51
|
Gulla A, Andriusaityte U, Zdanys GT, Babonaite E, Strupas K, Kelly H. The Impact of Epithelial-Mesenchymal Transition and Metformin on Pancreatic Cancer Chemoresistance: A Pathway towards Individualized Therapy. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:467. [PMID: 35454306 PMCID: PMC9032206 DOI: 10.3390/medicina58040467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022]
Abstract
Globally, pancreatic ductal adenocarcinoma remains among the most aggressive forms of neoplastic diseases, having a dismal prognostic outcome. Recent findings elucidated that epithelial-mesenchymal transition (EMT) can play an important role in pancreatic tumorigenic processes, as it contributes to the manifestation of malignant proliferative masses, which impede adequate drug delivery. An organized literature search with PubMed, Scopus, Microsoft Academic and the Cochrane library was performed for articles published in English from 2011 to 2021 to review and summarize the latest updates and knowledge on the current understanding of EMT and its implications for tumorigenesis and chemoresistance. Furthermore, in the present paper, we investigate the recent findings on metformin as a possible neoadjuvant chemotherapy agent, which affects EMT progression and potentially provides superior oncological outcomes for PDAC patients. Our main conclusions indicate that selectively suppressing EMT in pancreatic cancer cells has a promising therapeutic utility by selectively targeting the chemotherapy-resistant sub-population of cancer stem cells, inhibiting tumor growth via EMT pathways and thereby improving remission in PDAC patients. Moreover, given that TGF-β1-driven EMT generates the migration of tumor-initiating cells by directly linking the acquisition of abnormal cellular motility with the maintenance of tumor initiating potency, the chemoprevention of TGF-β1-induced EMT may have promising clinical applications in the therapeutic management of PDAC outcomes.
Collapse
Affiliation(s)
- Aiste Gulla
- Institute of Clinical Medicine, Clinic of Gastroenterology, Surgery, Nephrology, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
- Center of Visceral Medicine and Translational Research, Department of Surgery, Georgetown University Hospital, 3800 Reservoir Road Northwest BLES Building 1st. Floor, Washington, DC 20007, USA
| | - Urte Andriusaityte
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Gabrielius Tomas Zdanys
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Elena Babonaite
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Kestutis Strupas
- Institute of Clinical Medicine, Clinic of Gastroenterology, Surgery, Nephrology, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
| | - Helena Kelly
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| |
Collapse
|
52
|
Simões RV, Henriques RN, Cardoso BM, Fernandes FF, Carvalho T, Shemesh N. Glucose fluxes in glycolytic and oxidative pathways detected in vivo by deuterium magnetic resonance spectroscopy reflect proliferation in mouse glioblastoma. Neuroimage Clin 2022; 33:102932. [PMID: 35026626 PMCID: PMC8760481 DOI: 10.1016/j.nicl.2021.102932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
We performed dynamic glucose enhanced (DGE) 2H-MRS in mouse GBM tumors. Marchenko-Pastur PCA denoising of 2H-MRS spectra improved kinetic quantification. Metabolic kinetics revealed differential glucose pathway fluxes in non-necrotic tumors. Modulation of glucose metabolism reflected tumor heterogeneity (proliferation).
Objectives Glioblastoma multiforme (GBM), the most aggressive glial brain tumors, can metabolize glucose through glycolysis and mitochondrial oxidation pathways. While specific dependencies on those pathways are increasingly associated with treatment response, detecting such GBM subtypes in vivo remains elusive. Here, we develop a dynamic glucose-enhanced deuterium spectroscopy (DGE 2H-MRS) approach for differentially assessing glucose turnover rates through glycolysis and mitochondrial oxidation in mouse GBM and explore their association with histologic features of the tumor and its microenvironment. Materials and methods GL261 and CT2A glioma allografts were induced in immunocompetent mice and scanned in vivo at 9.4 Tesla, harnessing DGE 2H-MRS with volume selection and Marchenko-Pastur PCA (MP-PCA) denoising to achieve high temporal resolution. Each tumor was also classified by histopathologic analysis and assessed for cell proliferation (Ki67 immunostaining), while the respective cell lines underwent in situ extracellular flux analysis to assess mitochondrial function. Results MP-PCA denoising of in vivo DGE 2H-MRS data significantly improved the time-course detection (~2-fold increased Signal-to-Noise Ratio) and fitting precision (−19 ± 1 % Cramér-Rao Lower Bounds) of 2H-labelled glucose, and glucose-derived glutamate-glutamine (Glx) and lactate pools in GL261 and CT2A orthotopic tumors. Kinetic modeling further indicated inter-tumor heterogeneity of glucose consumption rate for glycolysis and oxidation during a defined epoch of active proliferation in both cohorts (19 ± 1 days post-induction), with consistent volumes (38.3 ± 3.4 mm3) and perfusion properties prior to marked necrosis. Histopathologic analysis of these tumors revealed clear differences in tumor heterogeneity between the two GBM models, aligned with metabolic differences of the respective cell lines monitored in situ. Importantly, glucose oxidation (i.e. Glx synthesis and elimination rates: 0.40 ± 0.08 and 0.12 ± 0.03 mM min−1, respectively) strongly correlated with cell proliferation across the pooled cohorts (R = 0.82, p = 0.001; and R = 0.80, p = 0.002, respectively), regardless of tumor morphologic features or in situ metabolic characteristics of each GBM model. Conclusions Our fast DGE 2H-MRS enables the quantification of glucose consumption rates through glycolysis and mitochondrial oxidation in mouse GBM, which is relevant for assessing their modulation in vivo according to tumor microenvironment features such as cell proliferation. This novel application augurs well for non-invasive metabolic characterization of glioma or other cancers with mitochondrial oxidation dependencies.
Collapse
Affiliation(s)
- Rui V Simões
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| | - Rafael N Henriques
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Beatriz M Cardoso
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Tânia Carvalho
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
53
|
Monsorno K, Buckinx A, Paolicelli RC. Microglial metabolic flexibility: emerging roles for lactate. Trends Endocrinol Metab 2022; 33:186-195. [PMID: 34996673 DOI: 10.1016/j.tem.2021.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022]
Abstract
Microglia, the resident macrophages of the central nervous system (CNS), play important functions in the healthy and diseased brain. In the emerging field of immunometabolism, progress has been made in understanding how cellular metabolism can orchestrate the key responses of tissue macrophages, such as phagocytosis and inflammation. However, very little is known about the metabolic control of microglia. Lactate, now recognized as a crucial metabolite and a central substrate in metabolic flexibility, is emerging not only as a novel bioenergetic fuel for microglial metabolism but also as a potential modulator of cellular function. Parallels with macrophages will help in understanding how microglial lactate metabolism is implicated in brain physiology and pathology, and how it could be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Katia Monsorno
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - An Buckinx
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
54
|
Mesbahi Y, Trahair TN, Lock RB, Connerty P. Exploring the Metabolic Landscape of AML: From Haematopoietic Stem Cells to Myeloblasts and Leukaemic Stem Cells. Front Oncol 2022; 12:807266. [PMID: 35223487 PMCID: PMC8867093 DOI: 10.3389/fonc.2022.807266] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Despite intensive chemotherapy regimens, up to 60% of adults with acute myeloid leukaemia (AML) will relapse and eventually succumb to their disease. Recent studies suggest that leukaemic stem cells (LSCs) drive AML relapse by residing in the bone marrow niche and adapting their metabolic profile. Metabolic adaptation and LSC plasticity are novel hallmarks of leukemogenesis that provide important biological processes required for tumour initiation, progression and therapeutic responses. These findings highlight the importance of targeting metabolic pathways in leukaemia biology which might serve as the Achilles' heel for the treatment of AML relapse. In this review, we highlight the metabolic differences between normal haematopoietic cells, bulk AML cells and LSCs. Specifically, we focus on four major metabolic pathways dysregulated in AML; (i) glycolysis; (ii) mitochondrial metabolism; (iii) amino acid metabolism; and (iv) lipid metabolism. We then outline established and emerging drug interventions that exploit metabolic dependencies of leukaemic cells in the treatment of AML. The metabolic signature of AML cells alters during different biological conditions such as chemotherapy and quiescence. Therefore, targeting the metabolic vulnerabilities of these cells might selectively eradicate them and improve the overall survival of patients with AML.
Collapse
Affiliation(s)
- Yashar Mesbahi
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Patrick Connerty
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| |
Collapse
|
55
|
Amemiya T, Yamaguchi T. Oscillations and Dynamic Symbiosis in Cellular Metabolism in Cancer. Front Oncol 2022; 12:783908. [PMID: 35251968 PMCID: PMC8888517 DOI: 10.3389/fonc.2022.783908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
The grade of malignancy differs among cancer cell types, yet it remains the burden of genetic studies to understand the reasons behind this observation. Metabolic studies of cancer, based on the Warburg effect or aerobic glycolysis, have also not provided any clarity. Instead, the significance of oxidative phosphorylation (OXPHOS) has been found to play critical roles in aggressive cancer cells. In this perspective, metabolic symbiosis is addressed as one of the ultimate causes of the grade of cancer malignancy. Metabolic symbiosis gives rise to metabolic heterogeneities which enable cancer cells to acquire greater opportunities for proliferation and metastasis in tumor microenvironments. This study introduces a real-time new imaging technique to visualize metabolic symbiosis between cancer-associated fibroblasts (CAFs) and cancer cells based on the metabolic oscillations in these cells. The causality of cellular oscillations in cancer cells and CAFs, connected through lactate transport, is a key point for the development of this novel technique.
Collapse
Affiliation(s)
- Takashi Amemiya
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), Yokohama, Japan
- *Correspondence: Takashi Amemiya,
| | - Tomohiko Yamaguchi
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Nakano, Japan
| |
Collapse
|
56
|
Gill JG, Leef SN, Ramesh V, Martin-Sandoval MS, Rao AD, West L, Muh S, Gu W, Zhao Z, Hosler GA, Vandergriff TW, Durham AB, Mathews TP, Aurora AB. A short isoform of spermatogenic enzyme GAPDHS functions as a metabolic switch and limits metastasis in melanoma. Cancer Res 2022; 82:1251-1266. [PMID: 35149585 DOI: 10.1158/0008-5472.can-21-2062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Despite being the leading cause of cancer deaths, metastasis remains a poorly understood process. To identify novel regulators of metastasis in melanoma, we performed a large-scale RNA-sequencing screen of 48 samples from patient-derived xenograft (PDX) subcutaneous melanomas and their associated metastases. In comparison to primary tumors, expression of glycolytic genes was frequently decreased in metastases while expression of some TCA cycle genes was increased in metastases. Consistent with these transcriptional changes, melanoma metastases underwent a metabolic switch characterized by decreased levels of glycolytic metabolites and increased abundance of TCA cycle metabolites. A short isoform of glyceraldehye-3-phosphate dehydrogenase, spermatogenic (GAPDHS) lacking the N-terminal domain suppressed metastasis and regulated this metabolic switch. GAPDHS was downregulated in metastatic nodules from PDX models as well as in human patients. Overexpression of GAPDHS was sufficient to block melanoma metastasis, while its inhibition promoted metastasis, decreased glycolysis, and increased levels of certain TCA cycle metabolites and their derivatives including citrate, fumarate, malate, and aspartate. Isotope tracing studies indicated that GADPHS mediates this shift through changes in pyruvate carboxylase activity and aspartate synthesis, both metabolic pathways critical for cancer survival and metastasis. Together these data identify a short isoform of GAPDHS that limits melanoma metastasis and regulates central carbon metabolism.
