51
|
Qin L, Huang J, Wang G, Huang J, Wu X, Li J, Yi W, Qin F, Huang D. Integrated analysis of clinical significance and functional involvement of microRNAs in hepatocellular carcinoma. J Cell Physiol 2019; 234:23581-23595. [PMID: 31210353 DOI: 10.1002/jcp.28927] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Li Qin
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Jian Huang
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Guodong Wang
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Jinxin Huang
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Xintian Wu
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Jinzhuan Li
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Weili Yi
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Fuhui Qin
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Dongning Huang
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| |
Collapse
|
52
|
Akbari Kordkheyli V, Khonakdar Tarsi A, Mishan MA, Tafazoli A, Bardania H, Zarpou S, Bagheri A. Effects of quercetin on microRNAs: A mechanistic review. J Cell Biochem 2019; 120:12141-12155. [PMID: 30957271 DOI: 10.1002/jcb.28663] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
MicroRNA (miRNA)-dependent pathways are one of the newest gene regulation mechanisms in various diseases, particularly in cancers. miRNAs are endogenous noncoding RNAs with about 18 to 25 nucleotide length, which can regulate the expression of at least 60% of human total genome posttranscriptionally. Quercetin is the most abundant flavonoid in a variety of fruits, flowers, and medical herbs, known as a strong free radical scavenger that could show antioxidant, anti-inflammatory, and antitumor activities. Recent studies also reported its strong impact on various miRNA expressions in different abnormalities. In this review, we aimed to summarize the studies focused on the effects of quercetin on different miRNA expressions to more clear the main possible mechanisms of quercetin influences and introduce it as a beneficial agent for regulation of miRNAs in various biological directions.
Collapse
Affiliation(s)
- Vahid Akbari Kordkheyli
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar Tarsi
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad A Mishan
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland.,Department of Endocrinology, Diabetology and Internal Medicine, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Setareh Zarpou
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
53
|
Jiang X, Hou D, Wei Z, Zheng S, Zhang Y, Li J. Extracellular and intracellular microRNAs in pancreatic cancer: from early diagnosis to reducing chemoresistance. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
54
|
Yang Y, Sun KK, Shen XJ, Wu XY, Li DC. miR-557 inhibits the proliferation and invasion of pancreatic cancer cells by targeting EGFR. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1333-1341. [PMID: 31933947 PMCID: PMC6947066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/18/2019] [Indexed: 06/10/2023]
Abstract
Deregulation of microRNA has been suggested as a critical event in pancreatic cancer development and progression. Thus far, very little is known about the role of miR-557; therefore, the goal of this study was to investigate the potential role of miR-557 in pancreatic cancer. In the present study, we discovered that miR-557 expression was lowered in cancerous pancreatic tissue samples relative to non-cancerous adjacent controls, and when miR-557 was overexpressed we found that this promoted the apoptotic death of pancreatic cancer cells, suppressing their proliferation, invasion, and migration. Using western blotting and luciferase reporter assays, we further found evidence that this miRNA may directly suppress expression of the epidermal growth factor receptor via suppressing its translation through 3'-UTR binding. When EGFR was overexpressed in our pancreatic cancer cells, this was sufficient to reverse the effects of miR-557 inhibition. In summary, miR-557 acts as a tumor suppressor in pancreatic cancer cells, impairing their ability to grow and invade surrounding tissues due at least in part to EGFR inhibition. Harnessing this targeting of EGFR via this miRNA may therefore be a viable strategy useful for patient suffering from this deadly disease.
Collapse
Affiliation(s)
- Yong Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Ke-Kang Sun
- Department of Gastrointestinal Surgery, Clinical Medical College of Jiangsu University, Kunshan First People’s Hospital Affiliated to Jiangsu UniversitySuzhou 215300, Jiangsu, China
| | - Xiao-Jun Shen
- Department of Gastrointestinal Surgery, Clinical Medical College of Jiangsu University, Kunshan First People’s Hospital Affiliated to Jiangsu UniversitySuzhou 215300, Jiangsu, China
| | - Xiao-Yang Wu
- Department of Gastrointestinal Surgery, Clinical Medical College of Jiangsu University, Kunshan First People’s Hospital Affiliated to Jiangsu UniversitySuzhou 215300, Jiangsu, China
| | - De-Chun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| |
Collapse
|
55
|
Eerdunduleng E. circ-LDLRAD3 regulates cell proliferation, migration and invasion of pancreatic cancer by miR-876-3p/STAT3. ACTA ACUST UNITED AC 2019. [DOI: 10.31491/csrc.2019.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
56
|
Schwarzenbach H, Gahan PB. MicroRNA Shuttle from Cell-To-Cell by Exosomes and Its Impact in Cancer. Noncoding RNA 2019; 5:E28. [PMID: 30901915 PMCID: PMC6468647 DOI: 10.3390/ncrna5010028] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
The identification of exosomes, their link to multivesicular bodies and their potential role as a messenger vehicle between cancer and healthy cells opens up a new approach to the study of intercellular signaling. Furthermore, the fact that their main cargo is likely to be microRNAs (miRNAs) provides the possibility of the transfer of such molecules to control activities in the recipient cells. This review concerns a brief overview of the biogenesis of both exosomes and miRNAs together with the movement of such structures between cells. The possible roles of miRNAs in the development and progression of breast, ovarian and prostate cancers are discussed.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, 06126 Perugia, Italy.
| |
Collapse
|
57
|
Iacona JR, Lutz CS. miR-146a-5p: Expression, regulation, and functions in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1533. [PMID: 30895717 DOI: 10.1002/wrna.1533] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Cancer as we know it is actually an umbrella term for over 100 very unique malignancies in various tissues throughout the human body. Each type, and even subtype of cancer, has different genetic, epigenetic, and other cellular events responsible for malignant development and metastasis. Recent work has indicated that microRNAs (miRNAs) play a major role in these processes, sometimes by promoting cancer growth and other times by suppressing tumorigenesis. miRNAs are small, noncoding RNAs that negatively regulate expression of specific target genes. This review goes into an in-depth look at the most recent finding regarding the significance of one particular miRNA, miR-146a-5p, and its involvement in cancer. Target gene validation and pathway analysis have provided mechanistic insight into this miRNA's purpose in assorted tissues. Additionally, this review outlines novel findings that suggest miR-146a-5p may be useful as a noninvasive biomarker and as a targeted therapeutic in several cancers. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Joseph R Iacona
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, New Jersey
| | - Carol S Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, New Jersey
| |
Collapse
|
58
|
Kim S, Trudo SP, Gallaher DD. Apiaceous and Cruciferous Vegetables Fed During the Post-Initiation Stage Reduce Colon Cancer Risk Markers in Rats. J Nutr 2019; 149:249-257. [PMID: 30649390 DOI: 10.1093/jn/nxy257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/20/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vegetable consumption reduces colon cancer risk when fed in the initiation stage of carcinogenesis; however, the effect of vegetable consumption during the post-initiation stage has rarely been examined. OBJECTIVE We investigated the chemopreventive effects of feeding apiaceous and cruciferous vegetables on colon cancer risk in the post-initiation stage. METHODS Thirty male Wistar rats (∼5 wk, 92 g) were subcutaneously injected with 1,2-dimethylhydrazine 1 time/wk for 2 wk. One week after the last dose, rats were randomly assigned to 3 groups: the basal diet, an apiaceous vegetable-containing diet (API; 21% fresh wt/wt), or a cruciferous vegetable-containing diet (CRU; 21% fresh wt/wt). All diets contained ∼20% protein, 7% fat, and 63% digestible carbohydrate. Experimental diets were fed for 10 wk, after which colons were harvested. RESULTS CRU reduced aberrant crypt foci (ACF) number compared to the basal group (P = 0.014) and API (P = 0.013), whereas API decreased the proportion of dysplastic ACF relative to the basal group (P < 0.05). Both CRU and API reduced doublecortin-like kinase 1-positive marker expression relative to basal by 57.9% (P = 0.009) and 51.4% (P < 0.02). The numbers of CD44-positive ACF did not differ between the groups. We identified 14 differentially expressed microRNAs (miRNAs). Of these, expression of 6 miRNAs were greater or tended to be greater (P ≤ 0.10) in one or both vegetable-containing groups compared to the basal group. Bioinformatic analysis of these expression changes in miRNA predicted a change in WNT/β-catenin signaling, indicating downregulation of β-catenin in the vegetable-fed groups. Consistent with this bioinformatics analysis, β-catenin-accumulated ACF were decreased in CRU (93.1%, P = 0.012), but not in API (54.4%, P = 0.125), compared to the basal group. CONCLUSION Both apiaceous and cruciferous vegetables, fed post-initiation, reduce colonic preneoplastic lesions as well as cancer stem cell marker expression in rats, possibly by suppressing oncogenic signaling through changes in miRNA expression.
Collapse
Affiliation(s)
- Sangyub Kim
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Sabrina P Trudo
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN.,School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR
| | - Daniel D Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| |
Collapse
|
59
|
Rofi E, Vivaldi C, Del Re M, Arrigoni E, Crucitta S, Funel N, Fogli S, Vasile E, Musettini G, Fornaro L, Falcone A, Danesi R. The emerging role of liquid biopsy in diagnosis, prognosis and treatment monitoring of pancreatic cancer. Pharmacogenomics 2019; 20:49-68. [PMID: 30520336 DOI: 10.2217/pgs-2018-0149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor DNA, circulating tumor cells and tumor-related exosomes may offer new opportunities to provide insights into the biological and clinical characteristics of a neoplastic disease. They represent alternative routes for diagnostic and prognostic purposes, and for predicting and longitudinally monitoring response to treatment and disease progression. Hence, circulating biomarkers represent promising noninvasive tools in the scenario of pancreatic cancer, where neither molecular nor clinical predictors of treatment benefit have been identified yet. This review aims to provide an overview of the current status of circulating biomarker research in pancreatic cancer, and discusses their potential clinical utility to facilitate clinical decision-making.
