51
|
Chia NY, Deng N, Das K, Huang D, Hu L, Zhu Y, Lim KH, Lee MH, Wu J, Sam XX, Tan GS, Wan WK, Yu W, Gan A, Tan ALK, Tay ST, Soo KC, Wong WK, Dominguez LTM, Ng HH, Rozen S, Goh LK, Teh BT, Tan P. Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development. Gut 2015; 64:707-19. [PMID: 25053715 DOI: 10.1136/gutjnl-2013-306596] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Gastric cancer (GC) is a deadly malignancy for which new therapeutic strategies are needed. Three transcription factors, KLF5, GATA4 and GATA6, have been previously reported to exhibit genomic amplification in GC. We sought to validate these findings, investigate how these factors function to promote GC, and identify potential treatment strategies for GCs harbouring these amplifications. DESIGN KLF5, GATA4 and GATA6 copy number and gene expression was examined in multiple GC cohorts. Chromatin immunoprecipitation with DNA sequencing was used to identify KLF5/GATA4/GATA6 genomic binding sites in GC cell lines, and integrated with transcriptomics to highlight direct target genes. Phenotypical assays were conducted to assess the function of these factors in GC cell lines and xenografts in nude mice. RESULTS KLF5, GATA4 and GATA6 amplifications were confirmed in independent GC cohorts. Although factor amplifications occurred in distinct sets of GCs, they exhibited significant mRNA coexpression in primary GCs, consistent with KLF5/GATA4/GATA6 cross-regulation. Chromatin immunoprecipitation with DNA sequencing revealed a large number of genomic sites co-occupied by KLF5 and GATA4/GATA6, primarily located at gene promoters and exhibiting higher binding strengths. KLF5 physically interacted with GATA factors, supporting KLF5/GATA4/GATA6 cooperative regulation on co-occupied genes. Depletion and overexpression of these factors, singly or in combination, reduced and promoted cancer proliferation, respectively, in vitro and in vivo. Among the KLF5/GATA4/GATA6 direct target genes relevant for cancer development, one target gene, HNF4α, was also required for GC proliferation and could be targeted by the antidiabetic drug metformin, revealing a therapeutic opportunity for KLF5/GATA4/GATA6 amplified GCs. CONCLUSIONS KLF5/GATA4/GATA6 may promote GC development by engaging in mutual crosstalk, collaborating to maintain a pro-oncogenic transcriptional regulatory network in GC cells.
Collapse
Affiliation(s)
- Na-Yu Chia
- Cancer and Stem Cell Biology program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore A*STAR-Duke-NUS Neuroscience Partnership, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Niantao Deng
- Cancer and Stem Cell Biology program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Kakoli Das
- Cancer and Stem Cell Biology program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Dachuan Huang
- Laboratory of Cancer Epigenome, National Cancer Centre, Singapore, Singapore
| | - Longyu Hu
- Cancer and Stem Cell Biology program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yansong Zhu
- Cancer and Stem Cell Biology program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Ming-Hui Lee
- Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Jeanie Wu
- Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Xin Xiu Sam
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Gek San Tan
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Wei Keat Wan
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Willie Yu
- Laboratory of Cancer Epigenome, National Cancer Centre, Singapore, Singapore
| | - Anna Gan
- Laboratory of Cancer Epigenome, National Cancer Centre, Singapore, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Su-Ting Tay
- Cancer and Stem Cell Biology program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Khee Chee Soo
- Department of Surgical Oncology, National Cancer Centre, Singapore, Singapore
| | - Wai Keong Wong
- Dept of General Surgery, Singapore General Hospital, Singapore, Singapore
| | | | - Huck-Hui Ng
- Genome Institute of Singapore, Singapore, Singapore
| | - Steve Rozen
- Cancer and Stem Cell Biology program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore A*STAR-Duke-NUS Neuroscience Partnership, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Liang-Kee Goh
- Cancer and Stem Cell Biology program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Bin-Tean Teh
- Cancer and Stem Cell Biology program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore Laboratory of Cancer Epigenome, National Cancer Centre, Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
52
|
Kim BC, Jeong HO, Park D, Kim CH, Lee EK, Kim DH, Im E, Kim ND, Lee S, Yu BP, Bhak J, Chung HY. Profiling age-related epigenetic markers of stomach adenocarcinoma in young and old subjects. Cancer Inform 2015; 14:47-54. [PMID: 25983541 PMCID: PMC4406278 DOI: 10.4137/cin.s16912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 02/04/2023] Open
Abstract
The purpose of our study is to identify epigenetic markers that are differently expressed in the stomach adenocarcinoma (STAD) condition. Based on data from The Cancer Genome Atlas (TCGA), we were able to detect an age-related difference in methylation patterns and changes in gene and miRNA expression levels in young (n = 14) and old (n = 70) STAD subjects. Our analysis identified 323 upregulated and 653 downregulated genes in old STAD subjects. We also found 76 miRNAs with age-related expression patterns and 113 differentially methylated genes (DMGs), respectively. Our further analysis revealed that significant upregulated genes (n = 35) were assigned to the cell cycle, while the muscle system process (n = 27) and cell adhesion-related genes (n = 57) were downregulated. In addition, by comparing gene and miRNA expression with methylation change, we identified that three upregulated genes (ELF3, IL1β, and MMP13) known to be involved in inflammatory responses and cell growth were significantly hypomethylated in the promoter region. We further detected target candidates for age-related, downregulated miRNAs (hsa-mir-124–3, hsa-mir-204, and hsa-mir-125b-2) in old STAD subjects. This is the first report of the results from a study exploring age-related epigenetic biomarkers of STAD using high-throughput data and provides evidence for a complex clinicopathological condition expressed by the age-related STAD progression.