Collapse
Affiliation(s)
- Jennifer G Gill
- University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Samantha N Leef
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vijayashree Ramesh
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Misty S Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aparna D Rao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
- Molecular Oncology Laboratory, Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lindsey West
- University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas
| | - Sarah Muh
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhiyu Zhao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gregory A Hosler
- University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas
- ProPath Dermatopathology, Dallas, Texas
| | - Travis W Vandergriff
- University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas
| | - Alison B Durham
- University of Michigan, Department of Dermatology, Ann Arbor, Michigan
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Arin B Aurora
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
57
|
Tripathi S, Park JH, Pudakalakatti S, Bhattacharya PK, Kaipparettu BA, Levine H. A mechanistic modeling framework reveals the key principles underlying tumor metabolism. PLoS Comput Biol 2022; 18:e1009841. [PMID: 35148308 PMCID: PMC8870510 DOI: 10.1371/journal.pcbi.1009841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 02/24/2022] [Accepted: 01/15/2022] [Indexed: 01/12/2023] Open
Abstract
While aerobic glycolysis, or the Warburg effect, has for a long time been considered a hallmark of tumor metabolism, recent studies have revealed a far more complex picture. Tumor cells exhibit widespread metabolic heterogeneity, not only in their presentation of the Warburg effect but also in the nutrients and the metabolic pathways they are dependent on. Moreover, tumor cells can switch between different metabolic phenotypes in response to environmental cues and therapeutic interventions. A framework to analyze the observed metabolic heterogeneity and plasticity is, however, lacking. Using a mechanistic model that includes the key metabolic pathways active in tumor cells, we show that the inhibition of phosphofructokinase by excess ATP in the cytoplasm can drive a preference for aerobic glycolysis in fast-proliferating tumor cells. The differing rates of ATP utilization by tumor cells can therefore drive heterogeneity with respect to the presentation of the Warburg effect. Building upon this idea, we couple the metabolic phenotype of tumor cells to their migratory phenotype, and show that our model predictions are in agreement with previous experiments. Next, we report that the reliance of proliferating cells on different anaplerotic pathways depends on the relative availability of glucose and glutamine, and can further drive metabolic heterogeneity. Finally, using treatment of melanoma cells with a BRAF inhibitor as an example, we show that our model can be used to predict the metabolic and gene expression changes in cancer cells in response to drug treatment. By making predictions that are far more generalizable and interpretable as compared to previous tumor metabolism modeling approaches, our framework identifies key principles that govern tumor cell metabolism, and the reported heterogeneity and plasticity. These principles could be key to targeting the metabolic vulnerabilities of cancer.
Collapse
Affiliation(s)
- Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas, United States of America
- Center for Theoretical Biological Physics and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Pratip K. Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Herbert Levine
- Center for Theoretical Biological Physics and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
58
|
Cannistraci A, Hascoet P, Ali A, Mundra P, Clarke NW, Pavet V, Marais R. MiR-378a inhibits glucose metabolism by suppressing GLUT1 in prostate cancer. Oncogene 2022; 41:1445-1455. [PMID: 35039635 PMCID: PMC8897193 DOI: 10.1038/s41388-022-02178-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is the fifth leading cause of cancer related deaths worldwide, in part due to a lack of molecular stratification tools that can distinguish primary tumours that will remain indolent from those that will metastasise. Amongst potential molecular biomarkers, microRNAs (miRs) have attracted particular interest because of their high stability in body fluids and fixed tissues. These small non-coding RNAs modulate several physiological and pathological processes, including cancer progression. Herein we explore the prognostic potential and the functional role of miRs in localised PCa and their relation to nodal metastasis. We define a 7-miR signature that is associated with poor survival independently of age, Gleason score, pathological T state, N stage and surgical margin status and that is also prognostic for disease-free survival in patients with intermediate-risk localised disease. Within our 7-miR signature, we show that miR-378a-3p (hereafter miR-378a) levels are low in primary tumours compared to benign prostate tissue, and also lower in Gleason score 8-9 compared to Gleason 6-7 PCa. We demonstrate that miR-378a impairs glucose metabolism and reduces proliferation in PCa cells through independent mechanisms, and we identify glucose transporter 1 (GLUT1) messenger RNA as a direct target of miR-378a. We show that GLUT1 inhibition hampers glycolysis, leading to cell death. Our data provides a rational for a new PCa stratification strategy based on miR expression, and it reveals that miR-378a and GLUT1 are potential therapeutic targets in highly aggressive glycolytic PCa.
Collapse
Affiliation(s)
- A Cannistraci
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - P Hascoet
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - A Ali
- Genito-Urinary Cancer Research Group and the FASTMAN Prostate Cancer Centre for Excellence, Division of Cancer Sciences, Manchester Cancer Research Centre, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - P Mundra
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - N W Clarke
- Genito-Urinary Cancer Research Group and the FASTMAN Prostate Cancer Centre for Excellence, Division of Cancer Sciences, Manchester Cancer Research Centre, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK.,The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - V Pavet
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| | - R Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| |
Collapse
|
59
|
Parida PK, Marquez-Palencia M, Nair V, Kaushik AK, Kim K, Sudderth J, Quesada-Diaz E, Cajigas A, Vemireddy V, Gonzalez-Ericsson PI, Sanders ME, Mobley BC, Huffman K, Sahoo S, Alluri P, Lewis C, Peng Y, Bachoo RM, Arteaga CL, Hanker AB, DeBerardinis RJ, Malladi S. Metabolic diversity within breast cancer brain-tropic cells determines metastatic fitness. Cell Metab 2022; 34:90-105.e7. [PMID: 34986341 PMCID: PMC9307073 DOI: 10.1016/j.cmet.2021.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/10/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
HER2+ breast cancer patients are presented with either synchronous (S-BM), latent (Lat), or metachronous (M-BM) brain metastases. However, the basis for disparate metastatic fitness among disseminated tumor cells of similar oncotype within a distal organ remains unknown. Here, employing brain metastatic models, we show that metabolic diversity and plasticity within brain-tropic cells determine metastatic fitness. Lactate secreted by aggressive metastatic cells or lactate supplementation to mice bearing Lat cells limits innate immunosurveillance and triggers overt metastasis. Attenuating lactate metabolism in S-BM impedes metastasis, while M-BM adapt and survive as residual disease. In contrast to S-BM, Lat and M-BM survive in equilibrium with innate immunosurveillance, oxidize glutamine, and maintain cellular redox homeostasis through the anionic amino acid transporter xCT. Moreover, xCT expression is significantly higher in matched M-BM brain metastatic samples compared to primary tumors from HER2+ breast cancer patients. Inhibiting xCT function attenuates residual disease and recurrence in these preclinical models.
Collapse
Affiliation(s)
- Pravat Kumar Parida
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mauricio Marquez-Palencia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vidhya Nair
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Akash K Kaushik
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kangsan Kim
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessica Sudderth
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eduardo Quesada-Diaz
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ambar Cajigas
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vamsidhara Vemireddy
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Paula I Gonzalez-Ericsson
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Melinda E Sanders
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Bret C Mobley
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Kenneth Huffman
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sunati Sahoo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prasanna Alluri
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert M Bachoo
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Srinivas Malladi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
60
|
Broekgaarden M, Bulin AL, Hasan T. High-Throughput Examination of Therapy-Induced Alterations in Redox Metabolism in Spheroid and Microtumor Models. Methods Mol Biol 2022; 2451:71-80. [PMID: 35505011 DOI: 10.1007/978-1-0716-2099-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The capacity of cancer cells to adjust their metabolism to thrive in new environments and in response to treatments has been implicated in the acquisition of treatment resistance. To optimize therapeutic strategies such as photodynamic therapy (PDT)-based combination treatments, methods to characterize the plasticity of cancer metabolism in response to treatments are required. This protocol provides a method for high-throughput and label-free tracking of metabolic redox states in cancer tissues, leveraging the autofluorescent properties of nicotinamide dinucleotide (NAD(P)H) and oxidized flavoprotein adenine dinucleotide (FAD). The methodology is optimized to be applied to 3D spheroid/microtumor/organoid cultures, regardless of the culture type (e.g., adherent or suspension cultures) and morphology. The exploitation of these methods may elucidate mechanisms of metabolic adaptation and perturbations in redox homeostasis, and chart the overall tumor health in both 3D culture models and ex vivo tissues following cancer therapies, such as PDT.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université de Grenoble Alpes, Grenoble, France
| | - Anne-Laure Bulin
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Synchrotron Radiation for Biomedicine, INSERM UA07, Université de Grenoble Alpes, Grenoble, France
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
61
|
Itoyama R, Yasuda-Yoshihara N, Kitamura F, Yasuda T, Bu L, Yonemura A, Uchihara T, Arima K, Hu X, Jun Z, Okamoto Y, Akiyama T, Yamashita K, Nakao Y, Yusa T, Kitano Y, Higashi T, Miyata T, Imai K, Hayashi H, Yamashita YI, Mikawa T, Kondoh H, Baba H, Ishimoto T. Metabolic shift to serine biosynthesis through 3-PG accumulation and PHGDH induction promotes tumor growth in pancreatic cancer. Cancer Lett 2021; 523:29-42. [PMID: 34508795 DOI: 10.1016/j.canlet.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022]
Abstract
Cancer cells craftily adapt their energy metabolism to their microenvironment. Nutrient deprivation due to hypovascularity and fibrosis is a major characteristic of pancreatic ductal adenocarcinoma (PDAC); thus, PDAC cells must produce energy intrinsically. However, the enhancement of energy production via activating Kras mutations is insufficient to explain the metabolic rewiring of PDAC cells. Here, we investigated the molecular mechanism underlying the metabolic shift in PDAC cells under serine starvation. Amino acid analysis revealed that the concentrations of all essential amino acids and most nonessential amino acids were decreased in the blood of PDAC patients. In addition, the plasma serine concentration was significantly higher in PDAC patients with PHGDH-high tumors than in those with PHGDH-low tumors. Although the growth and tumorigenesis of PK-59 cells with PHGDH promoter hypermethylation were significantly decreased by serine starvation, these activities were maintained in PDAC cell lines with PHGDH promoter hypomethylation by serine biosynthesis through PHGDH induction. In fact, DNA methylation analysis by pyrosequencing revealed that the methylation status of the PHGDH promoter was inversely correlated with the PHGDH expression level in human PDAC tissues. In addition to PHGDH induction by serine starvation, PDAC cells showed enhanced serine biosynthesis under serine starvation through 3-PG accumulation via PGAM1 knockdown, resulting in enhanced PDAC cell growth and tumor growth. However, PHGDH knockdown efficiently suppressed PDAC cell growth and tumor growth under serine starvation. These findings provide evidence that targeting the serine biosynthesis pathway by inhibiting PHGDH is a potent therapeutic approach to eliminate PDAC cells in nutrient-deprived microenvironments.
