51
|
Bhat AA, Wani HA, Waza AA, Malik RA, Masood A, Jeelani S, Kadla S, Majid S. Diminished expression of MGMT & RASSF1A genes in gastric cancer in ethnic population of Kashmir. J Gastrointest Oncol 2016; 7:989-995. [PMID: 28078123 DOI: 10.21037/jgo.2016.06.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cancer initiation and progression are accompanied by profound changes in DNA. DNA methylation that was the first epigenetic alterations identified in cancer. DNA hypermethylation at promoter sites is closely associated with down regulation of protein and as major participant in the development and progression of series of human tumors. Therefore we hypothesized that promoter hypermethylation of RASSF1A & MGMT gene could influence susceptibility to gastric cancer (GC) as well, and we conducted this study to test the hypothesis in Kashmiri population. METHODS A hospital based case-control study; including 200 GC cases and 200 matched controls from patients who went surgical resection. Promoter hypermethylation was determined by Methylation Specific Polymerase chain reaction. The expression of MGMT & RASSF1A protein was examined by Western blotting technique. RESULTS Frequency of promoter region hypermethylation of MGMT gene were 46.5% in cases and 5.5% in controls (P<0.05) while as in case of RASSF1A frequency was 44% in cases and 4.5% in controls (P<0.05). Further, frequency of hypermethylation of both genes was found predominant in males, aged and advanced pathological stage subjects. Loss of MGMT expression was found in 46.5% cases (P<0.05) while as loss of RASSF1A expression was found in 40.5% cases (P<0.05). In both genes a positive correlation was observed between promoter CpG island hypermethylation and down regulation of respective proteins. CONCLUSIONS These findings indicate that promoter hypermethylation at CpG island may be responsible for reduction of expression at protein level which may be an initial event in carcinogenesis and the progression of GC.
Collapse
Affiliation(s)
- Arif Akbar Bhat
- Department of Biochemistry, Government Medical College Srinagar (Research Centre University of Kashmir), Srinagar, India
| | - Hilal Ahmad Wani
- Multidisciplinary Research Unit, Government Medical College Srinagar, Srinagar, India
| | - Ajaz Ahmad Waza
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, India
| | | | - Akbar Masood
- Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, Srinagar, India
| | | | | | - Sabhiya Majid
- Department of Biochemistry, Government Medical College Srinagar (Research Centre University of Kashmir), Srinagar, India
| |
Collapse
|
52
|
Subhash S, Andersson PO, Kosalai ST, Kanduri C, Kanduri M. Global DNA methylation profiling reveals new insights into epigenetically deregulated protein coding and long noncoding RNAs in CLL. Clin Epigenetics 2016; 8:106. [PMID: 27777635 PMCID: PMC5062931 DOI: 10.1186/s13148-016-0274-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
Background Methyl-CpG-binding domain protein enriched genome-wide sequencing (MBD-Seq) is a robust and powerful method for analyzing methylated CpG-rich regions with complete genome-wide coverage. In chronic lymphocytic leukemia (CLL), the role of CpG methylated regions associated with transcribed long noncoding RNAs (lncRNA) and repetitive genomic elements are poorly understood. Based on MBD-Seq, we characterized the global methylation profile of high CpG-rich regions in different CLL prognostic subgroups based on IGHV mutational status. Results Our study identified 5800 hypermethylated and 12,570 hypomethylated CLL-specific differentially methylated genes (cllDMGs) compared to normal controls. From cllDMGs, 40 % of hypermethylated and 60 % of hypomethylated genes were mapped to noncoding RNAs. In addition, we found that the major repetitive elements such as short interspersed elements (SINE) and long interspersed elements (LINE) have a high percentage of cllDMRs (differentially methylated regions) in IGHV subgroups compared to normal controls. Finally, two novel lncRNAs (hypermethylated CRNDE and hypomethylated AC012065.7) were validated in an independent CLL sample cohort (48 samples) compared with 6 normal sorted B cell samples using quantitative pyrosequencing analysis. The methylation levels showed an inverse correlation to gene expression levels analyzed by real-time quantitative PCR. Notably, survival analysis revealed that hypermethylation of CRNDE and hypomethylation of AC012065.7 correlated with an inferior outcome. Conclusions Thus, our comprehensive methylation analysis by MBD-Seq provided novel hyper and hypomethylated long noncoding RNAs, repetitive elements, along with protein coding genes as potential epigenetic-based CLL-signature genes involved in disease pathogenesis and prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0274-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Santhilal Subhash
- Department of Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Per-Ola Andersson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden ; Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Subazini Thankaswamy Kosalai
- Department of Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Meena Kanduri
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, S-413 45 Gothenburg, Sweden
| |
Collapse
|
53
|
Prior S, Miousse IR, Nzabarushimana E, Pathak R, Skinner C, Kutanzi KR, Allen AR, Raber J, Tackett AJ, Hauer-Jensen M, Nelson GA, Koturbash I. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. ENVIRONMENTAL RESEARCH 2016; 150:470-481. [PMID: 27419368 PMCID: PMC5003736 DOI: 10.1016/j.envres.2016.06.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 05/26/2023]
Abstract
Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2'-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5'-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR.
Collapse
Affiliation(s)
- Sara Prior
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Etienne Nzabarushimana
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Bioinformatics, School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Charles Skinner
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kristy R Kutanzi
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alan J Tackett
- Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gregory A Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, CA 92350, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
54
|
Di Paolo A, Del Re M, Petrini I, Altavilla G, Danesi R. Recent advances in epigenomics in NSCLC: real-time detection and therapeutic implications. Epigenomics 2016; 8:1151-67. [PMID: 27479016 DOI: 10.2217/epi.16.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NSCLC is an aggressive disease with one of the poorer prognosis among cancers. The disappointing response to chemotherapy drives the search for genetic biomarkers aimed at both attaining an earlier diagnosis and choosing the most appropriate chemotherapy. In this scenario, epigenomic markers, such as DNA methylation, histone acetylation and the expression of noncoding RNAs, have been demonstrated to be reliable for the stratification of NSCLC patients. Newest techniques with increased sensitivity and the isolation of nucleic acids from plasma may allow an early diagnosis and then monitoring the efficacy over time. However, prospective confirmatory studies are still lacking. This article presents an overview of the epigenetic markers evaluated in NSCLC and discusses the role of their real-time detection in the clinical management of the disease.
Collapse
Affiliation(s)
- Antonello Di Paolo
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Marzia Del Re
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Iacopo Petrini
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Giuseppe Altavilla
- Department of Human Pathology, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Romano Danesi
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
55
|
Gainetdinov IV, Kapitskaya KY, Rykova EY, Ponomaryova AA, Cherdyntseva NV, Vlassov VV, Laktionov PP, Azhikina TL. Hypomethylation of human-specific family of LINE-1 retrotransposons in circulating DNA of lung cancer patients. Lung Cancer 2016; 99:127-30. [PMID: 27565927 DOI: 10.1016/j.lungcan.2016.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/12/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
Circulating DNA has recently gained attention as a fast and non-invasive way to assess tumor biomarkers. Since hypomethylation of LINE-1 repetitive elements was described as one of the key hallmarks of tumorigenesis, we aimed to establish whether the methylation level of LINE-1 retrotransposons changes in cell-surface-bound fraction of circulating DNA (csbDNA) of lung cancer patients. Methylated CpG Island Recovery Assay (MIRA) coupled to qPCR-based quantitation was performed to assess integral methylation level of LINE-1 promoters in csbDNA of non-small cell lung cancer patients (n=56) and healthy controls (n=44). Deep sequencing of amplicons revealed that hypomethylation of LINE-1 promoters in csbDNA of lung cancer patients is more pronounced for the human-specific L1Hs family. Statistical analysis demonstrates significant difference in LINE-1 promoter methylation index between cancer patients and healthy individuals (ROC-curve analysis: n=100, AUC=0.69, p=0.0012) and supports the feasibility of MIRA as a promising non-invasive approach.
Collapse
Affiliation(s)
- Ildar V Gainetdinov
- Department of Genetics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Kristina Yu Kapitskaya
- Department of Genetics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Elena Yu Rykova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk State, Russia.
| | - Anastasia A Ponomaryova
- Tomsk Cancer Research Institute, National Research Tomsk Polytechnic University, Tomsk, Russia.
| | - Nadezda V Cherdyntseva
- Tomsk Cancer Research Institute, National Research Tomsk State University, Tomsk, Russia.
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.
| | - Pavel P Laktionov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Academician E.N. Meshalkin Novosibirsk Research Institute of Circulation Pathology, Novosibirsk, Russia Technical University, Novosibirsk, Russia.
| | - Tatyana L Azhikina
- Department of Genetics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
56
|
Rangasamy D, Lenka N, Ohms S, Dahlstrom JE, Blackburn AC, Board PG. Activation of LINE-1 Retrotransposon Increases the Risk of Epithelial-Mesenchymal Transition and Metastasis in Epithelial Cancer. Curr Mol Med 2016; 15:588-97. [PMID: 26321759 PMCID: PMC5384359 DOI: 10.2174/1566524015666150831130827] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/31/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022]
Abstract
Epithelial cancers comprise 80-90% of human cancers. During the process of cancer progression, cells lose their epithelial characteristics and acquire stem-like mesenchymal features that are resistant to chemotherapy. This process, termed the epithelial-mesenchymal transition (EMT), plays a critical role in the development of metastases. Because of the unique migratory and invasive properties of cells undergoing the EMT, therapeutic control of the EMT offers great hope and new opportunities for treating cancer. In recent years, a plethora of genes and noncoding RNAs, including miRNAs, have been linked to the EMT and the acquisition of stem cell-like properties. Despite these advances, questions remain unanswered about the molecular processes underlying such a cellular transition. In this article, we discuss how expression of the normally repressed LINE-1 (or L1) retrotransposons activates the process of EMT and the development of metastases. L1 is rarely expressed in differentiated stem cells or adult somatic tissues. However, its expression is widespread in almost all epithelial cancers and in stem cells in their undifferentiated state, suggesting a link between L1 activity and the proliferative and metastatic behaviour of cancer cells. We present an overview of L1 activity in cancer cells including how genes involved in proliferation, invasive and metastasis are modulated by L1 expression. The role of L1 in the differential expression of the let-7 family of miRNAs (that regulate genes involved in the EMT and metastasis) is also discussed. We also summarize recent novel insights into the role of the L1-encoded reverse transcriptase enzyme in epithelial cell plasticity that suggest it might be a potential therapeutic target that could reverse the EMT and the metastasis-associated stem cell-like properties of cancer cells.