Collapse
Affiliation(s)
- Byoung-Chul Kim
- Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea. ; Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, Republic of Korea
| | - Hyoung Oh Jeong
- Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea. ; Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, Republic of Korea
| | - Daeui Park
- Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea. ; Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, Republic of Korea
| | - Chul-Hong Kim
- Genomictree Inc., Yuseong-gu, Daejeon, Republic of Korea
| | - Eun Kyeong Lee
- Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| | - Eunok Im
- Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea. ; Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, Republic of Korea
| | - Nam Deuk Kim
- Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea. ; Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, Republic of Korea
| | - Sunghoon Lee
- Personal Genomics Institute, Genome Research Foundation, Suwon, Republic of Korea. ; BioMedical Engineering, UNIST, Ulsan, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jong Bhak
- Personal Genomics Institute, Genome Research Foundation, Suwon, Republic of Korea. ; BioMedical Engineering, UNIST, Ulsan, Republic of Korea
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea. ; Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
53
|
Yokoyama NN, Denmon A, Uchio EM, Jordan M, Mercola D, Zi X. When Anti-Aging Studies Meet Cancer Chemoprevention: Can Anti-Aging Agent Kill Two Birds with One Blow? ACTA ACUST UNITED AC 2015; 1:420-433. [PMID: 26756023 DOI: 10.1007/s40495-015-0039-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence has strongly supported that the rate of aging is controlled, at least to some extent, by evolutionarily conserved nutrient sensing pathways (e.g. the insulin/IGF-1-signaling, mTOR, AMPK, and sirtuins) from worms to humans. These pathways are also commonly involved in carcinogenesis and cancer metabolism. Agents (e.g. metformin, resveratrol, and Rhodiola) that target these nutrient sensing pathways often have both anti-aging and anti-cancer efficacy. These agents not only reprogram energy metabolism of malignant cells, but also target normal postmitotic cells by suppressing their conversion into senescent cells, which confers systematic metabolism benefits. These agents are fundamentally different from chemotherapy (e.g. paclitaxel and doxorubicin) or radiation therapy that causes molecular damage (e.g. DNA and protein damages) and thereby no selection resistance may be expected. By reviewing molecular mechanisms of action, epidemiological evidence, experimental data in tumor models, and early clinical study results, this review provides information supporting the promising use of agents with both anti-aging and anti-cancer efficacy for cancer chemoprevention.
Collapse
Affiliation(s)
- Noriko N Yokoyama
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Andria Denmon
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Edward M Uchio
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Mark Jordan
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA; Department of Pharmacology, University of California, Irvine, Orange, CA 92868, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
| |
Collapse
|
54
|
Chuang HC, Chou CC, Kulp SK, Chen CS. AMPK as a potential anticancer target - friend or foe? Curr Pharm Des 2015; 20:2607-18. [PMID: 23859619 DOI: 10.2174/13816128113199990485] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/24/2013] [Indexed: 02/08/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a key player in maintaining energy homeostasis in response to metabolic stress. Beyond diabetes and metabolic syndrome, there is a growing interest in the therapeutic exploitation of the AMPK pathway in cancer treatment in light of its unique ability to regulate cancer cell proliferation through the reprogramming of cell metabolism. Although many studies support the tumor-suppressive role of AMPK, emerging evidence suggests that the metabolic checkpoint function of AMPK might be overridden by stress or oncogenic signals so that tumor cells use AMPK activation as a survival strategy to gain growth advantage. These findings underscore the complexity in the cellular function of AMPK in maintaining energy homeostasis under physiological versus pathological conditions. Thus, this review aims to provide an overview of recent findings on the functional interplay of AMPK with different cell metabolic and signaling effectors, particularly histone deacetylases, in mediating downstream tumor suppressive or promoting mechanisms in different cell systems. Although AMPK activation inhibits tumor growth by targeting multiple signaling pathways relevant to tumorigenesis, under certain cellular contexts or certain stages of tumor development, AMPK might act as a protective response to metabolic stresses, such as nutrient deprivation, low oxygen, and low pH, or as downstream effectors of oncogenic proteins, including androgen receptor, hypoxia-inducible factor-1α, c-Src, and MYC. Thus, investigations to define at which stage(s) of tumorigenesis and cancer progression or for which genetic aberrations AMPK inhibition might represent a more relevant strategy than AMPK activation for cancer treatment are clearly warranted.
Collapse
Affiliation(s)
| | | | | | - Ching-Shih Chen
- Rm 336, Parks Hall, College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
55
|
Han TS, Hur K, Xu G, Choi B, Okugawa Y, Toiyama Y, Oshima H, Oshima M, Lee HJ, Kim VN, Chang AN, Goel A, Yang HK. MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut 2015; 64:203-14. [PMID: 24870620 PMCID: PMC4384419 DOI: 10.1136/gutjnl-2013-306640] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Gastric cancer (GC) remains difficult to cure due to heterogeneity in a clinical challenge and the molecular mechanisms underlying this disease are complex and not completely understood. Accumulating evidence suggests that microRNAs (miRNAs) play an important role in GC, but the role of specific miRNAs involved in this disease remains elusive. We performed next generation sequencing (NGS)-based whole-transcriptome profiling to discover GC-specific miRNAs, followed by functional validation of results. DESIGN NGS-based miRNA profiles were generated in matched pairs of GCs and adjacent normal mucosa (NM). Quantitative RT-PCR validation of miR-29c expression was performed in 274 gastric tissues, which included two cohorts of matched GC and NM specimens. Functional validation of miR-29c and its gene targets was undertaken in cell lines, as well as K19-C2mE and K19-Wnt1/C2mE transgenic mice. RESULTS NGS analysis revealed four GC-specific miRNAs. Among these, miR-29c expression was significantly decreased in GC versus NM tissues (p<0.001). Ectopic expression of miR-29c mimics in GC cell lines resulted in reduced proliferation, adhesion, invasion and migration. High miR-29c expression suppressed xenograft tumour growth in nude mice. Direct interaction between miR-29c and its newly discovered target, ITGB1, was identified in cell lines and transgenic mice. MiR-29c expression demonstrated a stepwise decrease in wild type hyperplasia-dysplasia cascade in transgenic mice models of GC. CONCLUSIONS MiR-29c acts as a tumour suppressor in GC by directly targeting ITGB1. Loss of miR-29c expression is an early event in the initiation of gastric carcinogenesis and may serve as a diagnostic and therapeutic biomarker for patients with GC.