Collapse
Affiliation(s)
- Rumi Itoyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Noriko Yasuda-Yoshihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Fumimasa Kitamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Luke Bu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Atsuko Yonemura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Uchihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kota Arima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Xichen Hu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Zhang Jun
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuya Okamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Takahiko Akiyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kohei Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Nakao
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshihiko Yusa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kitano
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Higashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takumi Mikawa
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
62
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
63
|
Krencz I, Sztankovics D, Danko T, Sebestyen A, Khoor A. Progression and metastasis of small cell lung carcinoma: the role of the PI3K/Akt/mTOR pathway and metabolic alterations. Cancer Metastasis Rev 2021; 40:1141-1157. [PMID: 34958428 PMCID: PMC8825381 DOI: 10.1007/s10555-021-10012-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022]
Abstract
Small cell lung carcinoma (SCLC) is characterized by high metastatic rate and poor prognosis. The platinum-based chemotherapy still represents the backbone of the therapy; however, acquired resistance develops almost in all patients. Although SCLC has been formerly considered a homogeneous disease, recent advances in SCLC research have highlighted the importance of inter- and intratumoral heterogeneity and have resulted in the subclassification of SCLC. The newly described SCLC subtypes are characterized by distinct biological behavior and vulnerabilities that can be therapeutically exploited. The PI3K/Akt/mTOR pathway is frequently affected in SCLC, and its activation represents a promising therapeutic target. Since the mTOR pathway is a master regulator of cellular metabolism, its alterations may also influence the bioenergetic processes of SCLC cells. Despite the encouraging preclinical results, both mTOR and metabolic inhibitors have met limited clinical success so far. Patient selection for personalized therapy, the development of rational drug combinations, and a better understanding of heterogeneity and spatiotemporal evolution of the tumor cells may improve efficacy and can help to overcome acquired resistance. Here we provide a summary of current investigations regarding the role of the mTOR pathway and metabolic alterations in the progression and metastasis formation of SCLC.
Collapse
|
64
|
Longitudinal evaluation of five nasopharyngeal carcinoma animal models on the microPET/MR platform. Eur J Nucl Med Mol Imaging 2021; 49:1497-1507. [PMID: 34862520 DOI: 10.1007/s00259-021-05633-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/20/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE We longitudinally evaluated the tumour growth and metabolic activity of three nasopharyngeal carcinoma (NPC) cell line models (C666-1, C17 and NPC43) and two xenograft models (Xeno76 and Xeno23) using a micropositron emission tomography and magnetic resonance (microPET/MR). With a better understanding of the interplay between tumour growth and metabolic characteristics of these NPC models, we aim to provide insights for the selection of appropriate NPC cell line/xenograft models to assist novel drug discovery and evaluation. METHODS Mice were imaged by 18F-deoxyglucose ([18F]FDG) microPET/MR twice a week for consecutive 3-7 weeks. [18F]FDG uptake was quantified by standardized uptake value (SUV) and presented as SUVmean tumour-to-liver ratio (SUVRmean). Longitudinal tumour growth patterns and metabolic patterns were recorded. SUVRmean and histological characteristics were compared across the five NPC models. Cisplatin was administrated to one selected optimal tumour model, C17, to evaluate our imaging platform. RESULTS We found variable tumour growth and metabolic patterns across different NPC tumour types. C17 has an optimal growth rate and higher tumour metabolic activity compared with C666-1. C666-1 has a fast growth rate but is low in SUVRmean at endpoint due to necrosis as confirmed by H&E. NPC43 and Xeno76 have relatively slow growth rates and are low in SUVRmean, due to severe necrosis. Xeno23 has the slowest growth rate, and a relative high SUVRmean. Cisplatin showed the expected therapeutic effect in the C17 model in marked reduction of tumour size and metabolism. CONCLUSION Our study establishes an imaging platform that characterizes the growth and metabolic patterns of different NPC models, and the platform is well able to demonstrate drug treatment outcome supporting its use in novel drug discovery and evaluation for NPC.
Collapse
|
65
|
Choudhury FK. Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10111838. [PMID: 34829708 PMCID: PMC8615124 DOI: 10.3390/antiox10111838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial redox metabolism is the central component in the cellular metabolic landscape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role in navigating cancer cells’ progression and regulating metabolic adaptation according to the constraints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing through the enhanced oxidative stress encountered during different stages of metastasis for distant colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mitochondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic limitations of that organ dictate the success of colonization and flexibility of the mitochondrial metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
66
|
Mammes A, Pasquier J, Mammes O, Conti M, Douard R, Loric S. Extracellular vesicles: General features and usefulness in diagnosis and therapeutic management of colorectal cancer. World J Gastrointest Oncol 2021; 13:1561-1598. [PMID: 34853637 PMCID: PMC8603448 DOI: 10.4251/wjgo.v13.i11.1561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
In the world, among all type of cancers, colorectal cancer (CRC) is the third most commonly diagnosed in males and the second in females. In most of cases, (RP1) patients’ prognosis limitation with malignant tumors can be attributed to delayed diagnosis of the disease. Identification of patients with early-stage disease leads to more effective therapeutic interventions. Therefore, new screening methods and further innovative treatment approaches are mandatory as they may lead to an increase in progression-free and overall survival rates. For the last decade, the interest in extracellular vesicles (EVs) research has exponentially increased as EVs generation appears to be a universal feature of every cell that is strongly involved in many mechanisms of cell-cell communication either in physiological or pathological situations. EVs can cargo biomolecules, such as lipids, proteins, nucleic acids and generate transmission signal through the intercellular transfer of their content. By this mechanism, tumor cells can recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. This review intends to cover the most recent literature on the role of EVs production in colorectal normal and cancer tissues. Specific attention is paid to the use of EVs for early CRC diagnosis, follow-up, and prognosis as EVs have come into the spotlight of research as a high potential source of ‘liquid biopsies’. The use of EVs as new targets or nanovectors as drug delivery systems for CRC therapy is also summarized.
Collapse
Affiliation(s)
- Aurelien Mammes
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
| | - Jennifer Pasquier
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
| | | | - Marc Conti
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
- Metabolism Research Unit, Integracell SAS, Longjumeau 91160, France
| | - Richard Douard
- UCBM, Necker University Hospital, Paris 75015, France
- Gastrointestinal Surgery Department, Clinique Bizet, Paris 75016, France
| | - Sylvain Loric
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
| |
Collapse
|
67
|
Urra FA, Fuentes-Retamal S, Palominos C, Rodríguez-Lucart YA, López-Torres C, Araya-Maturana R. Extracellular Matrix Signals as Drivers of Mitochondrial Bioenergetics and Metabolic Plasticity of Cancer Cells During Metastasis. Front Cell Dev Biol 2021; 9:751301. [PMID: 34733852 PMCID: PMC8558415 DOI: 10.3389/fcell.2021.751301] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
The role of metabolism in tumor growth and chemoresistance has received considerable attention, however, the contribution of mitochondrial bioenergetics in migration, invasion, and metastasis is recently being understood. Migrating cancer cells adapt their energy needs to fluctuating changes in the microenvironment, exhibiting high metabolic plasticity. This occurs due to dynamic changes in the contributions of metabolic pathways to promote localized ATP production in lamellipodia and control signaling mediated by mitochondrial reactive oxygen species. Recent evidence has shown that metabolic shifts toward a mitochondrial metabolism based on the reductive carboxylation, glutaminolysis, and phosphocreatine-creatine kinase pathways promote resistance to anoikis, migration, and invasion in cancer cells. The PGC1a-driven metabolic adaptations with increased electron transport chain activity and superoxide levels are essential for metastasis in several cancer models. Notably, these metabolic changes can be determined by the composition and density of the extracellular matrix (ECM). ECM stiffness, integrins, and small Rho GTPases promote mitochondrial fragmentation, mitochondrial localization in focal adhesion complexes, and metabolic plasticity, supporting enhanced migration and metastasis. Here, we discuss the role of ECM in regulating mitochondrial metabolism during migration and metastasis, highlighting the therapeutic potential of compounds affecting mitochondrial function and selectively block cancer cell migration.
Collapse
Affiliation(s)
- Félix A Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Charlotte Palominos
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Yarcely A Rodríguez-Lucart
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile.,Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | - Camila López-Torres
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile.,Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| |
Collapse
|
68
|
Endothelial Heme Dynamics Drive Cancer Cell Metabolism by Shaping the Tumor Microenvironment. Biomedicines 2021; 9:biomedicines9111557. [PMID: 34829786 PMCID: PMC8615489 DOI: 10.3390/biomedicines9111557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023] Open
Abstract
The crosstalk among cancer cells (CCs) and stromal cells within the tumor microenvironment (TME) has a prominent role in cancer progression. The significance of endothelial cells (ECs) in this scenario relies on multiple vascular functions. By forming new blood vessels, ECs support tumor growth. In addition to their angiogenic properties, tumor-associated ECs (TECs) establish a unique vascular niche that actively modulates cancer development by shuttling a selected pattern of factors and metabolites to the CC. The profile of secreted metabolites is strictly dependent on the metabolic status of the cell, which is markedly perturbed in TECs. Recent evidence highlights the involvement of heme metabolism in the regulation of energy metabolism in TECs. The present study shows that interfering with endothelial heme metabolism by targeting the cell membrane heme exporter Feline Leukemia Virus subgroup C Receptor 1a (FLVCR1a) in TECs, resulted in enhanced fatty acid oxidation (FAO). Moreover, FAO-derived acetyl-CoA was partly consumed through ketogenesis, resulting in ketone bodies (KBs) accumulation in FLVCR1a-deficient TECs. Finally, the results from this study also demonstrate that TECs-derived KBs can be secreted in the extracellular environment, inducing a metabolic rewiring in the CC. Taken together, these data may contribute to finding new metabolic vulnerabilities for cancer therapy.