Collapse
Affiliation(s)
- Eleonora Rofi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Caterina Vivaldi
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Elena Arrigoni
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Niccola Funel
- Department of Translational Research & The New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Enrico Vasile
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Gianna Musettini
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Lorenzo Fornaro
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
60
|
MicroRNA-17, MicroRNA-19b, MicroRNA-146a, MicroRNA-302d Expressions in Hepatoblastoma and Clinical Importance. J Pediatr Hematol Oncol 2019; 41:7-12. [PMID: 29889802 DOI: 10.1097/mph.0000000000001234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatoblastoma (HB) is the most common liver malignancy in children. The prognosis changes according to the histologic subtypes of HB. In the present study, we aimed to characterize the expression level of selected microRNAs (miRNAs) in HB as well as in histologic subtypes, and to consider the association with the prognosis. A total of 22 HB tumor samples, subtyped as fetal (n=16) and embryonal (n=6), and 10 nontumorous surrounding liver samples were evaluated in this study. Expressions of miR-17, miR-146a, miR-302d, and miR-19b were analyzed in 22 HB tumor samples and 10 nontumorous surrounding liver samples by quantitative real-time polymerase chain reaction. Lower miRNA-17 expression levels were obtained in tumor samples in comparison with nontumorous surrounding liver samples (P=0.028). Lower miRNA-17 expression was significant for predicting prognosis in HB patients (area under receiver-operator characteristic curve=0.875, P=0.044). A higher-level of miR-19b was found in embryonal samples (P=0.008). Overall and event-free survival was not found to correlate with miRNA expression levels (P>0.05). This research finds miRNA-17 and miRNA-19b expression levels can provide important data on diagnosis and prognosis in HB showing different clinical behaviors.
Collapse
|
61
|
de Melo FHM, Oliveira JS, Sartorelli VOB, Montor WR. Cancer Chemoprevention: Classic and Epigenetic Mechanisms Inhibiting Tumorigenesis. What Have We Learned So Far? Front Oncol 2018; 8:644. [PMID: 30627525 PMCID: PMC6309127 DOI: 10.3389/fonc.2018.00644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
Cancers derive from step by step processes which are differentiated by the progressively accumulated mutations. For some tumors there is a clear progressive advancement from benign lesions to malignancy and for these, preventive screening programs exist. In such cases having those benign lesions are a clear indicator of predisposition while for some other cases, familial patterns of cancer incidence and the identification of mutations are the main indicators of higher risk for having the disease. For patients identified as having predisposition, chemoprevention is a goal and in some cases a possibility. Chemoprevention is the use of any compound, either natural or synthetic that abrogates carcinogenesis or tumor progression, through different mechanisms, some of which have already been described. For example, the classic mechanisms may involve activation of free radical scavenging enzymes, control of chronic inflammation, and downregulation of specific signaling pathways. More recently, epigenetics allowed further understanding of the chemopreventive potential of several agents, such as sulforaphane, green tea derived compounds, resveratrol, isoflavones, and others which we exploit in this review article. Throughout the text we discuss the properties compounds should have in order to be classified as chemopreventive ones and the challenges in translational research in this area, as lots of the success achieved in vitro cannot be translated into the clinical settings, due to several different drawbacks, which include toxicity, cost, dose definition, patient adherence, and regimen of use.
Collapse
Affiliation(s)
| | - Julia Salles Oliveira
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), São Paulo, Brazil
| | | | - Wagner Ricardo Montor
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), São Paulo, Brazil
| |
Collapse
|
62
|
Shomali N, Shirafkan N, Duijf PHG, Ghasabi M, Babaloo Z, Yousefi M, Mansoori B, Asadi M, Shanehbandi D, Baghbani E, Mohammadi A, Baradaran B. Downregulation of miR-146a promotes cell migration in Helicobacter pylori-negative gastric cancer. J Cell Biochem 2018; 120:9495-9505. [PMID: 30537266 DOI: 10.1002/jcb.28225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
microRNAs (miRs) are short noncoding RNAs that post-transcriptionally suppress gene expression. miR-146a acts as an oncogene or a tumor suppressor in various cancers, including gastric cancer, but it is unclear what determines whether miR-146a is oncogenic or tumor suppressive and the molecular mechanisms are still largely unknown. The aim of this study was to investigate the role of miR-146a in gastric cancer, by focusing on its expression in patients who were negative for Helicobacter pylori and its reduced and increased expression effect in vitro. Twenty gastric cancer patients who were negative for H. pylori infection were selected and the expression levels of miRNA-146a in these gastric tumors, in their matched normal gastric tissues and in gastric cancer cell lines with varying tumorigenic potential was measured. Further, the impact of increased and decreased miR-146a expression levels on the expression of predicted target genes, cell migration, viability, proliferation, and apoptosis was examined, respectively. Our results for the first time indicated that miR-146a is downregulated in H. pylori-negative gastric cancers and suggests that H. pylori infection determines whether miR-146a acts as an oncogene or tumor suppressor. The level of miR-146a expression inversely correlates with the tumorigenicity of three gastric cancer cell lines and low miR-146a expression predicts poor recurrence-free survival. It was also found that miR-146a reduces the expression levels of the prometastatic genes and suppresses MKN-45 cell migration. Functional studies showed that miR-146a acts as a tumor suppressor miR and identifies miR-146a as a candidate for antimetastatic miRNA replacement therapy for gastric cancer patients.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naghmeh Shirafkan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Translational Research Institute, University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Mehri Ghasabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
63
|
Fan Z, Yang J, Zhang D, Zhang X, Ma X, Kang L, Liu Y, Yan X, Ji Q, Wang J, Li Y, Zhang S, Zhu X, Hu Y, Xu X, Ye Q, Jiao S. The risk variant rs884225 within EGFR impairs miR-103a-3p's anti-tumourigenic function in non-small cell lung cancer. Oncogene 2018; 38:2291-2304. [PMID: 30470824 DOI: 10.1038/s41388-018-0576-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 12/25/2022]
Abstract
Epidermal growth factor receptor (EGFR) status is the major determinant of non-small cell lung cancer (NSCLC) therapy selection. Studies have hinted that EGFR antibodies or tyrosine kinase inhibitors were beneficial in patients with EGFR mutation-negative but EGFR-overexpressing of NSCLC. However, the mechanisms underlying EGFR amplification and overexpression in NSCLC remain largely unknown. Here, we report that rs884225, a single nucleotide polymorphism in the EGFR 3'-terminal untranslated region, was significantly associated with EGFR expression level and contributed to NSCLC susceptibility. Mechanistically, the rs884225 C allele enhanced EGFR expression by altering the miR-103a-3p binding site, thus impairing miR-103a-3p's anti-tumourigenic function. As a tumour suppressor gene, miR-103a-3p expression correlated with overall and recurrence-free survival in NSCLC patients. Furthermore, miR-103a-3p inhibited growth and metastasis via effects on the KRAS pathway and epithelial-to-mesenchymal transition in EGFR wild-type NSCLC cell lines, respectively, which substantially reduced EGFR expression and activity. Thus, rs884225 may be a biomarker for NSCLC susceptibility, and miR-103a-3p may be a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Zhongyi Fan
- Department of Oncology, PLA General Hospital, Beijing, China
| | - Jing Yang
- Department of Nanlou Oncology, PLA General Hospital, Beijing, China
| | - Dong Zhang
- Department of Nanlou Oncology, PLA General Hospital, Beijing, China
| | - Xuelin Zhang
- Department of Nanlou Respiration, PLA General Hospital, Beijing, China
| | - Xiaoyan Ma
- Department of Cardiovascular Disease, School of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Ying Liu
- Department of Ophthalmology, PLA General Hospital, Beijing, China
| | - Xiang Yan
- Department of Oncology, PLA General Hospital, Beijing, China
| | - Quanbo Ji
- Department of Oncology, PLA General Hospital, Beijing, China
| | - Jinliang Wang
- Department of Oncology, PLA General Hospital, Beijing, China
| | - Ying Li
- Department of Oncology, PLA General Hospital, Beijing, China
| | - Sujie Zhang
- Department of Oncology, PLA General Hospital, Beijing, China
| | - Xiang Zhu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Yi Hu
- Department of Oncology, PLA General Hospital, Beijing, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China.
| | - Shunchang Jiao
- Department of Oncology, PLA General Hospital, Beijing, China.
| |
Collapse
|
64
|
MicroRNAs in pancreatic cancer diagnosis and therapy. Cent Eur J Immunol 2018; 43:314-324. [PMID: 30588176 PMCID: PMC6305615 DOI: 10.5114/ceji.2018.80051] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/08/2018] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer remains a disease with very poor prognosis (only 5-6% of patients are still alive after five years). Attempts to improve the results of treatment of pancreatic cancer focus on a better understanding of the pathogenesis, and non-invasive diagnostic methods (genetic testing from peripheral blood), which would create the possibility of early diagnosis and early surgical treatment before the onset of metastasis. New hopes for the improvement of early diagnosis and treatment of pancreatic ductal adenocarcinoma (PDAC) are associated with genetic testing of microRNA expression changes. A large body of evidence has revealed that microRNAs are aberrantly expressed in the serum and in cancer tissues and elicit oncogenic or tumour-suppressive functions. Selected microRNAs can distinguish pancreatic ductal adenocarcinoma from non-cancerous lesions of the pancreas. This review focuses on the involvement of microRNAs in the early diagnosis of pancreatic cancer. Research results related to the development of a novel therapeutic strategy based on the modulation of microRNA expressions for a better outcome in patients with pancreatic cancer are also presented.
Collapse
|
65
|
Li ZY, Sun XY. Molecular targets regulating invasion and metastasis of pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2018; 26:1651-1659. [DOI: 10.11569/wcjd.v26.i28.1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zi-Yi Li
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xue-Ying Sun
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
66
|
Inferring microRNA-Environmental Factor Interactions Based on Multiple Biological Information Fusion. Molecules 2018; 23:molecules23102439. [PMID: 30249984 PMCID: PMC6222788 DOI: 10.3390/molecules23102439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulated studies have shown that environmental factors (EFs) can regulate the expression of microRNA (miRNA) which is closely associated with several diseases. Therefore, identifying miRNA-EF associations can facilitate the study of diseases. Recently, several computational methods have been proposed to explore miRNA-EF interactions. In this paper, a novel computational method, MEI-BRWMLL, is proposed to uncover the relationship between miRNA and EF. The similarities of miRNA-miRNA are calculated by using miRNA sequence, miRNA-EF interaction, and the similarities of EF-EF are calculated based on the anatomical therapeutic chemical information, chemical structure and miRNA-EF interaction. The similarity network fusion is used to fuse the similarity between miRNA and the similarity between EF, respectively. Further, the multiple-label learning and bi-random walk are employed to identify the association between miRNA and EF. The experimental results show that our method outperforms the state-of-the-art algorithms.
