51
|
Guha P, Gardell J, Darpolor J, Cunetta M, Lima M, Miller G, Espat NJ, Junghans RP, Katz SC. STAT3 inhibition induces Bax-dependent apoptosis in liver tumor myeloid-derived suppressor cells. Oncogene 2018; 38:533-548. [PMID: 30158673 DOI: 10.1038/s41388-018-0449-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/29/2018] [Accepted: 06/19/2018] [Indexed: 11/09/2022]
Abstract
Immunosuppressive myeloid-derived suppressor cells (MDSC) subvert antitumor immunity and limit the efficacy of chimeric antigen receptor T cells (CAR-T). Previously, we reported that the GM-CSF/JAK2/STAT3 axis drives liver-associated MDSC (L-MDSC) proliferation and blockade of this axis rescued antitumor immunity. We extended these findings in our murine liver metastasis (LM) model, by treating tumor-bearing mice with STAT3 inhibitors (STATTIC or BBI608) to further our understanding of how STAT3 drives L-MDSC suppressive function. STAT3 inhibition caused significant reduction of tumor burden as well as L-MDSC frequencies due to decrease in pSTAT3 levels. L-MDSC isolated from STATTIC or BBI608-treated mice had significantly reduced suppressive function. STAT3 inhibition of L-MDSC was associated with enhanced antitumor activity of CAR-T. Further investigation demonstrated activation of apoptotic signaling pathways in L-MDSC following STAT3 inhibition as evidenced by an upregulation of the pro-apoptotic proteins Bax, cleaved caspase-3, and downregulation of the anti-apoptotic protein Bcl-2. Accordingly, there was also a decrease of pro-survival markers, pErk and pAkt, and an increase in pro-death marker, Fas, with activation of downstream JNK and p38 MAPK. These findings represent a previously unrecognized link between STAT3 inhibition and Fas-induced apoptosis of MDSCs. Our findings suggest that inhibiting STAT3 has potential clinical application for enhancing the efficacy of CAR-T cells in LM through modulation of L-MDSC.
Collapse
Affiliation(s)
- Prajna Guha
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Jillian Gardell
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Josephine Darpolor
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Marissa Cunetta
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Matthew Lima
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - George Miller
- New York University School of Medicine, New York, NY, USA
| | - N Joseph Espat
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA.,Department of Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Richard P Junghans
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Steven C Katz
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA. .,Department of Surgery, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
52
|
The concept of oligometastases in colorectal cancer: from the clinical evidences to new therapeutic strategies. Curr Opin Oncol 2018; 30:262-268. [DOI: 10.1097/cco.0000000000000453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
53
|
The Role of Invariant NKT in Autoimmune Liver Disease: Can Vitamin D Act as an Immunomodulator? Can J Gastroenterol Hepatol 2018; 2018:8197937. [PMID: 30046564 PMCID: PMC6038587 DOI: 10.1155/2018/8197937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
Natural killer T (NKT) cells are a distinct lineage of T cells which express both the T cell receptor (TCR) and natural killer (NK) cell markers. Invariant NKT (iNKT) cells bear an invariant TCR and recognize a small variety of glycolipid antigens presented by CD1d (nonclassical MHC-I). CD1d-restricted iNKT cells are regulators of immune responses and produce cytokines that may be proinflammatory (such as interferon-gamma (IFN-γ)) or anti-inflammatory (such as IL-4). iNKT cells also appear to play a role in B cell regulation and antibody production. Alpha-galactosylceramide (α-GalCer), a derivative of the marine sponge, is a potent stimulator of iNKT cells and has been proposed as a therapeutic iNKT cell activator. Invariant NKT cells have been implicated in the development and perpetuation of several autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus (SLE). Animal models of SLE have shown abnormalities in iNKT cells numbers and function, and an inverse correlation between the frequency of NKT cells and IgG levels has also been observed. The role of iNKT cells in autoimmune liver disease (AiLD) has not been extensively studied. This review discusses the current data with regard to iNKT cells function in AiLD, in addition to providing an overview of iNKT cells function in other autoimmune conditions and animal models. We also discuss data regarding the immunomodulatory effects of vitamin D on iNKT cells, which may serve as a potential therapeutic target, given that deficiencies in vitamin D have been reported in various autoimmune disorders.
Collapse
|
54
|
Houg DS, Bijlsma MF. The hepatic pre-metastatic niche in pancreatic ductal adenocarcinoma. Mol Cancer 2018; 17:95. [PMID: 29903049 PMCID: PMC6003100 DOI: 10.1186/s12943-018-0842-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive malignancies to date, largely because it is associated with high metastatic risk. Pancreatic tumors have a characteristic tendency to metastasize preferentially to the liver. Over the past two decades, it has become evident that the otherwise hostile milieu of the liver is selectively preconditioned at an early stage to render it more conducive to the engraftment and growth of disseminated cancer cells, a concept defined as pre-metastatic niche (PMN) formation. Pancreatic cancer cells exploit components of the tumor microenvironment to facilitate their migration out of the primary tumor, which often involves conversion of pancreatic cancer cells from an epithelial to a mesenchymal phenotype via the epithelial-to-mesenchymal transition. Pancreatic stellate cells and matrix stiffness have been put forward as major drivers of invasiveness in PDAC. Even before the onset of pancreatic cancer cell dissemination, soluble factors and extracellular vesicles secreted by the primary tumor, and possibly even premalignant lesions, help shape a supportive niche in the liver by providing vascular docking sites for circulating tumor cells, enhancing vascular permeability, remodeling the extracellular matrix and recruiting immunosuppressive inflammatory cells. Emerging evidence suggests that some of these tumor-derived factors may represent powerful diagnostic or prognostic biomarkers. Though our understanding of the mechanisms driving PMN formation in PDAC has expanded considerably, many outstanding questions and challenges remain. Further studies dissecting the molecular and cellular events involved in hepatic PMN formation in PDAC will likely improve diagnosis and open new avenues from a therapeutic standpoint.
Collapse
Affiliation(s)
- Demi S Houg
- Laboratory for Experimental Oncology and Radiobiology, Center of Experimental and Molecular Medicine, Cancer Center Amsterdam and Academic Medical Center, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center of Experimental and Molecular Medicine, Cancer Center Amsterdam and Academic Medical Center, Amsterdam, the Netherlands. .,Oncode Institute, Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
55
|
Yagiz K, Rodriguez-Aguirre ME, Lopez Espinoza F, Montellano TT, Mendoza D, Mitchell LA, Ibanez CE, Kasahara N, Gruber HE, Jolly DJ, Robbins JM. A Retroviral Replicating Vector Encoding Cytosine Deaminase and 5-FC Induces Immune Memory in Metastatic Colorectal Cancer Models. Mol Ther Oncolytics 2018; 8:14-26. [PMID: 29322091 PMCID: PMC5751967 DOI: 10.1016/j.omto.2017.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022] Open
Abstract
Treatment of tumors with Toca 511, a gamma retroviral replicating vector encoding cytosine deaminase, followed by 5-fluorocytosine (5-FC) kills tumors by local production of 5-fluorouracil (5-FU). In brain tumor models, this treatment induces systemic anti-tumor immune responses and long-term immune-mediated survival. Phase 1 Toca 511 and Toca FC (extended-release 5-FC) clinical trials in patients with recurrent high-grade glioma show durable complete responses and promising survival data compared to historic controls. The work described herein served to expand on our earlier findings in two models of metastatic colorectal carcinoma (mCRC). Intravenous (i.v.) delivery of Toca 511 resulted in substantial tumor-selective uptake of vector into metastatic lesions. Subsequent treatment with 5-FC resulted in tumor shrinkage, improved survival, and immune memory against future rechallenge with the same CT26 CRC cell line. Similar results were seen in a brain metastasis model of mCRC. Of note, 5-FC treatment resulted in a significant decrease in myeloid-derived suppressor cells (MDSCs) in mCRC tumors in both the liver and brain. These results support the development of Toca 511 and Toca FC as a novel immunotherapeutic approach for patients with mCRC. A phase 1 study of i.v. Toca 511 and Toca FC in solid tumors, including mCRC, is currently underway (NCT02576665).
Collapse
Affiliation(s)
- Kader Yagiz
- Tocagen Inc., 3030 Bunker Hill St., Suite 230, San Diego, CA 92109, USA
| | | | | | | | - Daniel Mendoza
- Tocagen Inc., 3030 Bunker Hill St., Suite 230, San Diego, CA 92109, USA
| | - Leah A. Mitchell
- Tocagen Inc., 3030 Bunker Hill St., Suite 230, San Diego, CA 92109, USA
| | - Carlos E. Ibanez
- Tocagen Inc., 3030 Bunker Hill St., Suite 230, San Diego, CA 92109, USA
| | - Noriyuki Kasahara
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Harry E. Gruber
- Tocagen Inc., 3030 Bunker Hill St., Suite 230, San Diego, CA 92109, USA
| | - Douglas J. Jolly
- Tocagen Inc., 3030 Bunker Hill St., Suite 230, San Diego, CA 92109, USA
| | - Joan M. Robbins
- Tocagen Inc., 3030 Bunker Hill St., Suite 230, San Diego, CA 92109, USA
- DNAtrix, Inc., 2450 Holcombe Boulevard, Suite X+ 200, Houston, TX 77021, USA
| |
Collapse
|
56
|
Obeid JM, Kunk PR, Zaydfudim VM, Bullock TN, Slingluff CL, Rahma OE. Immunotherapy for hepatocellular carcinoma patients: is it ready for prime time? Cancer Immunol Immunother 2018; 67:161-174. [PMID: 29052780 PMCID: PMC11028155 DOI: 10.1007/s00262-017-2082-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the second most common cause of cancer death worldwide. Current treatment options for patients with intermediate and advanced HCC are limited, and there is an unmet need for novel therapeutic approaches. HCC is an attractive target for immunomodulation therapy, since it arises in an inflammatory milieu due to hepatitis B and C infections and cirrhosis. However, a major barrier to the development and success of immunotherapy in patients with HCC is the liver's inherent immunosuppressive function. Recent advances in the field of cancer immunology allowed further characterization of immune cell subsets and function, and created new opportunities for therapeutic modulation of the immune system. In this review, we present the different immune cell subsets involved in potential immune modulation of HCC, discuss their function and clinical relevance, review the variety of immune therapeutic agents currently under investigation in clinical trials, and outline future research directions.