Collapse
Affiliation(s)
- Tae-Su Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea, Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Keun Hur
- Gastrointestinal Cancer Research Laboratory, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, USA, Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Guorong Xu
- Baylor Institute for Immunology Research and Baylor Research Institute, Baylor University Medical Center, Dallas, USA
| | - Boram Choi
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yoshinaga Okugawa
- Gastrointestinal Cancer Research Laboratory, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, USA, Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hyuk-Joon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea, Departments of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - V. Narry Kim
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Aaron N. Chang
- Baylor Institute for Immunology Research and Baylor Research Institute, Baylor University Medical Center, Dallas, USA
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, USA
| | - Han-Kwang Yang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea, Departments of Surgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
56
|
Dang Y, Wang YC, Huang QJ. Microarray and Next-Generation Sequencing to Analyse Gastric Cancer. Asian Pac J Cancer Prev 2014. [DOI: 10.7314/apjcp.2014.15.19.8035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
57
|
Liu X, Liu Q, Fan Y, Wang S, Liu X, Zhu L, Liu M, Tang H. Downregulation of PPP2R5E expression by miR-23a suppresses apoptosis to facilitate the growth of gastric cancer cells. FEBS Lett 2014; 588:3160-9. [DOI: 10.1016/j.febslet.2014.05.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 01/29/2023]
|
58
|
Abstract
Recent discoveries of AMPK activators point to the large number of therapeutic candidates that can be transformed to successful designs of novel drugs. AMPK is a universal energy sensor and influences almost all physiological processes in the cells. Thus, regulation of the cellular energy metabolism can be achieved in selective tissues via the artificial activation of AMPK by small molecules. Recently, special attention has been given to direct activators of AMPK that are regulated by several nonspecific upstream factors. The direct activation of AMPK, by definition, should lead to more specific biological activities and as a result minimize possible side effects.
Collapse
|
59
|
Identification of microRNAs as potential biomarker for gastric cancer by system biological analysis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:901428. [PMID: 24982912 PMCID: PMC4058523 DOI: 10.1155/2014/901428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/29/2014] [Indexed: 12/14/2022]
Abstract
Gastric cancers (GC) have the high morbidity and mortality rates worldwide and there is a need to identify sufficiently sensitive biomarkers for GC. MicroRNAs (miRNAs) could be promising potential biomarkers for GC diagnosis. We employed a systematic and integrative bioinformatics framework to identify GC-related microRNAs from the public microRNA and mRNA expression dataset generated by RNA-seq technology. The performance of the 17 candidate miRNAs was evaluated by hierarchal clustering, ROC analysis, and literature mining. Fourteen have been found to be associated with GC and three microRNAs (miR-211, let-7b, and miR-708) were for the first time reported to associate with GC and may be used for diagnostic biomarkers for GC.
Collapse
|
60
|
Xia J, Jia P, Hutchinson KE, Dahlman KB, Johnson D, Sosman J, Pao W, Zhao Z. A meta-analysis of somatic mutations from next generation sequencing of 241 melanomas: a road map for the study of genes with potential clinical relevance. Mol Cancer Ther 2014; 13:1918-28. [PMID: 24755198 DOI: 10.1158/1535-7163.mct-13-0804] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Next generation sequencing (NGS) has been used to characterize the overall genomic landscape of melanomas. Here, we systematically examined mutations from recently published melanoma NGS data involving 241 paired tumor-normal samples to identify potentially clinically relevant mutations. Melanomas were characterized according to an in-house clinical assay that identifies well-known specific recurrent mutations in five driver genes: BRAF (affecting V600), NRAS (G12, G13, and Q61), KIT (W557, V559, L576, K642, and D816), GNAQ (Q209), and GNA11 (Q209). Tumors with none of these mutations are termed "pan negative." We then mined the driver mutation-positive and pan-negative melanoma NGS data for mutations in 632 cancer genes that could influence existing or emerging targeted therapies. First, we uncovered several genes whose mutations were more likely associated with BRAF- or NRAS-driven melanomas, including TP53 and COL1A1 with BRAF, and PPP6C, KALRN, PIK3R4, TRPM6, GUCY2C, and PRKAA2 with NRAS. Second, we found that the 69 "pan-negative" melanoma genomes harbored alternate infrequent mutations in the five known driver genes along with many mutations in genes encoding guanine nucleotide binding protein α-subunits. Third, we identified 12 significantly mutated genes in "pan-negative" samples (ALK, STK31, DGKI, RAC1, EPHA4, ADAMTS18, EPHA7, ERBB4, TAF1L, NF1, SYK, and KDR), including five genes (RAC1, ADAMTS18, EPHA7, TAF1L, and NF1) with a recurrent mutation in at least two "pan-negative" tumor samples. This meta-analysis provides a road map for the study of additional potentially actionable genes in both driver mutation-positive and pan-negative melanomas.
Collapse
Affiliation(s)
- Junfeng Xia
- Authors' Affiliations: Department of Biomedical Informatics
| | - Peilin Jia
- Authors' Affiliations: Department of Biomedical Informatics; Center for Quantitative Sciences
| | | | | | - Douglas Johnson
- Department of Medicine/Division of Hematology-Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeffrey Sosman
- Vanderbilt-Ingram Cancer Center; and Department of Medicine/Division of Hematology-Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - William Pao
- Vanderbilt-Ingram Cancer Center; and Department of Medicine/Division of Hematology-Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Zhongming Zhao
- Authors' Affiliations: Department of Biomedical Informatics; Center for Quantitative Sciences; Department of Cancer Biology; Vanderbilt-Ingram Cancer Center; and
| |
Collapse
|
61
|
Yamamoto H, Watanabe Y, Maehata T, Morita R, Yoshida Y, Oikawa R, Ishigooka S, Ozawa SI, Matsuo Y, Hosoya K, Yamashita M, Taniguchi H, Nosho K, Suzuki H, Yasuda H, Shinomura Y, Itoh F. An updated review of gastric cancer in the next-generation sequencing era: Insights from bench to bedside and vice versa. World J Gastroenterol 2014; 20:3927-3937. [PMID: 24744582 PMCID: PMC3983448 DOI: 10.3748/wjg.v20.i14.3927] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/15/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. There is an increasing understanding of the roles that genetic and epigenetic alterations play in GCs. Recent studies using next-generation sequencing (NGS) have revealed a number of potential cancer-driving genes in GC. Whole-exome sequencing of GC has identified recurrent somatic mutations in the chromatin remodeling gene ARID1A and alterations in the cell adhesion gene FAT4, a member of the cadherin gene family. Mutations in chromatin remodeling genes (ARID1A, MLL3 and MLL) have been found in 47% of GCs. Whole-genome sequencing and whole-transcriptome sequencing analyses have also discovered novel alterations in GC. Recent studies of cancer epigenetics have revealed widespread alterations in genes involved in the epigenetic machinery, such as DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs and microRNAs. Recent advances in molecular research on GC have resulted in the introduction of new diagnostic and therapeutic strategies into clinical settings. The anti-human epidermal growth receptor 2 (HER2) antibody trastuzumab has led to an era of personalized therapy in GC. In addition, ramucirumab, a monoclonal antibody targeting vascular endothelial growth factor receptor (VEGFR)-2, is the first biological treatment that showed survival benefits as a single-agent therapy in patients with advanced GC who progressed after first-line chemotherapy. Using NGS to systematically identify gene alterations in GC is a promising approach with remarkable potential for investigating the pathogenesis of GC and identifying novel therapeutic targets, as well as useful biomarkers. In this review, we will summarize the recent advances in the understanding of the molecular pathogenesis of GC, focusing on the potential use of these genetic and epigenetic alterations as diagnostic biomarkers and novel therapeutic targets.