Collapse
Affiliation(s)
- D Rangasamy
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | |
Collapse
|
57
|
Udomsinprasert W, Kitkumthorn N, Mutirangura A, Chongsrisawat V, Poovorawan Y, Honsawek S. Global methylation, oxidative stress, and relative telomere length in biliary atresia patients. Sci Rep 2016; 6:26969. [PMID: 27243754 PMCID: PMC4886632 DOI: 10.1038/srep26969] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022] Open
Abstract
Alu and LINE-1 elements are retrotransposons with a ubiquitous presence in the human genome that can cause genomic instability, specifically relating to telomere length. Genotoxic agents may induce methylation of retrotransposons, in addition to oxidative DNA damage in the form of 8-hydroxy-2′-deoxyguanosine (8-OHdG). Methylation of retrotransposons induced by these agents may contribute to biliary atresia (BA) etiology. Here, we investigated correlations between global methylation, 8-OHdG, and relative telomere length, as well as reporting on Alu and LINE-1 hypomethylation in BA patients. Alu and LINE-1 hypomethylation were found to be associated with elevated risk of BA (OR = 4.07; 95% CI: 2.27–7.32; P < 0.0001 and OR = 3.51; 95% CI: 1.87–6.59; P < 0.0001, respectively). Furthermore, LINE-1 methylation was associated with liver stiffness in BA patients (β coefficient = −0.17; 95% CI: −0.24 to −0.10; P < 0.0001). Stratified analysis revealed negative correlations between Alu and LINE-1 methylation and 8-OHdG in BA patients (P < 0.0001). In contrast, positive relationships were identified between Alu and LINE-1 methylation and relative telomere length in BA patients (P < 0.0001). These findings suggest that retrotransposon hypomethylation is associated with plasma 8-OHdG and telomere length in BA patients.
Collapse
Affiliation(s)
- Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral and Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Voranush Chongsrisawat
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
58
|
Geng S, Yao H, Weng J, Tong J, Huang X, Wu P, Deng C, Li M, Lu Z, Du X. Effects of the combination of decitabine and homoharringtonine in SKM-1 and Kg-1a cells. Leuk Res 2016; 44:17-24. [DOI: 10.1016/j.leukres.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/06/2016] [Accepted: 02/13/2016] [Indexed: 01/16/2023]
|
59
|
Ma K, Cao B, Guo M. The detective, prognostic, and predictive value of DNA methylation in human esophageal squamous cell carcinoma. Clin Epigenetics 2016; 8:43. [PMID: 27110300 PMCID: PMC4840959 DOI: 10.1186/s13148-016-0210-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/14/2016] [Indexed: 12/17/2022] Open
Abstract
Esophageal cancer is one of the most common malignancies in the world. Squamous cell carcinoma accounts for approximately 90 % of esophageal cancer cases. Genetic and epigenetic changes have been found to accumulate during the development of various cancers, including esophageal squamous carcinoma (ESCC). Tobacco smoking and alcohol consumption are two major risk factors for ESCC, and both tobacco and alcohol were found to induce methylation changes in ESCC. Growing evidence demonstrates that aberrant epigenetic changes play important roles in the multiple-step processes of carcinogenesis and tumor progression. DNA methylation may occur in the key components of cancer-related signaling pathways. Aberrant DNA methylation affects genes involved in cell cycle, DNA damage repair, Wnt, TGF-β, and NF-κB signaling pathways, including P16, MGMT, SFRP2, DACH1, and ZNF382. Certain genes methylated in precursor lesions of the esophagus demonstrate that DNA methylation may serve as esophageal cancer early detection marker, such as methylation of HIN1, TFPI-2, DACH1, and SOX17. CHFR methylation is a late stage event in ESCC and is a sensitive marker for taxanes in human ESCC. FHIT methylation is associated with poor prognosis in ESCC. Aberrant DNA methylation changes may serve as diagnostic, prognostic, and chemo-sensitive markers. Characterization of the DNA methylome in ESCC will help to better understand its mechanisms and develop improved therapies.
Collapse
Affiliation(s)
- Kai Ma
- />Department of Thoracic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baoping Cao
- />Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Mingzhou Guo
- />Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
60
|
Chen D, Wen X, Song YS, Rhee YY, Lee TH, Cho NY, Han SW, Kim TY, Kang GH. Associations and prognostic implications of Eastern Cooperative Oncology Group performance status and tumoral LINE-1 methylation status in stage III colon cancer patients. Clin Epigenetics 2016; 8:36. [PMID: 27051466 PMCID: PMC4820986 DOI: 10.1186/s13148-016-0203-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
Background Low methylation status of LINE-1 in tumors is associated with poor survival in patients with colon cancer. Eastern Cooperative Oncology Group performance status (ECOG-PS) is a method to assess the functional status of a patient. We retrospectively evaluated the relationship between ECOG-PS and LINE-1 methylation in colorectal cancers (CRCs) and their prognostic impact in CRC or colon cancer patients receiving adjuvant 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX). Results LINE-1 methylation and microsatellite instability were analyzed in stage III or high-risk stage II CRCs (n = 336). LINE-1 methylation levels were correlated with clinicopathological features, including PS and recurrence-free survival (RFS). The association between the tumoral LINE-1 methylation level and PS was observed (OR = 2.56, P < 0.001). Differences in LINE-1 methylation levels in cancer tissue between the PS 0 and 1 groups were significant in patients older than 60 years (P = 0.001), the overweight body mass index group (P = 0.005), and the stage III disease group (P = 0.008). Prognostic significances of LINE-1 methylation status or combined PS and LINE-1 methylation statuses were identified in stage III colon cancers, not in stage III and high-risk stage II CRCs. Low LINE-1 methylation status was closely associated with a shorter RFS time. The difference between PS(0)/LINE-1(high) and PS(≥1)/LINE-1(low) was significant, which suggests that colon cancer patients with concurrent PS(≥1)/LINE-1 (low) have a higher recurrence rate. Conclusions PS was associated with LINE-1 methylation in CRC tissue. LINE-1 methylation was associated with RFS in stage III colon cancer patients who were treated with adjuvant FOLFOX chemotherapy. Combined PS and LINE-1 methylation status might serve as a useful predictor of cancer recurrence. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0203-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duo Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xianyu Wen
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Seok Song
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ye-Young Rhee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Hun Lee
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Nam Yun Cho
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Won Han
- Division of Oncology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-You Kim
- Division of Oncology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
61
|
McCullough LE, Chen J, Cho YH, Khankari NK, Bradshaw PT, White AJ, Garbowski G, Teitelbaum SL, Terry MB, Neugut AI, Hibshoosh H, Santella RM, Gammon MD. DNA methylation modifies the association between obesity and survival after breast cancer diagnosis. Breast Cancer Res Treat 2016; 156:183-94. [PMID: 26945992 DOI: 10.1007/s10549-016-3724-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/16/2016] [Indexed: 01/19/2023]
Abstract
Mechanisms underlying the poor breast cancer prognosis among obese women are unresolved. DNA methylation levels are linked to obesity and to breast cancer survival. We hypothesized that obesity may work in conjunction with the epigenome to alter prognosis. Using a population-based sample of women diagnosed with first primary breast cancer, we examined modification of the obesity-mortality association by DNA methylation. In-person interviews were conducted approximately 3 months after diagnosis. Weight and height were assessed [to estimate body mass index (BMI)], and blood samples collected. Promoter methylation of 13 breast cancer-related genes was assessed in archived tumor by methylation-specific PCR and Methyl Light. Global methylation in white blood cell DNA was assessed by analysis of long interspersed elements-1 (LINE-1) and with the luminometric methylation assay (LUMA). Vital status among 1308 patients (with any methylation biomarker and complete BMI assessment) was determined after approximately 15 years of follow-up (N = 194/441 deaths due to breast cancer-specific/all-cause mortality). We used Cox proportional hazards regression to estimate hazard ratios (HRs) and 95 % confidence intervals (CIs) using two-sided p values of 0.05. Breast cancer-specific mortality was higher among obese (BMI ≥ 30) patients with promoter methylation in APC (HR = 2.47; 95 % CI = 1.43-4.27) and TWIST1 (HR = 4.25; 95 % CI = 1.43-12.70) in breast cancer tissue. Estimates were similar, but less pronounced, for all-cause mortality. Increased all-cause (HR = 1.81; 95 % CI = 1.19-2.74) and breast cancer-specific (HR = 2.61; 95 % CI = 1.45-4.69) mortality was observed among obese patients with the lowest LUMA levels. The poor breast cancer prognosis associated with obesity may depend on methylation profiles, which warrants further investigation.
Collapse
Affiliation(s)
- Lauren E McCullough
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jia Chen
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department Oncological Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yoon Hee Cho
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Nikhil K Khankari
- Division of Epidemiology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Patrick T Bradshaw
- School of Public Health Division of Epidemiology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Alexandra J White
- Epidemiology Branch National Institute of Environmental Health Science, Research Triangle Park, NC, 27709, USA
| | - Gail Garbowski
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Susan L Teitelbaum
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mary Beth Terry
- Department of Epidemiology, Columbia University, New York, NY, 10032, USA
| | - Alfred I Neugut
- Department of Epidemiology, Columbia University, New York, NY, 10032, USA.,Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Hanina Hibshoosh
- Department of Pathology, Columbia University, New York, NY, 10032, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Marilie D Gammon
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
62
|
Feng H, Zhang Z, Qing X, Wang X, Liang C, Liu D. Promoter methylation of APC and RAR-β genes as prognostic markers in non-small cell lung cancer (NSCLC). Exp Mol Pathol 2016; 100:109-13. [DOI: 10.1016/j.yexmp.2015.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 10/22/2022]
|
63
|
Kemp JR, Longworth MS. Crossing the LINE Toward Genomic Instability: LINE-1 Retrotransposition in Cancer. Front Chem 2015; 3:68. [PMID: 26734601 PMCID: PMC4679865 DOI: 10.3389/fchem.2015.00068] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/27/2015] [Indexed: 12/17/2022] Open
Abstract
Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises~17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.
