockdown downregulated GATA-3 and promoted EMT; while overexpression of Notch3 intracellular domain upregulated GATA-3 and inhibited EMT, leading to a suppression of metastasis in vivo. Moreover, inhibition or overexpression of GATA-3 partially reversed EMT or mesenchymal-epithelial transition induced by Notch3 alterations. In breast cancer patients, high GATA-3 expression is associated with higher Notch3 expression and lower lymph node metastasis, especially for hormone receptor (HR) positive cancers. Herein, we demonstrate a novel mechanism whereby Notch3 inhibit EMT by transcriptionally upregulating GATA-3 expression, at least in part, leading to the suppression of cancer metastasis in breast cancers. Our findings expand our current knowledge on Notch3 and GATA-3's roles in breast cancer metastasis.
Collapse
Affiliation(s)
- Hao-Yu Lin
- The Breast Center, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of SUMC, Shantou, China
| | - Yuan-Ke Liang
- The Breast Center, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Xiao-Wei Dou
- The Breast Center, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
| | - Chun-Fa Chen
- The Breast Center, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of SUMC, Shantou, China
| | - Xiao-Long Wei
- The Breast Center, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- Department of Pathology, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
| | - De Zeng
- The Breast Center, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- Department of Breast Medical Oncology, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
| | - Jing-Wen Bai
- The Breast Center, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- The Cancer Center, Xiang'an Hospital, Xiamen University Medical College, Xiang'an Dong Rd, 2000, Xiamen, China
| | - Yu-Xian Guo
- The Breast Center, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
| | - Fang-Fang Lin
- The Breast Center, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
| | - Wen-He Huang
- The Breast Center, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
| | - Cai-Wen Du
- Department of Oncology, Shenzhen Hospital of Chinese Academy of Medical Science affiliated Cancer Hospital, Shenzhen, China
| | - Yao-Chen Li
- The Breast Center, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China
| | - Min Chen
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China.
| | - Guo-Jun Zhang
- The Breast Center, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China.
- ChangJiang Scholar's Laboratory, The Cancer Hospital of Shantou University Medical College (SUMC), Shantou, China.
- The Cancer Center, Xiang'an Hospital, Xiamen University Medical College, Xiang'an Dong Rd, 2000, Xiamen, China.
| |
Collapse
|
89
|
Emmanuel N, Lofgren KA, Peterson EA, Meier DR, Jung EH, Kenny PA. Mutant GATA3 Actively Promotes the Growth of Normal and Malignant Mammary Cells. Anticancer Res 2018; 38:4435-4441. [PMID: 30061207 PMCID: PMC6092927 DOI: 10.21873/anticanres.12745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM GATA3, a transcription factor expressed in luminal breast epithelial cells, is required for mammary gland development. Heterozygous GATA3 mutations occur in up to 15% of estrogen receptor (ER)-positive breast tumors and have been proposed to be null alleles resulting in haploinsufficiency; however, the mutation spectrum of GATA3 in breast cancer is in sharp contrast to that found in HDR syndrome, a true GATA3 haploinsufficiency disease. MATERIALS AND METHODS Transgenic mice, 3D cultures and xenografts were used to examine the effect of mutant GATA3 expression on mammary cell proliferation. RESULTS Mutant GATA3 accelerated tumor growth of ZR751 cell xenografts and promoted precocious lobuloalveolar development in transgenic mouse mammary glands. CONCLUSION GATA3 mutations, recently observed in breast cancer, encode active transcription factors, which elicit proliferative phenotypes in normal mammary epithelium and promote the growth of ER-positive breast cancer cell lines.
Collapse
Affiliation(s)
- Natasha Emmanuel
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Kristopher A Lofgren
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI, U.S.A
| | - Esther A Peterson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - David R Meier
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI, U.S.A
| | - Eric H Jung
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Paraic A Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI, U.S.A.
