51
|
Lemes SR, Júnior LA, da Silva Manoel D, de Sousa MAM, Fonseca RD, Lima RS, Noda-Perez C, de Melo Reis PR, Cardoso CG, de Paula Silveira-Lacerda E, Souza MAR, Mendonça CR, Gonçalves PJ, de Boni L, da Fonseca TL, da Silva Junior NJ. Optical properties and antiangiogenic activity of a chalcone derivate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:685-695. [PMID: 29982160 DOI: 10.1016/j.saa.2018.06.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Chalcones and their derivatives exhibit numerous pharmacological activities such as antibacterial, antifungal, cytotoxic, antinociceptive and anti-inflammatory. Recently, they have been assessed aiming for novel application in nonlinear optics and in the treatment of immune diseases and cancers. In this study, we investigate the optical properties of synthetic chalcona 1E,4E-1-(4-chlorophenyl)-5-(2,6,6-trimethylcyclohexen-1-yl)penta-1,4-dien-3-one (CAB7β) and its antiangiogenic potential using the chorioallantoic membrane (CAM) with the S180 sarcoma cell line. Experimental and theoretical results show intense absorption in the UVA-UVC region, which is associated with a π → π* transition with intramolecular charge transfer from the trimethyl-cyclohexen-1-yl ring to the chlorophenyl ring. Quantum chemical calculations of the first hyperpolarizability, accounting for both solvent and frequency dispersion effects, are in very good concordance with hyper-Rayleigh scattering measurements. In addition, two-photon absorption allowed band centered at 650 nm was observed. Concerning antiangiogenic activity, CAB7β causes a significant reduction in the total number, junctions, length and caliber of blood vessels stimulated by S180 cells reducing the presence of blood vessels, inflammatory cells and others elements related to angiogenic process. It is found that CAB7β is a versatile compound and a promising candidate for linear and nonlinear optical applications, in therapy against sarcoma and phototherapy.
Collapse
Affiliation(s)
- Susy Ricardo Lemes
- Doutorado em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Campus-II, 74690-900 Goiânia, Goiás, Brazil.
| | - Luizmar Adriano Júnior
- Instituto de Física, Universidade Federal de Goiás, Campus-II, 74001-970 Goiânia, Goiás, Brazil
| | - Diego da Silva Manoel
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Maria Alice Montes de Sousa
- Laboratório de Estudos Experimentais e Biotecnológicos, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, Goiás, Brazil
| | - Ruben Dario Fonseca
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil; Departamento de Ciencias Básicas, Universidad de la Costa, 58 No 55-66, 080002 Barranquilla, Atlantico, Colombia
| | - Rosa Silva Lima
- Instituto de Química, Universidade Federal de Goiás, Campus-II, 74001970 Goiânia, Goiás, Brazil
| | - Caridad Noda-Perez
- Instituto de Química, Universidade Federal de Goiás, Campus-II, 74001970 Goiânia, Goiás, Brazil
| | - Paulo Roberto de Melo Reis
- Laboratório de Estudos Experimentais e Biotecnológicos, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, Goiás, Brazil
| | - Clever Gomes Cardoso
- Departamento de Histologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus-II, 74690-900 Goiânia, Goiás, Brazil
| | - Elisângela de Paula Silveira-Lacerda
- Laboratório de Genética Molecular e Citogenética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus-II, 74001-970 Goiânia, Goiás, Brazil
| | | | - Cleber Renato Mendonça
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Pablo José Gonçalves
- Instituto de Física, Universidade Federal de Goiás, Campus-II, 74001-970 Goiânia, Goiás, Brazil; Instituto de Química, Universidade Federal de Goiás, Campus-II, 74001970 Goiânia, Goiás, Brazil
| | - Leonardo de Boni
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Tertius Lima da Fonseca
- Instituto de Física, Universidade Federal de Goiás, Campus-II, 74001-970 Goiânia, Goiás, Brazil