Collapse
|
67
|
Feng Y, Bai F, You Y, Bai F, Wu C, Xin R, Li X, Nie Y. Dysregulated microRNA expression profiles in gastric cancer cells with high peritoneal metastatic potential. Exp Ther Med 2018; 16:4602-4608. [PMID: 30546395 PMCID: PMC6256850 DOI: 10.3892/etm.2018.6783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Despite significant developments in its clinical treatment, the reported incidence and mortality of gastric cancer have exhibited marked increases. The molecular mechanisms of gastric cancer initiation and progression remain to be fully elucidated. The aim of the present study was to identify novel microRNAs (miRNAs/miRs) with a role in the peritoneal metastasis of gastric cancer by comparing the miRNA expression in the gastric cancer cell line GC9811 with that in its variant GC9811-P, a sub-cell line with a high potential for peritoneal metastasis. A miRNA microarray analysis identified 153 dysregulated miRNAs, including 74 upregulated and 79 downregulated miRNAs. Of these, four significantly upregulated miRNAs (miR-181a-5p, miR-106b-5p, miR-199a-3p and miR-148a-3p) and four downregulated miRNAs (miR-146a-5p, miR-21-5p, miR-222-3p and miR-221-3p) were selected and further confirmed by reverse transcription-quantitative polymerase chain reaction analysis. Furthermore, knockdown of miR-21-5p promoted the migration and invasion of GC9811 cells. Collectively, the results suggested that the miRNA expression profile in GC9811-P vs. GC9811 cells was altered to favor disease progression, and the dysregulated miRNAs, including miR-21-5p, may therefore provide novel biomarkers and potential therapeutic targets for gastric cancer metastasis.
Collapse
Affiliation(s)
- Yaning Feng
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Feihu Bai
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Yanjie You
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Fangyun Bai
- Department of General Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Chuanxia Wu
- Department of Gastroenterology, The Second People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| | - Ruijuan Xin
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Xue Li
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Yongzhan Nie
- Department of Gastroenterology, Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
68
|
Fadaka AO, Ojo BA, Adewale OB, Esho T, Pretorius A. Effect of dietary components on miRNA and colorectal carcinogenesis. Cancer Cell Int 2018; 18:130. [PMID: 30202241 PMCID: PMC6127951 DOI: 10.1186/s12935-018-0631-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers diagnosed and among the commonest causes of cancer-related mortality globally. Despite the various available treatment options, millions of people still suffer from this illness and most of these treatment options have several limitations. Therefore, a less expensive, non-invasive or a treatment that requires the use of dietary products remains a focal point in this review. Main body Aberrant microRNA expression has been revealed to have a functional role in the initiation and progression of CRC. These has shown significant promise in the diagnosis and prognosis of CRC, owing to their unique expression profile associated with cancer types and malignancies. Moreover, microRNA therapeutics show a great promise in preclinical studies, and these encourage further development of their clinical use in CRC patients. Additionally, emerging studies show the chemo-preventive potential of dietary components in microRNA modulation using several CRC models. This review examines the dietary interplay between microRNAs and CRC incidence. Improving the understanding of the interactions between microRNAs and dietary components in the carcinogenesis of CRC will assist the study of CRC progression and finally, in developing personalized approaches for cancer prevention and therapy. Conclusion Although miRNA research is still at its infancy, it could serve as a promising predictive biomarkers and therapeutic targets for CRC. Given the ever-expanding number of miRNAs, understanding their functional aspects represents a promising option for further research.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- 1Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.,3Department of Biochemistry, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Babajide A Ojo
- 2Department of Nutritional Science, Oklahoma State University, 301, Human Sciences, Stillwater, OK 74075 USA
| | - Olusola Bolaji Adewale
- 3Department of Biochemistry, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Temitope Esho
- 4Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann Str. 52, 50931 Cologne, Germany
| | - Ashley Pretorius
- Biotechnology Innovation Division, Aminotek PTY LTD, Suite 2C, Oude Westhof Village Square Bellville, 7530 South Africa
| |
Collapse
|
69
|
Zhang B, Li C, Sun Z. Long non-coding RNA LINC00346, LINC00578, LINC00673, LINC00671, LINC00261, and SNHG9 are novel prognostic markers for pancreatic cancer. Am J Transl Res 2018; 10:2648-2658. [PMID: 30210701 PMCID: PMC6129514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 06/08/2023]
Abstract
Pancreatic cancer (PC) is a devastating human disease with aggressive course and extremely poor prognosis. Long non-coding RNAs (lncRNAs) have been studied to serve as a critical role in pancreatic development and progression. However, little is known about its expression pattern, biological function in PC. In our study, we measured the expression levels of six lncRNAs (LINC00346, LINC00578, LINC00673, LINC00671, LINC00261, and SNHG9) in PC tissues and serums. The results showed that LINC00346, LINC00578, and LINC00673 were highly expressed, whereas LINC00671, LINC00261, and SNHG9 were lowly expressed in PC tissues and serums, and their expression levels were correlated with clinical stages. Results from receiver operating characteristic (ROC) curve analysis showed that the area under the curve (AUC) of six lncRNAs was 0.7073, 0.7837, 0.6093, 0.6057, 0.5712, and 0.5983, respectively. Survival analysis indicated that patients with high expression of LINC00346, LINC00578, or LINC00673 had significantly lower survival rate, while patients with high expression of LINC00671, LINC00261, and SNHG9 had significantly higher survival rate. In addition, we also found that silence of LINC00346, LINC00578 and LINC00673 inhibited PC cell proliferation, and silence of LINC00671, LINC00261, and SNHG9 promoted PC cell proliferation. Therefore, we suggested that LINC00346, LINC00578, LINC00673, LINC00671, LINC00261, and SNHG9 may be novel prognostic markers for PC.
Collapse
Affiliation(s)
- Baogang Zhang
- Department of Endoscopy, China-Japan Union Hospital of Jilin UniversityChangchun 130031, Jilin, China
| | - Changfeng Li
- Department of Endoscopy, China-Japan Union Hospital of Jilin UniversityChangchun 130031, Jilin, China
| | - Zhixia Sun
- Department of Ultrasound, China-Japan Union Hospital of Jilin UniversityChangchun 130031, Jilin, China
| |
Collapse
|
70
|
Ni S, Weng W, Xu M, Wang Q, Tan C, Sun H, Wang L, Huang D, Du X, Sheng W. miR-106b-5p inhibits the invasion and metastasis of colorectal cancer by targeting CTSA. Onco Targets Ther 2018; 11:3835-3845. [PMID: 30013364 PMCID: PMC6038879 DOI: 10.2147/ott.s172887] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Although miR-106b-5p has been reported to play a pivotal role in various human malignancies, its role in colorectal cancer (CRC) remains unknown. In this study, we comprehensively investigated miR-106b-5p expression and biologic functions in CRC and the molecular mechanism involved. Patients and methods miR-106b-5p expression was detected in CRC tissues and cell lines by quantitative reverse transcription-polymerase chain reaction. The effects of miR-106b-5p on metastasis were determined in vitro using transwell assays, and in vivo effects were evaluated using a mouse tail vein injection model. Downstream targets of miR-106b-5p were confirmed using bioinformatics programs, luciferase assays, and rescue experiments. Target gene expression and clinicopathologic parameters were also analyzed. Results miR-106b-5p expression was lower in CRC tissues than in corresponding nontumorous tissues (P=0.009), and miR-106b-5p downregulation was negatively associated with lymph node metastasis (P=0.006). Functional assays demonstrated that miR-106b-5p overexpression suppressed CRC cell migration and invasion in vitro and lung metastasis formation in vivo. In addition, luciferase assays confirmed that miR-106b-5p directly bound to the 3' untranslated region of cathepsin A (CTSA) and that miR-106b-5p suppressed CRC cell migration and invasion by targeting CTSA. Clinicopathologic analysis showed that CTSA was significantly upregulated in CRC, and increased CTSA was negatively associated with lymph node metastasis (P=0.012). Conclusion Our findings revealed that miR-106b-5p inhibits CRC metastasis by upregulating CTSA expression, which may lead to novel therapeutic strategies for CRC patients.
Collapse
Affiliation(s)
- Shujuan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Qifeng Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| |
Collapse
|
71
|
Zhu S, Deng S, He C, Liu M, Chen H, Zeng Z, Zhong J, Ye Z, Deng S, Wu H, Wang C, Zhao G. Reciprocal loop of hypoxia-inducible factor-1α (HIF-1α) and metastasis-associated protein 2 (MTA2) contributes to the progression of pancreatic carcinoma by suppressing E-cadherin transcription. J Pathol 2018; 245:349-360. [PMID: 29708271 DOI: 10.1002/path.5089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 03/17/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
Abstract
Metastasis-associated protein 2 (MTA2) is overexpressed in certain malignancies, and plays important roles in tumour metastasis and progression. The present study highlights the function of MTA2 in pancreatic carcinoma through its role as a deacetylator of hypoxia-inducible factor-1α (HIF-1α) and a cotranscriptional factor for E-cadherin expression. We found that overexpression of MTA2 promoted, and knockdown of MTA2 inhibited, the invasion and proliferation of pancreatic carcinoma cells both in vitro and in xenograft models in vivo. We also found that MTA2 is transcriptionally upregulated by HIF-1α through a hypoxia response element (HRE) of the MTA2 promoter in response to hypoxia. Reciprocally, MTA2 deacetylates HIF-1α and enhances its stability through interacting with histone deacetylase 1 (HDAC1). Consequently, HIF-1α recruits MTA2 and HDAC1 to the HRE of the E-cadherin promoter, by which E-cadherin transcription is repressed. In agreement with these experimental results, MTA2 is positively associated with HIF-1α, but inversely correlated with E-cadherin, in pancreatic carcinoma samples. Moreover, data from The Cancer Genome Atlas on 172 pancreatic carcinomas indicate an association between high expression of MTA2 and short overall survival. Taken together, our study identifies MTA2 as a critical hub and potential therapeutic target to inhibit the progression and metastasis of pancreatic carcinoma. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shuai Zhu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shijiang Deng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Chi He
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Mingliang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Hengyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Zhu Zeng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Jianxin Zhong
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Zeng Ye
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shichang Deng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Gang Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| |
Collapse
|
72
|
Yen GC, Tsai CM, Lu CC, Weng CJ. Recent progress in natural dietary non-phenolic bioactives on cancers metastasis. J Food Drug Anal 2018; 26:940-964. [PMID: 29976413 PMCID: PMC9303016 DOI: 10.1016/j.jfda.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
From several decades ago to now, cancer continues to be the leading cause of death worldwide, and metastasis is the major cause of cancer-related deaths. For health benefits, there is a great desire to use non-chemical therapy such as nutraceutical supplementation to prevent pathology development. Over 10,000 different natural bioactives or phytochemicals have been known that possessing potential preventive or supplementary effects for various diseases including cancer. Previously, the in vitro and in vivo anti-invasive and anti-metastatic activities of phenolic acids, monophenol, polyphenol and their derivatives and flavonoids and their derivatives have been reviewed. However, a vast number of natural dietary compounds other than phenolics have been demonstrated to potentially possess the ability to inhibit the invasion and metastasis of various cancers. In this review, we summarize the studies in recent decade on in vitro and in vivo effects and molecular mechanisms of natural bioactives, excluding the phenolics in food, in cancer invasion and metastasis. By combining this review of non-phenolics with the previous phenolics reviews, the puzzle for the contribution of natural dietary bioactives on cancer invasive or/and metastatic progress will be almost complete and more clear.