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, U.S.A
| |
Collapse
|
90
|
Xiao T, Li W, Wang X, Xu H, Yang J, Wu Q, Huang Y, Geradts J, Jiang P, Fei T, Chi D, Zang C, Liao Q, Rennhack J, Andrechek E, Li N, Detre S, Dowsett M, Jeselsohn RM, Liu XS, Brown M. Estrogen-regulated feedback loop limits the efficacy of estrogen receptor-targeted breast cancer therapy. Proc Natl Acad Sci U S A 2018; 115:7869-7878. [PMID: 29987050 PMCID: PMC6077722 DOI: 10.1073/pnas.1722617115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endocrine therapy resistance invariably develops in advanced estrogen receptor-positive (ER+) breast cancer, but the underlying mechanisms are largely unknown. We have identified C-terminal SRC kinase (CSK) as a critical node in a previously unappreciated negative feedback loop that limits the efficacy of current ER-targeted therapies. Estrogen directly drives CSK expression in ER+ breast cancer. At low CSK levels, as is the case in patients with ER+ breast cancer resistant to endocrine therapy and with the poorest outcomes, the p21 protein-activated kinase 2 (PAK2) becomes activated and drives estrogen-independent growth. PAK2 overexpression is also associated with endocrine therapy resistance and worse clinical outcome, and the combination of a PAK2 inhibitor with an ER antagonist synergistically suppressed breast tumor growth. Clinical approaches to endocrine therapy-resistant breast cancer must overcome the loss of this estrogen-induced negative feedback loop that normally constrains the growth of ER+ tumors.
Collapse
Affiliation(s)
- Tengfei Xiao
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Wei Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010
- Department of Genomics and Precision Medicine, The George Washington School of Medicine and Health Sciences, Washington, DC 20010
| | - Xiaoqing Wang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Han Xu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Jixin Yang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qiu Wu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Joseph Geradts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Peng Jiang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Teng Fei
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - David Chi
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Chongzhi Zang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Qi Liao
- Department of Prevention Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jonathan Rennhack
- Department of Physiology, Michigan State University, East Lansing, MI 48864
| | - Eran Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI 48864
| | - Nanlin Li
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Simone Detre
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Mitchell Dowsett
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rinath M Jeselsohn
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215;
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215;
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
91
|
Kumar B, Prasad M, Bhat-Nakshatri P, Anjanappa M, Kalra M, Marino N, Storniolo AM, Rao X, Liu S, Wan J, Liu Y, Nakshatri H. Normal Breast-Derived Epithelial Cells with Luminal and Intrinsic Subtype-Enriched Gene Expression Document Interindividual Differences in Their Differentiation Cascade. Cancer Res 2018; 78:5107-5123. [PMID: 29997232 DOI: 10.1158/0008-5472.can-18-0509] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/30/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
Abstract
Cell-type origin is one of the factors that determine molecular features of tumors, but resources to validate this concept are scarce because of technical difficulties in propagating major cell types of adult organs. Previous attempts to generate such resources to study breast cancer have yielded predominantly basal-type cell lines. We have created a panel of immortalized cell lines from core breast biopsies of ancestry-mapped healthy women that form ductal structures similar to normal breast in 3D cultures and expressed markers of major cell types, including the luminal-differentiated cell-enriched ERα-FOXA1-GATA3 transcription factor network. We have also created cell lines from PROCR (CD201)+/EpCAM- cells that are likely the "normal" counterpart of the claudin-low subtype of breast cancers. RNA-seq and PAM50-intrinsic subtype clustering identified these cell lines as the "normal" counterparts of luminal A, basal, and normal-like subtypes and validated via immunostaining with basal-enriched KRT14 and luminal-enriched KRT19. We further characterized these cell lines by flow cytometry for distribution patterns of stem/basal, luminal-progenitor, mature/differentiated, multipotent PROCR+ cells, and organogenesis-enriched epithelial/mesenchymal hybrid cells using CD44/CD24, CD49f/EpCAM, CD271/EpCAM, CD201/EpCAM, and ALDEFLUOR assays and E-cadherin/vimentin double staining. These cell lines showed interindividual heterogeneity in stemness/differentiation capabilities and baseline activity of signaling molecules such as NF-κB, AKT2, pERK, and BRD4. These resources can be used to test the emerging concept that genetic variations in regulatory regions contribute to widespread differences in gene expression in "normal" conditions among the general population and can delineate the impact of cell-type origin on tumor progression.Significance: In addition to providing a valuable resource for the breast cancer research community to investigate cell-type origin of different subtypes of breast cancer, this study highlights interindividual differences in normal breast, emphasizing the need to use "normal" cells from multiple sources as controls to decipher the effects of cancer-specific genomic aberrations. Cancer Res; 78(17); 5107-23. ©2018 AACR.