Collapse
Affiliation(s)
- Joseph M Obeid
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Paul R Kunk
- Division of Hematology-Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Timothy N Bullock
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Craig L Slingluff
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Osama E Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, 450 Brookline Avenue, M1B13, Boston, MA, 02215, USA.
| |
Collapse
|
57
|
Zhang H, Lian M, Zhang J, Bian Z, Tang R, Miao Q, Peng Y, Fang J, You Z, Invernizzi P, Wang Q, Gershwin ME, Ma X. A functional characteristic of cysteine-rich protein 61: Modulation of myeloid-derived suppressor cells in liver inflammation. Hepatology 2018; 67:232-246. [PMID: 28777871 DOI: 10.1002/hep.29418] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/07/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023]
Abstract
UNLABELLED There is increasing awareness of the immunologic roles of liver mononuclear populations, including myeloid-derived suppressor cells (MDSCs). We took advantage of a large well-defined cohort of 148 patients with liver inflammation and 45 healthy controls to focus on the qualitative and quantitative characteristics of MDSCs. We investigated the frequency, phenotype, and functional capacities of MDSCs by using peripheral blood MDSCs in a cohort of 55 patients with primary biliary cholangitis (PBC), 40 with autoimmune hepatitis, 39 with chronic hepatitis B, 14 with nonalcoholic fatty liver disease, and 45 healthy controls. This was followed by a liver-targeted determination in 27 patients with PBC, 27 with autoimmune hepatitis, 20 with chronic hepatitis B, 14 with nonalcoholic fatty liver disease, and 6 controls. We then focused on mechanisms of this expansion with PBC as an example, using both ursodeoxycholic acid-naive and treated patients. HLA-DR-/low CD33+ CD11b+ CD14+ CD15- monocytic MDSCs were elevated in diseases characterized by liver inflammation compared to healthy controls. Using PBC as a focus, there was a significant correlation between levels of circulating MDSCs and disease-related biochemical markers (alkaline phosphatase, total bilirubin). We found higher amounts of MDSCs in patients with PBC who were responsive to ursodeoxycholic acid. MDSCs from PBC were found to manifest a potent immunosuppressive function. There was a significant correlation in the accumulation of hepatic MDSCs in the inflamed lesions of PBC with histologic changes, such as fibrosis. We also found that cysteine-rich protein 61 (CCN1), a highly expressed protein in impaired cholangiocytes and hepatocytes, contributes to MDSC expansion and MDSC inducible nitric oxide synthase-associated immune suppression. CONCLUSION CCN1 modulates expansion and a suppressive function of MDSCs. Our data highlight the potential functions of CCN1 on MDSCs and suggest therapeutic implications in inflammatory liver diseases. (Hepatology HEPATOLOGY 2018;67:232-246).
Collapse
Affiliation(s)
- Haiyan Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhaolian Bian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.,Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Jiangsu, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yanshen Peng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Pietro Invernizzi
- Program for Autoimmune Liver Diseases, International Center for Digestive Diseases, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
58
|
Cancer-promoting mechanisms of tumor-associated neutrophils. Am J Surg 2017; 214:938-944. [DOI: 10.1016/j.amjsurg.2017.08.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022]
|
59
|
Esin E. Clinical Applications of Immunotherapy Combination Methods and New Opportunities for the Future. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1623679. [PMID: 28848761 PMCID: PMC5564060 DOI: 10.1155/2017/1623679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022]
Abstract
In the last decade, we have gained a deeper understanding of innate immune system. The mechanism of the continuous guarding of progressive mutations happening in a single cell was discovered and the production and the recognition of tumor associated antigens by the T-cells and elimination of numerous tumors by immune-editing were further understood. The new discoveries on immune mechanisms and its relation with carcinogenesis have led to development of a new class of drugs called immunotherapeutics. T lymphocyte-associated antigen 4, programmed cell death protein 1, and programmed cell death protein ligand 1 are the classes drugs based on immunologic manipulation and are collectively known as the "checkpoint inhibitors." Checkpoint inhibitors have shown remarkable antitumor efficacy in a broad spectrum of malignancies; however, the strongest and most durable immune responses do not last long and the more durable responses only occur in a small subset of patients. One of the solutions which have been put forth to overcome these challenges is combination strategies. Among the dual use of methods, a backbone with either PD-1 or PD-L1 antagonist drugs alongside with certain cytotoxic chemotherapies, radiation, targeted drugs, and novel checkpoint stimulators is the most promising approach and will be on stage in forthcoming years.
Collapse
Affiliation(s)
- Ece Esin
- Dr. A. Y. Ankara Oncology Research and Training Hospital, Ankara, Turkey
| |
Collapse
|
60
|
Abstract
SIGNIFICANCE Leukocytes and especially macrophages are a major cellular constituent of the tumor mass. The tumor microenvironment not only determines their activity but in turn these cells also contribute to tumor initiation and progression. Recent Advances: Proinflammatory stimulated macrophages upregulate inducible nitric oxide synthase (NOS2) and produce high steady-state NO concentrations. NO provokes tumor cell death by initiating apoptosis and/or necrosis. Mechanisms may comprise p53 accumulation, immunestimulatory activities, and an increased efficacy of chemo- and/or radiotherapy. However, the potential cytotoxic activity of macrophages often is compromised in the tumor microenvironment and instead a protumor activity of macrophages dominates. Contributing factors are signals generated by viable and dying tumor cells, attraction and activation of myeloid-derived suppressor cells, and hypoxia. Limited oxygen availability not only attenuates NOS2 activity but also causes accumulation of hypoxia-inducible factors 1 and 2 (HIF-1/HIF-2). Activation of the HIF system is tightly linked to NO formation and affects the expression of macrophage phenotype markers that in turn add to tumor progression. CRITICAL ISSUES To make use of the cytotoxic arsenal of activated macrophages directed against tumor cells, it will be critical to understand how, when, and where these innate immune responses are blocked and whether it will be possible to reinstall their full capacity to kill tumor cells. FUTURE DIRECTIONS Low-dose irradiation or proinflammatory activation of macrophages in the tumor microenvironment may open options to boost NOS2 expression and activity and to initiate immunestimulatory features of NO that may help to restrict tumor growth. Antioxid. Redox Signal. 26, 1023-1043.
Collapse
Affiliation(s)
- Bernhard Brüne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt , Frankfurt, Germany
| | - Nadine Courtial
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt , Frankfurt, Germany
| | - Nathalie Dehne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt , Frankfurt, Germany
| | - Shahzad N Syed
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt , Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt , Frankfurt, Germany
| |
Collapse
|
61
|
Köstlin N, Vogelmann M, Spring B, Schwarz J, Feucht J, Härtel C, Orlikowsky TW, Poets CF, Gille C. Granulocytic myeloid-derived suppressor cells from human cord blood modulate T-helper cell response towards an anti-inflammatory phenotype. Immunology 2017; 152:89-101. [PMID: 28464218 DOI: 10.1111/imm.12751] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
Infections are a leading cause of perinatal morbidity and mortality. The outstandingly high susceptibility to infections early in life is mainly attributable to the compromised state of the neonatal immune system. One important difference to the adult immune system is a bias towards T helper type 2 (Th2) responses in newborns. However, mechanisms regulating neonatal T-cell responses are incompletely understood. Granulocytic myeloid-derived suppressor cells (GR-MDSC) are myeloid cells with a granulocytic phenotype that suppress various functions of other immune cells and accumulate under physiological conditions during pregnancy in maternal and fetal blood. Although it has been hypothesized that GR-MDSC accumulation during fetal life could be important for the maintenance of maternal-fetal tolerance, the influence of GR-MDSC on the immunological phenotype of neonates is still unclear. Here, we investigated the impact of GR-MDSC isolated from cord blood (CB-MDSC) on the polarization of Th cells. We demonstrate that CB-MDSC inhibit Th1 responses and induced Th2 responses and regulatory T (Treg) cells. Th1 inhibition was cell-contact dependent and occurred independent of other cell types, while Th2 induction was mediated independently of cell contact through expression of ArgI and reactive oxygen species by CB-MDSC and partially needed the presence of monocytes. Treg cell induction by CB-MDSC also occurred cell-contact independently but was partially mediated through inducible nitric oxide synthase. These results point towards a role of MDSC in regulating neonatal immune responses. Targeting MDSC function in neonates could be a therapeutic opportunity to improve neonatal host defence.