Collapse
Affiliation(s)
- Jacqueline R Kemp
- Department of Cellular and Molecular Medicine, Lerner Research Institute of Cleveland Clinic Cleveland, OH, USA
| | - Michelle S Longworth
- Department of Cellular and Molecular Medicine, Lerner Research Institute of Cleveland Clinic Cleveland, OH, USA
| |
Collapse
|
64
|
Chen HC, Yang CM, Cheng JT, Tsai KW, Fu TY, Liou HH, Tseng HH, Lee JH, Li GC, Wang JS, Hou YY, Weng TJ, Ger LP. Global DNA hypomethylation is associated with the development and poor prognosis of tongue squamous cell carcinoma. J Oral Pathol Med 2015; 45:409-17. [PMID: 26525607 DOI: 10.1111/jop.12381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUNDS Oral cancer is the 4th leading cause of cancer death for males and the top cancer in young adult males in Taiwan. Tongue squamous cell carcinoma (TSCC) is a common oral cancer and generally associated with poor prognosis. Global DNA hypomethylation at the 5 position of cytosine (5mC) is a well-known epigenetic feature of cancer. Therefore, the purpose of this study was to investigate the relationship of the global 5mC content with the tumorigenesis and prognosis of patients with TSCC. METHODS The levels of global 5mC were evaluated by immunohistochemistry using tissue microarray slides of 248 surgically resected TSCC and 202 corresponding tumor adjacent normal (TAN) tissues. RESULTS We found that the level of 5mC in TSCC (P < 0.001) was significantly decreased as compared to TAN. Among TSCC tissues, decreased levels of 5mC were associated with female gender (P = 0.036). In addition, the global hypomethylation was associated with the poor disease-specific survival in TSCC patients (adjusted hazard ratio: 1.55, P = 0.043), especially for patients in older age group (> 50 years, P = 0.013), with moderate or poor cell differentiation (P = 0.044), early stage of disease (I-II, P = 0.046), small tumor size (T1-T2, P = 0.005), without lymph node involvement (P = 0.041), and ever received postoperative radiotherapy (P = 0.009). CONCLUSIONS Global hypomethylation was an independent biomarker for the development and poor prognosis of TSCC.
Collapse
Affiliation(s)
- Hung-Chih Chen
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Cheng-Mei Yang
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ting-Ying Fu
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Huei-Han Liou
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hui-Hwa Tseng
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jang-Hwa Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Guan-Cheng Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jyh-Seng Wang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Yi Hou
- Department of Otorhinolaryngology-Head & Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Nursing, Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Ta-Jung Weng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
65
|
The Fine LINE: Methylation Drawing the Cancer Landscape. BIOMED RESEARCH INTERNATIONAL 2015; 2015:131547. [PMID: 26448926 PMCID: PMC4584040 DOI: 10.1155/2015/131547] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/17/2014] [Accepted: 11/25/2014] [Indexed: 01/08/2023]
Abstract
LINE-1 (L1) is the most abundant mammalian transposable element that comprises nearly 20% of the genome, and nearly half of the mammalian genome has stemmed from L1-mediated mobilization. Expression and retrotransposition of L1 are suppressed by complex mechanisms, where the key role belongs to DNA methylation. Alterations in L1 methylation may lead to aberrant expression of L1 and have been described in numerous diseases. Accumulating evidence clearly indicates that loss of global DNA methylation observed in cancer development and progression is tightly associated with hypomethylation of L1 elements. Significant progress achieved in the last several years suggests that such parameters as L1 methylation status can be potentially utilized as clinical biomarkers for determination of the disease stage and in predicting the disease-free survival in cancer patients. In this paper, we summarize the current knowledge on L1 methylation, with specific emphasis given to success and challenges on the way of introduction of L1 into clinical practice.
Collapse
|
66
|
Abstract
Lung cancer is the most frequent cause of cancer-related death in Germany in men and women alike. While in the last decades a classification of epithelial lung tumors into non-small cell and small cell lung cancer was clearly sufficient from the therapeutic viewpoint, the dawn of the era of personalized medicine together with tremendous developments in the field of high throughput technologies have led to a molecular individualization of these tumors and, even more important, to a molecularly defined individualization of tumor therapy. This development resulted in the definition of a wide array of molecularly divergent tumor families. In this article we will give an overview on relevant molecular alterations in non-small cell lung cancers, comprising adenocarcinomas, squamous cell carcinomas and large cell carcinomas and also small cell carcinomas and carcinoids. Besides some similarities data gathered in the last few years specifically highlighted the immense diversity of molecular alterations that might underlie tumorigenesis of lung neoplasms. The knowledge on how to detect these alterations is of utmost importance in pathology, as treatment decisions are increasingly based on their presence or absence, putting molecular pathology in the central focus of the novel era of personalized medicine in oncology.
Collapse
|
67
|
Poomsawat S, Sanguansin S, Punyasingh J, Vejchapipat P, Punyarit P. Expression of cdk6 in head and neck squamous cell carcinoma. Clin Oral Investig 2015; 20:57-63. [PMID: 25929813 DOI: 10.1007/s00784-015-1482-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/23/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Cdk6 is a key regulator during the G1/S cell cycle transition. Aberrant expression of cdk6 protein has been observed in many cancer types. However, little is known about the expression of cdk6 in head and neck squamous cell carcinoma (HNSCC) and its clinical significance. This study evaluated the expression of cdk6 in HNSCC and analyzed the relationship between cdk6 expression and clinicopathological parameters of HNSCC. MATERIALS AND METHODS Expression of cdk6 was immunohistochemically investigated in 98 HNSCCs. Nuclear and cytoplasmic positive cells were counted separately. Data were presented as the percentage of positive cells. The correlation between the percentage of positive cells and clinicopathological factors was determined. RESULTS Nuclear and cytoplasmic staining for cdk6 were detected in 91 cases and 97 cases, respectively. A significant correlation was found only between the percentage of nuclear positive cells and T classification (p value = 0.0410). Tumors with high nuclear cdk6-positive cells showed a linear trend toward advanced tumor status (p value = 0.0064). CONCLUSIONS Cdk6 was highly expressed in HNSCC. Tumors with high nuclear cdk6 expression tended to have advanced tumor status. These results suggest that cdk6 plays a vital role in HNSCC and is involved in tumor progression of this cancer. CLINICAL RELEVANCE An increased nuclear cdk6 expression is an unfavorable factor for HNSCC. Cdk6 may serve as a therapeutic target in this cancer.
Collapse
Affiliation(s)
- Sopee Poomsawat
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Yothi Street, Bangkok, 10400, Thailand.
| | - Sirima Sanguansin
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Jirapa Punyasingh
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Yothi Street, Bangkok, 10400, Thailand
| | - Paisarn Vejchapipat
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phaibul Punyarit
- Army Institute of Pathology, Pramongkutklao Hospital, Bangkok, Thailand
| |
Collapse
|
68
|
Lou YT, Chen CW, Fan YC, Chang WC, Lu CY, Wu IC, Hsu WH, Huang CW, Wang JY. LINE-1 Methylation Status Correlates Significantly to Post-Therapeutic Recurrence in Stage III Colon Cancer Patients Receiving FOLFOX-4 Adjuvant Chemotherapy. PLoS One 2015; 10:e0123973. [PMID: 25919688 PMCID: PMC4412676 DOI: 10.1371/journal.pone.0123973] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/24/2015] [Indexed: 12/19/2022] Open
Abstract
Background Methylation levels of long interspersed nucleotide elements (LINE-1) are representative of genome-wide methylation status and crucial in maintaining genomic stability and expression. Their prognostic impact on colon cancer patients receiving adjuvant chemotherapy has not been well established. We evaluated the association between LINE-1 methylation status and clinicopathologic features and postoperative oncological outcomes in stage III colon cancer patients. Materials and Methods 129 UICC stage III colon cancer patients who had received radical resection and FOLFOX adjuvant chemotherapy were enrolled. Global methylation was estimated by analyzing tumor LINE-1 methylation status using bisulfite-polymerase chain reaction (PCR) and pyrosequencing assay. Demographics, clinicopathological data, and postoperative outcomes were recorded by trained abstractors. Outcome measurements included postoperative recurrence and disease-free survival. Univariate, multivariate, and survival analyses were conducted to identify prognostic factors of oncological outcomes. Results The LINE-1 methylation of all 129 patients was measured on a 0–100 scale (mean 63.3; median 63.7, standard deviation 7.1), LINE-1 hypomethylation was more common in patients aged 65 years and above (61.7%±7.6% vs. 64.6±6.4, p=0.019) and those with post-therapeutic recurrence (61.7±7.4 vs 64.3±6.7, p=0.041). Considering risk adjustment, LINE-1 hypomethylation was found to be an independent risk factor of post-therapeutic recurrence (Adjusted OR=14.1, p=0.012). Kaplan-Meier analysis indicated that patients in the low methylation group had shorter period of disease free survival (p=0.01). In a stratified analysis that included 48 patients with post-therapeutic recurrence, it was found that those who experienced shorter period of disease free survival (≦6 months) appeared to have lower LINE-1 methylation levels than patients who reported of recurrence after 6 months (56.68±15.75 vs. 63.55±7.57, p=0.041) Conclusion There was a significantly greater risk of early postoperative recurrence and a shorter period of disease-free survival in Stage III colon cancer patients exhibiting LINE-1 hypomethylation status after being treated with radical resection and FOLFOX chemotherapy.