Collapse
Affiliation(s)
- Brijesh Kumar
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mayuri Prasad
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Manjushree Anjanappa
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Maitri Kalra
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Natascia Marino
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anna Maria Storniolo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. .,Deaprtment of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,VA Roudebush Medical Center, Indianapolis, Indiana
| |
Collapse
|
92
|
Fararjeh AFS, Tu SH, Chen LC, Liu YR, Lin YK, Chang HL, Chang HW, Wu CH, Hwang-Verslues WW, Ho YS. The impact of the effectiveness of GATA3 as a prognostic factor in breast cancer. Hum Pathol 2018; 80:219-230. [PMID: 29902578 DOI: 10.1016/j.humpath.2018.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/24/2018] [Accepted: 06/01/2018] [Indexed: 01/21/2023]
Abstract
The transcription factor GATA3 plays a significant role in mammary gland development and differentiation. We analyzed expression of GATA3 in breast cancer (BC) cell lines and clinical specimens from BC patients in Taiwan. Semiquantitative reverse-transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR were carried out to determine the mRNA level of GATA3 from 241 pairs of matched tumor and adjacent normal tissues from anonymous female donors. GATA3 immunohistochemistry (IHC) staining and H-score were performed (n = 25). Inducing and silencing of GATA3 were done by exposure MCF-7 cell line to nicotine or curcumin, respectively. GATA3 expression was detected in most of the estrogen receptor-positive (ER+) tumor specimens (176/241, 73%) compared with paired normal tissues (65/241, 27%) (P < .001). The GATA3 level was highest in Luminal A, and independent t-tests revealed higher GATA3 was associated with ER+ (P = .018) and BC stages (stage II, and stage IV). Nuclear protein expression of GATA3 was detected in tumor tissues (P < .001) with higher H-score in Luminal A patients (P = .012). Kaplan-Meier survival analyses showed that ER+/progesterone receptor (PgR)+ and lower grade BC patients with relatively high GATA3 had better clinical overall survival (OS). GATA3 regulates ERα and BCL-2 as BC luminal subtype markers. Cox univariate and multivariate analyses demonstrated that the expression of GATA3 was an effective predictor of the risk of death. We demonstrated a correlation between GATA3 expression and only ER+ and suggest that a higher GATA3 expression is a good prognostic factor for OS for ER+ BC patients.