Collapse
Affiliation(s)
- Natascha Köstlin
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Margit Vogelmann
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Bärbel Spring
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Julian Schwarz
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Judith Feucht
- Department of Paediatrics I, Tübingen University Children's Hospital, Tübingen, Germany
| | - Christoph Härtel
- Department of Paediatrics, University Clinic Schleswig Holstein, Lübeck, Germany
| | | | - Christian F Poets
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Christian Gille
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| |
Collapse
|
62
|
Sui Y, Frey B, Wang Y, Billeskov R, Kulkarni S, McKinnon K, Rourke T, Fritts L, Miller CJ, Berzofsky JA. Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques. PLoS Pathog 2017; 13:e1006395. [PMID: 28498847 PMCID: PMC5448820 DOI: 10.1371/journal.ppat.1006395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/30/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
Myeloid derived suppressor cells (MDSCs), which suppress anti-tumor or anti-viral immune responses, are expanded in the peripheral blood and tissues of patients/animals with cancer or viral infectious diseases. We here show that in chronic SIV infection of Indian rhesus macaques, the frequency of MDSCs in the bone marrow (BM) was paradoxically and unexpectedly decreased, but increased in peripheral blood. Reduction of BM MDSCs was found in both CD14+MDSC and Lin-CD15+MDSC subsets. The reduction of MDSCs correlated with high plasma viral loads and low CD4+ T cell counts, suggesting that depletion of BM MDSCs was associated with SIV/AIDS disease progression. Of note, in SHIVSF162P4-infected macaques, which naturally control viral replication within a few months of infection, the frequency of MDSCs in the bone marrow was unchanged. To investigate the mechanisms by which BM MDSCs were reduced during chronic SIV infection, we tested several hypotheses: depletion due to viral infection, alterations in MDSC trafficking, and/or poor MDSC replenishment. We found that the possible mobilization of MDSCs from BM to peripheral tissues and the slow self-replenishment of MDSCs in the BM, along with the viral infection-induced depletion, all contribute to the observed BM MDSC reduction. We first demonstrate MDSC SIV infection in vivo. Correlation between BM CD14+MDSC reduction and CD8+ T cell activation in tissues is consistent with decreased immune suppression by MDSCs. Thus, depletion of BM MDSCs may contribute to the pathologic immune activation during chronic SIV infection and by extension HIV infection. Both cancer and infectious diseases including HIV/AIDS lead to the accumulation of myeloid-derived suppressor cells (MDSCs), which can effectively suppress anti-tumor and anti-viral T cell responses to dampen protective immunity. Using a macaque model, we found unexpectedly that the MDSCs in bone marrow (BM) decreased after chronic simian immunodeficiency virus (SIV) infection compared with healthy controls. This was in sharp contrast to the general increase of MDSCs observed in BM during cancer and other infectious/inflammatory diseases, and also contrary to the MDSC expansion in HIV/SIV-infected PBMCs. We further demonstrated that the loss of MDSCs in the bone marrow was associated with the progression to AIDS disease. Investigating the mechanisms by which the MDSCs were decreased in the SIV-infected bone marrow, we found that the possible mobilization of MDSCs from bone marrow to peripheral tissues and the slow self-replenishment of MDSCs in the bone marrow, along with the viral infection-induced depletion, all contribute to the observed bone marrow MDSC reduction. Indeed, this is the first demonstration to our knowledge of SIV infection of MDSCs in vivo. Because of the suppressive nature of the MDSCs, the CD8+ T cells might not be effective in killing the virally infected MDSCs. It is tempting to speculate that MDSCs may constitute latent reservoirs. Overall, our data showed that MDSCs act as a double-edged sword in HIV/SIV-infection, and the decrease of MDSCs in bone marrow after SIV infection could serve as an indicator of immune regulatory exhaustion and also contribute to the observed immune hyperactivation seen in HIV/AIDS.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (YS); (JAB)
| | - Blake Frey
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Yichuan Wang
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Rolf Billeskov
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Shweta Kulkarni
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Katherine McKinnon
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Tracy Rourke
- Center for Comparative Medicine, University of California Davis, Davis, CA, United States of America
| | - Linda Fritts
- Center for Comparative Medicine, University of California Davis, Davis, CA, United States of America
| | - Christopher J. Miller
- Center for Comparative Medicine, University of California Davis, Davis, CA, United States of America
| | - Jay A. Berzofsky
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (YS); (JAB)
| |
Collapse
|
63
|
Zhang H, Li Z, Wang L, Tian G, Tian J, Yang Z, Cao G, Zhou H, Zhao L, Wu Z, Yin Z. Critical Role of Myeloid-Derived Suppressor Cells in Tumor-Induced Liver Immune Suppression through Inhibition of NKT Cell Function. Front Immunol 2017; 8:129. [PMID: 28243237 PMCID: PMC5303828 DOI: 10.3389/fimmu.2017.00129] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
Metastasis followed by the tumor development is the primary cause of death for cancer patients. However, the underlying molecular mechanisms of how the growth of tumor resulted in the immune suppression, especially at the blood-enriched organ such as liver, were largely unknown. In this report, we studied the liver immune response of tumor-bearing (TB) mice using concanavalin A (Con A)-induced hepatitis model. We demonstrated that TB mice displayed an immune suppression phenotype, with attenuated alanine aminotransferase levels and liver damage upon Con A treatment. We also elucidated that large amounts of myeloid-derived suppressor cells (MDSCs) being influx into the liver in TB mice and these MDSCs were essential for liver immune suppression through both depletion and reconstitution approaches. We further determined that these MDSCs selectively suppressed the IFN-γ production deriving from NKT cells through membrane-bound transforming growth factor β (TGF-β). Finally, we defined a tumor-derived TGF-β-triggered CXCL1/2/5- and CXCR2-dependent recruitment of MDSC into the liver. In summary, our results defined a novel mechanism of liver immune suppression triggered by growing living tumor and provided possible therapeutic targets against these MDSCs.
Collapse
Affiliation(s)
- Hongru Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University , Tianjin , China
| | - Zheng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China; Shenzhou Space Biotechnology Group, Beijing, China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University , Tianjin , China
| | - Gaofei Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University , Tianjin , China
| | - Jun Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University , Tianjin , China
| | - Zishan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University , Tianjin , China
| | - Guangchao Cao
- The First Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University , Guangzhou , China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University , Nanjing , China
| | - Liqing Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University , Tianjin , China
| | - Zhenzhou Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University , Tianjin , China
| | - Zhinan Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China; The First Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China; Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
64
|
Raufi A, Tirona MT. Prospect of the use of checkpoint inhibitors in hepatocellular cancer treatments. Cancer Manag Res 2017; 9:19-27. [PMID: 28223846 PMCID: PMC5308591 DOI: 10.2147/cmar.s111673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular cancer (HCC) is a very fatal disease due to limited therapeutic options as well as due to its association with underlying chronic liver disease in the majority of cases. The immune evasion in HCC signifies a major barrier to the delivery of effective immunotherapy. Sorafenib is the only Food and Drug Administration-approved drug available with an overall response rate of 2%–3% and overall survival of 2.8 months. Chemotherapy has not been used routinely because of the relative refractoriness of advanced HCC. The introduction of immune checkpoint inhibitors (cytotoxic T-lymphocyte antigen 4, programmed death 1, and programmed death-ligand 1) has opened a new horizon for cancer immunotherapy. Future direction in immunotherapy for HCC is to rationally combine it with other treatment modalities, including surgery, radiofrequency ablation, and cytotoxic agents, to maximize its therapeutic efficacy.
Collapse
Affiliation(s)
- Ali Raufi
- Division of Hematology/Oncology, Department of Medicine, Joan C. Edwards School of Medicine at Marshall University, Edward Comprehensive Care Center, Huntington, WV, USA
| | - Maria Tria Tirona
- Division of Hematology/Oncology, Department of Medicine, Joan C. Edwards School of Medicine at Marshall University, Edward Comprehensive Care Center, Huntington, WV, USA
| |
Collapse
|
65
|
Zhang H, He G, Kong Y, Chen Y, Wang B, Sun X, Jia B, Xie X, Wang X, Chen D, Wei L, Zhang M, Zeng H, Chen H. Tumour-activated liver stromal cells regulate myeloid-derived suppressor cells accumulation in the liver. Clin Exp Immunol 2017; 188:96-108. [PMID: 28019655 DOI: 10.1111/cei.12917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Regulating mechanisms underlying hepatic myeloid-derived suppressor cell (MDSC) accumulation remain to be described. Here, we provide evidence for the involvement of tumour-activated liver stromal cells in the process of hepatic MDSCs migration and accumulation. Our data showed an elevated frequency of MDSCs in the liver of tumour-bearing mice. Moreover, tumour-activated liver stromal cells promote MDSC migration into the liver site. Further investigation indicated higher levels of cytokine and chemokine expression in liver stromal cells after exposure to the tumour-conditioned supernatant. Notably, the expression levels of proinflammatory factors, mainly including macrophage colony stimulating factor (M-CSF), transforming growth factor-β (TGF-β), monocyte chemotactic protein-1 (MCP-1) and stromal-derived factor-1 (SDF-1), increased after treatment with tumour-conditioned supernatant, and blockade of MCP-1 or SDF-1 decreased the proportion of tumour infiltrated MDSCs in mice co-transplanted with liver stromal cells and tumour cells, but not in mice with only tumour cells injection. These findings demonstrate that tumour-activated liver stromal cells produce higher levels of chemokines and cytokines, which may contribute to MDSC accumulation into the liver site in patients with liver cancer.
Collapse
Affiliation(s)
- H Zhang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China.,Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - G He
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Y Kong
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Y Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - B Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - X Sun
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - B Jia
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - X Xie
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - X Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - D Chen
- Institute of Immunology, Tsinghua University School of Medicine, Beijing, China
| | - L Wei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - M Zhang
- Institute of Immunology, Tsinghua University School of Medicine, Beijing, China
| | - H Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - H Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| |
Collapse
|
66
|
Samonakis DN, Kouroumalis EA. Systemic treatment for hepatocellular carcinoma: Still unmet expectations. World J Hepatol 2017; 9:80-90. [PMID: 28144389 PMCID: PMC5241532 DOI: 10.4254/wjh.v9.i2.80] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/14/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
Many patients with hepatocellular carcinoma (HCC) are diagnosed in an advanced stage, so they cannot be offered the option of curative treatments. The results of systemic chemotherapy are unsatisfactory and this has led to molecular targeted approaches. HCC develops in chronically damaged tissue due to cirrhosis in most patients. Several different cell types and molecules constitute a unique microenvironment in the liver, which has significant implications in tumor development and invasion. This, together with genome instability, contributes to a significant heterogeneity which is further enhanced by the molecular differences of the underlying causes. New classifications based on genetic characteristics of the tissue microenvironment have been proposed and key carcinogenic signaling pathways have been described. Tumor and adjacent tissue profiling seem biologically promising, but have not yet been translated into clinical settings. The encouraging first results with molecular - genetic signatures should be validated and clinically applicable. A more personalized approach to modern management of HCC is urgently needed.
Collapse
|
67
|
Lacotte S, Slits F, Orci LA, Meyer J, Oldani G, Delaune V, Gonelle-Gispert C, Morel P, Toso C. Impact of myeloid-derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma. Oncoimmunology 2016; 5:e1234565. [PMID: 27999748 PMCID: PMC5139644 DOI: 10.1080/2162402x.2016.1234565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 12/27/2022] Open
Abstract
Kupffer cells represent the first line of defense against tumor cells in the liver. Myeloid-derived suppressor cells (MDSC) have recently been observed in the liver parenchyma of tumor-bearing animals. The present study investigates the function of the MDSC subsets, and their impact on Kupffer cell phenotype and function. RIL-175 mouse hepatocellular carcinoma (HCC) cells were injected into the median liver lobe of C57BL/6 mice. Three weeks later, the median lobe hosting the tumor nodule was removed, and Kupffer cells and MDSCs were sorted from the remaining liver. Mouse livers devoid of HCC served as control. Kupffer cells expressed less co-stimulatory CD86 and MHCII and more co-inhibitory CD274 molecules in HCC-bearing livers than in control livers. Corresponding to this phenotype, Kupffer cells from HCC-bearing mice were less efficient in their function as antigen-presenting cells. Three CD11b+ cell populations were identified and sorted from HCC-bearing mice. These cells had various phenotypes with different levels of MDSC-specific surface markers (Ly6Ghigh cells, Gr1high cells, and Ly6Clow cells), and may be considered as bonafide MDSCs given their suppression of antigen-specific T cell proliferation. Primary isolated Kupffer cells in co-culture with the three MDSC subsets showed a decrease in CCL2 and IL-18 secretion, and an increase in IL-10 and IL-1β secretion, and an increased expression of CD86, CD274, and MHCII. In conclusion, these data demonstrated the existence of three MDSC subsets in HCC-bearing animals. These cells altered Kupffer cell function and may decrease the migration and activation of anticancer effector cells in the liver.