Collapse
Affiliation(s)
- Yun-Ting Lou
- Graduate Institute of Genomic Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Ophthalmology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chao-Wen Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Emergency Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Ching Fan
- Graduate Institute of Genomic Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chiao Chang
- Graduate Institute of Genomic Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Taipei Medical University-Wanfang Hospital, Taipei, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yu Lu
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chen Wu
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hung Hsu
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Graduate Institute of Genomic Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pharmacy, Taipei Medical University-Wanfang Hospital, Taipei, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
69
|
Yooyongsatit S, Ruchusatsawat K, Noppakun N, Hirankarn N, Mutirangura A, Wongpiyabovorn J. Patterns and functional roles of LINE-1 and Alu methylation in the keratinocyte from patients with psoriasis vulgaris. J Hum Genet 2015; 60:349-55. [PMID: 25833468 DOI: 10.1038/jhg.2015.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/11/2022]
Abstract
Alterations in LINE-1 methylation are related to many diseases. The levels and patterns of LINE-1 hypomethylation were associated with a higher risk in developing several cancers, having a poorer prognosis and more aggressiveness. To evaluate the LINE-methylated status in psoriasis, LINE-1 methylation in various cells from patients with psoriasis, squamous cell carcinoma and normal controls were assessed by combined bisulfite restriction analysis of LINE-1. The results of the epigenetic changes for intragenic LINE-1 gene expression were also tested on two known expression microarrays. In patients with psoriasis, hypomethylation of LINE-1 and increase in %(u)C(u)C were prominent in the keratinocytes when compared with normal controls (P=0.014 and P=0.020, respectively). Alternatively, %(u)C(m)C was significantly lower in patients with severe psoriasis compared with mild psoriasis (P=0.022). The receiver-operating characteristic curve analysis indicated the high specificity and sensitivity of (u)C(u)C and (u)C(m)C in detecting psoriasis and severity of psoriasis. From expression array analysis, genes with LINE-1 were downregulated more than those genes without LINE-1 (P=3.84 × 10(-27) and P=2.14 × 10(-21), respectively). Modification in LINE-1 methylation may alter the gene expression resulting in a phenotypic change of the psoriatic skin. %(u)C(u)C and %(u)C(m)C may be used as biomarkers for psoriasis.
Collapse
Affiliation(s)
- Surasak Yooyongsatit
- Medical Microbiology, Interdisciplinary Program, Graduate School Chulalongkorn University, Bangkok, Thailand
| | | | - Nopadon Noppakun
- Division of Dermatology, Department of medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jongkonnee Wongpiyabovorn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
70
|
Prognostic significance of promoter CpG island hypermethylation and repetitive DNA hypomethylation in stage I lung adenocarcinoma. Virchows Arch 2015; 466:675-83. [DOI: 10.1007/s00428-015-1749-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/15/2015] [Accepted: 02/24/2015] [Indexed: 12/15/2022]
|
71
|
Harada K, Baba Y, Ishimoto T, Chikamoto A, Kosumi K, Hayashi H, Nitta H, Hashimoto D, Beppu T, Baba H. LINE-1 methylation level and patient prognosis in a database of 208 hepatocellular carcinomas. Ann Surg Oncol 2014; 22:1280-7. [PMID: 25319577 DOI: 10.1245/s10434-014-4134-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND The level of long interspersed nucleotide element-1 (LINE-1) methylation has become regarded as a surrogate marker of global DNA methylation. Previously, we demonstrated that LINE-1 hypomethylation might contribute to the acquisition of aggressive tumor behavior through genomic gains of oncogenes such as cyclin-dependent kinase 6 (CDK6) in esophageal squamous cell carcinoma. However, the relationship between LINE-1 hypomethylation and clinical outcome in hepatocellular carcinoma (HCC) remains unclear. METHODS LINE-1 methylation level in 208 samples of curatively resected HCCs was measured by pyrosequencing assay, and the prognostic value of LINE-1 methylation level in HCC was examined. RESULTS LINE-1 methylation levels in the 208 HCC patients investigated were distributed as follows: mean 64.7; median 64.6; standard deviation (SD) 13.6; range 21.5-99.1; interquartile range 62.9-66.6. Univariate Cox regression analysis revealed a significantly higher cancer recurrence rate in the low-methylation-level group than in the high-methylation-level group (hazard ratio 1.58; 95 % CI 1.05-2.47; p = 0.028). Interestingly, the influence of LINE-1 hypomethylation on patient outcome was modified by hepatitis virus infection (p of interaction = 0.023); LINE-1 hypomethylation was associated with a higher cancer recurrence rate in patients without hepatitis virus infection (log-rank p = 0.0047). CDK6 messenger RNA expression levels were inversely associated with LINE-1 methylation levels (p = 0.0075; R = -0.37). CONCLUSIONS Genome-wide DNA hypomethylation, as measured by LINE-1 levels, might be associated with poor disease-free survival in HCC patients, suggesting a potential role for LINE-1 methylation level as a biomarker for identifying patients who will experience an unfavorable clinical outcome.
Collapse
Affiliation(s)
- Kazuto Harada
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Zhang CY, Zhao YX, Xia RH, Han J, Wang BS, Tian Z, Wang LZ, Hu YH, Li J. RASSF1A promoter hypermethylation is a strong biomarker of poor survival in patients with salivary adenoid cystic carcinoma in a Chinese population. PLoS One 2014; 9:e110159. [PMID: 25302792 PMCID: PMC4193867 DOI: 10.1371/journal.pone.0110159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/08/2014] [Indexed: 11/18/2022] Open
Abstract
In addition to the clinicopathological parameters, molecular biomarkers are becoming increasingly important in the prognostic evaluation of cancer patients. This study aimed to determine the molecular alterations in the RAS association domain family protein1A gene (RASSF1A) in salivary adenoid cystic carcinoma (ACC) and to evaluate the potential of such alterations as prognostic markers. One hundred and sixty-seven ACC tumor tissues and 50 samples of matched normal salivary gland tissues from the same patients were analyzed for RASSF1A promoter methylation status by bisulfite sequencing PCR (BSP) and/or methylation-specific PCR (MSP). Fifty ACC tumor tissues and matched normal salivary gland tissues were analyzed for loss of heterozygosity (LOH) by examining two microsatellite markers (D3S1478, D3S1621) at 3p21. RASSF1A gene mutations were detected by direct sequencing of all six exons in 50 tumor and normal tissue specimens. Over-all, RASSF1A promoter hypermethylation was detected in 35.3% (59/167) of ACC tissues and was associated with histologically solid tumor pattern (P = 0.002) and advanced TNM stage (P = 0.014). RASSF1A LOH was observed in 18.0% (9/50) of cases, and no somatic mutation of RASSF1A was detected in any cases. RASSF1A promoter methylation was associated with the poor over-all survival (Log-rank test, P <0.001) and disease-free survival (Log-rank test, P <0.001) and identified as an independent predicator of over-all patient survival (P = 0.009) and disease-free survival (P <0.001). It was concluded that RASSF1A methylation is involved in the development, differentiation and progression of ACC and is a strong independent biomarker of poor survival in ACC patients in a Chinese population.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Department of Oral Pathology, 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Yang-Xing Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, P. R. China
| | - Rong-Hui Xia
- Department of Oral Pathology, 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Jing Han
- Department of Oral Pathology, 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Bing-Shun Wang
- Department of Biostatistics, Shanghai Jiao Tong University, School of Medicine, Shanghai, P. R. China
| | - Zhen Tian
- Department of Oral Pathology, 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Li-Zhen Wang
- Department of Oral Pathology, 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Yu-Hua Hu
- Department of Oral Pathology, 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Jiang Li
- Department of Oral Pathology, 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
73
|
Barchitta M, Quattrocchi A, Maugeri A, Vinciguerra M, Agodi A. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One 2014; 9:e109478. [PMID: 25275447 PMCID: PMC4183594 DOI: 10.1371/journal.pone.0109478] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/31/2014] [Indexed: 01/07/2023] Open
Abstract
Objective A systematic review and a meta-analysis were carried out in order to summarize the current published studies and to evaluate LINE-1 hypomethylation in blood and other tissues as an epigenetic marker for cancer risk. Methods A systematic literature search in the Medline database, using PubMed, was conducted for epidemiological studies, published before March 2014. The random-effects model was used to estimate weighted mean differences (MDs) with 95% Confidence Intervals (CIs). Furthermore, subgroup analyses were conducted by sample type (tissue or blood samples), cancer types, and by assays used to measure global DNA methylation levels. The Cochrane software package Review Manager 5.2 was used. Results A total of 19 unique articles on 6107 samples (2554 from cancer patients and 3553 control samples) were included in the meta-analysis. LINE-1 methylation levels were significantly lower in cancer patients than in controls (MD: −6.40, 95% CI: −7.71, −5.09; p<0.001). The significant difference in methylation levels was confirmed in tissue samples (MD −7.55; 95% CI: −9.14, −65.95; p<0.001), but not in blood samples (MD: −0.26, 95% CI: −0.69, 0.17; p = 0.23). LINE-1 methylation levels were significantly lower in colorectal and gastric cancer patients than in controls (MD: −8.33; 95% CI: −10.56, −6.10; p<0.001 and MD: −5.75; 95% CI: −7.75, −3.74; p<0.001) whereas, no significant difference was observed for hepatocellular cancer. Conclusions The present meta-analysis adds new evidence to the growing literature on the role of LINE-1 hypomethylation in human cancer and demonstrates that LINE-1 methylation levels were significantly lower in cancer patients than in control samples, especially in certain cancer types. This result was confirmed in tissue samples, both fresh/frozen or FFPE specimens, but not in blood. Further studies are needed to better clarify the role of LINE-1 methylation in specific subgroups, considering both cancer and sample type, and the methods of measurement.
Collapse
Affiliation(s)
| | | | - Andrea Maugeri
- Department GF Ingrassia, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- University College London, Institute for Liver and Digestive Health, Royal Free Campus, London, United Kingdom
- Gastroenterology Unit, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- * E-mail: (AA); (MV)
| | - Antonella Agodi
- Department GF Ingrassia, University of Catania, Catania, Italy
- * E-mail: (AA); (MV)
| |
Collapse
|
74
|
Li J, Huang Q, Zeng F, Li W, He Z, Chen W, Zhu W, Zhang B. The prognostic value of global DNA hypomethylation in cancer: a meta-analysis. PLoS One 2014; 9:e106290. [PMID: 25184628 PMCID: PMC4153632 DOI: 10.1371/journal.pone.0106290] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/29/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Aberrant methylation of the global genome has been investigated as a prognostic indicator in various cancers, but the results are controversial and ambiguous. METHODS AND FINDINGS This meta-analysis presents pooled estimates of the evidence to elucidate this issue. We searched the electronic databases: PubMed, Embase, ISI Web of Science and the Cochrane library (up to August 2013) to identify all of the relevant studies. The association between the level of surrogates' indexes of genome-wide hypomethylation (LINE-1, Alu and Sat-α) and the overall survival (OS) of cancer patients was examined. In addition, the pooled hazard ratios (HRs) with their 95% confidence interval (95%CI) were calculated to estimate the influences through fixed-effects and random-effects model. Finally, twenty studies with total population of 5447 met the inclusion criteria. The results indicate that the summary HRs for the studies employing LINE-1, Alu, and Sat-α repetitive elements also show that the global DNA hypomethylation have significant desirable effects on the tumour prognostic value. The pooled HRs (and CIs) of LINE-1, Alu and Sat-α were 1.83 (1.38-2.44), 2.00 (1.16-3.45), and 2.92 (1.04-8.25), with a heterogeneity measure index of I2 (and p-value) shows of 66.6% (p = 0.001), 57.1% (p = 0.053) and 68.2% (p = 0.076) respectively. The meta-regression and subgroup analysis indicated that the percentage of hypomethylated sample of cancer patients is one source of heterogeneity. CONCLUSION Our meta-analysis findings support the hypothesis that the global DNA hypomethylation is associated with a detrimental prognosis in tumour patients.