Collapse
|
62
|
Kim YI, Kim SY, Cho SJ, Park JH, Choi IJ, Lee YJ, Lee EK, Kook MC, Kim CG, Ryu KW, Kim YW. Long-term metformin use reduces gastric cancer risk in type 2 diabetics without insulin treatment: a nationwide cohort study. Aliment Pharmacol Ther 2014; 39:854-63. [PMID: 24612291 DOI: 10.1111/apt.12660] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/22/2013] [Accepted: 01/24/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Metformin use has been associated with a decreased incidence and mortality of various cancers. AIM To evaluate the association between metformin use and gastric cancer. METHODS We randomly selected 100 000 type 2 diabetic patients from the 2004 Korean National Health Insurance claim database, and assessed gastric cancer incidence among 39 989 patients (aged 30-97 years) who were regularly treated with anti-diabetic drugs and followed-up from 2004 to 2010. In total, 26 690 patients had used metformin out of 32 978 diabetics who had not regularly used insulin (insulin non-users), and 5855 patients had used metformin out of 7011 regular insulin users. RESULTS Patients who used metformin showed a lower incidence of gastric cancer than those who did not use metformin, in insulin non-users (P = 0.047, log-rank test). However, in patients on regular insulin, there was no difference of gastric cancer incidence according to metformin use. In insulin non-users, the adjusted hazard ratio (AHR) for metformin use was 0.73 (95% confidential interval [CI], 0.53-1.01) with borderline statistical significance (P = 0.059). Duration of metformin use was associated with the reduction in gastric cancer risk (AHR, 0.88; 95% CI 0.81-0.96, P = 0.003), especially in patients who used metformin for more than 3 years (AHR, 0.57; 95% CI, 0.37-0.87; P = 0.009). CONCLUSION Metformin use >3 years in type 2 diabetics who do not use insulin is associated with a significantly reduced gastric cancer risk.
Collapse
Affiliation(s)
- Y-I Kim
- Center for Gastric Cancer, National Cancer Center, Goyang, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Nam S, Chang HR, Kim KT, Kook MC, Hong D, Kwon CH, Jung HR, Park HS, Powis G, Liang H, Park T, Kim YH. PATHOME: an algorithm for accurately detecting differentially expressed subpathways. Oncogene 2014; 33:4941-51. [PMID: 24681952 PMCID: PMC4182295 DOI: 10.1038/onc.2014.80] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 12/18/2022]
Abstract
The translation of high-throughput gene expression data into biologically meaningful information remains a bottleneck. We developed a novel computational algorithm, PATHOME, for detecting differentially expressed biological pathways. This algorithm employs straightforward statistical tests to evaluate the significance of differential expression patterns along subpathways. Applying it to gene expression data sets of gastric cancer (GC), we compared its performance with those of other leading programs. Based on a literature-driven reference set, PATHOME showed greater consistency in identifying known cancer-related pathways. For the WNT pathway uniquely identified by PATHOME, we validated its involvement in gastric carcinogenesis through experimental perturbation of both cell lines and animal models. We identified HNF4α-WNT5A regulation in the cross-talk between the AMPK metabolic pathway and the WNT signaling pathway, and further identified WNT5A as a potential therapeutic target for GC. We have demonstrated PATHOME to be a powerful tool, with improved sensitivity for identifying disease-related dysregulated pathways.
Collapse
Affiliation(s)
- S Nam
- Cancer Genomics Branch, National Cancer Center of Korea, Goyang-si Gyeonggi-do, Republic of Korea
| | - H R Chang
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Goyang-si Gyeonggi-do, Republic of Korea
| | - K-T Kim
- Molecular Epidemiology Branch, National Cancer Center of Korea, Goyang-si Gyeonggi-do, Republic of Korea
| | - M-C Kook
- Department of Pathology, National Cancer Center of Korea, Goyang-si Gyeonggi-do, Republic of Korea
| | - D Hong
- Cancer Genomics Branch, National Cancer Center of Korea, Goyang-si Gyeonggi-do, Republic of Korea
| | - C H Kwon
- Cancer Genomics Branch, National Cancer Center of Korea, Goyang-si Gyeonggi-do, Republic of Korea
| | - H R Jung
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Goyang-si Gyeonggi-do, Republic of Korea
| | - H S Park
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Goyang-si Gyeonggi-do, Republic of Korea
| | - G Powis
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - H Liang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - T Park
- Department of Statistics, Seoul National University, Kwanak-gu Seoul, Republic of Korea
| | - Y H Kim
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Goyang-si Gyeonggi-do, Republic of Korea
| |
Collapse
|
64
|
Lim SM, Lim JY, Cho JY. Targeted therapy in gastric cancer: personalizing cancer treatment based on patient genome. World J Gastroenterol 2014; 20:2042-50. [PMID: 24587678 PMCID: PMC3934474 DOI: 10.3748/wjg.v20.i8.2042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/15/2013] [Accepted: 12/12/2013] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the second leading cause of cancer-related deaths worldwide. Conventional cytotoxic chemotherapy has limited efficacy for metastatic gastric cancer, with an overall survival of approximately ten months. Recent advances in high-throughput technologies have enabled the implementation of personalized cancer therapy for high-risk patients. The use of such high-throughput technologies, including microarray and next generation sequencing, have promoted the discovery of novel targets that offer new treatment strategies for patients lacking other therapeutic options. Many molecular pathways are currently under investigation as therapeutic targets in gastric cancer, including those related to the epidermal growth factor receptor family, the mesenchymal-epithelial transition factor axis, and the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin factors. Advances in molecular diagnostic tools further support the discovery of new molecular targets. Limitations exist, however; not all patients can be tested for biomarkers, and numerous challenges hamper implementation of targeted therapy in clinical settings. Indeed, the scale of tumor genomic profiling is rapidly outpacing our ability to appropriately synthesize all the information in order to optimally refine patient care. Therefore, clinicians must continue to educate themselves regarding new tools and frameworks, and to utilize multidisciplinary team science, comprised of oncologists, geneticists, pathologists, biologists and bioinformaticians, to successfully implement this genomic approach therapeutically.