Collapse
Affiliation(s)
- Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Chiung-Man Tsai
- Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chia-Jui Weng
- Department of Living Services Industry, Tainan University of Technology, Tainan City, Taiwan.
| |
Collapse
|
73
|
Li SH, Li JP, Chen L, Liu JL. miR-146a induces apoptosis in neuroblastoma cells by targeting BCL11A. Med Hypotheses 2018; 117:21-27. [PMID: 30077189 DOI: 10.1016/j.mehy.2018.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Abstract
Aberrant expression of miR-146a has been reported to be involved in the progression and metastasis of various types of human cancers; however, its potential role in human neuroblastoma is still poorly understood. The purpose of our study was to investigate the molecular mechanism and possible role of miR-146a in human neuroblastoma. In this study, targeted genes were predicted by bioinformatic analysis and confirmed by dual-Luciferase reporter assay. The expression level of miR-146a in the human neuroblastoma SK-N-SH cell line was detected by quantitative RT-PCR. We used flow cytometric analysis to determine apoptosis and necrosis of SK-N-SH cells after transfection with miR-146a inhibitor, miR-146a mimic, and negative controls. The expression level of target genes was detected by RT-PCR and Western blotting. We identified BCL11A as a target of miR-146a. Thus, miR-146a targets the 3'UTR of BCL11A and inhibits its mRNA and protein expression. Overexpression of miR-146a can inhibit the growth and promote the apoptosis of human neuroblastoma SK-N-SH cells through inhibiting the expression of BCL11A. Furthermore, we found that upregulation of BCL11A by miR-146a inhibitor can promote SK-N-SH cells growth and protect SK-N-SH cells against apoptosis. Our results showed that miR-146a is a potential tumor suppressor gene in human neuroblastoma via directly targeting BCL11A. These findings suggest that miR-146a might be a new candidate target for treatment of human neuroblastoma.
Collapse
Affiliation(s)
- Sheng-Hua Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jin-Pin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Lan Chen
- Department of Internal Medicine, The Second Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jing-Li Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China.
| |
Collapse
|
74
|
Capuano E, Dekker M, Verkerk R, Oliviero T. Food as Pharma? The Case of Glucosinolates. Curr Pharm Des 2018; 23:2697-2721. [PMID: 28117016 DOI: 10.2174/1381612823666170120160832] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/24/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glucosinolates (GLSs) are dietary plant secondary metabolites occurring in the order Brassicales with potential health effects, in particular as anti-carcinogenic compounds. GLSs are converted into a variety of breakdown products (BPs) upon plant tissue damage and by the gut microbiota. GLS biological activity is related to BPs rather than to GLSs themselves. METHODS we have reviewed the most recent scientific literature on the metabolic fate and the biological effect of GLSs with particular emphasis on the epidemiological evidence for health effect and evidence from clinical trials. An overview of potential molecular mechanisms underlying GLS biological effect is provided. The potential toxic or anti-nutritional effect has also been discussed. RESULTS Epidemiological and human in vivo evidence point towards a potential anti-cancer effect for sulforaphane, indole-3-carbinol and 3,3-diindolylmethane. A number of new human clinical trials are on-going and will likely shed further light on GLS protective effect towards cancer as well as other diseases. BPs biological effect is the results of a plurality of molecular mechanisms acting simultaneously which include modulation of xenobiotic metabolism, modulation of inflammation, regulation of apoptosis, cell cycle arrest, angiogenesis and metastasis and regulation of epigenetic events. BPs have been extensively investigated for their protective effect towards cancer but in recent years the interest also includes other diseases. CONCLUSION It appears that certain BPs may protect against and may even represent a therapeutic strategy against several forms of cancer. Whether this latter effect can be achieved through diet or supplements should be investigated more thoroughly.
Collapse
Affiliation(s)
- Edoardo Capuano
- Food Quality Design, WU Agrotechnology & Food Sciences, Axis building 118, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Matthijs Dekker
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| | - Ruud Verkerk
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| | - Teresa Oliviero
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| |
Collapse
|
75
|
Natural Compounds as Epigenetic Regulators of Human Dendritic Cell-mediated Immune Function. J Immunother 2018; 41:169-180. [DOI: 10.1097/cji.0000000000000201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
76
|
Song S, Yu W, Lin S, Zhang M, Wang T, Guo S, Wang H. LncRNA ADPGK-AS1 promotes pancreatic cancer progression through activating ZEB1-mediated epithelial-mesenchymal transition. Cancer Biol Ther 2018; 19:573-583. [PMID: 29667486 DOI: 10.1080/15384047.2018.1423912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE This study was conducted to investigate the effects of ADP dependent glucokinase antisense RNA 1 (ADPGK-AS1)/ miR-205-5p/ zinc finger E-box binding homeobox 1 (ZEB1) on PC cells. METHODS Differentially expressed lncRNAs and miRNAs in pancreatic cancer (PC) were identified by microarray analysis. In silico ceRNA analysis was conducted to find out the interactions among lncRNAs, miRNAs and mRNAs. Quantitative real-time PCR (qRT-PCR) was utilized to examine the expression of miR-205-5p and lncRNA ADPGK-AS1 in PC and non-cancerous cells. The association between miR-205-5p and ADPGK-AS1 as well as miR-205-5p and ZEB1 was determined by dual-luciferase reporter gene assay. After manipulating the expression of ADPGK-AS1, mir-205-5p and ZEB1 in PANC-1 and SW-1990 cells, cell proliferation, migration, invasion and apoptosis were respectively confirmed by cell counting kit-8 (CCK-8) assay, transwell assay and TUNEL. Western blot was applied to examine the expression of Epithelial-mesenchymal Transition-related proteins. In vivo experiment was conducted to further determine the effect of miR-205-5p/ZEB1 on tumorigenic ability of PC cells. RESULTS MiR-205-5p was low-expressed while ZEB1 and ADPGK-AS1 were high-expressed in PC tissues and cells compared with the normal. Dual-luciferase reporter gene assay proved that ADPGK-AS1 could directly target miR-205-5p and miR-205-5p could directly target ZEB1 3'UTR. The expression of MiR-205-5p was negatively correlated with proliferation, migration and invasion, and positively correlated with apoptosis rate of PC cells, while ZEB1 and ADPGK-AS1 had an inversed effect. Further in vitro and in vivo investigation indicated that epithelial-mesenchymal transition (EMT) could be restrained by miR-205-5p through targeting ZEB1. ADPGK-AS1 strongly promoted the tumorigenesis via downregulating miR-205-5p expression and induced the EMT process in vivo. CONCLUSION ADPGK-AS1 inhibited miR-205-5p and therefore promoted PC progression through activating ZEB1-induced EMT.
Collapse
Affiliation(s)
- Suzhen Song
- a Department of Internal Medicine , Shandong University of Traditional Chinese Medicine , Jinan , Shandong , China
| | - Weihua Yu
- b Department of Digestive Disease , the Qilu Second Hospital of Shandong University , Jinan , Shandong , China
| | - Sen Lin
- b Department of Digestive Disease , the Qilu Second Hospital of Shandong University , Jinan , Shandong , China
| | - Mingbao Zhang
- b Department of Digestive Disease , the Qilu Second Hospital of Shandong University , Jinan , Shandong , China
| | - Teng Wang
- b Department of Digestive Disease , the Qilu Second Hospital of Shandong University , Jinan , Shandong , China
| | - Shuang Guo
- b Department of Digestive Disease , the Qilu Second Hospital of Shandong University , Jinan , Shandong , China
| | - Hongbo Wang
- b Department of Digestive Disease , the Qilu Second Hospital of Shandong University , Jinan , Shandong , China
| |
Collapse
|
77
|
Momen-Heravi F, Bala S. miRNA regulation of innate immunity. J Leukoc Biol 2018; 103:1205-1217. [PMID: 29656417 DOI: 10.1002/jlb.3mir1117-459r] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA and are pivotal posttranscriptional regulators of both innate and adaptive immunity. They act by regulating the expression of multiple immune genes, thus, are the important elements to the complex immune regulatory network. Deregulated expression of specific miRNAs can lead to potential autoimmunity, immune tolerance, hyper-inflammatory phenotype, and cancer initiation and progression. In this review, we discuss the contributory pathways and mechanisms by which several miRNAs influence the development of innate immunity and fine-tune immune response. Moreover, we discuss the consequence of deregulated miRNAs and their pathogenic implications.
Collapse
Affiliation(s)
- Fatemeh Momen-Heravi
- Division of Periodontics, Section of Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, New York, New York, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
78
|
Pavlidis ET, Lambropoulou M, Symeonidis NG, Anagnostopoulos C, Tsaroucha A, Kotini A, Nikolaidou C, Kiziridou A, Simopoulos C. The Immunohistochemical Expression MTA 1 Protein and its Prognostic Value in Pancreatic Cancer. J INVEST SURG 2018; 31:142-150. [PMID: 28635511 DOI: 10.1080/08941939.2017.1280565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
UNLABELLED Purpose/aim: To examine with immunohistochemical assay MTA1 protein expression levels in pancreatic cancer tissues defining its prognostic value. MATERIAL AND METHODS The specimens derived from 51 patients who underwent surgery. The levels of MTA1 protein were compared with the age of the patients, their survival, and prognosis. Also, we studied clinical and histopathological factors such as the degree of tumor differentiation and its stage in correlation with MTA1 protein levels. In parallel, there was correlation between the expression of the ΜΤΑ1 protein and the aforementioned factors regarding survival rate. Furthermore, we independently correlated the patient's survival in relation to whether they had undergone adjuvant chemotherapy or not. RESULTS It has been found to be low, moderate, or high expression of MTA1 levels in 48 out of 51 cancer tissues. Specifically, 49.0% of patients had low expression, 33.3% moderate, and 11.8% high expression of MTA1. Regarding the expression of MTA1 protein in correlation with various clinical and histopathological factors, a statistically significant correlation was observed with the degree of differentiation (p = 0.0068) and with the stage of the disease (p = 0.0173), but not with survival (p = 0.0740) or the age of them (p = 0.1547). Finally, it was found that overexpression of the MTA1protein is a prognostic factor for shorter survival in patients with pancreatic cancer (average 4.67 ± 0.95 months). CONCLUSIONS MTA 1 protein may constitute an important prognostic marker in pancreatic cancer and could improve prognosis and treatment.