Collapse
|
69
|
Greco L, Rubbino F, Morelli A, Gaiani F, Grizzi F, de’Angelis GL, Malesci A, Laghi L. Epithelial to Mesenchymal Transition: A Challenging Playground for Translational Research. Current Models and Focus on TWIST1 Relevance and Gastrointestinal Cancers. Int J Mol Sci 2021; 22:ijms222111469. [PMID: 34768901 PMCID: PMC8584071 DOI: 10.3390/ijms222111469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Resembling the development of cancer by multistep carcinogenesis, the evolution towards metastasis involves several passages, from local invasion and intravasation, encompassing surviving anoikis into the circulation, landing at distant sites and therein establishing colonization, possibly followed by the outgrowth of macroscopic lesions. Within this cascade, epithelial to mesenchymal transition (EMT) works as a pleiotropic program enabling cancer cells to overcome local, systemic, and distant barriers against diffusion by replacing traits and functions of the epithelial signature with mesenchymal-like ones. Along the transition, a full-blown mesenchymal phenotype may not be accomplished. Rather, the plasticity of the program and its dependency on heterotopic signals implies a pendulum with oscillations towards its reversal, that is mesenchymal to epithelial transition. Cells in intermixed E⇔M states can also display stemness, enabling their replication together with the epithelial reversion next to successful distant colonization. If we aim to include the EMT among the hallmarks of cancer that could modify clinical practice, the gap between the results pursued in basic research by animal models and those achieved in translational research by surrogate biomarkers needs to be filled. We review the knowledge on EMT, derived from models and mechanistic studies as well as from translational studies, with an emphasis on gastrointestinal cancers (GI).
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Alessandra Morelli
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Federica Gaiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy;
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy;
| | - Gian Luigi de’Angelis
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Alberto Malesci
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy;
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Correspondence:
| |
Collapse
|
70
|
Tasdogan A, Ubellacker JM, Morrison SJ. Redox Regulation in Cancer Cells during Metastasis. Cancer Discov 2021; 11:2682-2692. [PMID: 34649956 DOI: 10.1158/2159-8290.cd-21-0558] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Metastasis is an inefficient process in which the vast majority of cancer cells are fated to die, partly because they experience oxidative stress. Metastasizing cancer cells migrate through diverse environments that differ dramatically from their tumor of origin, leading to redox imbalances. The rare metastasizing cells that survive undergo reversible metabolic changes that confer oxidative stress resistance. We review the changes in redox regulation that cancer cells undergo during metastasis. By better understanding these mechanisms, it may be possible to develop pro-oxidant therapies that block disease progression by exacerbating oxidative stress in cancer cells. SIGNIFICANCE: Oxidative stress often limits cancer cell survival during metastasis, raising the possibility of inhibiting cancer progression with pro-oxidant therapies. This is the opposite strategy of treating patients with antioxidants, an approach that worsened outcomes in large clinical trials.
Collapse
Affiliation(s)
- Alpaslan Tasdogan
- Children's Research Institute and Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jessalyn M Ubellacker
- Children's Research Institute and Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sean J Morrison
- Children's Research Institute and Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
71
|
Fukano M, Park M, Deblois G. Metabolic Flexibility Is a Determinant of Breast Cancer Heterogeneity and Progression. Cancers (Basel) 2021; 13:4699. [PMID: 34572926 PMCID: PMC8467722 DOI: 10.3390/cancers13184699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer progression is characterized by changes in cellular metabolism that contribute to enhanced tumour growth and adaptation to microenvironmental stresses. Metabolic changes within breast tumours are still poorly understood and are not as yet exploited for therapeutic intervention, in part due to a high level of metabolic heterogeneity within tumours. The metabolic profiles of breast cancer cells are flexible, providing dynamic switches in metabolic states to accommodate nutrient and energy demands and further aggravating the challenges of targeting metabolic dependencies in cancer. In this review, we discuss the intrinsic and extrinsic factors that contribute to metabolic heterogeneity of breast tumours. Next, we examine how metabolic flexibility, which contributes to the metabolic heterogeneity of breast tumours, can alter epigenetic landscapes and increase a variety of pro-tumorigenic functions. Finally, we highlight the difficulties in pharmacologically targeting the metabolic adaptations of breast tumours and provide an overview of possible strategies to sensitize heterogeneous breast tumours to the targeting of metabolic vulnerabilities.
Collapse
Affiliation(s)
- Marina Fukano
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC H3T 1J4, Canada;
- Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3G 2M1, Canada;
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC H3A 1A3, Canada
| | - Morag Park
- Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3G 2M1, Canada;
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC H3A 1A3, Canada
| | - Geneviève Deblois
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC H3T 1J4, Canada;
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC H3A 1A3, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
72
|
Yuan Y, Liu M, Hou P, Liang L, Sun X, Gan L, Liu T. Identification of a metabolic signature to predict overall survival for colorectal cancer. Scand J Gastroenterol 2021; 56:1078-1087. [PMID: 34261388 DOI: 10.1080/00365521.2021.1948605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Metabolic genes are associated with the occurrence and development of tumors. Metabolic-related risk models have showed partly prognostic predictive ability in cancers. However, the correlation between metabolic-related genes (MRGs) and the outcome of colorectal cancer is still poorly understood. PATIENTS AND METHODS TCGA database is used as the training cohort; while GSE39582 is the verification cohort. The least absolute shrinkage and selection operator Cox regression analysis were utilized to identify the MRGs and establish a genetic risk scoring model. A nomogram by integrating MRGs risk scores with TNM stage was constructed. The potential biological mechanisms were explored using gene set enrichment analysis. Associations of the signature with immune cell infiltrations and the tumor mutation burden (TMB) were also uncovered by Spearman rank test. RESULTS A six-gene metabolic signature was identified. Based on the risk scoring model with the signature, patients were divided into two groups (high-risk versus low-risk). The overall survival (OS) duration of patients with high-risk were quite shorter than those of low-risk patients (TCGA: p < .001, GSE39582: p < .001). Metabolic-related pathways were major enriched in low-risk group, while the high-risk group exhibited multiple immune-related pathways. Moreover, our signature was more linear dependent with antigen-presenting cell than effector immune cells, and a positive correction were seen between our signature and TMB. CONCLUSION Our research has discovered a six-gene metabolic signature to predict the OS of colorectal cancer. These genes may play significant roles in colorectal cancer regulating tumor microenvironment and serving as potential biomarkers for anti-cancer therapy.
Collapse
Affiliation(s)
- Yitao Yuan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengling Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengcong Hou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Liang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xun Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Gan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.,Center of Evidence‑Based Medicine, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
73
|
Enhanced Sensitivity of Nonsmall Cell Lung Cancer with Acquired Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors to Phenformin: The Roles of a Metabolic Shift to Oxidative Phosphorylation and Redox Balance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5428364. [PMID: 34367462 PMCID: PMC8342158 DOI: 10.1155/2021/5428364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Background Although the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR- TKI) therapy has been proven in non-small cell lung cancer (NSCLC) patients, acquired resistance to EGFR-TKIs presents a serious clinical problem. Hence, the identification of new therapeutic strategy is needed to treat EGFR-TKI-resistant NSCLC. Methods Acquired EGFR-TKI-resistant lung cancer cell lines (HCC827, H1993, and H292 cells with acquired resistance to gefitinib or erlotinib) were used for cell-based studies. IncuCyte live cell analysis system and XFp analyzer were used for the determination of cell proliferation and energy metabolism, respectively. In vivo anticancer effect of phenformin was assessed in xenografts implanting HCC827 and gefitinib-resistant HCC827 (HCC827 GR) cells. Results HCC827 GR and erlotinib-resistant H1993 (H1993 ER) cells exhibited different metabolic properties compared with their respective parental cells, HCC827, and H1993. In EGFR-TKI-resistant NSCLC cells, glycolysis markers including the glucose consumption rate, intracellular lactate level, and extracellular acidification rate were decreased; however, mitochondrial oxidative phosphorylation (OXPHOS) markers including mitochondria-driven ATP production, mitochondrial membrane potential, and maximal OXPHOS capacity were increased. Cell proliferation and tumor growth were strongly inhibited by biguanide phenformin via targeting of mitochondrial OXPHOS complex 1 in EGFR-TKI-resistant NSCLC cells. Inhibition of OXPHOS resulted in a reduced NAD+/NADH ratio and intracellular aspartate levels. Recovery of glycolysis by hexokinase 2 overexpression in erlotinib-resistant H292 (H292 ER) cells significantly reduced the anticancer effects of phenformin. Conclusion Long-term treatment with EGFR-TKIs causes reactivation of mitochondrial metabolism, resulting in vulnerability to OXPHOS inhibitor such as phenformin. We propose a new therapeutic option for NSCLC with acquired EGFR-TKI resistance that focuses on cancer metabolism.
Collapse
|
74
|
Burgos-Ravanal R, Campos A, Díaz-Vesga MC, González MF, León D, Lobos-González L, Leyton L, Kogan MJ, Quest AFG. Extracellular Vesicles as Mediators of Cancer Disease and as Nanosystems in Theranostic Applications. Cancers (Basel) 2021; 13:3324. [PMID: 34283059 PMCID: PMC8268753 DOI: 10.3390/cancers13133324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer remains a leading cause of death worldwide despite decades of intense efforts to understand the molecular underpinnings of the disease. To date, much of the focus in research has been on the cancer cells themselves and how they acquire specific traits during disease development and progression. However, these cells are known to secrete large numbers of extracellular vesicles (EVs), which are now becoming recognized as key players in cancer. EVs contain a large number of different molecules, including but not limited to proteins, mRNAs, and miRNAs, and they are actively secreted by many different cell types. In the last two decades, a considerable body of evidence has become available indicating that EVs play a very active role in cell communication. Cancer cells are heterogeneous, and recent evidence reveals that cancer cell-derived EV cargos can change the behavior of target cells. For instance, more aggressive cancer cells can transfer their "traits" to less aggressive cancer cells and convert them into more malignant tumor cells or, alternatively, eliminate those cells in a process referred to as "cell competition". This review discusses how EVs participate in the multistep acquisition of specific traits developed by tumor cells, which are referred to as "the hallmarks of cancer" defined by Hanahan and Weinberg. Moreover, as will be discussed, EVs play an important role in drug resistance, and these more recent advances may explain, at least in part, why pharmacological therapies are often ineffective. Finally, we discuss literature proposing the use of EVs for therapeutic and prognostic purposes in cancer.
Collapse
Affiliation(s)
- Renato Burgos-Ravanal
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (R.B.-R.); (A.C.); (M.C.D.-V.); (M.F.G.); (L.L.)
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
| | - América Campos
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (R.B.-R.); (A.C.); (M.C.D.-V.); (M.F.G.); (L.L.)
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane 4029, Australia
| | - Magda C. Díaz-Vesga
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (R.B.-R.); (A.C.); (M.C.D.-V.); (M.F.G.); (L.L.)
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
- Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Pontificia Universidad Javeriana de Cali, Cali 760008, Colombia
| | - María Fernanda González
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (R.B.-R.); (A.C.); (M.C.D.-V.); (M.F.G.); (L.L.)
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
| | - Daniela León
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina, Universidad del Desarrollo-Clínica Alemana, Santiago 7590943, Chile;
| | - Lisette Leyton
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (R.B.-R.); (A.C.); (M.C.D.-V.); (M.F.G.); (L.L.)
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
| | - Marcelo J. Kogan
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Andrew F. G. Quest
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (R.B.-R.); (A.C.); (M.C.D.-V.); (M.F.G.); (L.L.)