Collapse
Affiliation(s)
- Abdul-Fattah Salah Fararjeh
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, 110 Taipei, Taiwan
| | - Shih-Hsin Tu
- Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Ching Chen
- Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University Hospital, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yen-Kuang Lin
- Research Center of Biostatistics, Taipei Medical University, Taipei, Taiwan
| | - Hang-Lung Chang
- Department of General Surgery, EnChun Kong Hospital, New Taipei City, Taiwan
| | - Hui-Wen Chang
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of General Surgery, EnChun Kong Hospital, New Taipei City, Taiwan
| | | | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
93
|
Padua MB, Bhat-Nakshatri P, Anjanappa M, Prasad MS, Hao Y, Rao X, Liu S, Wan J, Liu Y, McElyea K, Jacobsen M, Sandusky G, Althouse S, Perkins S, Nakshatri H. Dependence receptor UNC5A restricts luminal to basal breast cancer plasticity and metastasis. Breast Cancer Res 2018; 20:35. [PMID: 29720215 PMCID: PMC5932758 DOI: 10.1186/s13058-018-0963-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Background The majority of estrogen receptor-positive (ERα+) breast cancers respond to endocrine therapies. However, resistance to endocrine therapies is common in 30% of cases, which may be due to altered ERα signaling and/or enhanced plasticity of cancer cells leading to breast cancer subtype conversion. The mechanisms leading to enhanced plasticity of ERα-positive cancer cells are unknown. Methods We used short hairpin (sh)RNA and/or the CRISPR/Cas9 system to knockdown the expression of the dependence receptor UNC5A in ERα+ MCF7 and T-47D cell lines. RNA-seq, quantitative reverse transcription polymerase chain reaction, chromatin immunoprecipitation, and Western blotting were used to measure the effect of UNC5A knockdown on basal and estradiol (E2)-regulated gene expression. Mammosphere assay, flow cytometry, and immunofluorescence were used to determine the role of UNC5A in restricting plasticity. Xenograft models were used to measure the effect of UNC5A knockdown on tumor growth and metastasis. Tissue microarray and immunohistochemistry were utilized to determine the prognostic value of UNC5A in breast cancer. Log-rank test, one-way, and two-way analysis of variance (ANOVA) were used for statistical analyses. Results Knockdown of the E2-inducible UNC5A resulted in altered basal gene expression affecting plasma membrane integrity and ERα signaling, as evident from ligand-independent activity of ERα, altered turnover of phosphorylated ERα, unique E2-dependent expression of genes effecting histone demethylase activity, enhanced upregulation of E2-inducible genes such as BCL2, and E2-independent tumorigenesis accompanied by multiorgan metastases. UNC5A depletion led to the appearance of a luminal/basal hybrid phenotype supported by elevated expression of basal/stem cell-enriched ∆Np63, CD44, CD49f, epidermal growth factor receptor (EGFR), and the lymphatic vessel permeability factor NTN4, but lower expression of luminal/alveolar differentiation-associated ELF5 while maintaining functional ERα. In addition, UNC5A-depleted cells acquired bipotent luminal progenitor characteristics based on KRT14+/KRT19+ and CD49f+/EpCAM+ phenotype. Consistent with in vitro results, UNC5A expression negatively correlated with EGFR expression in breast tumors, and lower expression of UNC5A, particularly in ERα+/PR+/HER2− tumors, was associated with poor outcome. Conclusion These studies reveal an unexpected role of the axon guidance receptor UNC5A in fine-tuning ERα and EGFR signaling and the luminal progenitor status of hormone-sensitive breast cancers. Furthermore, UNC5A knockdown cells provide an ideal model system to investigate metastasis of ERα+ breast cancers. Electronic supplementary material The online version of this article (10.1186/s13058-018-0963-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria B Padua
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Present Address: Department of Pediatrics and Herman B. Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mayuri S Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yangyang Hao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kyle McElyea
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sandra Althouse
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Susan Perkins
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,VA Roudebush Medical Center, C218C, 980 West Walnut St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
94
|
Takaku M, Grimm SA, Roberts JD, Chrysovergis K, Bennett BD, Myers P, Perera L, Tucker CJ, Perou CM, Wade PA. GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun 2018. [PMID: 29535312 PMCID: PMC5849768 DOI: 10.1038/s41467-018-03478-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
GATA3 is frequently mutated in breast cancer; these mutations are widely presumed to be loss-of function despite a dearth of information regarding their effect on disease course or their mechanistic impact on the breast cancer transcriptional network. Here, we address molecular and clinical features associated with GATA3 mutations. A novel classification scheme defines distinct clinical features for patients bearing breast tumors with mutations in the second GATA3 zinc-finger (ZnFn2). An engineered ZnFn2 mutant cell line by CRISPR–Cas9 reveals that mutation of one allele of the GATA3 second zinc finger (ZnFn2) leads to loss of binding and decreased expression at a subset of genes, including Progesterone Receptor. At other loci, associated with epithelial to mesenchymal transition, gain of binding correlates with increased gene expression. These results demonstrate that not all GATA3 mutations are equivalent and that ZnFn2 mutations impact breast cancer through gain and loss-of function. In breast cancer GATA3 is known to be frequently mutated, but the function of these mutations is unclear. Here, the authors utilise CRISPR-Cas9 to model frame-shift mutations in zinc finger 2 of GATA3, highlighting that GATA3 mutation can have gain- or loss-of function effects in breast cancer.