Collapse
Affiliation(s)
- Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine , Geneva, Switzerland
| | - Florence Slits
- Hepatology and Transplantation Laboratory, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine , Geneva, Switzerland
| | - Lorenzo A Orci
- Hepatology and Transplantation Laboratory, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine , Geneva, Switzerland
| | - Jeremy Meyer
- Surgical Research Unit, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine , Geneva, Switzerland
| | - Graziano Oldani
- Hepatology and Transplantation Laboratory, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine , Geneva, Switzerland
| | - Vaihere Delaune
- Hepatology and Transplantation Laboratory, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine , Geneva, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine , Geneva, Switzerland
| | - Philippe Morel
- Surgical Research Unit, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland; Hepato-pancreato-biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Christian Toso
- Hepatology and Transplantation Laboratory, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland; Hepato-pancreato-biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
68
|
Liu YF, Wei JY, Shi MH, Jiang H, Zhou J. Glucocorticoid Induces Hepatic Steatosis by Inhibiting Activating Transcription Factor 3 (ATF3)/S100A9 Protein Signaling in Granulocytic Myeloid-derived Suppressor Cells. J Biol Chem 2016; 291:21771-21785. [PMID: 27573240 DOI: 10.1074/jbc.m116.726364] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/14/2016] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) used as inflammation suppressors have harmful side effects, including induction of hepatic steatosis. The underlying mechanisms of GC-promoted dysregulation of lipid metabolism, however, are not fully understood. GCs could facilitate the accumulation of myeloid-derived suppressor cells (MDSC) in the liver of animals, and the potential role of MDSCs in GC-induced hepatic steatosis was therefore investigated in this study. We demonstrated that granulocytic (G)-MDSC accumulation mediated the effects of GCs on the fatty liver, in which activating transcription factor 3 (ATF3)/S100A9 signaling plays an important role. ATF3-deficient mice developed hepatic steatosis and displayed expansion of G-MDSCs in the liver and multiple immune organs, which shared high similarity with the phenotype observed in GC-treated wild-type littermates. Adoptive transfer of GC-induced or ATF3-deficient G-MDSCs promoted lipid accumulation in the liver, whereas depletion of G-MDSCs alleviated these effects. Mechanistic studies showed that in MDSCs, ATF3 was transrepressed by the GC receptor GR through direct binding to the negative GR-response element. S100A9 is the major transcriptional target of ATF3 in G-MDSCs. Silencing S100A9 clearly alleviated G-MDSCs expansion and hepatic steatosis caused by ATF3 deficiency or GC treatment. Our study uncovers an important role of G-MDSCs in GC-induced hepatic steatosis, in which ATF3 may have potential therapeutic implications.
Collapse
Affiliation(s)
- Yu-Feng Liu
- From the Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, 9th Jin Sui Road, Guangzhou 510623, and.,Institute of Human Virology, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080.,the Department of Hematology Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9th Jin Sui Road, Guangzhou 510623, China
| | - Jian-Yang Wei
- Institute of Human Virology, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080
| | - Mao-Hua Shi
- Institute of Human Virology, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080
| | - Hua Jiang
- From the Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, 9th Jin Sui Road, Guangzhou 510623, and.,the Department of Hematology Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9th Jin Sui Road, Guangzhou 510623, China
| | - Jie Zhou
- From the Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, 9th Jin Sui Road, Guangzhou 510623, and .,Institute of Human Virology, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080.,the Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Chinese Ministry of Education, 74 Zhongshan 2nd Road, Guangzhou 510080, and
| |
Collapse
|
69
|
Ilkovitch D, Ferris LK. Myeloid-derived suppressor cells are elevated in patients with psoriasis and produce various molecules. Mol Med Rep 2016; 14:3935-40. [PMID: 27574042 PMCID: PMC5042763 DOI: 10.3892/mmr.2016.5685] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/22/2016] [Indexed: 12/16/2022] Open
Abstract
Psoriasis is a debilitating chronic inflammatory disease. In addition to the characteristic effects on the skin, chronic inflammation associated with the disease is recognized to contribute to cardiovascular, hepatic and renal comorbidities. Immature myeloid regulatory cells, known as myeloid‑derived suppressor cells (MDSCs), have been demonstrated to accumulate in various diseases and chronic inflammatory states, including inflammatory bowel disease and various types of cancer. The results of the present study, obtained using flow cytometry and cell culture analysis of peripheral blood mononuclear cells from psoriasis and healthy patients, revealed that MDSC levels are significantly increased in the blood of patients with psoriasis compared with healthy controls. Furthermore, these cells are capable of producing various molecules, including matrix metalloproteinase‑9 and‑1, interleukin‑8, growth‑related oncogene, and monocyte chemoattractant protein 1. These molecules may recruit additional immune cells involved in the pathogenesis of the disease, and contribute to the chronic inflammatory state in these patients. Therefore, MDSCs, which have various immune regulatory functions, may contribute to the pathogenesis of psoriasis as a systemic inflammatory disease.
Collapse
Affiliation(s)
- Dan Ilkovitch
- Department of Dermatology, Cleveland Clinic Florida, Weston, FL 33331, USA
| | - Laura K Ferris
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
70
|
Patel P, Schutzer SE, Pyrsopoulos N. Immunobiology of hepatocarcinogenesis: Ways to go or almost there? World J Gastrointest Pathophysiol 2016; 7:242-255. [PMID: 27574562 PMCID: PMC4981764 DOI: 10.4291/wjgp.v7.i3.242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/01/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma is on the rise and occurs in the setting of chronic liver disease and cirrhosis. Though treatment modalities are available, mortality from this cancer remains high. Medical therapy with the utilization of biologic compounds such as the Food and Drug Administration approved sorafenib might be the only option that can increase survival. Immunotherapy, with modern pharmacologic developments, is a new frontier in cancer therapy and therefore the immunobiology of hepatocarcinogenesis is under investigation. This review will discuss current concepts of immunobiology in hepatocarcinogenesis along with current treatment modalities employing immunotherapy. The tumor microenvironment along with a variety of immune cells coexists and interplays to lead to tumorigenesis. Tumor infiltrating lymphocytes including CD8+ T cells, CD4+ T cells along with regulatory T cells, tumor associated macrophages, tumor associated neutrophils, myeloid derived suppressor cells, and natural killer cells interact to actively provide anti-tumor or pro-tumor effects. Furthermore, oncogenic pathways such as Raf/mitogen-activated protein kinase/extracellular-signal-regulated kinase pathway, phosphatidyl-3-kinase/AKT/mammalian target or rapamycin, Wnt/β-catenin, nuclear factor-κB and signal transducers and activators of transcription 3 may lead to activation and proliferation of tumor cells and are also considered cornerstones in tumorigenesis. Immunotherapy directed at this complex milieu of cells has been showned to be successful in cancer treatment. The use of vaccines, adoptive cell therapy and immune checkpoint inhibitor modulation are current options for therapy. Further translational research will shed light to concepts such as anti-tumor immunity which can add another alternative in the therapeutic armamentarium.
Collapse
|
71
|
Hato T, Zhu AX, Duda DG. Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma. Immunotherapy 2016; 8:299-313. [PMID: 26865127 DOI: 10.2217/imt.15.126] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal disease with rising incidence in the world. For advanced HCC, sorafenib, a multikinase inhibitor, is the only systemic therapy with proven survival benefits. Sorafenib is a pan-VEGF receptor inhibitor, and thus many studies have focused its antivascular effects. But VEGF also acts as an immunosuppressive molecule. VEGF can inhibit maturation of dendritic cells, promote immune suppressive cell infiltration and enhance immune checkpoint molecules expression. On the other hand, potent VEGF inhibition may increase tumor hypoxia, which could hinder antitumor immunity or immunotherapy. Thus, achieving synergy when combining anti-VEGF therapy with immunotherapy may require proper polarization of the tumor microenvironment by dose titration or combination with other immunomodulating agents.
Collapse
Affiliation(s)
- Tai Hato
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Andrew X Zhu
- Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
72
|
Zhao AM, Xu HJ, Kang XM, Zhao AM, Lu LM. New insights into myeloid-derived suppressor cells and their roles in feto-maternal immune cross-talk. J Reprod Immunol 2016; 113:35-41. [DOI: 10.1016/j.jri.2015.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
|
73
|
Ham B, Fernandez MC, D’Costa Z, Brodt P. The diverse roles of the TNF axis in cancer progression and metastasis. TRENDS IN CANCER RESEARCH 2016; 11:1-27. [PMID: 27928197 PMCID: PMC5138060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metastasis is a multi-step process that ultimately depends on the ability of disseminating cancer cells to establish favorable communications with their microenvironment. The tumor microenvironment consists of multiple and continuously changing cellular and molecular components. One of the factors regulating the tumor microenvironment is TNF-α, a pleiotropic cytokine that plays key roles in apoptosis, angiogenesis, inflammation and immunity. TNF-α can have both pro- and anti-tumoral effects and these are transmitted via two major receptors, the 55 kDa TNFR1 and the 75 kDa TNFR2 that have distinct, as well as overlapping functions. TNFR1 is ubiquitously expressed while the expression of TNFR2 is more restricted, mainly to immune cells. While TNFR1 can transmit pro-apoptotic or pro-survival signals through a complex network of downstream mediators, the role of TNFR2 is less well understood. One of its main functions is to act as a survival factor and moderate the pro-apoptotic effects of TNFR1, particularly in immune cells. In this review, we summarize the evidence for the involvement of the TNF system in the progression of the metastatic process from its contribution to the early steps of tumor cell invasion to its role in the colonization of distant sites, particularly the liver. We show how the TNF receptors each contribute to these processes by regulating and shaping the tumor microenvironment. Current evidence and concepts on the potential use of TNF targeting agents for cancer prevention and therapy are discussed.