Collapse
Affiliation(s)
- Efstathios T Pavlidis
- c 2nd Department of Surgery and Laboratory of Experimental Surgery - Postgraduate Program in Hepatobiliary/Pancreatic Surgery, School of Medicine , Democritus University of Thrace , 68 100 Alexandroupolis , Greece
| | | | - Nikolaos G Symeonidis
- c 2nd Department of Surgery and Laboratory of Experimental Surgery - Postgraduate Program in Hepatobiliary/Pancreatic Surgery, School of Medicine , Democritus University of Thrace , 68 100 Alexandroupolis , Greece
| | | | - Alexandra Tsaroucha
- d Laboratories of Medical Physics, Department of Pathology , Theagenio Anticancer Hospital , Thessaloniki , Greece
| | - Athanasia Kotini
- d Laboratories of Medical Physics, Department of Pathology , Theagenio Anticancer Hospital , Thessaloniki , Greece
| | | | - Anastasia Kiziridou
- d Laboratories of Medical Physics, Department of Pathology , Theagenio Anticancer Hospital , Thessaloniki , Greece
| | - Constantinos Simopoulos
- c 2nd Department of Surgery and Laboratory of Experimental Surgery - Postgraduate Program in Hepatobiliary/Pancreatic Surgery, School of Medicine , Democritus University of Thrace , 68 100 Alexandroupolis , Greece
| |
Collapse
|
79
|
Araújo R, Santos JMO, Fernandes M, Dias F, Sousa H, Ribeiro J, Bastos MMSM, Oliveira PA, Carmo D, Casaca F, Silva S, Medeiros R, Gil da Costa RM. Expression profile of microRNA-146a along HPV-induced multistep carcinogenesis: a study in HPV16 transgenic mice. J Cancer Res Clin Oncol 2018; 144:241-248. [PMID: 29181576 DOI: 10.1007/s00432-017-2549-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE Persistent human papillomavirus (HPV) infection is associated with the development of certain types of cancer and the dysregulation of microRNAs has been implicated in HPV-associated carcinogenesis. This is the case of microRNA-146a (miR-146a), which is thought to regulate tumor-associated inflammation. We sought to investigate the expression levels of miR-146a during HPV16-mediated carcinogenesis using skin samples from K14-HPV16 transgenic mice which develop the consecutive phases of the carcinogenesis process. METHODS Female transgenic (HPV+/-) and wild-type (HPV-/-) mice were sacrificed at 24-26 weeks-old or 28-30 weeks-old. Chest and ear skin samples from HPV+/- and HPV-/- mice were histologically classified and used for microRNA extraction and quantification by qPCR. RESULTS Chest skin samples from 24 to 26 weeks-old HPV+/- mice presented diffuse epidermal hyperplasia and only 22.5% showed multifocal dysplasia, while at 28-30 weeks-old all (100.0%) HPV+/- animals showed epidermal dysplasia. All HPV+/- ear skin samples showed carcinoma in situ (CIS). MiR-146a expression levels were higher in HPV+/- compared to HPV-/- mice (p = 0.006). There was also an increase in miR-146a expression in dysplastic skin lesions compared with hyperplasic lesions (p = 0.011). Samples showing CIS had a significant decrease in miR-146a expression when compared to samples showing epidermal hyperplasia (p = 0.018) and epidermal dysplasia (p = 0.009). CONCLUSIONS These results suggest that HPV16 induces the overexpression of miR-146a in the initial stages of carcinogenesis (hyperplasia and dysplasia), whereas decreases its expression at later stages (CIS). Taken together, these data implicate and suggest different roles of miR-146a in HPV-mediated carcinogenesis.
Collapse
Affiliation(s)
- Rita Araújo
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences of the University of Porto (ICBAS), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), Estrada Interior da Circunvalação, no. 6657, 4200-177, Porto, Portugal
| | - Mara Fernandes
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), Estrada Interior da Circunvalação, no. 6657, 4200-177, Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences of the University of Porto (ICBAS), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Margarida M S M Bastos
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering of the University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Paula A Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-911, Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Diogo Carmo
- Botelho Moniz Análises Clínicas (BMAC), Rua Sarmento de Beires 153, 4250-449, Porto, Portugal
| | - Fátima Casaca
- Botelho Moniz Análises Clínicas (BMAC), Rua Sarmento de Beires 153, 4250-449, Porto, Portugal
| | - Sandra Silva
- Botelho Moniz Análises Clínicas (BMAC), Rua Sarmento de Beires 153, 4250-449, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
- Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), Estrada Interior da Circunvalação, no. 6657, 4200-177, Porto, Portugal.
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Biomedical Research Centre (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering of the University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-911, Vila Real, Portugal
| |
Collapse
|
80
|
Pavlidis ET, Pavlidis TE. Current Molecular and Genetic Aspects of Pancreatic Cancer, the Role of Metastasis Associated Proteins (MTA): A Review. J INVEST SURG 2018; 31:54-66. [PMID: 28060554 DOI: 10.1080/08941939.2016.1269854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
UNLABELLED Purpose/aim: To focus on current molecular and genetic aspects and MTA proteins, since pancreatic cancer is a lethal malignant with poor prognosis. Early diagnosis is essential step, contributing to potential curative resection. MATERIALS AND METHODS A PubMed search of relevant articles published up to August 2016 was performed to identify current information about pancreatic cancer regarding molecular biomarkers, with emphasis on carcinogenesis, novel therapeutic targets, and MTA proteins. RESULTS Understanding the mechanisms involved in the process of carcinogenesis at the molecular level and the recognition of various oncogenes has opened new horizons for both diagnosis and targeted therapy. Metastasis associated (MTA) proteins (MTA1, MTA2, MTA3) comprise a well-established family of biomarkers. The oncogene MTA1 and its expression product MTA1 protein are the most important and adequately studied in the current research. It defines the growth, local invasiveness, lymphatic spread, and metastatic capacity of various malignancies such as colorectal or gastric cancer including also pancreatic cancer. This protein is associated with malignant potential and biological behavior. Consequently, it could contribute to cancer detection since the first stages of carcinogenesis, as well as in prediction of its malignant differentiation grade. The pre-operative information of the possibility of lymph node involvement may also affect the attempt and the extent of curative resection and lymphadenectomy. CONCLUSIONS Carcinogenesis and implicated oncogenes, either activators or repressors, concentrate much research interest, as well as being useful as biomarkers and for targeted therapy. MTA proteins could become useful diagnostic and prognostic biomarkers in current management of pancreatic cancer.
Collapse
Affiliation(s)
- Efstathios T Pavlidis
- a Aristotle University of Thessaloniki, Medical School , Second Surgical Propedeutic Department, Hippocration Hospital , Konstantinoupoleos 49, 546 42 Thessaloniki , Greece
| | - Theodoros E Pavlidis
- a Aristotle University of Thessaloniki, Medical School , Second Surgical Propedeutic Department, Hippocration Hospital , Konstantinoupoleos 49, 546 42 Thessaloniki , Greece
| |
Collapse
|
81
|
Li YL, Wang J, Zhang CY, Shen YQ, Wang HM, Ding L, Gu YC, Lou JT, Zhao XT, Ma ZL, Jin YX. MiR-146a-5p inhibits cell proliferation and cell cycle progression in NSCLC cell lines by targeting CCND1 and CCND2. Oncotarget 2018; 7:59287-59298. [PMID: 27494902 PMCID: PMC5312312 DOI: 10.18632/oncotarget.11040] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022] Open
Abstract
Previous studies have indicated that miR-146a-5p acts as an oncogene in several types of cancer, yet a tumor suppressor gene in others. In non-small cell lung cancer (NSCLC), one report showed that it was downregulated and played the role of tumor suppressor. However, another study showed that miR-146a-5p was overexpressed in the serum of NSCLC patients compared to healthy controls. Therefore, it is obvious that further study of the function of miR-146a-5p in NSCLC is necessary to fully understand its importance. Herein, we have verified that miR- 146a- 5p acts as a tumor suppressor in NSCLC. Our data revealed that the expression level of miR-146a-5p was significantly decreased in several human NSCLC cell lines, and also less abundant in human NSCLC tissues, when compared with controls. Moreover, we observed that miR-146a-5p could suppress cell proliferation, both in vitro and in vivo. Our results also showed that miR-146a-5p directly targeted the 3′-UTR of CCND1 and CCND2 mRNAs as well as decreased their expression at both mRNA and protein levels, causing cell cycle arrest at the G0/G1 phase. Furthermore, siRNA-mediated downregulation of CCND1 or CCND2 yielded the same effects on proliferation and cell cycle arrest as miR-146a-5p upregulation did in the NSCLC cell lines. We confirmed that the expression of miR-146a-5p had negative relationship with CCND1 or CCND2. Besides, we also found that miR-146a-5p could inhibit tumor growth in xengroft mouse models, and CCND1 and CCND2 were downregulated in miR-146a-5p overexpressed xengroft tumor tissues. In summary, our results demonstrated that miR-146a-5p could suppress the proliferation and cell cycle progression in NSCLC cells by inhibiting the expression of CCND1 and CCND2.
Collapse
Affiliation(s)
- Yan-Li Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ju Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Cai-Yan Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu-Qing Shen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hui-Min Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Ding
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu-Chen Gu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jia-Tao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200030, China
| | - Xin-Tai Zhao
- Shanghai Shines Pharmaceuticals Co., Ltd., Shanghai 200032, China
| | - Zhong-Liang Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - You-Xin Jin
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
82
|
Han S, Gonzalo DH, Feely M, Rinaldi C, Belsare S, Zhai H, Kalra K, Gerber MH, Forsmark CE, Hughes SJ. Stroma-derived extracellular vesicles deliver tumor-suppressive miRNAs to pancreatic cancer cells. Oncotarget 2018; 9:5764-5777. [PMID: 29464032 PMCID: PMC5814172 DOI: 10.18632/oncotarget.23532] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023] Open
Abstract
The biology of tumor-associated stroma (TAS) in pancreatic ductal adenocarcinoma (PDAC) is not well understood. The paradoxical observation that stroma-depletion strategies lead to progression of PDAC reinforced the need to critically evaluate the functional contribution of TAS in the initiation and progression of PDAC. PDAC and TAS cells are unique in their expression of specific miRNAs, and this specific miRNA expression pattern alters host to tumor microenvironment interactions. Using primary human pancreatic TAS cells and primary xenograft PDAC cells co-culture, we provide evidence of miRNA trafficking and exchanging between TAS and PDAC cells, in a two-way, cell-contact independent fashion, via extracellular vesicles (EVs) transportation. Selective packaging of miRNAs into EVs led to enrichment of stromal specific miR-145 in EVs secreted by TAS cells. Exosomes, but not microvesicles, derived from human TAS cells demonstrated a tumor suppressive role by inducing PDAC cell apoptosis. This effect was mitigated by anti-miR-145 sequences. Our data suggest that TAS-derived miRNAs are delivered to adjacent PDAC cells via exosomes and suppress tumor cell growth. These data highlight that TAS cells secrete exosomes carrying tumor suppressive genetic materials, a possible anti-tumor capacity. Future work of the development of patient-derived exosomes could have therapeutic implications for unresectable PDAC.