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
| |
Collapse
|
75
|
Lin D, Fan W, Zhang R, Zhao E, Li P, Zhou W, Peng J, Li L. Molecular subtype identification and prognosis stratification by a metabolism-related gene expression signature in colorectal cancer. J Transl Med 2021; 19:279. [PMID: 34193202 PMCID: PMC8244251 DOI: 10.1186/s12967-021-02952-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metabolic reprograming have been associated with cancer occurrence and progression within the tumor immune microenvironment. However, the prognostic potential of metabolism-related genes in colorectal cancer (CRC) has not been comprehensively studied. Here, we investigated metabolic transcript-related CRC subtypes and relevant immune landscapes, and developed a metabolic risk score (MRS) for survival prediction. METHODS Metabolism-related genes were collected from the Molecular Signatures Database and metabolic subtypes were identified using an unsupervised clustering algorithm based on the expression profiles of survival-related metabolic genes in GSE39582. The ssGSEA and ESTIMATE methods were applied to estimate the immune infiltration among subtypes. The MRS model was developed using LASSO Cox regression in the GSE39582 dataset and independently validated in the TCGA CRC and GSE17537 datasets. RESULTS We identified two metabolism-related subtypes (cluster-A and cluster-B) of CRC based on the expression profiles of 539 survival-related metabolic genes with distinct immune profiles and notably different prognoses. The cluster-B subtype had a shorter OS and RFS than the cluster-A subtype. Eighteen metabolism-related genes that were mostly involved in lipid metabolism pathways were used to build the MRS in GSE39582. Patients with higher MRS had worse prognosis than those with lower MRS (HR 3.45, P < 0.001). The prognostic role of MRS was validated in the TCGA CRC (HR 2.12, P = 0.00017) and GSE17537 datasets (HR 2.67, P = 0.039). Time-dependent receiver operating characteristic curve and stratified analyses revealed the robust predictive ability of the MRS in each dataset. Multivariate Cox regression analysis indicted that the MRS could predict OS independent of TNM stage and age. CONCLUSIONS Our study provides novel insight into metabolic heterogeneity and its relationship with immune landscape in CRC. The MRS was identified as a robust prognostic marker and may facilitate individualized therapy for CRC patients.
Collapse
Affiliation(s)
- Dagui Lin
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Wenhua Fan
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Rongxin Zhang
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Enen Zhao
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Pansong Li
- Geneplus-Beijing, Beijing, 102206, China
| | - Wenhao Zhou
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Jianhong Peng
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Liren Li
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
76
|
Han A, Schug ZT, Aplin AE. Metabolic Alterations and Therapeutic Opportunities in Rare Forms of Melanoma. Trends Cancer 2021; 7:671-681. [PMID: 34127435 DOI: 10.1016/j.trecan.2021.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Melanoma is derived from melanocytes located in multiple regions of the body. Cutaneous melanoma (CM) represents the major subgroup, but less-common subtypes including uveal melanoma (UM), mucosal melanoma (MM), and acral melanoma (AM) arise that have distinct genetic profiles. Treatments effective for CM are ineffective in UM, AM, and MM, and patient survival remains poor. As reprogrammed cancer metabolism is associated with tumorigenesis, the underlying mechanisms are well studied and provide therapeutic opportunities in many cancers; however, metabolism is less well studied in rarer melanoma subtypes. We summarize current knowledge of the metabolic alterations in rare melanoma and potential applications of targeting cancer metabolism to improve the therapeutic options available to UM, AM, and MM patients.
Collapse
Affiliation(s)
- Anna Han
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Zachary T Schug
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA19104, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
77
|
ING2 tumor suppressive protein translocates into mitochondria and is involved in cellular metabolism homeostasis. Oncogene 2021; 40:4111-4123. [PMID: 34017078 DOI: 10.1038/s41388-021-01832-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023]
Abstract
ING2 (Inhibitor of Growth 2) is a tumor suppressor gene that has been implicated in critical biological functions (cell-cycle regulation, replicative senescence, DNA repair and DNA replication), most of which are recognized hallmarks of tumorigenesis occurring in the cell nucleus. As its close homolog ING1 has been recently observed in the mitochondrial compartment, we hypothesized that ING2 could also translocate into the mitochondria and be involved in new biological functions. In the present study, we demonstrate that ING2 is imported in the inner mitochondrial fraction in a redox-sensitive manner in human cells and that this mechanism is modulated by 14-3-3η protein expression. Remarkably, ING2 is necessary to maintain mitochondrial ultrastructure integrity without interfering with mitochondrial networks or polarization. We observed an interaction between ING2 and mtDNA under basal conditions. This interaction appears to be mediated by TFAM, a critical regulator of mtDNA integrity. The loss of mitochondrial ING2 does not impair mtDNA repair, replication or transcription but leads to a decrease in mitochondrial ROS production, suggesting a detrimental impact on OXPHOS activity. We finally show using multiple models that ING2 is involved in mitochondrial respiration and that its loss confers a protection against mitochondrial respiratory chain inhibition in vitro. Consequently, we propose a new tumor suppressor role for ING2 protein in the mitochondria as a metabolic shift gatekeeper during tumorigenesis.
Collapse
|
78
|
Cheng C, Tan H, Wang N, Chen L, Meng Z, Chen Z, Feng Y. Functional inhibition of lactate dehydrogenase suppresses pancreatic adenocarcinoma progression. Clin Transl Med 2021; 11:e467. [PMID: 34185423 PMCID: PMC8238920 DOI: 10.1002/ctm2.467] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) a highly lethal malignancy. The current use of clinical parameters may not accurately predict the clinical outcome, which further renders the unsatisfactory therapeutic outcome. METHODS In this study, we retrospectively analyzed the clinical-pathological characteristics and prognosis of 253 PAAD patients. Univariate, multivariate, and Kaplan-Meier survival analyses were conducted to assess risk factors and clinical outcomes. For functional study, we performed bidirectional genetic manipulation of lactate dehydrogenase A (LDHA) in PAAD cell lines to measure PAAD progression by both in vitro and in vivo assays. RESULTS LDHA is particularly overexpressed in PAAD tissues and elevated serum LDHA-transcribed isoenzymes-5 (LDH-5) was associated with poorer patients' clinical outcomes. Genetic overexpression of LDHA promoted the proliferation and invasion in vitro, and tumor growth and metastasis in vivo in murine PAAD orthotopic models, while knockdown of LDHA exhibited opposite effects. LDHA-induced L-lactate production was responsible for the LDHA-facilitated PAAD progression. Mechanistically, LDHA overexpression reduced the phosphorylation of metabolic regulator AMPK and promoted the downstream mTOR phosphorylation in PAAD cells. Inhibition of mTOR repressed the LDHA-induced proliferation and invasion. A natural product berberine was selected as functional inhibitor of LDHA, which reduced activity and expression of the protein in PAAD cells. Berberine inhibited PAAD cells proliferation and invasion in vitro, and suppressed tumor progression in vivo. The restoration of LDHA attenuated the suppressive effect of berberine on PAAD. CONCLUSIONS Our findings suggest that LDHA may be a novel biomarker and potential therapeutic target of human PAAD.
Collapse
Affiliation(s)
- Chien‐shan Cheng
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Li Ka Shing Faculty of MedicineSchool of Chinese Medicine, The University of Hong KongHong KongChina
| | - Hor‐Yue Tan
- Li Ka Shing Faculty of MedicineSchool of Chinese Medicine, The University of Hong KongHong KongChina
| | - Ning Wang
- Li Ka Shing Faculty of MedicineSchool of Chinese Medicine, The University of Hong KongHong KongChina
| | - Lianyu Chen
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhiqiang Meng
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhen Chen
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yibin Feng
- Li Ka Shing Faculty of MedicineSchool of Chinese Medicine, The University of Hong KongHong KongChina
| |
Collapse
|
79
|
Abstract
The molecular regulation of cancer metastasis is not fully understood. In this issue of Cell Metabolism, Zhang et al. (2021) discover that creatine promotes cancer metastasis in mice by promoting activation of the MPS1-Smad2/3 axis.
Collapse
Affiliation(s)
- Damien Lagarde
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
80
|
Vander Linden C, Corbet C, Bastien E, Martherus R, Guilbaud C, Petit L, Wauthier L, Loriot A, De Smet C, Feron O. Therapy-induced DNA methylation inactivates MCT1 and renders tumor cells vulnerable to MCT4 inhibition. Cell Rep 2021; 35:109202. [PMID: 34077729 DOI: 10.1016/j.celrep.2021.109202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 03/21/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic plasticity in cancer cells makes use of metabolism-targeting agents very challenging. Drug-induced metabolic rewiring may, however, uncover vulnerabilities that can be exploited. We report that resistance to glycolysis inhibitor 3-bromopyruvate (3-BrPA) arises from DNA methylation in treated cancer cells and subsequent silencing of the monocarboxylate transporter MCT1. We observe that, unexpectedly, 3-BrPA-resistant cancer cells mostly rely on glycolysis to sustain their growth, with MCT4 as an essential player to support lactate flux. This shift makes cancer cells particularly suited to adapt to hypoxic conditions and resist OXPHOS inhibitors and anti-proliferative chemotherapy. In contrast, blockade of MCT4 activity in 3-BrPA-exposed cancer cells with diclofenac or genetic knockout, inhibits growth of derived spheroids and tumors in mice. This study supports a potential mode of collateral lethality according to which metabolic adaptation of tumor cells to a first-line therapy makes them more responsive to a second-line treatment.
Collapse
Affiliation(s)
- Catherine Vander Linden
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.57.04, 1200 Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.57.04, 1200 Brussels, Belgium.
| | - Estelle Bastien
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.57.04, 1200 Brussels, Belgium
| | - Ruben Martherus
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.57.04, 1200 Brussels, Belgium
| | - Céline Guilbaud
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.57.04, 1200 Brussels, Belgium
| | - Laurenne Petit
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.57.04, 1200 Brussels, Belgium
| | - Loris Wauthier
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.57.04, 1200 Brussels, Belgium
| | - Axelle Loriot
- Group of Genetics and Epigenetics, de Duve Institute, UCLouvain, 75 Avenue Hippocrate B1.75.04, 1200 Brussels, Belgium
| | - Charles De Smet
- Group of Genetics and Epigenetics, de Duve Institute, UCLouvain, 75 Avenue Hippocrate B1.75.04, 1200 Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.57.04, 1200 Brussels, Belgium.
| |
Collapse
|
81
|
Papadopoli D, Pollak M, Topisirovic I. The role of GSK3 in metabolic pathway perturbations in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119059. [PMID: 33989699 DOI: 10.1016/j.bbamcr.2021.119059] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/11/2023]
Abstract
Malignant transformation and tumor progression are accompanied by significant perturbations in metabolic programs. As such, cancer cells support high ATP turnover to construct the building blocks needed to fuel neoplastic growth. The coordination of metabolic networks in malignant cells is dependent on the collaboration with cellular signaling pathways. Glycogen synthase kinase 3 (GSK3) lies at the convergence of several signaling axes, including the PI3K/AKT/mTOR, AMPK, and Wnt pathways, which influence cancer initiation, progression and therapeutic responses. Accordingly, GSK3 modulates metabolic processes, including protein and lipid synthesis, glucose and mitochondrial metabolism, as well as autophagy. In this review, we highlight current knowledge of the role of GSK3 in metabolic perturbations in cancer.