| | - Nelson Jorge da Silva Junior
- Laboratório de Estudos Experimentais e Biotecnológicos, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, Goiás, Brazil
| |
Collapse
|
52
|
Post-treatment changes in hematological parameters predict response to nivolumab monotherapy in non-small cell lung cancer patients. PLoS One 2018; 13:e0197743. [PMID: 30359383 PMCID: PMC6201866 DOI: 10.1371/journal.pone.0197743] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/08/2018] [Indexed: 11/25/2022] Open
Abstract
Background The absolute neutrophil count (ANC), absolute lymphocyte count (ALC), absolute monocyte count (AMC) and neutrophil to lymphocyte ratio (NLR) are known markers of inflammation. We evaluated whether ANC, ALC, AMC and NLR, both before and after treatment with nivolumab, are indicative markers of overall survival (OS) and evaluated change in NLR as a predictive marker of response in non -small cell lung cancer (NSCLC) patients treated with nivolumab. Methods A total of 109 patients with advanced NSCLC treated with nivolumab were included. ANC, ALC, AMC and NLR were examined at initiation of nivolumab therapy and after two cycles. The prognostic role of ANC, ALC, AMC and NLR with OS and changes in NLR ratio were examined with Kaplan-Meier curves and proportional hazard model. Result Post-treatment NLR ≥5 after two cycles of nivolumab was associated with poor OS (median OS in NLR = <5 vs NLR = ≥5 was 29.1 (16.2–40.9) vs 24.2(16.1–36.2) months respectively, p<0.001). In addition NLR increased in non-responders after two cycles of nivolumab by 6.6±21.8 as compared to responders (p = 0.027). Conclusions Post-treatment ANC, ALC and NLR are independent prognostic factors in NSCLC patients treated with nivolumab. Changes in NLR can be an early biomarker for response in NSCLC patients treated with nivolumab.
Collapse
|
53
|
Platelet deficiency in Tpo−/− mice can both promote and suppress the metastasis of experimental breast tumors in an organ-specific manner. Clin Exp Metastasis 2018; 35:679-689. [DOI: 10.1007/s10585-018-9924-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/19/2018] [Indexed: 01/08/2023]
|
54
|
p38 activation induces production of miR-146a and miR-31 to repress E-selectin expression and inhibit transendothelial migration of colon cancer cells. Sci Rep 2018; 8:2334. [PMID: 29402939 PMCID: PMC5799178 DOI: 10.1038/s41598-018-20837-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/25/2018] [Indexed: 12/15/2022] Open
Abstract
Extravasation of circulating cancer cells determines their metastatic potential. This process is initiated by the adhesion of cancer cells to vascular endothelial cells through specific interactions between endothelial adhesion receptors such as E-selectin and their ligands on cancer cells. In the present study, we show that miR-146a and miR-181b impede the expression of E-selectin by repressing the activity of its transcription factor NF-κB, thereby impairing the metastatic potentials of colon cancer cells by decreasing their adhesion to, and migration through, the endothelium. Among the two microRNAs, only miR-146a is activated by IL-1β, through the activation of p38, ERK and JNK MAP kinases, as well as their downstream transcription factors GATA2, c-Fos and c-Jun. Inhibiting p38 MAP kinase increases NF-κB activity, at least partially via miR-146a. Inhibiting p38 also increases the expression of E-selectin at the post-transcriptional level via decreasing miR-31, which targets E-selectin mRNA and also depends on p38 for its expression. In response to IL-1β, p38 MAP kinase hence represses the expression of E-selectin at the transcriptional and the post-transcriptional levels, via miR-146a and miR-31, respectively. These results highlight novel mechanisms by which p38 downregulates the expression of E-selectin through different microRNAs following inflammatory stimuli associated to cancer progression.