Collapse
Affiliation(s)
- Song Han
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - David H. Gonzalo
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael Feely
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Carlos Rinaldi
- Department of Biomedical Engineering, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sayali Belsare
- Department of Biomedical Engineering, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | - Michael H. Gerber
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christopher E. Forsmark
- Division of Gastroenterology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Steven J. Hughes
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
83
|
Sundaravinayagam D, Kim HR, Wu T, Kim HH, Lee HS, Jun S, Cha JH, Kee Y, You HJ, Lee JH. miR146a-mediated targeting of FANCM during inflammation compromises genome integrity. Oncotarget 2018; 7:45976-45994. [PMID: 27351285 PMCID: PMC5216775 DOI: 10.18632/oncotarget.10275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a potent inducer of tumorigenesis. Increased DNA damage or loss of genome integrity is thought to be one of the mechanisms linking inflammation and cancer development. It has been suggested that NF-κB-induced microRNA-146 (miR146a) may be a mediator of the inflammatory response. Based on our initial observation that miR146a overexpression strongly increases DNA damage, we investigated its potential role as a modulator of DNA repair. Here, we demonstrate that FANCM, a component in the Fanconi Anemia pathway, is a novel target of miR146a. miR146a suppressed FANCM expression by directly binding to the 3′ untranslated region of the gene. miR146a-induced downregulation of FANCM was associated with inhibition of FANCD2 monoubiquitination, reduced DNA homologous recombination repair and checkpoint response, failed recovery from replication stress, and increased cellular sensitivity to cisplatin. These phenotypes were recapitulated when miR146a expression was induced by overexpressing the NF-κB subunit p65/RelA or Helicobacter pylori infection in a human gastric cell line; the phenotypes were effectively reversed with an anti-miR146a antagomir. These results suggest that undesired inflammation events caused by a pathogen or over-induction of miR146a can impair genome integrity via suppression of FANCM.
Collapse
Affiliation(s)
- Devakumar Sundaravinayagam
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Hye Rim Kim
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - TingTing Wu
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Hyun Hee Kim
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Hyun-Seo Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Semo Jun
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Jeong-Heon Cha
- Department of Oral Biology, Department of Applied Life Science, The Graduate School, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| |
Collapse
|
84
|
Wang C, Liu P, Wu H, Cui P, Li Y, Liu Y, Liu Z, Gou S. MicroRNA-323-3p inhibits cell invasion and metastasis in pancreatic ductal adenocarcinoma via direct suppression of SMAD2 and SMAD3. Oncotarget 2017; 7:14912-24. [PMID: 26908446 PMCID: PMC4924761 DOI: 10.18632/oncotarget.7482] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/29/2016] [Indexed: 01/16/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which accounts for 96% of all pancreatic cancer cases, is characterized by rapid progression, invasion and metastasis. Transforming growth factor-beta (TGF-β) signaling is an essential pathway in metastatic progression and microRNAs (miRNA) play central roles in the regulation of various biological and pathologic processes including cancer metastasis. However, the molecular mechanisms involved in regulation of miRNAs and activation of TGF-β signaling in PDAC remain to be established. The results of this study suggested that miR-323-3p expression in PDAC tissues and cell lines was significantly decreased compared to levels in normal pancreatic tissues and primary cultured pancreatic duct epithelial cells. Further investigation revealed that miR-323-3p directly targeted and suppressed SMAD2 and SMAD3, both key components in TGF-β signaling. Lower levels of miR-323-3p predicted poorer prognosis in patients with PDAC. Ectopic overexpression of miR-323-3p significantly inhibited, while silencing of miR-323-3p increased the migration and invasion abilities of PDAC cells in vitro. Moreover, using an in vivo mouse model, we demonstrated that overexpressing of miR-323-3p significantly reduced, while knockdown of miR-323-3p enhanced lung metastatic colonization of PANC-1 cells. Furthermore, miR-323-3p-induced TGF-b signaling inhibition and cell motility suppression were partially rescued by overexpressing of Smad2 and Smad3 in PDAC cells. Our findings suggest that re-expression of miR-323-3p might offer a novel therapeutic target against metastasis in patients with PDAC.
Collapse
Affiliation(s)
- Chunyou Wang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Heshui Wu
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Pengfei Cui
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yongfeng Li
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Zhiqiang Liu
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Shanmiao Gou
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
85
|
MiR-146a functions as a small silent player in gastric cancer. Biomed Pharmacother 2017; 96:238-245. [DOI: 10.1016/j.biopha.2017.09.138] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/16/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
|
86
|
Grigorian-Shamagian L, Fereydooni S, Liu W, Echavez A, Marbán E. Harnessing the heart's resistance to malignant tumors: cardiac-derived extracellular vesicles decrease fibrosarcoma growth and leukemia-related mortality in rodents. Oncotarget 2017; 8:99624-99636. [PMID: 29245929 PMCID: PMC5725120 DOI: 10.18632/oncotarget.20454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/14/2017] [Indexed: 11/25/2022] Open
Abstract
The heart is known for its resistance to cancer. Although different conjectures have been proposed to explain this phenomenon, none has been tested. We propose that the heart microenvironment may exert anti-cancer properties. So, our objective was to test the anti-oncogenic potential of cardiac-derived extracellular vesicles (EVs). For that EVs secreted by cardiosphere-derived cells (CDCs, heart progenitor cells) were tested in vitro on fibrosarcoma HT1080. In vivo models comprised the xenograft HT1080 fibrosarcoma in athymic mice (n=35), and spontaneous acute lymphocyte leukemia in old rats (n=44). CDC-EVs were compared with two control groups: EVs secreted by bone-marrow derived mesenchymal stem cells (MSC-EVs) and phosphate-buffered saline (PBS). Injection of CDC-EVs led to a 2.5-fold decrease of fibrosarcoma growth in mice (p<0.01 and p<0.05 for human and rat EVs, respectively) vs PBS group. The effect was associated with 2-fold decrease of tumor cells proliferation (p<0.001) and 1.5-fold increase of apoptosis (p<0.05) in CDC-EV vs PBS mice. Salutary changes in tumor gene and protein expression were observed in CDC-EV animals. CDC-EVs reduced tumor vascularization compared with PBS (p<0.05) and MSC-EVs (p<0.01). Moreover, CDC-EVs increased leukemia-free survival (p<0.05) in old rats vs PBS. MiR-146, highly enriched in CDC-EVs, may be implicated in part of the observed effects. In conclusion, this study presents the first evidence that ties together the long-recognized enigma of the "heart immunity to cancer" with an antioncogenic effect of heart-derived EVs. These findings open up cancer as a new therapeutic target for CDC-EVs.
Collapse
Affiliation(s)
| | - Soraya Fereydooni
- Cedars-Sinai Heart Institute, Los Angeles, CA, United States of America
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Weixin Liu
- Cedars-Sinai Heart Institute, Los Angeles, CA, United States of America
| | - Antonio Echavez
- Cedars-Sinai Heart Institute, Los Angeles, CA, United States of America
| | - Eduardo Marbán
- Cedars-Sinai Heart Institute, Los Angeles, CA, United States of America
| |
Collapse
|
87
|
Pang L, Lu J, Huang J, Xu C, Li H, Yuan G, Cheng X, Chen J. Upregulation of miR-146a increases cisplatin sensitivity of the non-small cell lung cancer A549 cell line by targeting JNK-2. Oncol Lett 2017; 14:7745-7752. [PMID: 29344219 PMCID: PMC5755143 DOI: 10.3892/ol.2017.7242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the effects of microRNA (miR-)146a on the cisplatin sensitivity of the non-small cell lung cancer (NSCLC) A549 cell line and study the underlying molecular mechanism. The differences in expression of miRNAs between A549 and A549/cisplatin (A549/DDP) cells were determined, and miR-146a was selected to study its effect on cisplatin sensitivity of A549/DDP cells. miR-146a mimic and inhibitor transient transfection systems were constructed using vectors, and A549/DDP cells were infected with miR-146a mimic and inhibitor to investigate growth, apoptosis and migration. The directed target of miR-146a was determined and the underlying molecular mechanism was validated in the present study. The results of the present study demonstrated that miR-146a was downregulated in NSCLC A549/DDP cells, compared with A549 cells. The overexpression of miR-146a induced apoptosis and inhibited the growth and invasion of A549/DDP cells, which resulted in increased cisplatin sensitivity in NSCLC cells. The JNK2 gene was determined as the direct target of miR-146a, and may be activated by the overexpression of miR-146a. Additionally, JNK2 activated the expression of p53 and inhibited B cell lymphoma 2. The upregulation of miR-146a increased cisplatin sensitivity of the A549 cell line by targeting JNK2, which may provide a novel method for treating NSCLC cisplatin resistance.
Collapse
Affiliation(s)
- Linrong Pang
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jinger Lu
- Department of Endocrinology, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jia Huang
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Caihong Xu
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Hui Li
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Guangbo Yuan
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Xiaochun Cheng
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy Center, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
88
|
Mann M, Mehta A, Zhao JL, Lee K, Marinov GK, Garcia-Flores Y, Lu LF, Rudensky AY, Baltimore D. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nat Commun 2017; 8:851. [PMID: 29021573 PMCID: PMC5636846 DOI: 10.1038/s41467-017-00972-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/10/2017] [Indexed: 01/02/2023] Open
Abstract
The innate inflammatory response must be tightly regulated to ensure effective immune protection. NF-κB is a key mediator of the inflammatory response, and its dysregulation has been associated with immune-related malignancies. Here, we describe a miRNA-based regulatory network that enables precise NF-κB activity in mouse macrophages. Elevated miR-155 expression potentiates NF-κB activity in miR-146a-deficient mice, leading to both an overactive acute inflammatory response and chronic inflammation. Enforced miR-155 expression overrides miR-146a-mediated repression of NF-κB activation, thus emphasizing the dominant function of miR-155 in promoting inflammation. Moreover, miR-155-deficient macrophages exhibit a suboptimal inflammatory response when exposed to low levels of inflammatory stimuli. Importantly, we demonstrate a temporal asymmetry between miR-155 and miR-146a expression during macrophage activation, which creates a combined positive and negative feedback network controlling NF-κB activity. This miRNA-based regulatory network enables a robust yet time-limited inflammatory response essential for functional immunity. MicroRNAs (miR) are important regulators of gene transcription, with miR-155 and miR-146a both implicated in macrophage activation. Here the authors show that NF-κB signalling, miR-155 and miR-146a form a complex network of cross-regulations to control gene transcription in macrophages for modulating inflammatory responses.