Collapse
|
65
|
Abstract
Carcinoma of the stomach is one of the most prevalent cancer types in the world. Although the incidence of gastric cancer is declining, the outcomes of gastric cancer patients remain dismal because of the lack of effective biomarkers to detect early gastric cancer. Modern biomedical research has explored many potential gastric cancer biomarker genes by utilising serum protein antigens, oncogenic genes or gene families through improving molecular biological technologies, such as microarray, RNA-Seq and the like. Recently, the small noncoding microRNAs (miRNAs) have been suggested to be critical regulators in the oncogenesis pathways and to serve as useful clinical biomarkers. This new class of biomarkers is emerging as a novel molecule for cancer diagnosis and prognosis, including gastric cancer. By translational suppression of target genes, miRNAs play a significant role in the gastric cancer cell physiology and tumour progression. There are potential implications of previously discovered gastric cancer molecular biomarkers and their expression modulations by respective miRNAs. Therefore, many miRNAs are found to play oncogenic roles or tumour-suppressing functions in human cancers. With the surprising stability of miRNAs in tissues, serum or other body fluids, miRNAs have emerged as a new type of cancer biomarker with immeasurable clinical potential.
Collapse
|
66
|
Leone A, Di Gennaro E, Bruzzese F, Avallone A, Budillon A. New perspective for an old antidiabetic drug: metformin as anticancer agent. Cancer Treat Res 2014; 159:355-376. [PMID: 24114491 DOI: 10.1007/978-3-642-38007-5_21] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Metformin, an inexpensive, well-tolerated oral agent that is commonly used in the first-line treatment for type 2 diabetes, has become the focus of intense research as a potential anticancer agent. This research reflects a convergence of epidemiologic, clinical, and preclinical evidence, suggesting that metformin may lower cancer risk in diabetics and improve outcomes of many common cancers. Notably, metformin mediates an approximately 30 % reduction in the lifetime risk of cancer in diabetic patients. There is growing recognition that metformin may act (1) directly on cancer cells, primarily by impacting mitochondrial respiration leading to the activation of the AMP-activated protein kinase (AMPK), which controls energy homeostasis in cells, but also through other mechanisms or (2) indirectly on the host metabolism, largely through AMPK-mediated reduction in hepatic gluconeogenesis, leading to reduced circulating insulin levels and decreased insulin/IGF-1 receptor-mediated activation of the PI3K pathway. Support for this comes from the observation that metformin inhibits cancer cell growth in vitro and delays the onset of tobacco carcinogen-induced lung cancer in mice and that metformin and its analog phenformin delay spontaneous tumor development cancer-prone transgenic mice. The potential for both direct antitumor effects and indirect host-mediated effects has sparked enormous interest, but has led to added challenges in translating preclinical findings to the clinical setting. Nonetheless, the accumulation of evidence has been sufficient to justify initiation of clinical trials of metformin as an anticancer agent in the clinical setting, including a large-scale adjuvant study in breast cancer, with additional studies planned.
Collapse
Affiliation(s)
- Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazioni Giovanni Pascale - IRCCS, 80131, Naples, Italy
| | | | | | | | | |
Collapse
|
67
|
Feng H, Qin Z, Zhang X. Opportunities and methods for studying alternative splicing in cancer with RNA-Seq. Cancer Lett 2013. [DOI: 10.1016/j.canlet.2012.11.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
68
|
Cho JY. Molecular diagnosis for personalized target therapy in gastric cancer. J Gastric Cancer 2013; 13:129-35. [PMID: 24156032 PMCID: PMC3804671 DOI: 10.5230/jgc.2013.13.3.129] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is the second leading cause of cancer-related deaths worldwide. In advanced and metastatic gastric cancer, the conventional chemotherapy with limited efficacy shows an overall survival period of about 10 months. Patient specific and effective treatments known as personalized cancer therapy is of significant importance. Advances in high-throughput technologies such as microarray and next generation sequencing for genes, protein expression profiles and oncogenic signaling pathways have reinforced the discovery of treatment targets and personalized treatments. However, there are numerous challenges from cancer target discoveries to practical clinical benefits. Although there is a flood of biomarkers and target agents, only a minority of patients are tested and treated accordingly. Numerous molecular target agents have been under investigation for gastric cancer. Currently, targets for gastric cancer include the epidermal growth factor receptor family, mesenchymal-epithelial transition factor axis, and the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathways. Deeper insights of molecular characteristics for gastric cancer has enabled the molecular classification of gastric cancer, the diagnosis of gastric cancer, the prediction of prognosis, the recognition of gastric cancer driver genes, and the discovery of potential therapeutic targets. Not only have we deeper insights for the molecular diversity of gastric cancer, but we have also prospected both affirmative potentials and hurdles to molecular diagnostics. New paradigm of transdisciplinary team science, which is composed of innovative explorations and clinical investigations of oncologists, geneticists, pathologists, biologists, and bio-informaticians, is mandatory to recognize personalized target therapy.
Collapse
Affiliation(s)
- Jae Yong Cho
- Department of Medical Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
69
|
Fox MM, Phoenix KN, Kopsiaftis SG, Claffey KP. AMP-Activated Protein Kinase α 2 Isoform Suppression in Primary Breast Cancer Alters AMPK Growth Control and Apoptotic Signaling. Genes Cancer 2013; 4:3-14. [PMID: 23946867 DOI: 10.1177/1947601913486346] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/16/2013] [Indexed: 11/15/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic regulator that promotes energy conservation and restoration when cells are exposed to nutrient stress. Given the high metabolic requirement of cancer cells, AMPK activation has been suggested as a potential preventative and therapeutic target. However, previous findings have shown that AMPK activity is diminished in some cancers. Expression of the 2 catalytic isoforms, AMPKα1 and AMPKα2, was evaluated in primary breast cancer and matched nontumor-adjacent tissue samples using immunohistochemistry. AMPK-dependent growth signaling events were examined in primary human mammary epithelial cells (HMECs) using RNAi to understand the importance of AMPKα2 in normal growth regulation. To test whether AMPKα2 would reinstate growth control and apoptotic mechanisms in breast cancer cells, metabolic stress assays and tumor xenografts were performed in MCF-7 cells, expressing low levels of AMPKα2, with stable transfection of either green fluorescent protein (GFP) or AMPKα2 expression constructs. AMPKα2 was found to be significantly suppressed in breast cancer tissue samples, whereas AMPKα1 was not. In normal HMECs, low glucose stress resulted in AMPK-driven growth inhibition. Interestingly, this response was ablated when AMPKα2 was silenced. Metabolic stress assays in MCF-7 cells indicated that AMPKα2 expression reduced both mTOR signaling and cyclin D1 expression, contributing to G1-phase cell cycle arrest. Cells expressing AMPKα2 underwent apoptosis more readily than GFP control cells. Xenograft studies demonstrated that MCF-7 tumors expressing AMPKα2 display reduced proliferation and increased apoptotic events. Furthermore, AMPKα2 xenografts exhibited diminished cyclin D1 levels along with an increased amount of nuclear p53, thereby implicating the AMPKα2-p53 signaling axis as a mediator of cell apoptosis. Together, these results highlight the significance of reduced AMPK activity contributing to human carcinogenesis and, specifically, the role of AMPKα2 with respect to its control of normal mammary epithelial cell growth and its reduced expression in breast cancer.