Collapse
|
55
|
Silva M, Videira PA, Sackstein R. E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy. Front Immunol 2018; 8:1878. [PMID: 29403469 PMCID: PMC5780348 DOI: 10.3389/fimmu.2017.01878] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
The mononuclear phagocyte system comprises a network of circulating monocytes and dendritic cells (DCs), and “histiocytes” (tissue-resident macrophages and DCs) that are derived in part from blood-borne monocytes and DCs. The capacity of circulating monocytes and DCs to function as the body’s first-line defense against offending pathogens greatly depends on their ability to egress the bloodstream and infiltrate inflammatory sites. Extravasation involves a sequence of coordinated molecular events and is initiated by E-selectin-mediated deceleration of the circulating leukocytes onto microvascular endothelial cells of the target tissue. E-selectin is inducibly expressed by cytokines (tumor necrosis factor-α and IL-1β) on inflamed endothelium, and binds to sialofucosylated glycan determinants displayed on protein and lipid scaffolds of blood cells. Efficient extravasation of circulating monocytes and DCs to inflamed tissues is crucial in facilitating an effective immune response, but also fuels the immunopathology of several inflammatory disorders. Thus, insights into the structural and functional properties of the E-selectin ligands expressed by different monocyte and DC populations is key to understanding the biology of protective immunity and the pathobiology of several acute and chronic inflammatory diseases. This review will address the role of E-selectin in recruitment of human circulating monocytes and DCs to sites of tissue injury/inflammation, the structural biology of the E-selectin ligands expressed by these cells, and the molecular effectors that shape E-selectin ligand cell-specific display. In addition, therapeutic approaches targeting E-selectin receptor/ligand interactions, which can be used to boost host defense or, conversely, to dampen pathological inflammatory conditions, will also be discussed.
Collapse
Affiliation(s)
- Mariana Silva
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, United States
| | - Paula A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal.,Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Robert Sackstein
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
56
|
SEC-induced activation of ANXA7 GTPase suppresses prostate cancer metastasis. Cancer Lett 2017; 416:11-23. [PMID: 29247827 DOI: 10.1016/j.canlet.2017.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
Abstract
Annexin A7 (ANXA7) is a suppressor of tumorigenesis and metastasis in prostate cancer. Activated ANXA7 GTPase promotes prostate cancer cell apoptosis. However, the role and underlying mechanism of ANXA7 GTPase in prostate cancer metastasis have not been established. RKIP is a metastatic suppressor and downregulated in prostate cancer metastases. The binding of RKIP and its target proteins could inhibit the activation of its interactive partners. However, the effect of RKIP on ANXA7 GTPase activation is not clear. Here, we report that activation of ANXA7 GTPase by a small molecule SEC ((S)-ethyl 1-(3-(4-chlorophenoxy)-2-hydroxypropyl)-3- (4-methoxyphenyl)-1H-pyrazole-5-carboxylate) effectively inhibited prostate cancer metastasis. Mechanistically, activated ANXA7 promoted AMPK phosphorylation, leading to decreased mTORC1 activity, suppressed STAT3 nuclear translocation, and downregulation of pro-metastatic genes, including CCL2, APLN, and IL6ST. Conversely, RKIP interacted with ANXA7 and impaired activation of ANXA7 GTPase by SEC and its downstream signaling pathway. Notably, SEC treatment suppressed metastasis of prostate cancer cells in in vivo orthotopic analysis. Together, our findings provide a novel insight into how metastasis of prostate cancer with low RKIP expression is suppressed by SEC-induced activation of ANXA7 GTPase via the AMPK/mTORC1/STAT3 signaling pathway.
Collapse
|
57
|
McCoy AM, Herington JL, Stouch AN, Mukherjee AB, Lakhdari O, Blackwell TS, Prince LS. IKKβ Activation in the Fetal Lung Mesenchyme Alters Lung Vascular Development but Not Airway Morphogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2635-2644. [PMID: 28923684 PMCID: PMC5718091 DOI: 10.1016/j.ajpath.2017.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/05/2017] [Accepted: 08/08/2017] [Indexed: 01/29/2023]
Abstract
In the immature lung, inflammation and injury disrupt the epithelial-mesenchymal interactions required for normal development. Innate immune signaling and NF-κB activation disrupt the normal expression of multiple mesenchymal genes that play a key role in airway branching and alveolar formation. To test the role of the NF-κB pathway specifically in lung mesenchyme, we utilized the mesenchymal Twist2-Cre to drive expression of a constitutively active inhibitor of NF-κB kinase subunit β (IKKβca) mutant in developing mice. Embryonic Twist2-IKKβca mice were generated in expected numbers and appeared grossly normal. Airway branching also appeared normal in Twist2-IKKβca embryos, with airway morphometry, elastin staining, and saccular branching similar to those in control littermates. While Twist2-IKKβca lungs did not contain increased levels of Il1b, we did measure an increased expression of the chemokine-encoding gene Ccl2. Twist2-IKKβca lungs had increased staining for the vascular marker platelet endothelial cell adhesion molecule 1. In addition, type I alveolar epithelial differentiation appeared to be diminished in Twist2-IKKβca lungs. The normal airway branching and lack of Il1b expression may have been due to the inability of the Twist2-IKKβca transgene to induce inflammasome activity. While Twist2-IKKβca lungs had an increased number of macrophages, inflammasome expression remained restricted to macrophages without evidence of spontaneous inflammasome activity. These results emphasize the importance of cellular niche in considering how inflammatory signaling influences fetal lung development.