Collapse
Affiliation(s)
- Mati Mann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Arnav Mehta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jimmy L Zhao
- Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medical College, 525 E 68th Street, New York, NY, 10065, USA.,Division of Hematology Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Kevin Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Georgi K Marinov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yvette Garcia-Flores
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA.,Moores Cancer Center, University of California, La Jolla, San Diego, CA, 92093, USA.,Center for Microbiome Innovation, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan-Kettering Cancer Center, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
89
|
Huang WT, Cen WL, He RQ, Xie Y, Zhang Y, Li P, Gan TQ, Chen G, Hu XH. Effect of miR‑146a‑5p on tumor growth in NSCLC using chick chorioallantoic membrane assay and bioinformatics investigation. Mol Med Rep 2017; 16:8781-8792. [PMID: 28990079 PMCID: PMC5779957 DOI: 10.3892/mmr.2017.7713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Our previous study demonstrated that the expression of miR-146a-5p was downregulated in non-small cell lung cancer (NSCLC) tissue, which affected the progression and prognosis of patients with NSCLC. Thus, the present study was conducted to investigate the functional mechanism of miR-146a-5p in tumorigenesis and angiogenesis in NSCLC. Following the construction of a H460 NSCLC cell line in which miR-146a-5p was overexpressed via lentivirus transduction, the NSCLC chick embryo chorioallantoic membrane (CAM) model was established by transplanting miR-146a-5p-overexpressing NSCLC cells into the CAM. Then, the size of the neoplasms within the CAM was measured, the vessel ratio was calculated, and the cellular morphology, metastasis and inflammation of tumor cell was observed using hematoxylin and eosin staining. The target genes of miR-146a-5p were predicted by 12 online software programs; these genes were then subjected to Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway annotations using the Database for Annotation, Visualization and Integrated Discovery 6.7 as well as constructed into a protein interaction network using protein-protein interaction from Search Tool for the Retrieval of Interacting Genes/Proteins. The xenograft tumor size and angiogenesis conditions of the miR-146a-5p-overexpressing group (volume 6.340±0.066 mm3, vessel ratio 9.326±0.083) was obviously restricted (P<0.001) when compared with the low expression group (volume 30.13±0.06 mm3, vessel ratio 16.94±0.11). In addition, marked necrosis along with inflammatory cell infiltration was observed with the HE-stained slices from the miR-146a-5p low expression group. Regarding the results of the target gene prediction, cancer and toll-like receptor signaling were the two most significant pathways represented among the target genes, while JUN, EGFR and RAC1 were the most relevant proteins among the selected potential targets of miR-146a-5p. In a CAM xenograft tumor model, overexpression of miR-146a-5p inhibited the tumorigenesis and angiogenesis of an NSCLC cell line. miR-146a-5p may act as a tumor suppressor gene in NSCLC and have moderate prognostic value in lung cancer.
Collapse
Affiliation(s)
- Wen-Ting Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wei-Luan Cen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - You Xie
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ping Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ting-Qing Gan
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
90
|
Kanwal R, Plaga AR, Liu X, Shukla GC, Gupta S. MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett 2017; 407:9-20. [DOI: 10.1016/j.canlet.2017.08.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/03/2017] [Accepted: 08/06/2017] [Indexed: 12/19/2022]
|
91
|
Han W, Du X, Wang J, Sun L, Li Y. WITHDRAWN: SNHG16 indicates a poor prognosis and affects cell proliferation, migration and invasion in non-small cell lung cancer. Exp Cell Res 2017:S0014-4827(17)30508-6. [PMID: 28935465 DOI: 10.1016/j.yexcr.2017.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Wei Han
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao266011, China
| | - Xuemei Du
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao266011, China
| | - Jing Wang
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao266011, China
| | - Lixin Sun
- Department of Anesthesia, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao266011, China.
| | - Yongchun Li
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao266011, China.
| |
Collapse
|
92
|
Min SK, Jung SY, Kang HK, Park SA, Lee JH, Kim MJ, Min BM. Functional diversity of miR-146a-5p and TRAF6 in normal and oral cancer cells. Int J Oncol 2017; 51:1541-1552. [PMID: 29048658 DOI: 10.3892/ijo.2017.4124] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/06/2017] [Indexed: 11/06/2022] Open
Abstract
Numerous studies implicate miR-146a as pleiotropic regulator of carcinogenesis; however, its roles in carcinogenesis are not fully understood. A clue from expression analyses of miR-146a-5p in all 13 oral squamous cell carcinoma (OSCC) cell lines examined and in OSCC tissues, whole blood and whole saliva of OSCC patients in vivo revealed that miR‑146a-5p expression was highly upregulated. Particularly, we widened the view of its upregulation in saliva, implicating that high miR-146a-5p expression is not only correlated closely to the development of human oral cancer, but also to a possible candidate as a diagnostic marker of OSCC. Indeed, further examination showed that exogenous miR-146a-5p expression showed pleiotropic effects on cell proliferation and apoptosis which were partially based on the contextual responses of activation of JNK, downstream of TRAF6 that was targeted by miR-146a-5p in normal human keratinocytes and OSCC cell lines. TRAF6 suppression by a TRAF6-specific siRNA resulted in contradictory consequences on cellular processes in normal and OSCC cells. Notably, TRAF6 downregulation by both miR-146a-5p and TRAF6-specific siRNA deactivated JNK in SCC-9, but not in normal human keratinocytes. In support of the proliferation-promoting effect of miR-146a-5p, silencing of endogenous miR-146a-5p significantly reduced proliferation of SCC-9. Together, these results suggest that miR-146a-5p affects proliferation and apoptosis in a cellular context-dependent manner and selectively disarms the TRAF6-mediated branch of the TGF-β signaling in OSCC cell lines by sparing Smad4 involvement.
Collapse
Affiliation(s)
- Seung-Ki Min
- Oral Oncology Clinic, Research Institute and Hospital, National Cancer Center, Goyang-si, Gyeonggi-Do 10408, Republic of Korea
| | - Sung Youn Jung
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Hyun Ki Kang
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Sin-A Park
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Jong Ho Lee
- Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Myung-Jin Kim
- Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Byung-Moo Min
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| |
Collapse
|
93
|
Otsuka K, Yamamoto Y, Matsuoka R, Ochiya T. Maintaining good miRNAs in the body keeps the doctor away?: Perspectives on the relationship between food-derived natural products and microRNAs in relation to exosomes/extracellular vesicles. Mol Nutr Food Res 2017; 62. [PMID: 28594130 DOI: 10.1002/mnfr.201700080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
Abstract
During the last decade, it has been uncovered that microRNAs (miRNAs), a class of small non-coding RNAs, are related to many diseases including cancers. With an increase in reports describing the dysregulation of miRNAs in various tumor types, it has become abundantly clear that miRNAs play significant roles in the formation and progression of cancers. Intriguingly, miRNAs are present in body fluids because they are packed in exosomes/extracellular vesicles and released from all types of cells. The miRNAs in the fluids are measured in a relatively simple way and the profile of miRNAs is likely to be an indicator of health condition. In recent years, various studies have demonstrated that some naturally occurring compounds can control tumor-suppressive and oncogenic miRNAs in a positive manner, suggesting that food-derived compounds could maintain the expression levels of miRNAs and help maintain good health. Therefore, our daily food and compounds in food are of great interest. In addition, exogenous diet-derived miRNAs have been indicated to function in the regulation of target mammalian transcripts in the body. These findings highlight the possibility of diet for good health through the regulation of miRNAs, and we also discuss the perspective of food application and health promotion.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,R&D Division, Kewpie Corporation Sengawa Kewport, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| |
Collapse
|
94
|
Matboli M, Shafei AE, Shehata HH, Nabil N, Hossam N, Azazy AE, El-Tawdi AH, Abdel-Rahman O. Clinical significance of miRNA-autophagy transcript expression in patients with hepatocellular carcinoma. Biomark Med 2017; 11:641-656. [PMID: 28770611 DOI: 10.2217/bmm-2017-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM This study integrates autophagy transcripts miRNAs expression based on bioinformatic analysis followed by clinical validation. METHODOLOGY Cellular jun proto-oncogene mRNA, LAMP2 mRNA, miR-16 and miR-146a level were investigated in the serum and tissue of patients with hepatocellular carcinoma (HCC), chronic hepatitis C and healthy volunteers by quantitative real-time PCR. The prognostic power of this serum RNA panel was explored. RESULTS The expression of serum cellular jun proto-oncogene mRNA, LAMP2 mRNA, miR-16 and miR-146a were positive in 85.1, 94, 97.1 and 84.2% HCC patients, respectively and they were correlated with tissue levels. Our results suggested that the chosen panel is an independent prognostic factor for survival in patients with HCC. CONCLUSION The current work provides four RNA-based biomarker panel for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Marwa Matboli
- Oncology Diagnostic Unit, Medical Biochemistry & Molecular biology Department, Faculty of Medicine, Ain Shams University, PO box 11381, Abbassia, Cairo, Egypt
| | - Ayman E Shafei
- Biomedical Research Department, Military Armed Forces College of Medicine
| | - Hanan H Shehata
- Oncology Diagnostic Unit, Medical Biochemistry & Molecular biology Department, Faculty of Medicine, Ain Shams University, PO box 11381, Abbassia, Cairo, Egypt
| | - Nesreen Nabil
- Department of Biochemistry, Faculty of pharmacy, Modern Univesity for Technology & Information, Cairo, Egypt
| | - Nourhan Hossam
- Oncology Diagnostic Unit, Medical Biochemistry & Molecular biology Department, Faculty of Medicine, Ain Shams University, PO box 11381, Abbassia, Cairo, Egypt
| | - Ahmed Em Azazy
- Undergraduate Student, Armed Forces College of Medicine, Cairo, Egypt
| | | | - Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University
| |
Collapse
|
95
|
Chang TY, Tsai WC, Huang TS, Su SH, Chang CY, Ma HY, Wu CH, Yang CY, Lin CH, Huang PH, Cheng CC, Cheng SM, Wang HW. Dysregulation of endothelial colony-forming cell function by a negative feedback loop of circulating miR-146a and -146b in cardiovascular disease patients. PLoS One 2017; 12:e0181562. [PMID: 28727754 PMCID: PMC5519171 DOI: 10.1371/journal.pone.0181562] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022] Open
Abstract
Functional impairment of endothelial colony-forming cells (ECFCs), a specific cell lineage of endothelial progenitor cells (EPCs) is highly associated with the severity of coronary artery disease (CAD), the most common type of cardiovascular disease (CVD). Emerging evidence show that circulating microRNAs (miRNAs) in CAD patients’ body fluid hold a great potential as biomarkers. However, our knowledge of the role of circulating miRNA in regulating the function of ECFCs and the progression of CAD is still in its infancy. We showed that when ECFCs from healthy volunteers were incubated with conditioned medium or purified exosomes of cultured CAD ECFCs, the secretory factors from CAD ECFCs dysregulated migration and tube formation ability of healthy ECFCs. It is known that exosomes influence the physiology of recipient cells by introducing RNAs including miRNAs. By using small RNA sequencing (smRNA-seq), we deciphered the circulating miRNome in the plasma of healthy individual and CAD patients, and found that the plasma miRNA spectrum from CAD patients was significantly different from that of healthy control. Interestingly, smRNA-seq of both healthy and CAD ECFCs showed that twelve miRNAs that had a higher expression in the plasma of CAD patients also showed higher expression in CAD ECFCs when compared with healthy control. This result suggests that these miRNAs may be involved in the regulation of ECFC functions. For identification of potential mRNA targets of the differentially expressed miRNA in CAD patients, cDNA microarray analysis was performed to identify the angiogenesis-related genes that were down-regulated in CAD ECFCs and Pearson’s correlation were used to identify miRNAs that were negatively correlated with the identified angiogenesis-related genes. RT-qPCR analysis of the five miRNAs that negatively correlated with the down-regulated angiogenesis-related genes in plasma and ECFC of CAD patients showed miR-146a-5p and miR-146b-5p up-regulation compared to healthy control. Knockdown of miR-146a-5p or miR-146b-5p in CAD ECFCs enhanced migration and tube formation activity in diseased ECFCs. Contrarily, overexpression of miR-146a-5p or miR-146b-5p in healthy ECFC repressed migration and tube formation in ECFCs. TargetScan analysis showed that miR-146a-5p and miR-146b-5p target many of the angiogenesis-related genes that were down-regulated in CAD ECFCs. Knockdown of miR-146a-5p or miR-146b-5p restores CAV1 and RHOJ levels in CAD ECFCs. Reporter assays confirmed the direct binding and repression of miR-146a-5p and miR-146b-5p to the 3’-UTR of mRNA of RHOJ, a positive regulator of angiogenic potential in endothelial cells. Consistently, RHOJ knockdown inhibited the migration and tube formation ability in ECFCs. Collectively, we discovered the dysregulation of miR-146a-5p/RHOJ and miR-146b-5p/RHOJ axis in the plasma and ECFCs of CAD patients that could be used as biomarkers or therapeutic targets for CAD and other angiogenesis-related diseases.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Research Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chi Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Tse-Shun Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Engineering in Medicine, University of California, San Diego, United States of America
| | - Shu-Han Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Young Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Hsiu-Yen Ma
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| | - Hsei-Wei Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
96
|
Kim SH, Bennett PR, Terzidou V. Advances in the role of oxytocin receptors in human parturition. Mol Cell Endocrinol 2017; 449:56-63. [PMID: 28119132 DOI: 10.1016/j.mce.2017.01.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 12/26/2022]
Abstract
Oxytocin (OT) is a neurohypophysial hormone which has been found to play a central role in the regulation of human parturition. The most established role of oxytocin/oxytocin receptor (OT/OTR) system in human parturition is the initiation of uterine contractions, however, recent evidence have demonstrated that it may have a more complex role including initiation of inflammation, regulation of miRNA expression, as well as mediation of other non-classical oxytocin actions via receptor crosstalk with other G protein-coupled receptors (GPCRs). In this review we highlight both established and newly emerging roles of OT/OTR system in human parturition and discuss the expanding potential for OTRs as pharmacological targets in the management of preterm labour.