Collapse
Affiliation(s)
- Jinhui Li
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, P.R. China
| | - Qingyuan Huang
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Fangfang Zeng
- Department of Epidemiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wenxue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, P.R. China
| | - Zhini He
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wen Chen
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei Zhu
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, P.R. China
| | - Bo Zhang
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
75
|
Park SY, Seo AN, Jung HY, Gwak JM, Jung N, Cho NY, Kang GH. Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS One 2014; 9:e100429. [PMID: 24971511 PMCID: PMC4074093 DOI: 10.1371/journal.pone.0100429] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/28/2014] [Indexed: 01/31/2023] Open
Abstract
The changes in DNA methylation status in cancer cells are characterized by hypermethylation of promoter CpG islands and diffuse genomic hypomethylation. Alu and long interspersed nucleotide element-1 (LINE-1) are non-coding genomic repetitive sequences and methylation of these elements can be used as a surrogate marker for genome-wide methylation status. This study was designed to evaluate the changes of Alu and LINE-1 hypomethylation during breast cancer progression from normal to pre-invasive lesions and invasive breast cancer (IBC), and their relationship with characteristics of IBC. We analyzed the methylation status of Alu and LINE-1 in 145 cases of breast samples including normal breast tissue, atypical ductal hyperplasia/flat epithelial atypia (ADH/FEA), ductal carcinoma in situ (DCIS) and IBC, and another set of 129 cases of IBC by pyrosequencing. Alu methylation showed no significant changes during multistep progression of breast cancer, although it tended to decrease during the transition from DCIS to IBC. In contrast, LINE-1 methylation significantly decreased from normal to ADH/FEA, while it was similar in ADH/FEA, DCIS and IBC. In IBC, Alu hypomethylation correlated with negative estrogen receptor (ER) status, and LINE-1 hypomethylation was associated with negative ER status, ERBB2 (HER2) amplification and p53 overexpression. Alu and LINE-1 methylation status was significantly different between breast cancer subtypes, and the HER2 enriched subtype had lowest methylation levels. In survival analyses, low Alu methylation status tended to be associated with poor disease-free survival of the patients. Our findings suggest that LINE-1 hypomethylation is an early event and Alu hypomethylation is probably a late event during breast cancer progression, and prominent hypomethylation of Alu and LINE-1 in HER2 enriched subtype may be related to chromosomal instability of this specific subtype.
Collapse
Affiliation(s)
- So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Department of Pathology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam, Gyeonggi, Korea
| | - An Na Seo
- Department of Pathology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam, Gyeonggi, Korea
| | - Hae Yoen Jung
- Department of Pathology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam, Gyeonggi, Korea
| | - Jae Moon Gwak
- Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
| | - Namhee Jung
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University, Jongno-gu, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University, Jongno-gu, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University, Jongno-gu, Seoul, Korea
- * E-mail:
| |
Collapse
|
76
|
Li ZG, Zhang W, Qiu ZC, Ji Y, Li L, Xia KH. Comparative analysis of each prescription of Jiedu Huayu Jianpi Fang for multiple gene demethylation and expression in mucosal dysplasia in rats. Shijie Huaren Xiaohua Zazhi 2014; 22:1820-1825. [DOI: 10.11569/wcjd.v22.i13.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the contribution of each prescription of Jiedu Huayu Jianpi Fang to the therapeutic effects on gastric mucosal dysplasia from the perspective of induced gene expression.
METHODS: We divided gastric mucosal dysplasia rats into a model control (MG) group, a Western medicine (retinoic acid) treatment (PCG) group, a combined prescription (Jiedu Huayu Jianpi) treatment (A) group, and Jiedu (B), Huayu (C), Yiqi (D), Yangying (E) and Liqi (F) single prescription treatment groups. Normal rats were used as controls (CG). Methylation specific PCR technique was used to detect the methylation status of p16, PETN, Thbs1, E-Cadherin, and Runx3 genes in gastric mucosal cells of rats. Real-time PCR and immunohistochemistry were used to detect the mRNA and protein expression of each genes.
RESULTS: All of the Jiedu Huayu Jianpi treatment groups showed a certain degree of demethylation of p16, PETN, Thbs1, E-Cadherin, and Runx3 gene. Compared with group CG, the mRNA expression of p16 (P < 0.01), PETN, E-Cadherin and Thbs1 in group A, Thbs1 in group B, p16, PETN and Thbs1 in group C, Thbs1 in group E, p16 and Thbs1 in group F increased significantly (P < 0.05 for all); and the protein expression of p16, PTEN, E-cad, RUNX3, and THBS1 in group A, p16 in group B, p16 and THBS1 in group C, p16, PTEN, E-cad and THBS1 in group D, p16, E-cad, RUNX3 and THBS1 in group E, p16, PTEN, E-cad, RUNX3 and THBS1 in group F increased significantly (P < 0.05 for all). The effect of Jiedu Huayu Jianpi Fang on gastric mucosal dysplasia was the most prominent, followed by Liqi, Yangyin, Huayu, Yiqi and Jiedu single prescriptions.
CONCLUSION: The effect of Jiedu Huayu Jianpi Fang on gastric mucosal dysplasia is much better than those of each single prescription. Gastric mucosal dysplasia should be treated mainly by means of Liqi and Yangyin.
Collapse
|
77
|
Belkhiri A, El-Rifai W. 5-Methylcytosine hydroxylation-mediated LINE-1 hypomethylation: a novel mechanism of proto-oncogenes activation in colorectal cancer? Gut 2014; 63:538-9. [PMID: 23812322 PMCID: PMC4035300 DOI: 10.1136/gutjnl-2013-305176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Abbes Belkhiri
- Department of Surgery and Department of Cancer Biology,
Vanderbilt University Medical Center, Nashville TN 37232
| | - Wael El-Rifai
- Department of Surgery and Department of Cancer Biology,
Vanderbilt University Medical Center, Nashville TN 37232,Department of Veterans Affairs, Tennessee Valley Healthcare
System, Nashville, TN 37232
| |
Collapse
|
78
|
Newman MR, Sykes PJ, Blyth BJ, Bezak E, Lawrence MD, Morel KL, Ormsby RJ. A single whole-body low dose X-irradiation does not affect L1, B1 and IAP repeat element DNA methylation longitudinally. PLoS One 2014; 9:e93016. [PMID: 24676381 PMCID: PMC3968115 DOI: 10.1371/journal.pone.0093016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
The low dose radioadaptive response has been shown to be protective against high doses of radiation as well as aging-induced genomic instability. We hypothesised that a single whole-body exposure of low dose radiation would induce a radioadaptive response thereby reducing or abrogating aging-related changes in repeat element DNA methylation in mice. Following sham or 10 mGy X-irradiation, serial peripheral blood sampling was performed and differences in Long Interspersed Nucleic Element 1 (L1), B1 and Intracisternal-A-Particle (IAP) repeat element methylation between samples were assessed using high resolution melt analysis of PCR amplicons. By 420 days post-irradiation, neither radiation- or aging-related changes in the methylation of peripheral blood, spleen or liver L1, B1 and IAP elements were observed. Analysis of the spleen and liver tissues of cohorts of untreated aging mice showed that the 17-19 month age group exhibited higher repeat element methylation than younger or older mice, with no overall decline in methylation detected with age. This is the first temporal analysis of the effect of low dose radiation on repeat element methylation in mouse peripheral blood and the first to examine the long term effect of this dose on repeat element methylation in a radiosensitive tissue (spleen) and a tissue fundamental to the aging process (liver). Our data indicate that the methylation of murine DNA repeat elements can fluctuate with age, but unlike human studies, do not demonstrate an overall aging-related decline. Furthermore, our results indicate that a low dose of ionising radiation does not induce detectable changes to murine repeat element DNA methylation in the tissues and at the time-points examined in this study. This radiation dose is relevant to human diagnostic radiation exposures and suggests that a dose of 10 mGy X-rays, unlike high dose radiation, does not cause significant short or long term changes to repeat element or global DNA methylation.
Collapse
Affiliation(s)
- Michelle R. Newman
- Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, South Australia, Australia
| | - Pamela J. Sykes
- Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, South Australia, Australia
| | - Benjamin J. Blyth
- Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, South Australia, Australia
| | - Eva Bezak
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Mark D. Lawrence
- Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, South Australia, Australia
| | - Katherine L. Morel
- Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, South Australia, Australia
| | - Rebecca J. Ormsby
- Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
79
|
Vaccination against endogenous retrotransposable element consensus sequences does not protect rhesus macaques from SIVsmE660 infection and replication. PLoS One 2014; 9:e92012. [PMID: 24651676 PMCID: PMC3961289 DOI: 10.1371/journal.pone.0092012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/19/2014] [Indexed: 02/05/2023] Open
Abstract
The enormous sequence diversity of HIV remains a major roadblock to the development of a prophylactic vaccine and new approaches to induce protective immunity are needed. Endogenous retrotransposable elements (ERE) such as endogenous retrovirus K (ERV)-K and long interspersed nuclear element-1 (LINE-1) are activated during HIV-1-infection and could represent stable, surrogate targets to eliminate HIV-1-infected cells. Here, we explored the hypothesis that vaccination against ERE would protect macaques from acquisition and replication of simian immunodeficiency virus (SIV). Following vaccination with antigens derived from LINE-1 and ERV-K consensus sequences, animals mounted immune responses that failed to delay acquisition of SIVsmE660. We observed no differences in acute or set point viral loads between ERE-vaccinated and control animals suggesting that ERE-specific responses were not protective. Indeed, ERE-specific T cells failed to expand anamnestically in vivo following infection with SIVsmE660 and did not recognize SIV-infected targets in vitro, in agreement with no significant induction of targeted ERE mRNA by SIV in macaque CD4+ T cells. Instead, lower infection rates and viral loads correlated significantly to protective TRIM5α alleles. Cumulatively, these data demonstrate that vaccination against the selected ERE consensus sequences in macaques did not lead to immune-mediated recognition and killing of SIV-infected cells, as has been shown for HIV-infected human cells using patient-derived HERV-K-specific T cells. Thus, further research is required to identify the specific nonhuman primate EREs and retroviruses that recapitulate the activity of HIV-1 in human cells. These results also highlight the complexity in translating observations of the interplay between HIV-1 and human EREs to animal models.