Collapse
Affiliation(s)
- Boram Ham
- Department of Medicine, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Maria Celia Fernandez
- Department of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Zarina D’Costa
- Department of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Pnina Brodt
- Department of Medicine, McGill University and the McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
- Department of Oncology, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
74
|
Rossowska J, Pajtasz-Piasecka E, Anger N, Wojas-Turek J, Kicielińska J, Piasecki E, Duś D. Cyclophosphamide and IL-12-transduced DCs enhance the antitumor activity of tumor antigen-stimulated DCs and reduce Tregs and MDSCs number. J Immunother 2015; 37:427-39. [PMID: 25304726 DOI: 10.1097/cji.0000000000000054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A hostile tumor microenvironment, characterized by an abundance of T regulatory cells and myeloid-derived suppressor cells (MDSCs), considerably limits the efficacy of dendritic cell (DC)-based vaccines. The intention of this study was to enhance the antitumor activity of vaccines consisting of bone marrow-derived DCs stimulated with TAg (BMDC/TAg) via single administration of cyclophosphamide and multiple injections of interleukin (IL)-12-transduced DCs (BMDC/IL-12). The combined chemoimmunotherapy was applied in the treatment of mice with subcutaneously (SC) growing, advanced MC38 colon carcinoma. The highest level of tumor growth inhibition, accompanied by high cytotoxic activity of effector cells, and their increased influx into tumor tissue, was observed after application of cyclophosphamide in combination with BMDC/TAg and BMDC/IL-12. The effect was probably associated with the elimination of T regulatory cells from spleens and tumors, but most of all with changes in the number and differentiation stage of MDSCs. After the therapy, the percentage of granulocytic and monocytic MDSCs in spleens was significantly lower than in the control group. Moreover, MDSCs derived from spleens and tumors showed increased expression of MHC class II, which may indicate the higher maturation stage of the myeloid cells as well as their enhanced capacity toward antigen presentation. The obtained data indicate that the optimal composition of antitumor vaccines able to limit the suppressor activity of MDSCs is essential to enhance the elimination of tumor cells and to achieve an optimal therapeutic effect.
Collapse
Affiliation(s)
- Joanna Rossowska
- Laboratory of Glycobiology and Cellular Interactions, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | | | | | | | | |
Collapse
|
75
|
Lamas A, Lopez E, Carrio R, Lopez DM. Adipocyte and leptin accumulation in tumor-induced thymic involution. Int J Mol Med 2015; 37:133-8. [PMID: 26530443 DOI: 10.3892/ijmm.2015.2392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Cell-mediated immunity is an important defense mechanism against pathogens and developing tumor cells. The thymus is the main lymphoid organ involved in the formation of the cell-mediated immune response by the maturation and differentiation of lymphocytes that travel from the bone marrow, through the lymphatic ducts, to become T lymphocytes. Thymic involution has been associated with aging; however, other factors such as obesity, viral infection and tumor development have been shown to increase the rate of shrinkage of this organ. The heavy infiltration of adipocyte fat cells has been reported in the involuted thymuses of aged mice. In the present study, the possible accumulation of such cells in the thymus during tumorigenesis was examined by immunohistochemistry. A significant number of adipocytes around and infiltrating the thymuses of tumor-bearing mice was observed. Leptin is a pro-inflammatory adipocytokine that enhances thymopoiesis and modulates T cell immune responses. The levels of leptin and adiponectin, another adipocytokine that has anti-inflammatory properties, were examined by western blot analysis. While no changes were observed in the amounts of adiponectin present in the thymuses of the normal and tumor-bearing mice, significantly higher levels of leptin were detected in the thymocytes of the tumor-bearing mice. This correlated with an increase in the expression of certain cytokines, such as interleukin (IL)-2, interferon (IFN)-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF). The co-culture of thymocytes isolated from normal mice with ex vivo isolated adipocytes from tumor-bearing mice yielded similar results. Our findings suggest that the infiltration and accumulation of adipocytes in the thymuses of tumor-bearing mice play an important role in their altered morphology and functions.
Collapse
Affiliation(s)
- Alejandro Lamas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elena Lopez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roberto Carrio
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Diana M Lopez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
76
|
Wan S, Kuo N, Kryczek I, Zou W, Welling TH. Myeloid cells in hepatocellular carcinoma. Hepatology 2015; 62:1304-12. [PMID: 25914264 PMCID: PMC4589430 DOI: 10.1002/hep.27867] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/17/2015] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is highly associated with inflammation. Myeloid cells, including tumor-associated macrophages and myeloid-derived suppressor cells, are abundant in the HCC microenvironment and are often associated with poor prognosis. Myeloid cells in HCC play a vital role in supporting tumor initiation, progression, angiogenesis, metastasis, and therapeutic resistance. Here, we summarize our current knowledge about myeloid cells in HCC and focus on their immune-suppressive activities and tumor-promoting functions, as well as the relevance to potential new therapies in HCC.
Collapse
Affiliation(s)
- Shanshan Wan
- Section of Transplantation, University of Michigan, Ann Arbor, MI, USA,Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ning Kuo
- Section of Transplantation, University of Michigan, Ann Arbor, MI, USA,Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Theodore H. Welling
- Section of Transplantation, University of Michigan, Ann Arbor, MI, USA,Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
77
|
Tsuchiya N, Sawada Y, Endo I, Uemura Y, Nakatsura T. Potentiality of immunotherapy against hepatocellular carcinoma. World J Gastroenterol 2015; 21:10314-10326. [PMID: 26420958 PMCID: PMC4579878 DOI: 10.3748/wjg.v21.i36.10314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/21/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is the fifth most common cancer worldwide and the second leading cause of cancer-related death. Despite the high incidence, treatment options remain limited for advanced HCC, and as a result prognosis continues to be poor. Current therapeutic options, surgery, chemotherapy and radiotherapy, have only modest efficacy. New treatment modalities to prolong survival and to minimize the risk of adverse response are desperately needed for patients with advanced HCC. Tumor immunotherapy is a promising, novel treatment strategy that may lead to improvements in both treatment-associated toxicity and outcome. The strategies have developed in part through genomic studies that have yielded candidate target molecules and in part through basic biology studies that have defined the pathways and cell types regulating immune response. Here, we summarize the various types of HCC immunotherapy and argue that the newfound field of HCC immunotherapy might provide critical advantages in the effort to improve prognosis of patients with advanced HCC. Already several immunotherapies, such as tumor-associated antigen therapy, immune checkpoint inhibitors and cell transfer immunotherapy, have demonstrated safety and feasibility in HCC patients. Unfortunately, immunotherapy currently has low efficacy in advanced stage HCC patients; overcoming this challenge will place immunotherapy at the forefront of HCC treatment, possibly in the near future.
Collapse
|
78
|
Premetastatic niche formation in the liver: emerging mechanisms and mouse models. J Mol Med (Berl) 2015; 93:1193-201. [DOI: 10.1007/s00109-015-1342-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022]
|
79
|
Hammerich L, Tacke F. Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis. World J Gastrointest Pathophysiol 2015; 6:43-50. [PMID: 26301117 PMCID: PMC4540705 DOI: 10.4291/wjgp.v6.i3.43] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/16/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023] Open
Abstract
Myeloid derived suppressor cells (MDSC) are a heterogeneous population of immune cells that are potent suppressors of immune responses. MDSC emerge in various compartments in the body, such as blood, bone marrow or spleen, especially in conditions of cancer, infections or inflammation. MDSC usually express CD11b, CD33, and low levels of human leukocyte antigen-DR in humans or CD11b and Gr1 (Ly6C/G) in mice, and they can be further divided into granulocytic or monocytic MDSC. The liver is an important organ for MDSC induction and accumulation in hepatic as well as extrahepatic diseases. Different hepatic cells, especially hepatic stellate cells, as well as liver-derived soluble factors, including hepatocyte growth factor and acute phase proteins (SAA, KC), can promote the differentiation of MDSC from myeloid cells. Importantly, hepatic myeloid cells like neutrophils, monocytes and macrophages fulfill essential roles in acute and chronic liver diseases. Recent data from patients with liver diseases and animal models linked MDSC to the pathogenesis of hepatic inflammation, fibrosis and hepatocellular carcinoma (HCC). In settings of acute hepatitis, MDSC can limit immunogenic T cell responses and subsequent tissue injury. In patients with chronic hepatitis C, MDSC increase and may favor viral persistence. Animal models of chronic liver injury, however, have not yet conclusively clarified the involvement of MDSC for hepatic fibrosis. In human HCC and mouse models of liver cancer, MDSC are induced in the tumor environment and suppress anti-tumoral immune responses. Thus, the liver is a primary site of MDSC in vivo, and modulating MDSC functionality might represent a promising novel therapeutic target for liver diseases.
Collapse
|
80
|
Hepatic myeloid-derived suppressor cells in cancer. Cancer Immunol Immunother 2015; 64:931-40. [PMID: 26133122 DOI: 10.1007/s00262-015-1736-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/14/2015] [Indexed: 12/22/2022]
Abstract
Myeloid-derived suppressor cells are key components of tumor-induced immune suppression. They are composed of a heterogeneous population of immature myeloid cells that abrogates innate and adaptive immune responses. Myeloid-derived suppressor cells accumulate not only in peripheral blood, secondary lymphoid organs and tumors, but also in the liver in preclinical tumor models and in hepatocellular carcinoma patients. The liver, continuously exposed to food and microbial antigens from the intestine, avoids autoimmune damage through the use of specialized mechanisms of immune tolerance. In the context of cancer, myeloid-derived suppressor cells profit the intrinsic tolerogenic properties of the liver to accumulate and exert various immune-suppressive and tumor-promoting mechanisms which go from inducing immune cell dysfunction to supporting the generation of liver metastases. In this review, we seek to describe the phenotype, function, accumulation and therapeutic targeting of hepatic myeloid-derived suppressor cells both in preclinical settings and in the context of human hepatocellular carcinoma.
Collapse
|
81
|
Vetro C, Romano A, Ancora F, Coppolino F, Brundo MV, Raccuia SA, Puglisi F, Tibullo D, La Cava P, Giallongo C, Parrinello NL. Clinical Impact of the Immunome in Lymphoid Malignancies: The Role of Myeloid-Derived Suppressor Cells. Front Oncol 2015; 5:104. [PMID: 26052505 PMCID: PMC4440379 DOI: 10.3389/fonc.2015.00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
The better definition of the mutual sustainment between neoplastic cells and immune system has been translated from the bench to the bedside acquiring value as prognostic factor. Additionally, it represents a promising tool for improving therapeutic strategies. In this context, myeloid-derived suppressor cells (MDSCs) have gained a central role in tumor developing with consequent therapeutic implications. In this review, we will focus on the biological and clinical impact of the study of MDSCs in the settings of lymphoid malignancies.