Collapse
Affiliation(s)
- Sung Hye Kim
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK
| | - Phillip R Bennett
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK
| | - Vasso Terzidou
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK; Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| |
Collapse
|
97
|
Wilczyński M, Żytko E, Szymańska B, Dzieniecka M, Nowak M, Danielska J, Stachowiak G, Wilczyński JR. Expression of miR-146a in patients with ovarian cancer and its clinical significance. Oncol Lett 2017; 14:3207-3214. [PMID: 28927067 DOI: 10.3892/ol.2017.6477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/07/2017] [Indexed: 12/23/2022] Open
Abstract
The aim of the present retrospective study was to compare microRNA (miR)-146a expression levels in primary tumors and omental metastases of 48 patients, who had undergone surgery for advanced ovarian serous cancer. Possible correlations between miR-146a expression level and clinicopathological features were investigated, including chemosensitivity and survival. miR-146a was evaluated in formalin-fixed, paraffin-embedded samples. miR-146a expression level in primary tumors was demonstrated to be increased in comparison with normal ovary tissues (P=0.02) and metastases (P=0.01). A negative correlation was demonstrated between miR-146a expression in primary tumors and serum levels of cancer antigen 125 (R=-0.37; P=0.03) and Risk of Malignancy Algorithm index (R=-0.79; P=0.0007). Overall survival positively correlated with miR-146a expression in primary tumor tissue samples (R=0.38; P=0.01). Probability of survival was decreased in patients with low miR-146a expression levels in primary tumor tissues (hazard ratio=0.21; P=0.003). Lower levels of miR-146a in primary tumor tissue samples were correlated with a shorter progression-free survival (P=0.04) and platinum-resistance of metastases (P=0.006). In conclusion, miR-146a may be a prognostic marker for serous ovarian cancer.
Collapse
Affiliation(s)
- Miłosz Wilczyński
- Department of Operative Gynecology, Endoscopy and Gynecologic Oncology, Polish Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Ewelina Żytko
- Department of Gynecology and Oncological Gynecology, Polish Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Bożena Szymańska
- Central Scientific Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland
| | - Monika Dzieniecka
- Department of Pathology, Polish Mother's Memorial Hospital Research Institute, 93-388 Lodz, Poland
| | - Marek Nowak
- Department of Gynecology and Oncological Gynecology, Polish Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Justyna Danielska
- Radiotherapy Department, Medical University of Lodz, 93-509 Lodz, Poland
| | - Grzegorz Stachowiak
- Department of Gynecology and Oncological Gynecology, Polish Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Jacek R Wilczyński
- Department of Gynecology and Oncological Gynecology, Polish Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland
| |
Collapse
|
98
|
Adamska A, Domenichini A, Falasca M. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. Int J Mol Sci 2017; 18:E1338. [PMID: 28640192 PMCID: PMC5535831 DOI: 10.3390/ijms18071338] [Citation(s) in RCA: 419] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which constitutes 90% of pancreatic cancers, is the fourth leading cause of cancer-related deaths in the world. Due to the broad heterogeneity of genetic mutations and dense stromal environment, PDAC belongs to one of the most chemoresistant cancers. Most of the available treatments are palliative, with the objective of relieving disease-related symptoms and prolonging survival. Currently, available therapeutic options are surgery, radiation, chemotherapy, immunotherapy, and use of targeted drugs. However, thus far, therapies targeting cancer-associated molecular pathways have not given satisfactory results; this is due in part to the rapid upregulation of compensatory alternative pathways as well as dense desmoplastic reaction. In this review, we summarize currently available therapies and clinical trials, directed towards a plethora of pathways and components dysregulated during PDAC carcinogenesis. Emerging trends towards targeted therapies as the most promising approach will also be discussed.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Alice Domenichini
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
99
|
Wang J, Hussain SP. NO • and Pancreatic Cancer: A Complex Interaction with Therapeutic Potential. Antioxid Redox Signal 2017; 26:1000-1008. [PMID: 27510096 PMCID: PMC5467115 DOI: 10.1089/ars.2016.6809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Pancreatic tumors express high level of nitric oxide synthases (NOSs) in particular inducible (iNOS/NOS2) and endothelial (eNOS/NOS3) forms. However, the role of nitric oxide (NO•) in the development and progression of pancreatic cancer is not clearly defined. Delineating the NO•-induced signaling in pancreatic cancer and its potential contribution in disease aggressiveness may provide therapeutic targets to improve survival in this lethal malignancy. Recent Advances: An increased expression of NOS2/iNOS in tumors is associated with poorer survival in early stage resected patients with pancreatic ductal adenocarcinoma (PDAC). Furthermore, genetic deletion of NOS2 enhanced survival in mice with autochthonous PDAC. Additionally, targeting NOS3/eNOS reduced the abundance of precursor lesions in mice, which trended toward improved survival. CRITICAL ISSUES The extremely poor prognosis in pancreatic cancer is due to the late diagnosis and lack of effective therapy in advanced disease. One of the most critical issues is to decipher the underlying mechanism of disease aggressiveness and therapeutic resistance for identifying potential therapeutic target and effective treatment. Given the evidence of a strong association between inflammation and pancreatic cancer and clinical evidence, which suggests an association between NOS2 and disease aggressiveness, it is critical to define the role of NO• signaling in this lethal malignancy. FUTURE DIRECTIONS Recent preclinical and clinical evidences indicate a potential therapeutic significance of targeting NO• signaling in pancreatic cancer. With the emergence of new preclinical models, including the patient-derived organoids, further preclinical evaluation using clinically tested NOS inhibitors is needed for designing future clinical investigation. Antioxid. Redox Signal. 26, 1000-1008.
Collapse
Affiliation(s)
- Jian Wang
- Pancreatic Cancer Unit, Laboratory of Human Carcinogenesis, NIH Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| | - S Perwez Hussain
- Pancreatic Cancer Unit, Laboratory of Human Carcinogenesis, NIH Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| |
Collapse
|
100
|
Yao Q, Tu C, Lu D, Zou Y, Liu H, Zhang S. Clinicopathological significance of the microRNA-146a/WASP-family verprolin-homologous protein-2 axis in gastric cancer. Cancer Sci 2017; 108:1285-1292. [PMID: 28387985 PMCID: PMC5497796 DOI: 10.1111/cas.13254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies, and cancer invasion and metastasis are the leading causes of cancer‐induced death in GC patients. WASP‐family verprolin‐homologous protein‐2 (WASF2), with a role controlling actin polymerization which is critical in the formation of membrane protrusions involved in cell migration and invasion, has been reported to possess cancer‐promoting effects in several cancers. However, data of WASF2's role in GC are relatively few and even contradictory. In this study, we analyzed WASF2 expression in GC tissues and their corresponding adjacent normal tissues. We found that WASF2 was upregulated in GC tissues and high level of WASF2 was associated with lymph node metastasis of GC. Through gain‐ and loss‐of‐function studies, WASF2 was shown to significantly increase GC cells migration and invasion, but had no effect on proliferation in vitro. Importantly, WASF2 was also found to enhance GC metastasis in vivo. Our previous research suggested that WASF2 was a direct target of microRNA‐146a (miR‐146a). Furthermore, we analyzed miR‐146a's level in GC tissues and their corresponding adjacent normal tissues. We found that miR‐146a was downregulated in GC tissues and low miR‐146a level was associated with advanced TNM stage and lymph node metastasis. The level of WASF2 in GC tissues was negatively correlated with miR‐146a expression and had inverse clinicopathologic features. The newly identified miR‐146a/WASF2 axis may provide a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Qunyan Yao
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuantao Tu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Lu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanting Zou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongchun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuncai Zhang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|