Collapse
Affiliation(s)
- Alyssa M McCoy
- Department of Pediatrics, University of California, San Diego, La Jolla, California; Rady Children's Hospital, San Diego, San Diego, California; Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Jennifer L Herington
- Departments of Pediatrics, Medicine, Cancer Biology, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Ashley N Stouch
- Department of Pediatrics, University of California, San Diego, La Jolla, California; Rady Children's Hospital, San Diego, San Diego, California; Departments of Pediatrics, Medicine, Cancer Biology, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Anamika B Mukherjee
- Departments of Pediatrics, Medicine, Cancer Biology, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Omar Lakhdari
- Department of Pediatrics, University of California, San Diego, La Jolla, California; Rady Children's Hospital, San Diego, San Diego, California
| | - Timothy S Blackwell
- Departments of Pediatrics, Medicine, Cancer Biology, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Lawrence S Prince
- Department of Pediatrics, University of California, San Diego, La Jolla, California; Rady Children's Hospital, San Diego, San Diego, California.
| |
Collapse
|
58
|
Ahmed I, Madakshira MG, Dudeja P. Tumor-Associated Macrophages: Oblivious Confederates in Invasive Mammary Carcinoma. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2017. [DOI: 10.1007/s40944-017-0169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
59
|
Transcription factor c-Myb inhibits breast cancer lung metastasis by suppression of tumor cell seeding. Oncogene 2017; 37:1020-1030. [PMID: 29084208 DOI: 10.1038/onc.2017.392] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/17/2017] [Accepted: 09/16/2017] [Indexed: 12/16/2022]
Abstract
Metastasis accounts for most of cancer-related deaths. Paracrine signaling between tumor cells and the stroma induces changes in the tumor microenvironment required for metastasis. Transcription factor c-Myb was associated with breast cancer (BC) progression but its role in metastasis remains unclear. Here we show that increased c-Myb expression in BC cells inhibits spontaneous lung metastasis through impaired tumor cell extravasation. On contrary, BC cells with increased lung metastatic capacity exhibited low c-Myb levels. We identified a specific inflammatory signature, including Ccl2 chemokine, that was expressed in lung metastatic cells but was suppressed in tumor cells with higher c-Myb levels. Tumor cell-derived Ccl2 expression facilitated lung metastasis and rescued trans-endothelial migration of c-Myb overexpressing cells. Clinical data show that the identified inflammatory signature, together with a MYB expression, predicts lung metastasis relapse in BC patients. These results demonstrate that the c-Myb-regulated transcriptional program in BCs results in a blunted inflammatory response and consequently suppresses lung metastasis.
Collapse
|
60
|
Strilic B, Offermanns S. Intravascular Survival and Extravasation of Tumor Cells. Cancer Cell 2017; 32:282-293. [PMID: 28898694 DOI: 10.1016/j.ccell.2017.07.001] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/24/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
Most metastasizing tumor cells reach distant sites by entering the circulatory system. Within the bloodstream, they are exposed to severe stress due to loss of adhesion to extracellular matrix, hemodynamic shear forces, and attacks of the immune system, and only a few cells manage to extravasate and to form metastases. We review the current understanding of the cellular and molecular mechanisms that allow tumor cells to survive in the intravascular environment and that mediate and promote tumor cell extravasation. As these processes are critical for the metastatic spread of tumor cells, we discuss implications for potential therapeutic approaches and future research.
Collapse
Affiliation(s)
- Boris Strilic
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231 Bad Nauheim, Germany; J.W. Goethe University Frankfurt, Center for Molecular Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|