Collapse
|
80
|
Baba Y, Watanabe M, Murata A, Shigaki H, Miyake K, Ishimoto T, Iwatsuki M, Iwagami S, Yoshida N, Oki E, Sakamaki K, Nakao M, Baba H. LINE-1 hypomethylation, DNA copy number alterations, and CDK6 amplification in esophageal squamous cell carcinoma. Clin Cancer Res 2014; 20:1114-24. [PMID: 24423610 DOI: 10.1158/1078-0432.ccr-13-1645] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Global DNA hypomethylation plays a crucial role in genomic instability and carcinogenesis. DNA methylation of the long interspersed nucleotide element-1, L1 (LINE-1) repetitive element is a good indicator of the global DNA methylation level, and is attracting interest as a useful marker for predicting cancer prognosis. Our previous study using more than 200 esophageal squamous cell carcinoma (ESCC) specimens demonstrated the significant relationship between LINE-1 hypomethylation and poor prognosis. However, the mechanism by which LINE-1 hypomethylation affects aggressive tumor behavior has yet to be revealed. EXPERIMENTAL DESIGN To examine the relationship between LINE-1 hypomethylation and DNA copy number variations, we investigated LINE-1-hypomethylated and LINE-1-hypermethylated ESCC tumors by comparative genomic hybridization array. RESULTS LINE-1-hypomethylated tumors showed highly frequent genomic gains at various loci containing candidate oncogenes such as CDK6. LINE-1 methylation levels were significantly associated with CDK6 mRNA and CDK6 protein expression levels in ESCC specimens. In our cohort of 129 patients with ESCC, cases with CDK6-positive expression experienced worse clinical outcome compared with those with CDK6-negative expression, supporting the oncogenic role of CDK6 in ESCC. In addition, we found that the prognostic impact of LINE-1 hypomethylation might be attenuated by CDK6 expression. CONCLUSION LINE-1 hypomethylation (i.e., global DNA hypomethylation) in ESCC might contribute to the acquisition of aggressive tumor behavior through genomic gains of oncogenes such as CDK6.
Collapse
Affiliation(s)
- Yoshifumi Baba
- Authors' Affiliations: Department of Gastroenterological Surgery, Graduate School of Medical Sciences; Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka; and Department of Biostatistics and Epidemiology, Yokohama City University Medical Center, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Newman MR, Sykes PJ, Blyth BJ, Bezak E, Lawrence MD, Morel KL, Ormsby RJ. The methylation of DNA repeat elements is sex-dependent and temporally different in response to X radiation in radiosensitive and radioresistant mouse strains. Radiat Res 2014; 181:65-75. [PMID: 24397437 DOI: 10.1667/rr13460.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The effects of ionizing radiation on DNA methylation are of importance due to the role that DNA methylation plays in maintaining genome stability, and the presence of aberrant DNA methylation in many cancers. There is limited evidence that radiation-sensitivity may influence the modulation of DNA methylation by ionizing radiation, resulting in a loss of methylation. The BALB/c, CBA and C57Bl/6 strains are the most commonly utilized mouse strains in radiation research and are classified as radiation sensitive (BALB/c and CBA) or radiation resistant (C57Bl/6). We present here the first direct comparison of changes in repeat element DNA methylation (L1, B1 and Intracisternal A Particle; IAP) over time in these three mouse strains after high-dose radiation exposure. Using a high-resolution melt assay, methylation of the spleen repeat elements was investigated between 1 and 14 days after whole-body irradiation with 1 Gy X rays. Our study demonstrated that rather than a loss of methylation at the elements, all strains exhibited an early increase in L1 methylation one day after irradiation. In the most radiosensitive strain (BALB/c) the increase was also detected at 6 days postirradiation. The radioresistant C57Bl/6 strain exhibited a loss of L1 methylation at 14 days postirradiation. Less extensive changes to the B1 and IAP elements were detected at various time points, and pyrosequencing revealed that the responses of the strains were influenced by sex, with the male BALB/c and CBA mice exhibiting a greater response to the irradiation. The results of our study do not support the hypothesis that the most radiosensitive strains exhibit the greatest loss of repeat element DNA methylation after exposure to high-dose radiation. While the exact mechanism and biological outcome of the changes in DNA methylation observed here are still to be elucidated, this study provides the first evidence that radiation exposure elicits time-dependent changes in the methylation of repeat elements that are influenced by the genetic background, gender and the type of repeat element investigated. Furthermore, it suggest that any induced changes may not be persistent.
Collapse
Affiliation(s)
- Michelle R Newman
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, SA, Australia; and
| | | | | | | | | | | | | |
Collapse
|
82
|
Liloglou T, Bediaga NG, Brown BR, Field JK, Davies MP. Epigenetic biomarkers in lung cancer. Cancer Lett 2014; 342:200-12. [DOI: 10.1016/j.canlet.2012.04.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/18/2012] [Accepted: 04/22/2012] [Indexed: 12/31/2022]
|
83
|
Stefanoli M, La Rosa S, Sahnane N, Romualdi C, Pastorino R, Marando A, Capella C, Sessa F, Furlan D. Prognostic relevance of aberrant DNA methylation in g1 and g2 pancreatic neuroendocrine tumors. Neuroendocrinology 2014; 100:26-34. [PMID: 25011998 DOI: 10.1159/000365449] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/23/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS The occurrence and clinical relevance of DNA hypermethylation and global hypomethylation in pancreatic neuroendocrine tumours (PanNETs) are still unknown. We evaluated the frequency of both epigenetic alterations in PanNETs to assess the relationship between methylation profiles and chromosomal instability, tumour phenotypes and prognosis. METHODS In a well-characterized series of 56 sporadic G1 and G2 PanNETs, methylation-sensitive multiple ligation-dependent probe amplification was performed to assess hypermethylayion of 33 genes and copy number alterations (CNAs) of 53 chromosomal regions. Long interspersed nucleotide element-1 (LINE-1) hypomethylation was quantified by pyrosequencing. RESULTS Unsupervised hierarchical clustering allowed to identify a subset of 22 PanNETs (39%) exhibiting high frequency of gene-specific methylation and low CNA percentages. This tumour cluster was significantly associated with stage IV (p = 0.04) and with poor prognosis in univariable analysis (p = 0.004). LINE-1 methylation levels in PanNETs were significantly lower than in normal samples (p < 0.01) and were approximately normally distributed. 12 tumours (21%) were highly hypomethylated, showing variable levels of CNA. Interestingly, only 5 PanNETs (9%) were observed to show simultaneously LINE-1 hypomethylation and high frequency of gene-specific methylation. LINE-1 hypomethylation was strongly correlated with advanced stage (p = 0.002) and with poor prognosis (p < 0.0001). In the multivariable analysis, low LINE-1 methylation status and methylation clusters were the only independent significant predictors of outcome (p = 0.034 and p = 0.029, respectively). CONCLUSION The combination of global DNA hypomethylation and gene hypermethylation analyses may be useful to define distinct subsets of PanNETs. Both alterations are common in PanNETs and could be directly correlated with tumour progression.
Collapse
Affiliation(s)
- Michele Stefanoli
- Section of Anatomic Pathology, Department of Surgical and Morphological Sciences, University of Insubria and Ospedale di Circolo, Varese, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
S. Donington J. Invited Commentary. Ann Thorac Surg 2013; 96:1794-5. [DOI: 10.1016/j.athoracsur.2013.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 06/29/2013] [Accepted: 07/09/2013] [Indexed: 11/24/2022]
|
85
|
Clinical implications of the LINE-1 methylation levels in patients with gastrointestinal cancer. Surg Today 2013; 44:1807-16. [DOI: 10.1007/s00595-013-0763-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/30/2013] [Indexed: 12/17/2022]
|
86
|
Tu T, Shackel NA, McCaughan G. "Testing your methyl": DNA methylation profiling of serum DNA of HCC patients. Hepatol Int 2013. [PMID: 26201912 DOI: 10.1007/s12072-013-9444-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Thomas Tu
- Centenary Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Nicholas A Shackel
- Centenary Institute, Sydney, NSW, Australia.,A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Geoffrey McCaughan
- Centenary Institute, Sydney, NSW, Australia. .,A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, Australia. .,Liver Injury & Cancer, Centenary Institute, Locked Bag No. 6, Newtown, NSW, 2042, Australia.
| |
Collapse
|
87
|
Ikeda K, Shiraishi K, Eguchi A, Shibata H, Yoshimoto K, Mori T, Baba Y, Baba H, Suzuki M. Long interspersed nucleotide element 1 hypomethylation is associated with poor prognosis of lung adenocarcinoma. Ann Thorac Surg 2013; 96:1790-4. [PMID: 23998411 DOI: 10.1016/j.athoracsur.2013.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Genome-wide DNA hypomethylation is known to play important roles in genomic instability and carcinogenesis. Methylation in long interspersed nucleotide element 1 (LINE-1) is a good indicator of the global DNA methylation level within a cell. The aim of this study was to evaluate prognostic significance of LINE-1 hypomethylation in lung adenocarcinoma. METHODS A consecutive series of 211 lung adenocarcinoma patients who underwent curative resections without any preoperative chemotherapy or radiotherapy at Kumamoto University Hospital between April 2010 and December 2012 were included. The LINE-1 methylation levels were quantified in tumor and noncancerous tissue by Pyrosequencing assay. RESULTS Higher histologic grade and positive findings for vascular invasion were significantly associated with lower methylation levels. The disease-free survival in the hypomethylation group was significantly shorter than that of the non-hypomethylation group. The prognostic difference was more obvious in advanced cases (stage II, III) than in stage I cases. CONCLUSIONS The LINE-1 methylation level is associated with histologic grade and vascular invasion of lung adenocarcinoma. Additionally, LINE-1 hypomethylation is a useful biomarker to predict early recurrence of lung adenocarcinoma.