Collapse
Affiliation(s)
- Motoki Takaku
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - John D Roberts
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Kaliopi Chrysovergis
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Brian D Bennett
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Page Myers
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709, Durham, NC, USA
| | - Lalith Perera
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center and Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
95
|
Xiao L, Feng Q, Zhang Z, Wang F, Lydon JP, Ittmann MM, Xin L, Mitsiades N, He B. The essential role of GATA transcription factors in adult murine prostate. Oncotarget 2018; 7:47891-47903. [PMID: 27374105 PMCID: PMC5216986 DOI: 10.18632/oncotarget.10294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 01/20/2023] Open
Abstract
GATA transcription factors are essential in mammalian cell lineage determination and have a critical role in cancer development. In cultured prostate cancer cells, GATA2 coordinates with androgen receptor (AR) to regulate gene transcription. In the murine prostate, among six GATA members, GATA2 and GATA3 are expressed. Immunofluorescence staining revealed that both GATA factors predominantly localize in the nuclei of luminal epithelial cells. The pioneer factor FoxA1 is exclusively detected in the luminal cells, whereas AR is detected in both luminal and basal cells. Using genetic engineering, we generated prostate-specific GATA2 and GATA3 knockout (KO) mice. Ablation of single GATA gene had marginal effect on prostate morphology and AR target gene expression, likely due to their genetic compensation. Double KO mice exhibited PIN III to IV lesions, but decreased prostate to body weight ratio, altered AR target gene expression, and expansion of p63-positive basal cells. However, deletion of GATA2 and GATA3 did not reduce the mRNA or protein levels of AR or FoxA1, indicating that GATA factors are not required for AR or FoxA1 expression in adult prostate. Surprisingly, GATA2 and GATA3 exhibit minimal expression in the ventral prostatic (VP) lobe. In contrast, FoxA1 and AR expression levels in VP are at least as high as those in anterior prostatic (AP) and dorsal-lateral prostatic (DLP) lobes. Together, our results indicate that GATA2 and GATA3 are essential for adult murine prostate function and in vivo AR signaling, and the lack of the GATA factor expression in the VP suggests a fundamental difference between VP and other prostatic lobes.
Collapse
Affiliation(s)
- Lijuan Xiao
- Department of Medicine, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Fen Wang
- The Center for Cancer and Stem Cell Biology, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Veterans Affairs Medical Center, US Department of Veterans Affairs, Houston, TX, USA
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nicholas Mitsiades
- Department of Medicine, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bin He
- Department of Medicine, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
96
|
Sahni JM, Keri RA. Targeting bromodomain and extraterminal proteins in breast cancer. Pharmacol Res 2018; 129:156-176. [PMID: 29154989 PMCID: PMC5828951 DOI: 10.1016/j.phrs.2017.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Breast cancer is a collection of distinct tumor subtypes that are driven by unique gene expression profiles. These transcriptomes are controlled by various epigenetic marks that dictate which genes are expressed and suppressed. During carcinogenesis, extensive restructuring of the epigenome occurs, including aberrant acetylation, alteration of methylation patterns, and accumulation of epigenetic readers at oncogenes. As epigenetic alterations are reversible, epigenome-modulating drugs could provide a mechanism to silence numerous oncogenes simultaneously. Here, we review the impact of inhibitors of the Bromodomain and Extraterminal (BET) family of epigenetic readers in breast cancer. These agents, including the prototypical BET inhibitor JQ1, have been shown to suppress a variety of oncogenic pathways while inducing minimal, if any, toxicity in models of several subtypes of breast cancer. BET inhibitors also synergize with multiple approved anti-cancer drugs, providing a greater response in breast cancer cell lines and mouse models than either single agent. The combined findings of the studies discussed here provide an excellent rationale for the continued investigation of the utility of BET inhibitors in breast cancer.