Collapse
Affiliation(s)
- David Papadopoli
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 Maisonneuve Blvd West, Montréal, QC H4A 3T2, Canada.
| | - Michael Pollak
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 Maisonneuve Blvd West, Montréal, QC H4A 3T2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Décarie Blvd, Montréal, QC H4A 3J1, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 Maisonneuve Blvd West, Montréal, QC H4A 3T2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Décarie Blvd, Montréal, QC H4A 3J1, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada
| |
Collapse
|
82
|
Zhang KL, Zhu WW, Wang SH, Gao C, Pan JJ, Du ZG, Lu L, Jia HL, Dong QZ, Chen JH, Lu M, Qin LX. Organ-specific cholesterol metabolic aberration fuels liver metastasis of colorectal cancer. Am J Cancer Res 2021; 11:6560-6572. [PMID: 33995676 PMCID: PMC8120208 DOI: 10.7150/thno.55609] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/09/2021] [Indexed: 01/28/2023] Open
Abstract
Rationale: Metastasis, the development of secondary malignant growth at a distance from a primary tumor, is the main cause of cancer-associated death. However, little is known about how metastatic cancer cells adapt to and colonize in the new organ environment. Here we sought to investigate the functional mechanism of cholesterol metabolic aberration in colorectal carcinoma (CRC) liver metastasis. Methods: The expression of cholesterol metabolism-related genes in primary colorectal tumors (PT) and paired liver metastases (LM) were examined by RT-PCR. The role of SREBP2-dependent cholesterol biosynthesis pathway in cell growth and CRC liver metastasis were determined by SREBP2 silencing in CRC cell lines and experimental metastasis models including, intra-splenic injection models and liver orthotropic injection model. Growth factors treatment and co-culture experiment were performed to reveal the mechanism underlying the up-regulation of SREBP2 in CRC liver metastases. The in vivo efficacy of inhibition of cholesterol biosynthesis pathway by betulin or simvastatin were evaluated in experimental metastasis models. Results: In the present study, we identify a colorectal cancer (CRC) liver metastasis-specific cholesterol metabolic pathway involving the activation of SREBP2-dependent cholesterol biosynthesis, which is required for the colonization and growth of metastatic CRC cells in the liver. Inhibiting this cholesterol biosynthesis pathway suppresses CRC liver metastasis. Mechanically, hepatocyte growth factor (HGF) from liver environment activates SREBP2-dependent cholesterol biosynthesis pathway by activating c-Met/PI3K/AKT/mTOR axis in CRC cells. Conclusion: Our findings support the notion that CRC liver metastases show a specific cholesterol metabolic aberration. Targeting this cholesterol biosynthesis pathway could be a promising treatment for CRC liver metastasis.
Collapse
|
83
|
Metabolic Classification and Intervention Opportunities for Tumor Energy Dysfunction. Metabolites 2021; 11:metabo11050264. [PMID: 33922558 PMCID: PMC8146396 DOI: 10.3390/metabo11050264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
A comprehensive view of cell metabolism provides a new vision of cancer, conceptualized as tissue with cellular-altered metabolism and energetic dysfunction, which can shed light on pathophysiological mechanisms. Cancer is now considered a heterogeneous ecosystem, formed by tumor cells and the microenvironment, which is molecularly, phenotypically, and metabolically reprogrammable. A wealth of evidence confirms metabolic reprogramming activity as the minimum common denominator of cancer, grouping together a wide variety of aberrations that can affect any of the different metabolic pathways involved in cell physiology. This forms the basis for a new proposed classification of cancer according to the altered metabolic pathway(s) and degree of energy dysfunction. Enhanced understanding of the metabolic reprogramming pathways of fatty acids, amino acids, carbohydrates, hypoxia, and acidosis can bring about new therapeutic intervention possibilities from a metabolic perspective of cancer.
Collapse
|
84
|
Guo Y, Lv B, Liu R, Dai Z, Zhang F, Liang Y, Yu B, Zeng D, Lv XB, Zhang Z. Role of LncRNAs in regulating cancer amino acid metabolism. Cancer Cell Int 2021; 21:209. [PMID: 33849550 PMCID: PMC8045299 DOI: 10.1186/s12935-021-01926-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
The metabolic change of tumor cells is an extremely complicated process that involves the intersection and integration of various signal pathways. Compared with normal tissues, cancer cells show distinguished metabolic characteristics called metabolic reprogramming, which has been considered as a sign of cancer occurrence. With the deepening of tumor research in recent years, people gradually found that amino acid metabolism played crucial roles in cancer progression. Long non-coding RNAs (lncRNAs), which are implicated in many important biological processes, were firstly discovered dysregulating in cancer tissues and participating in extensive regulation of tumorigenesis. This review focuses on the reprogramming of amino acid metabolism in cancers and how lncRNAs participate in the regulatory network by interacting with other macromolecular substances. Understanding the functions of lncRNA in amino acid reprogramming in tumors might provide a new vision on the mechanisms of tumorigenesis and the development of new approaches for cancer therapy.
Collapse
Affiliation(s)
- Yuhong Guo
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Department of Graduate School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Department of Graduate School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Renfeng Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Department of Graduate School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhengzai Dai
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Department of Graduate School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Feifei Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Yiping Liang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Bo Yu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Department of Graduate School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Duo Zeng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Department of Graduate School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China. .,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Northern 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China. .,Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
85
|
Massagué J, Ganesh K. Metastasis-Initiating Cells and Ecosystems. Cancer Discov 2021; 11:971-994. [PMID: 33811127 PMCID: PMC8030695 DOI: 10.1158/2159-8290.cd-21-0010] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Metastasis is initiated and sustained through therapy by cancer cells with stem-like and immune-evasive properties, termed metastasis-initiating cells (MIC). Recent progress suggests that MICs result from the adoption of a normal regenerative progenitor phenotype by malignant cells, a phenotype with intrinsic programs to survive the stresses of the metastatic process, undergo epithelial-mesenchymal transitions, enter slow-cycling states for dormancy, evade immune surveillance, establish supportive interactions with organ-specific niches, and co-opt systemic factors for growth and recurrence after therapy. Mechanistic understanding of the molecular mediators of MIC phenotypes and host tissue ecosystems could yield cancer therapeutics to improve patient outcomes. SIGNIFICANCE: Understanding the origins, traits, and vulnerabilities of progenitor cancer cells with the capacity to initiate metastasis in distant organs, and the host microenvironments that support the ability of these cells to evade immune surveillance and regenerate the tumor, is critical for developing strategies to improve the prevention and treatment of advanced cancer. Leveraging recent progress in our understanding of the metastatic process, here we review the nature of MICs and their ecosystems and offer a perspective on how this knowledge is informing innovative treatments of metastatic cancers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, New York.
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York.
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
86
|
Qin F, Fan Q, Yu PKN, Almahi WA, Kong P, Yang M, Cao W, Nie L, Chen G, Han W. Properties and gene expression profiling of acquired radioresistance in mouse breast cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:628. [PMID: 33987326 PMCID: PMC8106033 DOI: 10.21037/atm-20-4667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Acquired radioresistant cells exhibit many characteristic changes which may influence cancer progression and further treatment options. The purpose of this study is to investigate the changes of radioresistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells on both phenotypic and molecular levels. Methods We established an acquired radioresistant cell line from its parental NF639 cell line (HER2-positive) by fractionated radiation and assessed changes in cellular morphology, proliferation, migration, anti-apoptosis activity, basal reactive oxygen species (ROS) level and energy metabolism. RNA-sequencing (RNA-seq) was also used to reveal the potential regulating genes and molecular mechanisms associated with the acquired changed phenotypes. Real-time PCR was used to validate the results of RNA-seq. Results The NF639R cells exhibited increased radioresistance and enhanced activity of proliferation, migration and anti-apoptosis, but decreased basal ROS. Two main energy metabolism pathways, mitochondrial respiration and glycolytic, were also upregulated. Furthermore, 490 differentially expressed genes were identified by RNA-seq. Enrichment analysis based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes showed many differently expressed genes were significantly enriched in cell morphology, proliferation, migration, anti-apoptosis, antioxidation, tumor stem cells and energy metabolism and the signaling cascades such as the transforming growth factor-β, Wnt, Hedgehog, vascular endothelial growth factor, retinoic acid-inducible gene I (RIG-I)-like receptor, Toll-like receptor and nucleotide oligomerization domain (NOD)-like receptor were significantly altered in NF639R cells. Conclusions In clinical radiotherapy, repeat radiotherapy for short-term recurrence of breast cancer may result in enhanced radioresistance and promote malignant progression. Our research provided hints to understand the tumor resistance to radiotherapy de novo and recurrence with a worse prognosis following radiotherapy.
Collapse
Affiliation(s)
- Feng Qin
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.,Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Qiang Fan
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Peter K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China.,State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Waleed Abdelbagi Almahi
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Peizhong Kong
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Miaomiao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China.,Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Cao
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Lili Nie
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Guodong Chen
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China
| |
Collapse
|
87
|
Architectural control of metabolic plasticity in epithelial cancer cells. Commun Biol 2021; 4:371. [PMID: 33742081 PMCID: PMC7979883 DOI: 10.1038/s42003-021-01899-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic plasticity enables cancer cells to switch between glycolysis and oxidative phosphorylation to adapt to changing conditions during cancer progression, whereas metabolic dependencies limit plasticity. To understand a role for the architectural environment in these processes we examined metabolic dependencies of cancer cells cultured in flat (2D) and organotypic (3D) environments. Here we show that cancer cells in flat cultures exist in a high energy state (oxidative phosphorylation), are glycolytic, and depend on glucose and glutamine for growth. In contrast, cells in organotypic culture exhibit lower energy and glycolysis, with extensive metabolic plasticity to maintain growth during glucose or amino acid deprivation. Expression of KRASG12V in organotypic cells drives glucose dependence, however cells retain metabolic plasticity to glutamine deprivation. Finally, our data reveal that mechanical properties control metabolic plasticity, which correlates with canonical Wnt signaling. In summary, our work highlights that the architectural and mechanical properties influence cells to permit or restrict metabolic plasticity.