Collapse
Affiliation(s)
- Calogero Vetro
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania , Italy
| | - Alessandra Romano
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania , Italy
| | - Flavia Ancora
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania , Italy
| | | | - Maria V Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania , Catania , Italy
| | - Salvatore A Raccuia
- Department of Biological, Geological and Environmental Sciences, University of Catania , Catania , Italy ; National Research Council Institute for Agricultural and Forest Systems in the Mediterranean, National Research Council , Catania , Italy
| | - Fabrizio Puglisi
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania , Italy
| | - Daniele Tibullo
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania , Italy
| | - Piera La Cava
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania , Italy
| | - Cesarina Giallongo
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania , Italy
| | - Nunziatina L Parrinello
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania , Italy
| |
Collapse
|
82
|
Parker KH, Beury DW, Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells: Critical Cells Driving Immune Suppression in the Tumor Microenvironment. Adv Cancer Res 2015. [PMID: 26216631 DOI: 10.1016/bs.acr.2015.04.002] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress innate and adaptive immunity. MDSCs are present in many disease settings; however, in cancer, they are a major obstacle for both natural antitumor immunity and immunotherapy. Tumor and host cells in the tumor microenvironment (TME) produce a myriad of pro-inflammatory mediators that activate MDSCs and drive their accumulation and suppressive activity. MDSCs utilize a variety of mechanisms to suppress T cell activation, induce other immune-suppressive cell populations, regulate inflammation in the TME, and promote the switching of the immune system to one that tolerates and enhances tumor growth. Because MDSCs are present in most cancer patients and are potent immune-suppressive cells, MDSCs have been the focus of intense research in recent years. This review describes the history and identification of MDSCs, the role of inflammation and intracellular signaling events governing MDSC accumulation and suppressive activity, immune-suppressive mechanisms utilized by MDSCs, and recent therapeutics that target MDSCs to enhance antitumor immunity.
Collapse
Affiliation(s)
- Katherine H Parker
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Daniel W Beury
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA.
| |
Collapse
|
83
|
Burga RA, Thorn M, Point GR, Guha P, Nguyen CT, Licata LA, DeMatteo RP, Ayala A, Joseph Espat N, Junghans RP, Katz SC. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 2015; 64:817-29. [PMID: 25850344 DOI: 10.1007/s00262-015-1692-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 03/26/2015] [Indexed: 01/08/2023]
Abstract
Chimeric antigen receptor-modified T cell (CAR-T) technology, a promising immunotherapeutic tool, has not been applied specifically to treat liver metastases (LM). While CAR-T delivery to LM can be optimized by regional intrahepatic infusion, we propose that liver CD11b+Gr-1+ myeloid-derived suppressor cells (L-MDSC) will inhibit the efficacy of CAR-T in the intrahepatic space. We studied anti-CEA CAR-T in a murine model of CEA+ LM and identified mechanisms through which L-MDSC expand and inhibit CAR-T function. We established CEA+ LM in mice and studied purified L-MDSC and responses to treatment with intrahepatic anti-CEA CAR-T infusions. L-MDSC expanded threefold in response to LM, and their expansion was dependent on GM-CSF, which was produced by tumor cells. L-MDSC utilized PD-L1 to suppress anti-tumor responses through engagement of PD-1 on CAR-T. GM-CSF, in cooperation with STAT3, promoted L-MDSC PD-L1 expression. CAR-T efficacy was rescued when mice received CAR-T in combination with MDSC depletion, GM-CSF neutralization to prevent MDSC expansion, or PD-L1 blockade. As L-MDSC suppressed anti-CEA CAR-T, infusion of anti-CEA CAR-T in tandem with agents targeting L-MDSC is a rational strategy for future clinical trials.
Collapse
Affiliation(s)
- Rachel A Burga
- Division of Surgical Oncology, Department of Surgery, Roger Williams Medical Center, 825 Chalkstone Avenue, Prior 4, Providence, RI, 02908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Bertino G, Demma S, Ardiri A, Proiti M, Malaguarnera G, Bertino N, Malaguarnera M, Malaguarnera M. The immune system in hepatocellular carcinoma and potential new immunotherapeutic strategies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:731469. [PMID: 25893197 PMCID: PMC4393929 DOI: 10.1155/2015/731469] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hepatocellular carcinoma is a major health problem worldwide and the third most common cause of cancer-related death. HCC treatment decisions are complex and dependent upon tumor staging. Several molecular targeted agents have been evaluated in clinical trials in advanced HCC. Despite of only modest objective response rates according to the Response Evaluation Criteria in Solid Tumors, several studies showed encouraging results in terms of prolongation of the time to progression, disease stabilization, and survival. Cellular immunotherapy would improve the immune state and has potential in enhancing the therapeutic outcome for HCC patients. MATERIALS AND METHODS A search of the literature was made using cancer literature, the PubMed, Scopus, and Web of Science (WOS) database for the following keywords: "hepatocellular carcinoma," "molecular hepatocarcinogenesis," "targeted therapy," "molecular immunological targets," "tumour-associated antigens," "Tregs," "MDSCs," "immunotherapy." DISCUSSION AND CONCLUSION Treatment strategies combining blockade of immunoregulatory cell types such as Tregs and MDSCs and of inhibitory receptors, with vaccine-induced activation of TAA-specific T cells, may be necessary to achieve the most effective therapeutic antitumour activity in HCC. In the future, new therapeutic options will be represented by a blend of immunotherapy-like vaccines and T-cell modulators, supplemented by molecularly targeted inhibitors of tumor signaling pathways.
Collapse
Affiliation(s)
- Gaetano Bertino
- Department of Medical and Pediatric Sciences, Hepatology Unit, University of Catania, Policlinic, Via S. Sofia No. 78, 95123 Catania, Italy
| | - Shirin Demma
- Department of Medical and Pediatric Sciences, Hepatology Unit, University of Catania, Policlinic, Via S. Sofia No. 78, 95123 Catania, Italy
| | - Annalisa Ardiri
- Department of Medical and Pediatric Sciences, Hepatology Unit, University of Catania, Policlinic, Via S. Sofia No. 78, 95123 Catania, Italy
| | - Maria Proiti
- Department of Medical and Pediatric Sciences, Hepatology Unit, University of Catania, Policlinic, Via S. Sofia No. 78, 95123 Catania, Italy
| | - Giulia Malaguarnera
- Research Centre “The Great Senescence”, University of Catania, Cannizzaro Hospital, Via Messina No. 829, 95100 Catania, Italy
| | - Nicoletta Bertino
- Faculty of Pharmacy, University of Catania, Viale Andrea Doria No. 6, 95123 Catania, Italy
- Faculty of Pharmacy, University of Catania, University of Catania Policlinic, Via S. Sofia No. 78, 95123 Catania, Italy
| | - Mariano Malaguarnera
- Department of Medical and Pediatric Science, Research Centre “The Great Senescence”, University of Catania, Cannizzaro Hospital, Via Messina No. 829, 95100 Catania, Italy
| | - Michele Malaguarnera
- Research Centre “The Great Senescence”, University of Catania, Cannizzaro Hospital, Via Messina No. 829, 95100 Catania, Italy
- International Ph.D. Program in Neuropharmacology, University of Catania, Cannizzaro Hospital, Via Messina No. 829, 95100 Catania, Italy
| |
Collapse
|
85
|
Kapanadze T, Medina-Echeverz J, Gamrekelashvili J, Weiss JM, Wiltrout RH, Kapoor V, Hawk N, Terabe M, Berzofsky JA, Manns MP, Wang E, Marincola FM, Korangy F, Greten TF. Tumor-induced CD11b(+) Gr-1(+) myeloid-derived suppressor cells exacerbate immune-mediated hepatitis in mice in a CD40-dependent manner. Eur J Immunol 2015; 45:1148-58. [PMID: 25616156 DOI: 10.1002/eji.201445093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/24/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Abstract
Immunosuppressive CD11b(+) Gr-1(+) myeloid-derived suppressor cells (MDSCs) accumulate in the livers of tumor-bearing (TB) mice. We studied hepatic MDSCs in two murine models of immune-mediated hepatitis. Unexpectedly, treatment of TB mice with Concanavalin A (Con A) or α-galactosylceramide resulted in increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum levels in comparison to tumor-free mice. Adoptive transfer of hepatic MDSCs into naïve mice exacerbated Con A induced liver damage. Hepatic CD11b(+) Gr-1(+) cells revealed a polarized proinflammatory gene signature after Con A treatment. An IFN-γ-dependent upregulation of CD40 on hepatic CD11b(+) Gr-1(+) cells along with an upregulation of CD80, CD86, and CD1d after Con A treatment was observed. Con A treatment resulted in a loss of suppressor function by tumor-induced CD11b(+) Gr-1(+) MDSCs as well as enhanced reactive oxygen species (ROS)-mediated hepatotoxicity. CD40 knockdown in hepatic MDSCs led to increased arginase activity upon Con A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40(-/-) tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased ROS production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSCs act as proinflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Kondo Y, Shimosegawa T. Significant roles of regulatory T cells and myeloid derived suppressor cells in hepatitis B virus persistent infection and hepatitis B virus-related HCCs. Int J Mol Sci 2015; 16:3307-22. [PMID: 25654227 PMCID: PMC4346897 DOI: 10.3390/ijms16023307] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
The adaptive immune system, including type1 helper T cells (Th1 cells), cytotoxic T lymphocytes (CTLs), and dendritic cells (DCs), plays an important role in the control of hepatitis B virus (HBV). On the other hand, regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) suppress the immune reaction in HBV and hepatocellular carcinoma (HCC). Excessive activation of immune suppressive cells could contribute to the persistent infection of HBV and the progression of HCC. The frequency and/or function of Tregs could affect the natural course in chronic hepatitis B patients and the treatment response. In addition to the suppressive function of MDSCs, MDSCs could affect the induction and function of Tregs. Therefore, we should understand in detail the mechanism by which Tregs and MDSCs are induced to control HBV persistent infection and HBV-related HCC. Immune suppressive cells, including Tregs and MDSCs, contribute to the difficulty in inducing an effective immune response for HBV persistent infection and HBV-related HCC. In this review, we focus on the Tregs and MDSCs that could be potential targets for immune therapy of chronic hepatitis B and HBV-related HCC.
Collapse
Affiliation(s)
- Yasuteru Kondo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine 1-1 Seiryo, Aoba, Sendai City, Miyagi 980-8574, Japan.