Collapse
Affiliation(s)
- Jennifer M Sahni
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States; Department of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
97
|
Miano V, Ferrero G, Rosti V, Manitta E, Elhasnaoui J, Basile G, De Bortoli M. Luminal lncRNAs Regulation by ERα-Controlled Enhancers in a Ligand-Independent Manner in Breast Cancer Cells. Int J Mol Sci 2018; 19:E593. [PMID: 29462945 PMCID: PMC5855815 DOI: 10.3390/ijms19020593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor-α (ERα) is a ligand-inducible protein which mediates estrogenic hormones signaling and defines the luminal BC phenotype. Recently, we demonstrated that even in absence of ligands ERα (apoERα) binds chromatin sites where it regulates transcription of several protein-coding and lncRNA genes. Noteworthy, apoERα-regulated lncRNAs marginally overlap estrogen-induced transcripts, thus representing a new signature of luminal BC genes. By the analysis of H3K27ac enrichment in hormone-deprived MCF-7 cells, we defined a set of Super Enhancers (SEs) occupied by apoERα, including one mapped in proximity of the DSCAM-AS1 lncRNA gene. This represents a paradigm of apoERα activity since its expression is largely unaffected by estrogenic treatment, despite the fact that E2 increases ERα binding on DSCAM-AS1 promoter. We validated the enrichment of apoERα, p300, GATA3, FoxM1 and CTCF at both DSCAM-AS1 TSS and at its associated SE by ChIP-qPCR. Furthermore, by analyzing MCF-7 ChIA-PET data and by 3C assays, we confirmed long range chromatin interaction between the SE and the DSCAM-AS1 TSS. Interestingly, CTCF and p300 binding showed an enrichment in hormone-depleted medium and in the presence of ERα, elucidating the dynamics of the estrogen-independent regulation of DSCAM-AS1 expression. The analysis of this lncRNA provides a paradigm of transcriptional regulation of a luminal specific apoERα regulated lncRNA.
Collapse
Affiliation(s)
- Valentina Miano
- Center for Molecular Systems Biology, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| | - Giulio Ferrero
- Center for Molecular Systems Biology, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Computer Science, University of Turin, 10149 Turin, Italy.
| | - Valentina Rosti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| | - Eleonora Manitta
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| | - Jamal Elhasnaoui
- Center for Molecular Systems Biology, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| | - Giulia Basile
- Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy.
| | - Michele De Bortoli
- Center for Molecular Systems Biology, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| |
Collapse
|
98
|
Nucleophosmin/B23 is a negative regulator of estrogen receptor α expression via AP2γ in endometrial cancer cells. Oncotarget 2018; 7:60038-60052. [PMID: 27527851 PMCID: PMC5312367 DOI: 10.18632/oncotarget.11048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/18/2016] [Indexed: 12/20/2022] Open
Abstract
Endometrial cancers expressing estrogen and progesterone receptors respond to hormonal therapy. The disappearance of steroid hormone receptor expression is common in patients with recurrent disease, ultimately hampering the clinical utility of hormonal therapy. Here, we demonstrate for the first time that nucleophosmin (NPM1/B23) suppression can restore the expression of estrogen receptor α (ESR1/ERα) in endometrial cancer cells. Mechanistically, B23 and activator protein-2γ (TFAP2C/AP2γ) form a complex that acts as a transcriptional repressor of ERα. Our results indicate that B23 or AP2γ knockdown can restore ERα levels and activate ERα-regulated genes (e.g., cathepsin D, EBAG9, and TFF1/pS2). Moreover, AP2γ knockdown in a xenograft model sensitizes endometrial cancer cells to megesterol acetate through the upregulation of ERα expression. An increased immunohistochemical expression of AP2γ is an adverse prognostic factor in endometrial cancer. In summary, B23 and AP2γ may act in combination to suppress ERα expression in endometrial cancer cells. The inhibition of B23 or AP2γ can restore ERα expression and can serve as a potential strategy for sensitizing hormone-refractory endometrial cancers to endocrine therapy.