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW Mitochondria have a major impact on virtually all processes linked to oncogenesis. Thus, mitochondrial metabolism inhibition has emerged as a promising anticancer strategy. In this review, we discuss the anticancer potential of mitochondrial inhibitors, with particular focus on metformin, in the context of more effective, targeted therapeutic modalities, and diagnostic strategies for cancer patients. RECENT FINDINGS Metformin has gained interest as an antitumor agent. However, promising results have not been translated into remarkable advances in the clinical practice. Recent findings emphasize the need of providing a metabolic context in which mitochondrial inhibitors may elicit its anticancerous effects. In addition, mitochondria are critical regulators in orchestrating immune responses. Thus, the immunomodulatory effect of mitochondrial inhibitors should also be taken into account to optimize its clinical use. Targeting mitochondrial metabolic network represents a promising therapeutic strategy in cancer. However, there is a need to define the metabolic context in which mitochondrial inhibitors are more effective, as well as how the cross-talk between many immunological functions and mitochondrial functionality may be exploited for a therapeutic benefit in cancer patients.
Collapse
|
89
|
Abstract
Metastasis formation is the major cause of death in most patients with cancer. Despite extensive research, targeting metastatic seeding and colonization is still an unresolved challenge. Only recently, attention has been drawn to the fact that metastasizing cancer cells selectively and dynamically adapt their metabolism at every step during the metastatic cascade. Moreover, many metastases display different metabolic traits compared with the tumours from which they originate, enabling survival and growth in the new environment. Consequently, the stage-dependent metabolic traits may provide therapeutic windows for preventing or reducing metastasis, and targeting the new metabolic traits arising in established metastases may allow their eradication.
Collapse
Affiliation(s)
- Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
- UCSF Comprehensive Cancer Center, Department of Neurological Surgery, UCSF, San Francisco, CA, USA.
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
90
|
Hashemipour M, Boroumand H, Mollazadeh S, Tajiknia V, Nourollahzadeh Z, Rohani Borj M, Pourghadamyari H, Rahimian N, Hamblin MR, Mirzaei H. Exosomal microRNAs and exosomal long non-coding RNAs in gynecologic cancers. Gynecol Oncol 2021; 161:314-327. [PMID: 33581845 DOI: 10.1016/j.ygyno.2021.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 02/08/2023]
Abstract
Gynecologic cancer is a group of any malignancies affecting reproductive tissues and organs of women, including ovaries, uterine, cervix, vagina, vulva, and endometrium. Several types of molecular mechanisms are associated with the progression of gynecologic cancers. Among it can be referred to the most widely studied non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long ncRNAs (lncRNAs). As yet, lncRNAs are known to serve key biological roles via various mechanisms, such as splicing regulation, chromatin rearrangement, translation regulation, cell-cycle control, genetic imprinting and mRNA decay. Besides, miRNAs govern gene expression by modulation of mRNAs and lncRNAs degradation, suggestive of needing more research in this field. Generally, driving gynecological cancers pathways by miRNAs and lncRNAs lead to the current improvement in cancer-related technologies. Exosomes are extracellular microvesicles which can carry cargo molecules among cells. In recent years, more studies have been focused on exosomal non-coding RNAs (exo-ncRNAs) and exosomal microRNAs (exo-miRs) because of being natural carriers of lnc RNAs and microRNAs via programmed process. In this review we summarized recent reports concerning the function of exosomal microRNAs and exosomal long non-coding RNAs in gynecological cancers.
Collapse
Affiliation(s)
| | - Homa Boroumand
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mina Rohani Borj
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
91
|
Alamoudi AA. Why do cancer cells break from host circadian rhythm? Insights from unicellular organisms. Bioessays 2021; 43:e2000205. [PMID: 33533033 DOI: 10.1002/bies.202000205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
It is not clear why cancer cells choose to disrupt their circadian clock rhythms, and whether such disruption governs a selective fitness and a survival advantage. In this review, I focus on understanding the impacts of clock gene disruption on a simpler model, such as the unicellular cyanobacterium, in order to explain how cancer cells may alter the circadian rhythm to reprogram their metabolism based on their needs and status. It appears to be that the activation of the oxidative pentose phosphate pathway (OPPP) and production of NADPH, the preferred molecule for detoxification of reactive oxygen species, is a critical process for night survival in unicellular organisms. The circadian clock acts as a gatekeeper that controls how the organism will utilize its sugar, shifting sugar influx between glycolysis and OPPP. The circadian clock can thus act as a gatekeeper between an anabolic, proliferative mode and a homeostatic, survival mode.
Collapse
Affiliation(s)
- Aliaa A Alamoudi
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Stem Cell Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
92
|
Zhang X, Su Q, Zhou J, Yang Z, Liu Z, Ji L, Gao H, Jiang G. To betray or to fight? The dual identity of the mitochondria in cancer. Future Oncol 2021; 17:723-743. [DOI: 10.2217/fon-2020-0362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are highly dynamic organelles that provide energy for oxidative phosphorylation in cells. Equally, they are the major sites for the metabolism of amino acids, lipids and iron. When cells become cancerous, the morphology, cellular location and metabolic mode of the mitochondria change accordingly. These mitochondrial changes can have two opposing effects on cancer: procancer and anticancer effects. Specifically, mitochondria play roles in the fight against cancer by participating in processes such as ferroptosis, mitophagy and antitumor immunity. Contrastingly, cancer cells can also enslave mitochondria to give them the conditions necessary for growth and metastasis. Moreover, through mitochondria, cancer cells can escape from immune surveillance, resulting in their immune escape and enhanced malignant transformation ability. At present, cancer-related studies of mitochondria are one-sided; therefore, we aim to provide a comprehensive understanding by systematically reviewing the two-sided cancer-related properties of mitochondria. Mitochondrial-targeted drugs are gradually emerging and showing significant advantages in cancer treatment; thus, our in-depth exploration of mitochondria in cancer will help to provide theoretical support for the future provision of efficient and low-toxicity cancer treatments.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Quanzhong Su
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Ji Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Zhihong Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Zhantao Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Lixia Ji
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Hui Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Guohui Jiang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| |
Collapse
|
93
|
Abstract
Autophagy is deregulated in many cancers and represents an attractive target for therapeutic intervention. However, the precise contributions of autophagy to metastatic progression, the principle cause of cancer-related mortality, is only now being uncovered. While autophagy promotes primary tumor growth, metabolic adaptation and resistance to therapy, recent studies have unexpectedly revealed that autophagy suppresses the proliferative outgrowth of disseminated tumor cells into overt and lethal macrometastases. These studies suggest autophagy plays unexpected and complex roles in the initiation and progression of metastases, which will undoubtedly impact therapeutic approaches for cancer treatment. Here, we discuss the intricacies of autophagy in metastatic progression, highlighting and integrating the pleiotropic roles of autophagy on diverse cell biological processes involved in metastasis.
Collapse
Affiliation(s)
- Timothy Marsh
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143 USA
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115 USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
94
|
Effect of SSRI exposure on the proliferation rate and glucose uptake in breast and ovary cancer cell lines. Sci Rep 2021; 11:1250. [PMID: 33441923 PMCID: PMC7806821 DOI: 10.1038/s41598-020-80850-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most prevalent malignancy amongst women worldwide while ovarian cancer represents the leading cause of death among gynecological malignancies. Women suffering from these cancers displayed heightened rates of major depressive disorder, and antidepressant treatment with selective serotonin reuptake inhibitors (SSRIs) is frequently recommended. Recently, narrative reviews and meta-analyses showed increased recurrence risks and mortality rates in SSRI-treated women with breast and ovarian cancer. We therefore examined whether three commonly prescribed SSRIs, fluoxetine, sertraline and citalopram, affect proliferation or glucose uptake of human breast and ovarian cancer cell lines characterized by different malignancies and metastatic potential. SSRI treatment or serotonin stimulation with therapeutically relevant concentrations over various time periods revealed no consistent dose- or time-dependent effect on proliferation rates. A marginal, but significant increase in glucose uptake was observed in SK-OV-3 ovarian cancer cells upon fluoxetine or sertraline, but not citalopram treatment. In three breast cancer cell lines and in two additional ovarian cancer cell lines no significant effect of SSRIs on glucose uptake was observed. Our data suggest that the observed increase in recurrence- and mortality rates in SSRI-treated cancer patients is unlikely to be linked to antidepressant therapies.
Collapse
|
95
|
Martínez-Ordoñez A, Seoane S, Avila L, Eiro N, Macía M, Arias E, Pereira F, García-Caballero T, Gómez-Lado N, Aguiar P, Vizoso F, Perez-Fernandez R. POU1F1 transcription factor induces metabolic reprogramming and breast cancer progression via LDHA regulation. Oncogene 2021; 40:2725-2740. [PMID: 33714987 PMCID: PMC8049871 DOI: 10.1038/s41388-021-01740-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/31/2023]
Abstract
Metabolic reprogramming is considered hallmarks of cancer. Aerobic glycolysis in tumors cells has been well-known for almost a century, but specific factors that regulate lactate generation and the effects of lactate in both cancer cells and stroma are not yet well understood. In the present study using breast cancer cell lines, human primary cultures of breast tumors, and immune deficient murine models, we demonstrate that the POU1F1 transcription factor is functionally and clinically related to both metabolic reprogramming in breast cancer cells and fibroblasts activation. Mechanistically, we demonstrate that POU1F1 transcriptionally regulates the lactate dehydrogenase A (LDHA) gene. LDHA catalyzes pyruvate into lactate instead of leading into the tricarboxylic acid cycle. Lactate increases breast cancer cell proliferation, migration, and invasion. In addition, it activates normal-associated fibroblasts (NAFs) into cancer-associated fibroblasts (CAFs). Conversely, LDHA knockdown in breast cancer cells that overexpress POU1F1 decreases tumor volume and [18F]FDG uptake in tumor xenografts of mice. Clinically, POU1F1 and LDHA expression correlate with relapse- and metastasis-free survival. Our data indicate that POU1F1 induces a metabolic reprogramming through LDHA regulation in human breast tumor cells, modifying the phenotype of both cancer cells and fibroblasts to promote cancer progression.