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine 1-1 Seiryo, Aoba, Sendai City, Miyagi 980-8574, Japan.
| |
Collapse
|
87
|
Medina-Echeverz J, Ma C, Duffy AG, Eggert T, Hawk N, Kleiner DE, Korangy F, Greten TF. Systemic Agonistic Anti-CD40 Treatment of Tumor-Bearing Mice Modulates Hepatic Myeloid-Suppressive Cells and Causes Immune-Mediated Liver Damage. Cancer Immunol Res 2015; 3:557-66. [PMID: 25637366 DOI: 10.1158/2326-6066.cir-14-0182] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/22/2015] [Indexed: 11/16/2022]
Abstract
Immune-stimulatory mAbs are currently being evaluated as antitumor agents. Although overall toxicity from these agents appears to be moderate, liver toxicities have been reported and are not completely understood. We studied the effect of systemic CD40 antibody treatment on myeloid cells in the spleen and liver. Naïve and tumor-bearing mice were treated systemically with agonistic anti-CD40 antibody. Immune cell subsets in the liver and spleen, serum transaminases, and liver histologies were analyzed after antibody administration. Nox2(-/-), Cd40(-/-), and bone marrow chimeric mice were used to study the mechanism by which agonistic anti-CD40 mediates its effects in vivo. Suppressor function of murine and human tumor-induced myeloid-derived suppressor cells (MDSC) was studied upon CD40 ligation. Agonistic CD40 antibody caused liver damage within 24 hours after injection in two unrelated tumor models and mice strains. Using bone marrow chimeras, we demonstrate that CD40 antibody-induced hepatitis in tumor-bearing mice was dependent on the presence of CD40-expressing hematopoietic cells. Agonistic CD40 ligation-dependent liver damage was induced by the generation of reactive oxygen species. Furthermore, agonistic CD40 antibody resulted in increased CD80-positive and CD40-positive liver CD11b(+)Gr-1(+) immature myeloid cells. CD40 ligation on tumor-induced murine and human CD14(+)HLA-DR(low) peripheral blood mononuclear cells from patients with cancer reduced their immune suppressor function. Collectively, agonistic CD40 antibody treatment activated tumor-induced myeloid cells, caused myeloid-dependent hepatotoxicity, and ameliorated the suppressor function of murine and human MDSC. Collectively, our data suggest that CD40 may mature immunosuppressive myeloid cells and thereby cause liver damage in mice with an accumulation of tumor-induced hepatic MDSC.
Collapse
Affiliation(s)
- José Medina-Echeverz
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Austin G Duffy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tobias Eggert
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Nga Hawk
- Experimental Transplantation and Immunology Branch, NIH, Bethesda, Maryland
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
88
|
Huang XE, Wang L, Ji ZQ, Liu MY, Qian T, Li L. Safety of Lienal Polypeptide Injection Combined with Chemotherapy in Treating Patients with Advanced Cancer. Asian Pac J Cancer Prev 2015; 16:7837-7841. [PMID: 26625807 DOI: 10.7314/apjcp.2015.16.17.7837] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE To assess the safety of Liena polypeptide injection (produced by JILIN FSENS PHARMACEUTICAL CO.,LTD) combined with chemotherapy in treating patients with advanced cancers. METHOD A consecutive cohort of patients with advanced cancers were treated with Liena polypeptide injection combined with chemotherapy. And chemotherapy for patients with advanced cancers were adopted from regimens suggested by NCCN guideline. Liena polypeptide injection was intravenously injected at a dosage of 2 ml plus 100ml normal saline for continuous 7 days during chemotherapy as one course. After at least two courses of treatment, safety and side effects were evaluated. RESULTS There were 20 female and 14 male patients with advanced cancer recruited into this study, including 10 patients with breast, 8 patients with colorectal, 8 patients with lung, 4 patients with gastric, and 1 patient with esophageal cancer, as well as 1 patient with non-Hodgkin's lymphoma, 1 patient with low pharyngeal and 1 patient with urethral cancer. The median age of patients was 59 (40-82) years. Incidences of Grade 1 to 2 myelosuppression was observed in 5/34 patients, and Grade 1 to 2 elevation of hepatic enzyme was recorded in 3/34 patients. Adverse effects on the gastrointestinal tract were documented in 5/34 patients, and were Grade 1. No Grade 3-4 toxicities were diagnosed. No treatment related death was found. CONCLUSIONS Liena polypeptide injection combined with chemotherapy was safe in treating several sites of tumors, that mainly included lung, colorectal and breast cancer. However, further study should be conducted to clarify the effectiveness of this treatment.
Collapse
Affiliation(s)
- Xin-En Huang
- Department of Chemotherapy, the Affiliated Jiangsu Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, China E-mail :
| | | | | | | | | | | |
Collapse
|
89
|
Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage. PLoS One 2014; 9:e112717. [PMID: 25401795 PMCID: PMC4234460 DOI: 10.1371/journal.pone.0112717] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022] Open
Abstract
Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.
Collapse
|
90
|
Jiang H, Gebhardt C, Umansky L, Beckhove P, Schulze TJ, Utikal J, Umansky V. Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int J Cancer 2014; 136:2352-60. [PMID: 25353097 DOI: 10.1002/ijc.29297] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/21/2014] [Indexed: 12/17/2022]
Abstract
Chronic inflammation is considered to be one of the hallmarks for tumor initiation and progression. Moreover, a long-term production and accumulation of inflammatory factors lead to a local and systemic immunosuppression associated with cancer progression. However, the correlation between inflammatory mediators, immunosuppressive cells and the clinical outcome of malignant melanoma patients was poorly investigated. In this study, we performed a complex analysis of various inflammatory factors, myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in the peripheral blood of patients suffering from malignant melanoma of different stages. We demonstrated that levels of serum IL-1β, IFN-γ and CXCL10 were significantly increased in advanced melanoma patients. In addition, these factors were found to be associated with an increased frequency of MDSCs and Tregs as compared to age- and gender-matched healthy donors. Importantly, advanced melanoma patients with signs of progression displayed markedly elevated concentrations of IL-1β and CXCL10 as compared to patients with stable disease. Moreover, an enrichment of circulating monocytic (Mo)-MDSCs significantly correlated with a decreased progression free survival of these patients. Our data highlight a complex association between circulating inflammatory mediators, Mo-MDSCs and the clinical outcome as well as suggest that their levels in patients with advanced melanoma are of important prognostic value allowing the identification of those with high risk of disease progression.
Collapse
Affiliation(s)
- Huanhuan Jiang
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The First Hospital Affiliated to Anhui Medical University, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
91
|
Dai J, El Gazzar M, Li GY, Moorman JP, Yao ZQ. Myeloid-derived suppressor cells: paradoxical roles in infection and immunity. J Innate Immun 2014; 7:116-26. [PMID: 25401944 DOI: 10.1159/000368233] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature suppressor cells that are generated due to aberrant myelopoiesis under pathological conditions. Although MDSCs have been recognized for more than 20 years under the guise of different monikers, these particular populations of myeloid cells gained more attention recently due to their immunosuppressive properties, which halt host immune responses to growing cancers or overwhelming infections. While MDSCs may contribute to immune homeostasis after infection or tissue injury by limiting excessive inflammatory processes, their expansion may be at the expense of pathogen elimination and thus may lead to disease persistence. Therefore, MDSCs may be either damaging or obliging to the host by attenuating, for example, antitumor or anti-infectious immune responses. In this review, we recapitulate the biological and immunological aspects of MDSCs, including their generation, distribution, trafficking and the factors involved in their activation, expansion, suppressive functions, and interplay between MDSCs and regulatory T cells, with a focus on the perspectives of infection and inflammation.
Collapse
Affiliation(s)
- Jun Dai
- Center for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tenn., USA
| | | | | | | | | |
Collapse
|
92
|
Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology 2014; 60:1776-82. [PMID: 24912948 PMCID: PMC4211962 DOI: 10.1002/hep.27246] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 12/14/2022]
Abstract
Immune checkpoint blockade has recently emerged as a promising therapeutic approach for various malignancies including hepatocellular carcinoma (HCC). Preclinical and clinical studies have shown the potential benefit of modulating the immunogenicity of HCC. In addition, recent advances in tumor immunology have broadened our understanding of the complex mechanism of immune evasion. In this review we summarize the current knowledge on HCC immunology and discuss the potential of immune checkpoint blockade as a novel HCC therapy from the basic, translational, and clinical perspectives.
Collapse
Affiliation(s)
- Tai Hato
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Lipika Goyal
- Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, USA
| | - Tim F. Greten
- Gastrointestinal Malignancy Section, National Cancer Institute, Bethesda, USA
| | - Dan G. Duda
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA,To whom correspondence should be addressed: Dan G. Duda, DMD, PhD () or Andrew X. Zhu, MD, PhD ()
| | - Andrew X. Zhu
- Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, USA,To whom correspondence should be addressed: Dan G. Duda, DMD, PhD () or Andrew X. Zhu, MD, PhD ()
| |
Collapse
|
93
|
Oh K, Lee OY, Shon SY, Nam O, Ryu PM, Seo MW, Lee DS. A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous metastasis through IL-6 trans-signaling in a murine model. Breast Cancer Res 2014; 15:R79. [PMID: 24021059 PMCID: PMC3979084 DOI: 10.1186/bcr3473] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 05/20/2013] [Accepted: 09/10/2013] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Tumor cell interactions with the microenvironment, especially those of bone-marrow-derived myeloid cells, are important in various aspects of tumor metastasis. Myeloid-derived suppressor cells (MDSCs) have been suggested to constitute tumor-favoring microenvironments. In this study, we elucidated a novel mechanism by which the MDSCs can mediate spontaneous distant metastasis of breast cancer cells. METHODS Murine breast cancer cells, 4T1 and EMT6, were orthotopically grafted into the mammary fat pads of syngeneic BALB/c mice. CD11b(+)Gr-1(+) MDSCs in the spleen, liver, lung and primary tumor mass were analyzed. To evaluate the role of MDSCs in the distant metastasis, MDSCs were depleted or reconstituted in tumor-bearing mice. To evaluate whether MDSCs in the metastasizing tumor microenvironment affect breast cancer cell behavior, MDSCs and cancer cells were co-cultivated. To investigate the role of MDSCs in in vivo metastasis, we blocked the interactions between MDSCs and cancer cells. RESULTS Using a murine breast cancer cell model, we showed that murine breast cancer cells with high IL-6 expression recruited more MDSCs and that the metastasizing capacity of cancer cells paralleled MDSC recruitment in tumor-bearing mice. Metastasizing, but not non-metastasizing, tumor-derived factors induced MDSCs to increase IL-6 production and full activation of recruited MDSCs occurred in the primary tumor site and metastatic organ in the vicinity of metastasizing cancer cells, but not in lymphoid organs. In addition, tumor-expanded MDSCs expressed Adam-family proteases, which facilitated shedding of IL-6 receptor, thereby contributing to breast cancer cell invasiveness and distant metastasis through IL-6 trans-signaling. The critical role of IL-6 trans-signaling was confirmed in both the afferent and efferent pathways of metastasis. CONCLUSION In this study, we showed that metastasizing cancer cells induced higher MDSCs infiltration and prompted them to secret exaggerated IL-6 as well as soluble IL-6Ra, which, in turn, triggered a persistent increase of pSTAT3 in tumor cells. This potential tumor-MDSC axis involving IL-6 trans-signaling directly affected breast cancer cell aggressiveness, leading to spontaneous metastasis.