Collapse
Affiliation(s)
- Koei Ikeda
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann Surg 2013; 257:449-55. [PMID: 23023202 DOI: 10.1097/sla.0b013e31826d8602] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the relationship between the long interspersed nucleotide element-1 (L1/LINE-1) methylation level and the disease-free survival and cancer-specific survival in patients with esophageal squamous cell carcinoma (ESCC). BACKGROUND Cancer cells exhibit 2 types of deoxyribonucleic acid (DNA) methylation alterations: global DNA hypomethylation and site-specific CpG island promoter hypermethylation. Global DNA hypomethylation plays a role in genomic instability and carcinogenesis. DNA methylation in the LINE-1 repetitive element is a good indicator of the global DNA methylation level. Although the LINE-1 methylation level is attracting interest as a useful marker for predicting cancer prognosis, the prognostic significance of LINE-1 hypomethylaiton in ESCC remains unclear. METHODS Using 217 curatively resected ESCC specimens, we quantified the LINE-1 methylation by utilizing the bisulfite pyrosequencing technology. Promoter methylation levels of MGMT and MLH1 were also evaluated by pyrosequencing. RESULTS ESCC showed significantly lower LINE-1 methylation levels in comparison with matched normal esophageal mucosa (P < 0.0001; N = 50). LINE-1 hypomethylation was significantly associated with disease-free survival [log-rank P = 0.0008; univariate hazard ratio (HR): 2.32, 95% confidence interval (CI): 1.38-3.84, P = 0.0017; multivariate HR: 1.81, 95% CI: 1.06-3.05, P = 0.031] and cancer-specific survival (log-rank P = 0.0020; univariate HR: 2.21, 95% CI: 1.33-3.60, P = 0.0026; multivariate HR: 1.87, 95% CI: 1.12-3.08, P = 0.018]. MGMT and MLH1 hypermethylation were not associated with patient prognosis. CONCLUSIONS LINE-1 hypomethylation in ESCC is associated with a shorter survival, thus suggesting that it has potential for use as a prognostic biomarker.
Collapse
|
89
|
Duan H, He Z, Ma J, Zhang B, Sheng Z, Bin P, Cheng J, Niu Y, Dong H, Lin H, Dai Y, Zhu B, Chen W, Xiao Y, Zheng Y. Global and MGMT promoter hypomethylation independently associated with genomic instability of lymphocytes in subjects exposed to high-dose polycyclic aromatic hydrocarbon. Arch Toxicol 2013; 87:2013-2022. [PMID: 23543013 DOI: 10.1007/s00204-013-1046-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/19/2013] [Indexed: 12/31/2022]
Abstract
Global hypomethylation, gene-specific methylation, and genome instability are common events in tumorigenesis. To date, few studies have examined the aberrant DNA methylation patterns in coke oven workers, who are highly at risk of lung cancer by occupational exposure to polycyclic aromatic hydrocarbons (PAHs). We recruited 82 PAH-exposed workers and 62 unexposed controls, assessed exposure levels by urinary 1-hydroxypyrene, and measured genetic damages by comet assay, bleomycin sensitivity, and micronucleus assay. The PAHs in coke oven emissions (COE) were estimated based on toxic equivalency factors. We used bisulfite-PCR pyrosequencing to quantitate DNA methylation in long interspersed nuclear element-1 (LINE-1) and O(6)-methylguanine-DNA methyltransferase (MGMT). Further, the methylation alteration was also investigated in COE-treated human bronchial epithelial (16HBE) cells. We found there are higher levels of PAHs in COE. Among PAH-exposed workers, LINE-1 and MGMT methylation levels (with CpG site specificity) were significantly lowered. LINE-1, MGMT, and its hot CpG site-specific methylation were negatively correlated with urinary 1-hydroxypyrene levels (r = -0.329, p < 0.001; r = -0.164, p = 0.049 and r = -0.176, p = 0.034, respectively). In addition, LINE-1 methylation was inversely associated with comet tail moment and micronucleus frequency, and a significant increase of micronucleus in low MGMT methylation group. In vitro study revealed that treatment of COE in 16HBE cells resulted in higher production of BPDE-DNA adducts, LINE-1 hypomethylation, hypomethylation, and suppression of MGMT expression. These findings suggest hypomethylation of LINE-1 and MGMT promoter could be used as markers for PAHs exposure and merit further investigation.
Collapse
Affiliation(s)
- Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Zhini He
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Junxiang Ma
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Bo Zhang
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zhiguo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Ping Bin
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Juan Cheng
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Haiyan Dong
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Han Lin
- Institute of Industrial Health, Anshan Steel Industrial Corporation, Anshan, 114044, People's Republic of China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Benzhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Wen Chen
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yongmei Xiao
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yuxin Zheng
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China.
| |
Collapse
|
90
|
Abstract
Lung cancer is a heterogeneous disease at both clinical and molecular levels, posing conceptual and practical bottlenecks in defining key pathways affecting its initiation and progression. Molecules with a central role in lung carcinogenesis are likely to be targeted by multiple deregulated pathways and may have prognostic, predictive, and/or therapeutic value. Here, we report that Tumor Progression Locus 2 (TPL2), a kinase implicated in the regulation of innate and adaptive immune responses, fulfils a role as a suppressor of lung carcinogenesis and is subject to diverse genetic and epigenetic aberrations in lung cancer patients. We show that allelic imbalance at the TPL2 locus, up-regulation of microRNA-370, which targets TPL2 transcripts, and activated RAS (rat sarcoma) signaling may result in down-regulation of TPL2 expression. Low TPL2 levels correlate with reduced lung cancer patient survival and accelerated onset and multiplicity of urethane-induced lung tumors in mice. Mechanistically, TPL2 was found to antagonize oncogene-induced cell transformation and survival through a pathway involving p53 downstream of cJun N-terminal kinase (JNK) and be required for optimal p53 response to genotoxic stress. These results identify multiple oncogenic pathways leading to TPL2 deregulation and highlight its major tumor-suppressing function in the lung.
Collapse
|
91
|
Nakkuntod J, Sukkapan P, Avihingsanon Y, Mutirangura A, Hirankarn N. DNA methylation of human endogenous retrovirus in systemic lupus erythematosus. J Hum Genet 2013; 58:241-9. [PMID: 23466822 DOI: 10.1038/jhg.2013.6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Previous studies have reported that T cells from active systemic lupus erythematosus (SLE) patients contained global hypomethylation and demethylation at the promoter of several genes, which may contribute to the pathogenesis of the disease. Currently there are scarce data on methylation of retroelements in patients with SLE. We estimated and compared the methylated levels of human endogenous retroviruses (HERV)-E and HERV-K in normal and SLE CD3+CD4+ T lymphocytes, CD8+ T and B lymphocytes by using combined bisulfite restriction analysis-interspersed repetitive sequences (COBRA-IRS). HERV-E LTR2C methylation level in CD3+CD4+ T lymphocytes of active SLE was significantly lower than inactive SLE and normal controls (P=0.023 and 0.035, respectively). Surprisingly, HERV-K LTR5_Hs hypomethylation was significantly detected in CD3+CD4+ T lymphocytes from patients with inactive SLE when compared with the active SLE and normal controls (P=0.027 and 0.002, respectively). Demethylation of HERV-K LTR5_Hs in B cells was also detected when compared with the normal controls (P=0.048). Furthermore, the hypomethylation of HERV-E LTR2C in CD3+CD4+ T lymphocytes was positively correlated with lymphopenia in active SLE, whereas the hypomethylation of HERV-K LTR5_Hs was significantly correlated with complement activity and Systemic Lupus Erythematosus Disease Activity Index score. In summary, for each lymphocyte subset in patients with SLE, IRS hypomethylation was found to be type specific. Further studies are needed to confirm and explain these observations.
Collapse
Affiliation(s)
- Jeerawat Nakkuntod
- Medical Microbiology Interdisciplinary Program, Graduate School Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
92
|
Buckingham L, Bonomi P. Can DNA methylation be used as a prognostic indicator in lung cancer? Lung Cancer Manag 2013. [DOI: 10.2217/lmt.12.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Lela Buckingham
- Rush University Medical Center, College of Health Sciences & Department of Pathology, 711 S. Paulina St, Suite 460 JSC, Chicago, IL 60612, USA
| | - Philip Bonomi
- Rush University Medical Center, Section of Medical Oncology, 1725 W. Harrison St, Suite 1010, Chicago, IL 60612, USA
| |
Collapse
|
93
|
Suzuki M, Shiraishi K, Eguchi A, Ikeda K, Mori T, Yoshimoto K, Ohba Y, Yamada T, Ito T, Baba Y, Baba H. Aberrant methylation of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer. Oncol Rep 2013; 29:1308-14. [PMID: 23381221 PMCID: PMC3621652 DOI: 10.3892/or.2013.2266] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/21/2012] [Indexed: 12/23/2022] Open
Abstract
Genome-wide DNA hypomethylation and gene hypermethylation play important roles in instability and carcinogenesis. Methylation in long interspersed nucleotide element 1 (LINE-1) is a good indicator of the global DNA methylation level within a cell. Slit homolog 2 (SLIT2), myelin and lymphocyte protein gene (MAL) and insulin-like growth factor binding protein 7 (IGFBP7) are known to be hypermethylated in various malignancies. The aim of the present study was to assess the precise methylation levels of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer (NSCLC) using a pyrosequencing assay. Methylation of all regions was examined in 56 primary NSCLCs using a pyrosequencing assay. Changes in mRNA expression levels of SLIT2, MAL and IGFBP7 were measured before and after treatment with a demethylating agent. Methylation of these genes was also examined in 9 lung cancer cell lines using RT-PCR and a pyrosequencing assay. Frequencies of hypomethylation of LINE-1 and hypermethylation of SLIT2, MAL and IGFBP7, defined by predetermined cut off values, were 55, 64, 46 and 54% in NSCLCs, respectively and exhibited tumor-specific features. The hypermethylation of all genes was well correlated with changes in expression. The methylation level and frequency of MAL were significantly higher in smokers and in patients without EGFR mutations. Through accurate measurement of methylation levels using pyrosequencing, hypomethylation of LINE-1 and hypermethylation of SLIT2, MAL and IGFBP7 were frequently detected in NSCLCs and associated with various clinical features. Analysis of the methylation profiles of these genes may, therefore, provide novel opportunities for the therapy of NSCLCs.