Collapse
Affiliation(s)
- Melissa M Fox
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA ; Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | |
Collapse
|
70
|
Yung MMH, Chan DW, Liu VWS, Yao KM, Ngan HYS. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade. BMC Cancer 2013; 13:327. [PMID: 23819460 PMCID: PMC3702529 DOI: 10.1186/1471-2407-13-327] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/01/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although advanced-stage cervical cancer can benefit from current treatments, approximately 30% patients may fail after definitive treatment eventually. Therefore, exploring alternative molecular therapeutic approaches is imperatively needed for this disease. We have recently shown that activation of AMP-activated protein kinase (AMPK), a metabolic sensor, hampers cervical cancer cell growth through blocking the Wnt/β-catenin signaling activity. Here, we report that activated AMPK (p-AMPK) also inhibits cervical cancer cell growth by counteracting FOXM1 function. METHODS Effect of the activation of AMPK on FOXM1 expression was examined by hypoxia and glucose deprivation, as well as pharmacological AMPK activators such as A23187, AICAR and metformin. RT Q-PCR and Western blot analysis were employed to investigate the activities of AMPK, FOXM1 and AKT/FOXO3a signaling. RESULTS Consistent with our previous findings, the activation of AMPK by either AMPK activators such as AICAR, A23187, metformin, glucose deprivation or hypoxia significantly inhibited the cervical cancer cell growth. Importantly, we found that activated AMPK activity was concomitantly associated with the reduction of both the mRNA and protein levels of FOXM1. Mechanistically, we showed that activated AMPK was able to reduce AKT mediated phosphorylation of p-FOXO3a (Ser253). Interestingly, activated AMPK could not cause any significant changes in FOXM1 in cervical cancer cells in which endogenous FOXO3a levels were knocked down using siRNAs, suggesting that FOXO3a is involved in the suppression of FOXM1. CONCLUSION Taken together, our results suggest the activated AMPK impedes cervical cancer cell growth through reducing the expression of FOXM1.
Collapse
Affiliation(s)
- Mingo Ming Ho Yung
- Departments of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | | | |
Collapse
|
71
|
Liu X, Ru J, Zhang J, Zhu LH, Liu M, Li X, Tang H. miR-23a targets interferon regulatory factor 1 and modulates cellular proliferation and paclitaxel-induced apoptosis in gastric adenocarcinoma cells. PLoS One 2013; 8:e64707. [PMID: 23785404 PMCID: PMC3677940 DOI: 10.1371/journal.pone.0064707] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/17/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are a class of non-coding RNAs that function as key regulators of gene expression at the post-transcriptional level. In our previous research, we found that miR-23a was significantly up-regulated in human gastric adenocarcinoma cells. In the current study, we demonstrate that miR-23a suppresses paclitaxel-induced apoptosis and promotes the cell proliferation and colony formation ability of gastric adenocarcinoma cells. We have identified tumor suppressor interferon regulator factor 1 (IRF1) as a direct target gene of miR-23a. We performed a fluorescent reporter assay to confirm that miR-23a bound to the IRF1 mRNA 3′UTR directly and specifically. The ectopic expression of IRF1 markedly promoted paclitaxel-induced apoptosis and inhibited cell viability and colony formation ability, whereas the knockdown of IRF1 had the opposite effects. The restoration of IRF1 expression counteracted the effects of miR-23a on the paclitaxel-induced apoptosis and cell proliferation of gastric adenocarcinoma cells. Quantitative real-time PCR showed that miR-23a is frequently up-regulated in gastric adenocarcinoma tissues, whereas IRF1 is down-regulated in cancer tissues. Altogether, these results indicate that miR-23a suppresses paclitaxel-induced apoptosis and promotes cell viability and the colony formation ability of gastric adenocarcinoma cells by targeting IRF1 at the post-transcriptional level.
Collapse
Affiliation(s)
- Xue Liu
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jing Ru
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jian Zhang
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li-hua Zhu
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pathogen Biology and Immunology, College of Basic Medicine, Hebei United University, Tangshan, Hebei Province, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- * E-mail:
| |
Collapse
|
72
|
Uppal DS, Powell SM. Genetics/genomics/proteomics of gastric adenocarcinoma. Gastroenterol Clin North Am 2013; 42:241-60. [PMID: 23639639 DOI: 10.1016/j.gtc.2013.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hereditary diffuse gastric cancer can be caused by epithelial cadherin mutations for which genetic testing is available. Inherited cancer predisposition syndromes including Lynch, Li-Fraumeni, and Peutz-Jeghers syndromes, can be associated with gastric cancer. Chromosomal and microsatellite instability occur in gastric cancers. Several consistent genetic and molecular alterations including chromosomal instability, microsatellite instability, and epigenetic alterations have been identified in gastric cancers. Biomarkers and molecular profiles are being discovered with potential for diagnostic, prognostic, and treatment guidance implications.
Collapse
Affiliation(s)
- Dushant S Uppal
- Division of Gastroenterology/Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA 22908-0708, USA
| | | |
Collapse
|
73
|
Abstract
The AMP-activated protein kinase (AMPK) functions to monitor and maintain energy homeostasis at the cellular and organism level. AMPK was perceived historically primarily as a component of the LKB1/STK11 tumor suppressor (LKB1 mutations cause the Peutz-Jegher cancer predisposition syndrome) cascade upstream of the TSC1/2/mTOR pathway and thus likely to be a tumor suppressor. However, AMPK has recently been shown to promote cancer cell survival in the face of extrinsic and intrinsic stressors including bioenergetic, growth factor, and oncogene stress compatible with studies showing that AMPK is required for oncogenic transformation. Thus, whether AMPK acts as a bona fide tumor suppressor or a contextual oncogene and, of particular importance, whether AMPK should be targeted for activation or inhibition during cancer therapy, is controversial and requires clarification. We aim to initiate discussions of these critical questions by reviewing the role of AMPK with an emphasis on cancer cell adaptation to microenvironment stress and therapeutic intervention.