Collapse
|
94
|
Zhang H, Liu Y, Bian Z, Huang S, Han X, You Z, Wang Q, Qiu D, Miao Q, Peng Y, Li X, Invernizzi P, Ma X. The critical role of myeloid-derived suppressor cells and FXR activation in immune-mediated liver injury. J Autoimmun 2014; 53:55-66. [DOI: 10.1016/j.jaut.2014.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/23/2014] [Indexed: 10/24/2022]
|
95
|
Jiang H, Wang P, Li X, Wang Q, Deng ZB, Zhuang X, Mu J, Zhang L, Wang B, Yan J, Miller D, Zhang HG. Restoration of miR17/20a in solid tumor cells enhances the natural killer cell antitumor activity by targeting Mekk2. Cancer Immunol Res 2014; 2:789-99. [PMID: 24801835 PMCID: PMC4396632 DOI: 10.1158/2326-6066.cir-13-0162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aberrant microRNA (miRNA) expression has been identified in various human solid cancers. However, whether the levels of miRNA expression in tumor cells have any effect on tumor progression has not been determined. In this proof-of-concept study, the restoration of high-level expression of the miR17-92 cluster of miRNAs reveals its function as a tumor suppressor in murine solid cancer cells. Specifically, genetically engineered expression of higher levels of miR17/20a in the miR17-92 cluster in both murine breast cancer and colon cancer cells triggered natural killer (NK)-cell recognition by inhibiting the expression of MHC class I (H-2D) through the Mekk2-Mek5-Erk5 pathway. Results from the mouse tumor studies were recapitulated using samples of human solid tumors. Together, these data indicate that miR17/20a miRNAs function as tumor suppressors by reprogramming tumor cells for NK cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Hong Jiang
- Louisville Veterans Administration Medical Center; James Graham Brown Cancer Center;
| | - Ping Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei; and
| | - Xiaohua Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | - Jun Yan
- James Graham Brown Cancer Center
| | | | - Huang-Ge Zhang
- Louisville Veterans Administration Medical Center; James Graham Brown Cancer Center; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky;
| |
Collapse
|
96
|
Mechanisms of antitumor and immune-enhancing activities of MUC1/sec, a secreted form of mucin-1. Immunol Res 2014; 57:70-80. [PMID: 24222275 DOI: 10.1007/s12026-013-8451-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucin 1 (MUC1) is a polymorphic type 1 transmembrane protein found on the apical surface of normal cells lining the lumen of ducts and glands. Mucins are thought to provide mucosal protection from environmental exposures and carcinogens. An altered form of the MUC1 glycoprotein, which is hypoglycosylated, is expressed in several types of human cancers. In our laboratory, we have found that transfection of a murine mammary tumor cell line with a human secreted isoform of MUC1 rendered these DA-3 cells (DA-3/sec) incapable of growing in intact BALB/c mice. In contrast, implantation of DA-3 cells transfected with the human transmembrane isoform of MUC1 (DA-3/TM), resulted in tumor formation and ultimately death of the animals, similar to the DA-3 parental line. Importantly, inoculation of the DA-3/sec cells in immunodeficient nude mice resulted in tumor formation, indicating that the MUC1/sec molecule's antitumor activity is immunologically controlled. In this review, we summarize the studies we have performed to elucidate possible mechanisms for the immune-mediated antitumor effect of MUC1/sec and/or a unique peptide present in this mucin. Understanding these mechanisms may provide new immunotherapeutic approaches that could be used to target different types of cancer.
Collapse
|
97
|
Tu E, Chia PZC, Chen W. TGFβ in T cell biology and tumor immunity: Angel or devil? Cytokine Growth Factor Rev 2014; 25:423-35. [PMID: 25156420 DOI: 10.1016/j.cytogfr.2014.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The evolutionally conserved transforming growth factor β (TGFβ) affects multiple cell types in the immune system by either stimulating or inhibiting their differentiation and function. Studies using transgenic mice with ablation of TGFβ or its receptor have revealed the biological significance of TGFβ signaling in the control of T cells. However, it is now clear that TGFβ is more than an immunosuppressive cytokine. Disruption of TGFβ signaling pathway also leads to impaired generation of certain T cell populations. Therefore, in the normal physiological state, TGFβ actively maintains T cell homeostasis and regulates T cell function. However, in the tumor microenvironment, TGFβ creates an immunosuppressive milieu that inhibits antitumor immunity. Here, we review recent advances in our understanding of the roles of TGFβ in the regulation of T cells and tumor immunity.
Collapse
Affiliation(s)
- Eric Tu
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pei Zhi Cheryl Chia
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wanjun Chen
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
98
|
Diao W, Jin F, Wang B, Zhang CY, Chen J, Zen K, Li L. The protective role of myeloid-derived suppressor cells in concanavalin A-induced hepatic injury. Protein Cell 2014; 5:714-24. [PMID: 24981055 PMCID: PMC4145084 DOI: 10.1007/s13238-014-0069-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022] Open
Abstract
The mechanism underlying T cell-mediated fulminant hepatitis is not fully understood. In this study, we investigated whether myeloid derived suppressor cells (MDSCs) could prevent the concanavalin A (ConA)-induced hepatitis through suppressing T cell proliferation. We observed an increase in the frequencies of MDSCs in mouse spleen and liver at early stage of ConA treatment, implicating that the MDSCs might be involved in the initial resistance of mice against ConA-mediated inflammation. Subpopulation analysis showed that the MDSCs in liver of ConA-induced mice were mainly granulocytic MDSCs. Adoptive transfer of the bone marrow-derived MDSCs into ConA-treated mice showed that the MDSCs migrated into the liver and spleen where they suppressed T cell proliferation through ROS pathway. In addition, the frequencies of MDSCs in mice were also significantly increased by the treatment with immune suppressor glucocorticoids. Transfer of MDSCs into the regulatory T cell (Treg)-depleted mice showed that the protective effect of MDSCs on ConA-induced hepatitis is Treg-independent. In conclusion, our results demonstrate that MDSCs possess a direct protective role in T cell-mediated hepatitis, and increasing the frequency of MDSCs by either adoptive transfer or glucocorticoid treatment represents a potential cell-based therapeutic strategy for the acute inflammatory disease.
Collapse
Affiliation(s)
- Wenli Diao
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Fangfang Jin
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Bing Wang
- People’s Liberation Army 404 Hospital, Weihai, 264200 China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Jiangning Chen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Limin Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093 China
| |
Collapse
|
99
|
Condamine T, Kumar V, Ramachandran IR, Youn JI, Celis E, Finnberg N, El-Deiry WS, Winograd R, Vonderheide RH, English NR, Knight SC, Yagita H, McCaffrey JC, Antonia S, Hockstein N, Witt R, Masters G, Bauer T, Gabrilovich DI. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J Clin Invest 2014; 124:2626-39. [PMID: 24789911 DOI: 10.1172/jci74056] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) dampen the immune response thorough inhibition of T cell activation and proliferation and often are expanded in pathological conditions. Here, we studied the fate of MDSCs in cancer. Unexpectedly, MDSCs had lower viability and a shorter half-life in tumor-bearing mice compared with neutrophils and monocytes. The reduction of MDSC viability was due to increased apoptosis, which was mediated by increased expression of TNF-related apoptosis-induced ligand receptors (TRAIL-Rs) in these cells. Targeting TRAIL-Rs in naive mice did not affect myeloid cell populations, but it dramatically reduced the presence of MDSCs and improved immune responses in tumor-bearing mice. Treatment of myeloid cells with proinflammatory cytokines did not affect TRAIL-R expression; however, induction of ER stress in myeloid cells recapitulated changes in TRAIL-R expression observed in tumor-bearing hosts. The ER stress response was detected in MDSCs isolated from cancer patients and tumor-bearing mice, but not in control neutrophils or monocytes, and blockade of ER stress abrogated tumor-associated changes in TRAIL-Rs. Together, these data indicate that MDSC pathophysiology is linked to ER stress, which shortens the lifespan of these cells in the periphery and promotes expansion in BM. Furthermore, TRAIL-Rs can be considered as potential targets for selectively inhibiting MDSCs.
Collapse
|
100
|
Xia S, Li X, Cheng L, Han M, Zhang M, Liu X, Xu H, Zhang M, Shao Q, Qi L. Chronic intake of high fish oil diet induces myeloid-derived suppressor cells to promote tumor growth. Cancer Immunol Immunother 2014; 63:663-73. [PMID: 24691944 DOI: 10.1007/s00262-014-1546-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/21/2014] [Indexed: 01/11/2023]
Abstract
Omega-3 polyunsaturated fatty acids enriched fish oil exerts beneficial anti-inflammatory effects in animal models with acute and chronic inflammatory diseases. Myeloid-derived suppressor cells (MDSCs), comprised of myeloid progenitors and precursors of myeloid cells, play vital roles in cancer. How fish oil affects the generation of MDSCs and the tumor development remains largely unexplored. Here, we show that dietary intake of high fish oil diet suppresses CD8(+) T cells activation and proliferation in vivo via elevated levels of MDSCs. Mechanistically, high fish oil diet induces the expression of immunosuppressive cytokine IL-10 and promotes myelopoiesis in the spleen as well as other peripheral tissues. The immature myeloid cells in the spleen exhibit morphological and functional characteristics of MDSCs with the capability to downregulate CD8(+) T cells activation. Depletion of MDSCs using anti-Gr-1 antibody decreases the growth of subcutaneously transferred B16 melanoma in mice on high fish oil diet. Interestingly, diet-induced production of MDSCs is not solely dependent of the spleen, as splenectomy has no effect on the tumor progress. Our data show that the liver functions as an alternative extramedullary hematopoiesis organ to support MDSCs differentiation and maintain tumor growth. Taken together, our study provides a novel insight into the physiological effects of fish oil and points to MDSCs as a possible mediator linking dietary fish oil intake and immunosuppression in cancer immunosurveillance.
Collapse
Affiliation(s)
- Sheng Xia
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, 1519 Medical Building, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|