Collapse
|
99
|
Boto A, Harigopal M. Strong androgen receptor expression can aid in distinguishing GATA3+ metastases. Hum Pathol 2018; 75:63-70. [PMID: 29408697 DOI: 10.1016/j.humpath.2018.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 01/16/2023]
Abstract
GATA3 is a transcription factor used clinically as a marker of breast or urothelial differentiation. A marker is yet needed to distinguish this in the case of the GATA3-positive tumor of unknown origin. We tested classical markers of breast differentiation and hormonal signaling to see which correlated strongest with GATA3 expression in breast cancer and thus which could help correctly identify breast origin in the case of the GATA3-positive tumor of unknown origin. GATA3, estrogen receptor, progesterone receptor, androgen receptor (AR), HER2, GCDFP15, and mammaglobin expression was intercorrelated in a histologically diverse 259-case breast cancer tissue microarray. We show herein a uniquely high level of correlation between GATA3 and AR expression (r=0.61; 95% confidence interval 0.52-0.68) that was strongest among lobular carcinomas (r=1; 95% confidence interval 0.73-1) and stronger than any other correlation studied. Separate AR staining of 10 metastatic GATA3+ carcinomas of urothelial origin and 13 metastatic GATA3+ carcinomas of breast origin showed that strong AR staining (>60% of tumor cells) has a sensitivity of 54% and a specificity of 100% for correctly distinguishing GATA3+ carcinoma of mammary origin from urothelial origin in the metastatic setting. Androgen receptor expression is strongly correlated with GATA3 in breast cancer, particularly in tumors with lobular morphology. Strong AR expression (>60% of tumor cells) is an excellent test to rule out urothelial carcinoma in the GATA3+ metastatic setting (specificity 100%) and will effectively identify breast origin in approximately 50% of cases.
Collapse
Affiliation(s)
- Agedi Boto
- Yale New Haven Hospital Department of Pathology, New Haven, CT 06515, United States.
| | - Malini Harigopal
- Yale New Haven Hospital Department of Pathology, New Haven, CT 06515, United States.
| |
Collapse
|
100
|
Characterizing steroid hormone receptor chromatin binding landscapes in male and female breast cancer. Nat Commun 2018; 9:482. [PMID: 29396493 PMCID: PMC5797120 DOI: 10.1038/s41467-018-02856-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/04/2018] [Indexed: 11/09/2022] Open
Abstract
Male breast cancer (MBC) is rare and poorly characterized. Like the female counterpart, most MBCs are hormonally driven, but relapse after hormonal treatment is also noted. The pan-hormonal action of steroid hormonal receptors, including estrogen receptor alpha (ERα), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) in this understudied tumor type remains wholly unexamined. This study reveals genomic cross-talk of steroid hormone receptor action and interplay in human tumors, here in the context of MBC, in relation to the female disease and patient outcome. Here we report the characterization of human breast tumors of both genders for cistromic make-up of hormonal regulation in human tumors, revealing genome-wide chromatin binding landscapes of ERα, AR, PR, GR, FOXA1, and GATA3 and enhancer-enriched histone mark H3K4me1. We integrate these data with transcriptomics to reveal gender-selective and genomic location-specific hormone receptor actions, which associate with survival in MBC patients.
Collapse
|