Collapse
Affiliation(s)
- Jiyong Liang
- Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
74
|
Zhang G, Yang P, Guo P, Miele L, Sarkar FH, Wang Z, Zhou Q. Unraveling the mystery of cancer metabolism in the genesis of tumor-initiating cells and development of cancer. Biochim Biophys Acta Rev Cancer 2013; 1836:49-59. [PMID: 23523716 DOI: 10.1016/j.bbcan.2013.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 01/01/2023]
Abstract
Robust anaerobic metabolism plays a causative role in the origin of cancer cells; however, the oncogenic metabolic genes, factors, pathways, and networks in genesis of tumor-initiating cells (TICs) have not yet been systematically summarized. In addition, the mechanisms of oncogenic metabolism in the genesis of TICs are enigmatic. In this review, we discussed multiple cancer metabolism-related genes (MRGs) that are overexpressed in TICs and are responsible for inducing pluripotent stem cells. Moreover, we summarized that oncogenic metabolic genes and onco-metabolites induce metabolic reprogramming, which switches normal mitochondrial oxidative phosphorylation to cancer anaerobic metabolism, triggers epigenetic, genetic, and environmental alterations, drives the generation of TICs, and boosts the development of cancer. Importantly, cancer metabolism is controlled by positive and negative metabolic regulators. Positive oncogenic metabolic regulators, including key oncogenic metabolic genes, onco-metabolites, hypoxia, and an acidic environment, promote oncogenic metabolic reprogramming and anaerobic metabolism. However, dysfunction of negative metabolic regulators, including defects in p53, PTEN, and LKB1-AMPK-mTOR pathways, enhances cancer metabolism. Loss of the metabolic balance results in oncogenic metabolic reprogramming, genesis of TICs, and tumorigenesis. Collectively, this review provides new insight into the role and mechanism of these oncogenic metabolisms in the genesis of TICs and tumorigenesis. Accordingly, targeting key oncogenic genes, onco-metabolites, pathways, networks, and the acidic cancer microenvironment appears to be an attractive strategy for novel anti-tumor treatment.
Collapse
Affiliation(s)
- Gaochuan Zhang
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | | | | | | | | | | | | |
Collapse
|
75
|
AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 2013; 17:113-24. [PMID: 23274086 PMCID: PMC3545102 DOI: 10.1016/j.cmet.2012.12.001] [Citation(s) in RCA: 697] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/11/2012] [Accepted: 12/04/2012] [Indexed: 01/22/2023]
Abstract
AMPK is a metabolic sensor that helps maintain cellular energy homeostasis. Despite evidence linking AMPK with tumor suppressor functions, the role of AMPK in tumorigenesis and tumor metabolism is unknown. Here we show that AMPK negatively regulates aerobic glycolysis (the Warburg effect) in cancer cells and suppresses tumor growth in vivo. Genetic ablation of the α1 catalytic subunit of AMPK accelerates Myc-induced lymphomagenesis. Inactivation of AMPKα in both transformed and nontransformed cells promotes a metabolic shift to aerobic glycolysis, increased allocation of glucose carbon into lipids, and biomass accumulation. These metabolic effects require normoxic stabilization of the hypoxia-inducible factor-1α (HIF-1α), as silencing HIF-1α reverses the shift to aerobic glycolysis and the biosynthetic and proliferative advantages conferred by reduced AMPKα signaling. Together our findings suggest that AMPK activity opposes tumor development and that its loss fosters tumor progression in part by regulating cellular metabolic pathways that support cell growth and proliferation.
Collapse
|
76
|
Perez-Rathke A, Li H, Lussier YA. Interpreting personal transcriptomes: personalized mechanism-scale profiling of RNA-seq data. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2013:159-170. [PMID: 23424121 PMCID: PMC3595401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Despite thousands of reported studies unveiling gene-level signatures for complex diseases, few of these techniques work at the single-sample level with explicit underpinning of biological mechanisms. This presents both a critical dilemma in the field of personalized medicine as well as a plethora of opportunities for analysis of RNA-seq data. In this study, we hypothesize that the "Functional Analysis of Individual Microarray Expression" (FAIME) method we developed could be smoothly extended to RNA-seq data and unveil intrinsic underlying mechanism signatures across different scales of biological data for the same complex disease. Using publicly available RNA-seq data for gastric cancer, we confirmed the effectiveness of this method (i) to translate each sample transcriptome to pathway-scale scores, (ii) to predict deregulated pathways in gastric cancer against gold standards (FDR<5%, Precision=75%, Recall =92%), and (iii) to predict phenotypes in an independent dataset and expression platform (RNA-seq vs microarrays, Fisher Exact Test p<10(-6)). Measuring at a single-sample level, FAIME could differentiate cancer samples from normal ones; furthermore, it achieved comparative performance in identifying differentially expressed pathways as compared to state-of-the-art cross-sample methods. These results motivate future work on mechanism-level biomarker discovery predictive of diagnoses, treatment, and therapy.