Collapse
Affiliation(s)
- Anxo Martínez-Ordoñez
- grid.11794.3a0000000109410645Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain ,grid.5386.8000000041936877XPresent Address: Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY USA
| | - Samuel Seoane
- grid.11794.3a0000000109410645Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Leandro Avila
- grid.11794.3a0000000109410645Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Noemi Eiro
- Research Unit, Hospital Fundación de Jove, Gijón, Spain
| | - Manuel Macía
- grid.488911.d0000 0004 0408 4897Department of Obstetrics and Gynecology, Health Research Institute of Santiago de Compostela (IDIS)-University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Efigenia Arias
- grid.488911.d0000 0004 0408 4897Department of Obstetrics and Gynecology, Health Research Institute of Santiago de Compostela (IDIS)-University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Fabio Pereira
- grid.488911.d0000 0004 0408 4897Department of Radiation Oncology, Health Research Institute of Santiago de Compostela (IDIS)-University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomas García-Caballero
- grid.488911.d0000 0004 0408 4897Department of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS)-University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Noemi Gómez-Lado
- grid.11794.3a0000000109410645Molecular Imaging Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, and Health Research Institute of Santiago de Compostela (IDIS). University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Aguiar
- grid.11794.3a0000000109410645Molecular Imaging Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, and Health Research Institute of Santiago de Compostela (IDIS). University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Román Perez-Fernandez
- grid.11794.3a0000000109410645Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
96
|
Nimmakayala RK, Leon F, Rachagani S, Rauth S, Nallasamy P, Marimuthu S, Shailendra GK, Chhonker YS, Chugh S, Chirravuri R, Gupta R, Mallya K, Prajapati DR, Lele SM, C Caffrey T, L Grem J, Grandgenett PM, Hollingsworth MA, Murry DJ, Batra SK, Ponnusamy MP. Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene 2021; 40:215-231. [PMID: 33110235 PMCID: PMC10041665 DOI: 10.1038/s41388-020-01518-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) metastasizes to distant organs, which is the primary cause of mortality; however, specific features mediating organ-specific metastasis remain unexplored. Emerging evidence demonstrates that cancer stem cells (CSCs) and cellular metabolism play a pivotal role in metastasis. Here we investigated the role of distinct subtypes of pancreatic CSCs and their metabolomic signatures in organ-specific metastatic colonization. We found that PDAC consists of ALDH+/CD133+ and drug-resistant (MDR1+) subtypes of CSCs with specific metabolic and stemness signatures. Human PDAC tissues with gemcitabine treatment, autochthonous mouse tumors from KrasG12D; Pdx1-Cre (KC) and KrasG12D; Trp53R172H; Pdx-1 Cre (KPC) mice, and KPC- Liver/Lung metastatic cells were used to evaluate the CSC, EMT (epithelial-to-mesenchymal transition), and metabolic profiles. A strong association was observed between distinct CSC subtypes and organ-specific colonization. The liver metastasis showed drug-resistant CSC- and EMT-like phenotype with aerobic glycolysis and fatty acid β-oxidation-mediated oxidative (glyco-oxidative) metabolism. On the contrary, lung metastasis displayed ALDH+/CD133+ and MET-like phenotype with oxidative metabolism. These results were obtained by evaluating FACS-based side population (SP), autofluorescence (AF+) and Alde-red assays for CSCs, and Seahorse-based oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and fatty acid β-oxidation (FAO)-mediated OCR assays for metabolic features along with specific gene signatures. Further, we developed in vitro human liver and lung PDAC metastasis models by using a combination of liver or lung decellularized scaffolds, a co-culture, and a sphere culture methods. PDAC cells grown in the liver-mimicking model showed the enrichment of MDR1+ and CPT1A+ populations, whereas the PDAC cells grown in the lung-mimicking environment showed the enrichment of ALDH+/CD133+ populations. In addition, we observed significantly elevated expression of ALDH1 in lung metastasis and MDR1/LDH-A expression in liver metastasis compared to human primary PDAC tumors. Our studies elucidate that distinct CSCs adapt unique metabolic signatures for organotropic metastasis, which will pave the way for the development of targeted therapy for PDAC metastasis.
Collapse
Affiliation(s)
- Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gautam K Shailendra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ramakanth Chirravuri
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Dipakkumar R Prajapati
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Subodh M Lele
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jean L Grem
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
97
|
Han A, Purwin TJ, Bechtel N, Liao C, Chua V, Seifert E, Sato T, Schug ZT, Speicher DW, Harbour JW, Aplin AE. BAP1 mutant uveal melanoma is stratified by metabolic phenotypes with distinct vulnerability to metabolic inhibitors. Oncogene 2021; 40:618-632. [PMID: 33208912 PMCID: PMC7856044 DOI: 10.1038/s41388-020-01554-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer cell metabolism is a targetable vulnerability; however, a precise understanding of metabolic heterogeneity is required. Inactivating mutations in BRCA1-associated protein 1 (BAP1) are associated with metastasis in uveal melanoma (UM), the deadliest adult eye cancer. BAP1 functions in UM remain unclear. UM patient sample analysis divided BAP1 mutant UM tumors into two subgroups based on oxidative phosphorylation (OXPHOS) gene expression suggesting metabolic heterogeneity. Consistent with patient data, transcriptomic analysis of BAP1 mutant UM cell lines also showed OXPHOShigh or OXPHOSlow subgroups. Integrated RNA sequencing, metabolomics, and molecular analyses showed that OXPHOShigh BAP1 mutant UM cells utilize glycolytic and nucleotide biosynthesis pathways, whereas OXPHOSlow BAP1 mutant UM cells employ fatty acid oxidation. Furthermore, the two subgroups responded to different classes of metabolic suppressors. Our findings indicate that targeting cancer metabolism is a promising therapeutic option for BAP1 mutant UM; however, tailored approaches may be required due to metabolic heterogeneities.
Collapse
Affiliation(s)
- Anna Han
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Nelisa Bechtel
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Connie Liao
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Vivian Chua
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Erin Seifert
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Zachary T Schug
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - J William Harbour
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
98
|
Metabolic regulation of prostate cancer heterogeneity and plasticity. Semin Cancer Biol 2020; 82:94-119. [PMID: 33290846 DOI: 10.1016/j.semcancer.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is one of the main hallmarks of cancer cells. It refers to the metabolic adaptations of tumor cells in response to nutrient deficiency, microenvironmental insults, and anti-cancer therapies. Metabolic transformation during tumor development plays a critical role in the continued tumor growth and progression and is driven by a complex interplay between the tumor mutational landscape, epigenetic modifications, and microenvironmental influences. Understanding the tumor metabolic vulnerabilities might open novel diagnostic and therapeutic approaches with the potential to improve the efficacy of current tumor treatments. Prostate cancer is a highly heterogeneous disease harboring different mutations and tumor cell phenotypes. While the increase of intra-tumor genetic and epigenetic heterogeneity is associated with tumor progression, less is known about metabolic regulation of prostate cancer cell heterogeneity and plasticity. This review summarizes the central metabolic adaptations in prostate tumors, state-of-the-art technologies for metabolic analysis, and the perspectives for metabolic targeting and diagnostic implications.
Collapse
|
99
|
Maddalena F, Condelli V, Matassa DS, Pacelli C, Scrima R, Lettini G, Li Bergolis V, Pietrafesa M, Crispo F, Piscazzi A, Storto G, Capitanio N, Esposito F, Landriscina M. TRAP1 enhances Warburg metabolism through modulation of PFK1 expression/activity and favors resistance to EGFR inhibitors in human colorectal carcinomas. Mol Oncol 2020; 14:3030-3047. [PMID: 33025742 PMCID: PMC7718945 DOI: 10.1002/1878-0261.12814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 08/18/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic rewiring is a mechanism of adaptation to unfavorable environmental conditions and tumor progression. TRAP1 is an HSP90 molecular chaperone upregulated in human colorectal carcinomas (CRCs) and responsible for downregulation of oxidative phosphorylation (OXPHOS) and adaptation to metabolic stress. The mechanism by which TRAP1 regulates glycolytic metabolism and the relevance of this regulation in resistance to EGFR inhibitors were investigated in patient‐derived CRC spheres, human CRC cells, samples, and patients. A linear correlation was observed between TRAP1 levels and 18F‐fluoro‐2‐deoxy‐glucose (18F‐FDG) uptake upon PET scan or GLUT1 expression in human CRCs. Consistently, TRAP1 enhances GLUT1 expression, glucose uptake, and lactate production and downregulates OXPHOS in CRC patient‐derived spheroids and cell lines. Mechanistically, TRAP1 maximizes lactate production to balance low OXPHOS through the regulation of the glycolytic enzyme phosphofructokinase‐1 (PFK1); this depends on the interaction between TRAP1 and PFK1, which favors PFK1 glycolytic activity and prevents its ubiquitination/degradation. By contrast, TRAP1/PFK1 interaction is lost in conditions of enhanced OXPHOS, which results in loss of TRAP1 regulation of PFK1 activity and lactate production. Notably, TRAP1 regulation of glycolysis is involved in resistance of RAS‐wild‐type CRCs to EGFR monoclonals. Indeed, either TRAP1 upregulation or high glycolytic metabolism impairs cetuximab activity in vitro, whereas TRAP1 targeting and/or inhibition of glycolytic pathway enhances cell response to cetuximab. Finally, a linear correlation between 18F‐FDG PET uptake and poor response to cetuximab in first‐line therapy in human metastatic CRCs was observed. These results suggest that TRAP1 is a key determinant of CRC metabolic rewiring and favors resistance to EGFR inhibitors through regulation of glycolytic metabolism.
Collapse
Affiliation(s)
- Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, Italy
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Italy
| | - Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Valeria Li Bergolis
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Annamaria Piscazzi
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Giovanni Storto
- Nuclear Medicine Unit, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy.,Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| |
Collapse
|
100
|
Zhang X, Dong Y, Zhao M, Ding L, Yang X, Jing Y, Song Y, Chen S, Hu Q, Ni Y. ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Am J Cancer Res 2020; 10:12044-12059. [PMID: 33204328 PMCID: PMC7667693 DOI: 10.7150/thno.47901] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives: Integrins, the coordinator of extracellular and intracellular signaling, are often found to be aberrant in tumors and can reshape the tumor microenvironment. Although previous studies showed that integrin beta 2 (ITGB2) is important for host defense, its expression profile and role in tumors, especially in cancer associated fibroblasts (CAFs) are still unknown. Methods: Immunofluorescence stain and fluorescence activated cell sorting were used to analyze the ITGB2 expression profile in oral squamous cell carcinoma (OSCC). RT-PCR and western blot were used to compare ITGB2 expression in normal fibroblasts (NFs) and cancer associated fibroblasts (CAFs). Clinical data and function-based experiments were used to investigate the promoting tumor growth ability of ITGB2 expressing CAFs. Enhanced glycolysis activity was identified by using bioinformatics analyses and GC/MS assays. MCT1 knockdown OSCC cell lines were constructed to explore the pro-proliferative mechanisms of ITGB2 expressing CAFs in multiple in vitro and in vivo assays. Results: We found that CAFs exhibited significantly higher ITGB2 expression than the matched NFs. In addition, higher ITGB2 expression in CAFs was correlated with higher TNM stages and more Ki67+ tumor cells, indicating its ability to promote OSCC proliferation. Further, co-culture assay demonstrated that ITGB2-mediated lactate release in CAFs promoted OSCC cell proliferation. Mechanically, ITGB2 regulated PI3K/AKT/mTOR pathways to enhance glycolysis activity in CAFs. Accordingly, lactate derived from ITGB2-expressing CAFs was absorbed and metabolized in OSCC to generate NADH, which was then oxidized in the mitochondrial oxidative phosphorylation system (OXPHOS) to produce ATP. Notably, inhibiting the OXPHOS system with metformin delayed the proliferative capacity of OSCC cells cultured in the ITGB2-expressing CAFs medium. Conclusions: Our study uncovered the ITGB2high pro-tumoral CAFs that activated the PI3K/AKT/mTOR axis to promote tumor proliferation in OSCC by NADH oxidation in the mitochondrial oxidative phosphorylation system.
Collapse
|