Collapse
Affiliation(s)
- Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Buckingham L. A Look to the Future. Pharmacogenomics 2013. [DOI: 10.1016/b978-0-12-391918-2.00014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
95
|
Matsunoki A, Kawakami K, Kotake M, Kaneko M, Kitamura H, Ooi A, Watanabe G, Minamoto T. LINE-1 methylation shows little intra-patient heterogeneity in primary and synchronous metastatic colorectal cancer. BMC Cancer 2012; 12:574. [PMID: 23216958 PMCID: PMC3534591 DOI: 10.1186/1471-2407-12-574] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 11/28/2012] [Indexed: 01/29/2023] Open
Abstract
Background Long interspersed nucleotide element 1 (LINE-1) hypomethylation is suggested to play a role in the progression of colorectal cancer (CRC). To assess intra-patient heterogeneity of LINE-1 methylation in CRC and to understand its biological relevance in invasion and metastasis, we evaluated the LINE-1 methylation at multiple tumor sites. In addition, the influence of stromal cell content on the measurement of LINE-1 methylation in tumor tissue was analyzed. Methods Formalin-fixed paraffin-embedded primary tumor tissue was obtained from 48 CRC patients. Matched adjacent normal colon tissue, lymph node metastases and distant metastases were obtained from 12, 18 and 7 of these patients, respectively. Three different areas were microdissected from each primary tumor and included the tumor center and invasive front. Normal mucosal and stromal cells were also microdissected for comparison with the tumor cells. The microdissected samples were compared in LINE-1 methylation level measured by multicolor MethyLight assay. The assay results were also compared between microdissected and macrodissected tissue samples. Results LINE-1 methylation within primary tumors showed no significant intra-tumoral heterogeneity, with the tumor center and invasive front showing identical methylation levels. Moreover, no difference in LINE-1 methylation was observed between the primary tumor and lymph node and distant metastases from the same patient. Tumor cells showed significantly less LINE-1 methylation compared to adjacent stromal and normal mucosal epithelial cells. Consequently, LINE-1 methylation was significantly lower in microdissected samples compared to macrodissected samples. A trend for less LINE-1 methylation was also observed in more advanced stages of CRC. Conclusions LINE-1 methylation shows little intra-patient tumor heterogeneity, indicating the suitability of its use for molecular diagnosis in CRC. The methylation is relatively stable during CRC progression, leading us to propose a new concept for the association between LINE-1 methylation and disease stage.
Collapse
Affiliation(s)
- Aika Matsunoki
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Brzeziańska E, Dutkowska A, Antczak A. The significance of epigenetic alterations in lung carcinogenesis. Mol Biol Rep 2012; 40:309-25. [PMID: 23086271 PMCID: PMC3518808 DOI: 10.1007/s11033-012-2063-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/03/2012] [Indexed: 12/11/2022]
Abstract
Lung cancer is recognized as a leading cause of cancer-related death worldwide and its frequency is still increasing. The prognosis in lung cancer is poor and limited by the difficulties of diagnosis at early stage of disease, when it is amenable to surgery treatment. Therefore, the advance in identification of lung cancer genetic and epigenetic markers with diagnostic and/or prognostic values becomes an important tool for future molecular oncology and personalized therapy. As in case of other tumors, aberrant epigenetic landscape has been documented also in lung cancer, both at early and late stage of carcinogenesis. Hypermethylation of specific genes, mainly tumor suppressor genes, as well as hypomethylation of oncogenes and retrotransposons, associated with histopathological subtypes of lung cancer, has been found. Epigenetic aberrations of histone proteins and, especially, the lower global levels of histone modifications have been associated with poorer clinical outcome in lung cancer. The recently discovered role of epigenetic modifications of microRNA expression in tumors has been also proven in lung carcinogenesis. The identified epigenetic events in lung cancer contribute to its specific epigenotype and correlated phenotypic features. So far, some of them have been suggested to be cancer biomarkers for early detection, disease monitoring, prognosis, and risk assessment. As epigenetic aberrations are reversible, their correction has emerged as a promising therapeutic target.
Collapse
Affiliation(s)
- Ewa Brzeziańska
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska St. 251, 92-213 Lodz, Poland.
| | | | | |
Collapse
|
97
|
Chen L, Dahlstrom JE, Chandra A, Board P, Rangasamy D. Prognostic value of LINE-1 retrotransposon expression and its subcellular localization in breast cancer. Breast Cancer Res Treat 2012; 136:129-42. [PMID: 23053642 PMCID: PMC3473189 DOI: 10.1007/s10549-012-2246-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/05/2012] [Indexed: 12/31/2022]
Abstract
Long interspersed nuclear element 1 (L1) belongs to a family of retrotransposons. Expression of the normally repressed L1 retrotransposons has been shown to induce genome instability by creating DNA double-stranded breaks and chromosomal rearrangements through the process of retrotransposition. At present, little is known about the expression of L1-encoded ORF1p and ORF2p which are indispensable for its retrotransposition activity. Given its potentially harmful effects on the genome, we investigated the implications of both ORF1p and ORF2p expression and their subcellular localization in a range of breast cancer cell lines and breast tumor tissues including 15 normal breast tissues, 25 fibroadenomas, 25 ductal carcinomas in situ (DCIS), and 95 invasive cancers. Clinicopathologic parameters and survival outcomes were investigated in association with the cytoplasmic and nuclear expression of ORF1p and ORF2p using univariate and multivariate analysis. High cytoplasmic expression of ORF1p and ORF2p was seen in DCIS tumors, but they were not related with survival outcome. The majority of invasive cancers were found to express both ORF1p and ORF2p in the cytoplasm, while nuclear expression was also seen in a subclass of those invasive cancers in the range of 28–31 %. Tumors with high nuclear expression of ORF1p and ORF2p were more significantly associated with lymph node metastasis (p = 0.001) and the worst patient survival (p < 0.0001) than those with cytoplasmic expression. This is the first study examining the effects of both ORF1p and ORF2p expression in breast cancer tissues. Our observation shows altered expression patterns of ORF1p and ORF2p within invasive cancers, which are related to differences in overall patient survival. The differing patterns of both cytoplasmic and nuclear ORF1p and ORF2p expression indicate that further studies of the biology and function of L1 retrotransposons are required in breast cancer.
Collapse
Affiliation(s)
- Long Chen
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | |
Collapse
|
98
|
Pogribny IP, Beland FA. DNA methylome alterations in chemical carcinogenesis. Cancer Lett 2012; 334:39-45. [PMID: 23010082 DOI: 10.1016/j.canlet.2012.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/28/2012] [Accepted: 09/14/2012] [Indexed: 01/30/2023]
Abstract
Carcinogenesis, a complex multifactorial process of the transformation of normal cells into malignant cells, is characterized by many biologically significant and interdependent alterations triggered by the mutational and/or non-mutational (i.e., epigenetic) events. One of these events, specific to all types of cancer, is alterations in DNA methylation. This review summarizes the current knowledge of the role of DNA methylation changes induced by various genotoxic chemicals (carcinogenic agents that interact with DNA) and non-genotoxic carcinogens (chemicals causing tumor by mechanisms other than directly damaging DNA) in the lung, colorectal, liver, and hematologic carcinogenesis. It also emphasizes the potential role for epigenetic changes to serve as markers for carcinogen exposure and carcinogen risk assessment.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
99
|
Poursoltan P, Currey N, Pangon L, van Kralingen C, Selinger CI, Mahar A, Cooper WA, Kennedy CW, McCaughan BC, Trent R, Kohonen-Corish MR. Loss of heterozygosity of the Mutated in Colorectal Cancer gene is not associated with promoter methylation in non-small cell lung cancer. Lung Cancer 2012; 77:272-6. [DOI: 10.1016/j.lungcan.2012.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 03/27/2012] [Accepted: 04/02/2012] [Indexed: 01/04/2023]
|
100
|
Sacha JB, Kim IJ, Chen L, Ullah JH, Goodwin DA, Simmons HA, Schenkman DI, von Pelchrzim F, Gifford RJ, Nimityongskul FA, Newman LP, Wildeboer S, Lappin PB, Hammond D, Castrovinci P, Piaskowski SM, Reed JS, Beheler KA, Tharmanathan T, Zhang N, Muscat-King S, Rieger M, Fernandes C, Rumpel K, Gardner JP, Gebhard DH, Janies J, Shoieb A, Pierce BG, Trajkovic D, Rakasz E, Rong S, McCluskie M, Christy C, Merson JR, Jones RB, Nixon DF, Ostrowski MA, Loudon PT, Pruimboom-Brees IM, Sheppard NC. Vaccination with cancer- and HIV infection-associated endogenous retrotransposable elements is safe and immunogenic. THE JOURNAL OF IMMUNOLOGY 2012; 189:1467-79. [PMID: 22745376 DOI: 10.4049/jimmunol.1200079] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expression of endogenous retrotransposable elements, including long interspersed nuclear element 1 (LINE-1 or L1) and human endogenous retrovirus, accompanies neoplastic transformation and infection with viruses such as HIV. The ability to engender immunity safely against such self-antigens would facilitate the development of novel vaccines and immunotherapies. In this article, we address the safety and immunogenicity of vaccination with these elements. We used immunohistochemical analysis and literature precedent to identify potential off-target tissues in humans and establish their translatability in preclinical species to guide safety assessments. Immunization of mice with murine L1 open reading frame 2 induced strong CD8 T cell responses without detectable tissue damage. Similarly, immunization of rhesus macaques with human LINE-1 open reading frame 2 (96% identity with macaque), as well as simian endogenous retrovirus-K Gag and Env, induced polyfunctional T cell responses to all Ags, and Ab responses to simian endogenous retrovirus-K Env. There were no adverse safety or pathological findings related to vaccination. These studies provide the first evidence, to our knowledge, that immune responses can be induced safely against this class of self-antigens and pave the way for investigation of them as HIV- or tumor-associated targets.
Collapse
Affiliation(s)
- Jonah B Sacha
- AIDS Vaccine Laboratory and Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|