Collapse
Affiliation(s)
- Alan Perez-Rathke
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
77
|
Wu S, Li N, Ma J, Shen H, Jiang D, Chang C, Zhang C, Li L, Zhang H, Jiang J, Xu Z, Ping L, Chen T, Zhang W, Zhang T, Xing X, Yi T, Li Y, Fan F, Li X, Zhong F, Wang Q, Zhang Y, Wen B, Yan G, Lin L, Yao J, Lin Z, Wu F, Xie L, Yu H, Liu M, Lu H, Mu H, Li D, Zhu W, Zhen B, Qian X, Qin J, Liu S, Yang P, Zhu Y, Xu P, He F. First Proteomic Exploration of Protein-Encoding Genes on Chromosome 1 in Human Liver, Stomach, and Colon. J Proteome Res 2012; 12:67-80. [PMID: 23256928 DOI: 10.1021/pr3008286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Songfeng Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Ning Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Huali Shen
- Institutes of Biomedical Sciences and Department of Chemistry, 130 DongAn Road, Fudan University, Shanghai 200032, China
| | | | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Chengpu Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Liwei Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Hongxing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Jing Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Zhongwei Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Lingyan Ping
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Tao Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Wei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Xiaohua Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Tailong Yi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Fengxu Fan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Xiaoqian Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Fan Zhong
- Institutes of Biomedical Sciences and Department of Chemistry, 130 DongAn Road, Fudan University, Shanghai 200032, China
| | - Quanhui Wang
- BGI-Shenzhen, ShenZhen 518083, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Zhang
- Institutes of Biomedical Sciences and Department of Chemistry, 130 DongAn Road, Fudan University, Shanghai 200032, China
| | - Bo Wen
- BGI-Shenzhen, ShenZhen 518083, China
| | - Guoquan Yan
- Institutes of Biomedical Sciences and Department of Chemistry, 130 DongAn Road, Fudan University, Shanghai 200032, China
| | - Liang Lin
- BGI-Shenzhen, ShenZhen 518083, China
| | - Jun Yao
- Institutes of Biomedical Sciences and Department of Chemistry, 130 DongAn Road, Fudan University, Shanghai 200032, China
| | | | - Feifei Wu
- Institutes of Biomedical Sciences and Department of Chemistry, 130 DongAn Road, Fudan University, Shanghai 200032, China
| | - Liqi Xie
- Institutes of Biomedical Sciences and Department of Chemistry, 130 DongAn Road, Fudan University, Shanghai 200032, China
| | - Hongxiu Yu
- Institutes of Biomedical Sciences and Department of Chemistry, 130 DongAn Road, Fudan University, Shanghai 200032, China
| | - Mingqi Liu
- Institutes of Biomedical Sciences and Department of Chemistry, 130 DongAn Road, Fudan University, Shanghai 200032, China
| | - Haojie Lu
- Institutes of Biomedical Sciences and Department of Chemistry, 130 DongAn Road, Fudan University, Shanghai 200032, China
| | - Hong Mu
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Weimin Zhu
- Taicang Institute for Life Sciences Information, Taicang 215400, China
| | - Bei Zhen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Siqi Liu
- BGI-Shenzhen, ShenZhen 518083, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences and Department of Chemistry, 130 DongAn Road, Fudan University, Shanghai 200032, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing
102206, China
- Institutes of Biomedical Sciences and Department of Chemistry, 130 DongAn Road, Fudan University, Shanghai 200032, China
| |
Collapse
|
78
|
Wang Q, Wen B, Yan G, Wei J, Xie L, Xu S, Jiang D, Wang T, Lin L, Zi J, Zhang J, Zhou R, Zhao H, Ren Z, Qu N, Lou X, Sun H, Du C, Chen C, Zhang S, Tan F, Xian Y, Gao Z, He M, Chen L, Zhao X, Xu P, Zhu Y, Yin X, Shen H, Zhang Y, Jiang J, Zhang C, Li L, Chang C, Ma J, Yan G, Yao J, Lu H, Ying W, Zhong F, He QY, Liu S. Qualitative and Quantitative Expression Status of the Human Chromosome 20 Genes in Cancer Tissues and the Representative Cell Lines. J Proteome Res 2012; 12:151-61. [DOI: 10.1021/pr3008336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Quanhui Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Bo Wen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Guangrong Yan
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Junying Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Liqi Xie
- Institutes of Biomedical Sciences
and Department of Chemistry, Fudan University, Shanghai 200032, China
| | | | | | | | - Liang Lin
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jin Zi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ju Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, China
| | - Ruo Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Zhe Ren
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Xiaomin Lou
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, China
| | - Haidan Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, China
| | | | | | - Shenyan Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, China
| | | | | | - Zhibo Gao
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Xingfeng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Huali Shen
- Institutes of Biomedical Sciences
and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Yang Zhang
- Institutes of Biomedical Sciences
and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Jing Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Chengpu Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Liwei Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Guoquan Yan
- Institutes of Biomedical Sciences
and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Jun Yao
- Institutes of Biomedical Sciences
and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Haojie Lu
- Institutes of Biomedical Sciences
and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
China
- National Engineering Research Center for Protein Drugs, Beijing 102206, China
| | - Fan Zhong
- Institutes of Biomedical Sciences
and Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Siqi Liu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, China
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
79
|
Abstract
Gastric cancer is the second most common cause of cancer-related death in the world, representing a major global health issue. The high mortality rate is largely due to the lack of effective medical treatment for advanced stages of this disease. Recently next-generation sequencing (NGS) technology has become a revolutionary tool for cancer research, and several NGS studies in gastric cancer have been published. Here we review the insights gained from these studies regarding how use NGS to elucidate the molecular basis of gastric cancer and identify potential therapeutic targets. We also discuss the challenges and future directions of such efforts.
Collapse
Affiliation(s)
- Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA.
| | | |
Collapse
|
80
|
Phoenix KN, Devarakonda CV, Fox MM, Stevens LE, Claffey KP. AMPKα2 Suppresses Murine Embryonic Fibroblast Transformation and Tumorigenesis. Genes Cancer 2012; 3:51-62. [PMID: 22893790 DOI: 10.1177/1947601912452883] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 06/06/2012] [Accepted: 06/03/2012] [Indexed: 01/13/2023] Open
Abstract
AMP-activated kinase (AMPK) is a key metabolic sensor and stress signaling kinase. AMPK activity is known to suppress anabolic processes such as protein and lipid biosynthesis and promote energy-producing pathways including fatty acid oxidation, resulting in increased cellular energy. In addition, AMPK localizes to centrosomes during cell division, plays a role in cellular polarization, and directly targets p53, affecting apoptosis. Two distinct catalytic AMPKα isoforms exist: α1 and α2. Multiple reports indicate that both common and distinct functions exist for each of the 2 α isoforms. AMPK activation has been shown to repress tumor growth, and it has been suggested that AMPK may function as a metabolic tumor suppressor. To evaluate the potential role of each of the AMPKα isoforms in modulating cellular transformation, susceptibility to Ras-induced transformation was evaluated in normal murine embryonic fibroblasts (MEFs) obtained from genetically deleted AMPKα1- or AMPKα2-null mice. This study demonstrated that while AMPKα1 is the dominant AMPK isoform expressed in MEFs, only the AMPKα2-null MEFs displayed increased susceptibility to H-RasV12 transformation in vitro and tumorigenesis in vivo. Conversely, AMPKα1-null MEFs, which demonstrated compensation with increased expression of AMPKα2, displayed minimal transformation susceptibility, decreased cell survival, decreased cell proliferation, and increased apoptosis. Finally, this study demonstrates that AMPKα2 was selectively responsible for targeting p53, thus contributing to the suppression of transformation and tumorigenic mechanisms.
Collapse
Affiliation(s)
- Kathryn N Phoenix
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | | | |
Collapse
|